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Abstract

We study the identification of a nonseparable function which relates a continuous

outcome to a continuous endogenous variable. We suppose to have in hand a strongly

exogenous instrument, and assume both a monotonicity and a rank similarity con-

dition. We show that the combination of these restrictions has a large identifying

power: full identification can be achieved even though the instrument is discrete. To

prove our results, we rely on group and dynamical systems theories. The identifica-

tion of the model depends on the properties of the orbits of a group generated by

a well defined set of identified functions. Two cases are distinguished, depending on

whether there exists a function in this group which admits a fixed point. In the first

case, the univariate model if fully identified. In the second one, the univariate model

is identified on a countable set with a binary instrument and fully identified in general

when the instrument takes at least three values. We partially extend these results to

multivariate endogenous variables.
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1 Introduction

While the issue of endogeneity and the idea of instrumental variables are at least as old
as econometrics, it is only recently that thorough investigations on the nonparametric
identification of models with endogenous explanatory variables and instruments have been
done (see, e.g., Matzkin, 2007, for a survey). Such studies are yet important because usual
assumptions such as linearity or the separability of the error terms are seldom justified
by theory, and are also likely to fail in practice. At least two approaches have been
taken to generalize results on the linear model. The first one is based on estimating
equations (see, e.g., Newey and Powell, 2003 or Chernozhukov and Hansen, 2005). This
approach relies on relatively weak exogeneity conditions, and can handle both continuous
and discrete endogenous variables. On the other hand, it imposes restrictions such as
additive separability or rank similarity on the outcome disturbance. Besides, it relies on
various completeness conditions for which very few sufficient conditions have been obtained
(see, e.g., Newey and Powell, 2003, and D’Haultfoeuille, 2011) and which are restrictive
(see Severini and Tripathi, 2006, and D’Haultfoeuille, 2011, for counterexamples). The
second one uses a control variable approach (see, e.g., Newey et al., 1999, Florens et al.,
2008 and Imbens and Newey, 2009). This strategy requires stronger exogeneity conditions
on the instrument, and is more suited to continuous endogenous variables. On the other
hand, it has the advantage of imposing less conditions on the outcome disturbances and
relying on more transparent dependence conditions between the endogenous variables and
the instrument.

A common feature of both approaches is that when the endogenous variable is contin-
uous, the instrument should be continuous to achieve identification. In this paper, we
alleviate this latter restriction. This is convenient because in many cases, we have at our
disposal only discrete instruments. A typical example is policy reforms, which may affect
the endogenous variable but not directly the outcome. Similarly, in experiments, the ran-
domization in the treatment or control group may affect a continuous endogenous variable
but not directly the outcome.1 To do so, we combine both approaches and consider a
triangular system where the structural and the reduced form equations are nonseparable,
and potential outcomes are strictly monotonic in a scalar disturbance. We essentially im-
pose a strong exogeneity assumption identical to the one considered by Imbens and Newey

1For instance, de Mel et al. (2008) use randomized grants (equal to $0, $100 or $200) to generate
exogenous shocks to capital stock and evaluate the returns to capital in microentreprises.
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(2009), and a monotonicity and rank similarity conditions, as Chernozhukov and Hansen
(2005). We show that the combination of these restrictions has a huge identification power.
Even though the endogenous variable is continuous, full identification of the model can be
achieved in the univariate case when the instrument is binary, and is typically fulfilled
with an instrument taking three values or more. These results are strikingly at odds with
those of Imbens and Newey (2009), which not only rely on a continuous instrument but
also require large support conditions. Using a stochastic polynomial restriction, Florens
et al. (2008) remove the need for large support conditions but also require the instrument
to be continuous. Compared to Chernozhukov and Hansen (2005), we remove the need for
a completeness condition and rely on discrete instruments instead of continuous ones2 by
just slightly reinforcing the exogeneity condition on the instrument.

To establish our results, we rely on general theorems in group and dynamical system
theories, in the same spirit as our previous paper on the identification of adverse selection
with instruments (see D’Haultfoeuille and Février, 2007, 2010).3 The idea is the following.
We consider, thanks to the control function approach, a change in the endogenous variable
X due to a change in the instrument but not to a modification of the control variable.
Such a change is exogenous and the associated shift in X from x to x′ = g(x) is identified.
Observing its effect on the outcome, one can also relate, under the monotonicity and rank
similarity conditions, the structural function ϕ at x with itself at x′ = g(x). Considering
all the functions g associated with any change in the value of the instrument, we show that
the problem of identifying ϕ is closely related to the properties of the group action of G,
the group generated by these functions g.

Studying the property of this group action, we distinguish whether X is univariate or not,
and whether the group action is free (which means that there does not exist any function in
G different from the identity function which admits a fixed point) or not. In the univariate
case with free actions, we prove that full identification can be achieved under very mild
conditions if and only if the instrument takes at least three values. Conversely, with a binary
instrument, we prove that the model is identified only on a countable set. With nonfree
actions, a slight restriction of nonfreeness is sufficient to obtain full identification.4 The

2The completeness condition imposes, apart from a particular kind of dependence, that the instrument
is continuous when the endogenous variable is continuous.

3Interestingly, Kocecki (2010) also relies on group theory to reconsider identification in parametric
models, and applies his framework to simultaneous equation models.

4This slight restriction is that the function in G different from the identity function which admits a
fixed point should actually have a finite number of fixed points.

3



underlying idea is to use fixed points to recover the entire function ϕ. In a recent and closely
related paper, Torgovitsky (2011) also uses fixed points to achieve full identification of the
model. The intersection conditions used in this paper can be interpreted as a particular
case of our nonfree group action case. Interestingly, and contrary to the intuition behind
the result of Imbens and Angrist (1994) in the case of a dummy endogenous variable,
namely that monotonic instruments are important to derive causal effects, heterogeneity
in responses to a binary instrument actually helps identifying the model in our framework.

The multivariate case is much more complicated than the univariate one and it seems
difficult to obtain a full classification. Yet, previous results can be partially extended.
We prove that when the first stage equation is a generalized location model, which is a
particular case of a free group action, the model is fully identified under mild conditions,
provided that the instrument takes at least d + 2 values, where d denotes the dimension
of X. With nonfree group actions, fixed points can be used to fully identify the structural
function under a supplementary restriction on the relative positions of g and the identity
function.

The paper is organized as follows. Section 2 presents the model. Section 3 describes our
identification strategy and its link with group theory. Our main identification results, in
the univariate case, are presented in Section 4. Section 5 considers the multivariate case.
Section 6 concludes. All proofs are deferred to the appendix.

2 The model

Let X ∈ Rd be the endogenous variable and Z denote the instrument. We denote by
Yx the potential outcome corresponding to the situations where X = x. For the sake
of simplicity, we do not introduce exogenous covariates hereafter, but our analysis holds
with such covariates by simply conditioning on them. We consider the following triangular
nonseparable model:

Yx = ϕ(x, Ux)

X = ψ(Z, V ).

We observe X, Z and Y ≡ YX . Such a model is also considered by, e.g., Chernozhukov and
Hansen (2005), Florens et al. (2008), Imbens and Newey (2009) or Torgovitsky (2011). We
aim at recovering the function ϕ from the distribution of (Y,X,Z). Contrary to Imbens
and Newey (2009) and Florens et al. (2008), we suppose to have at our disposal only a
discrete instrument variable Z ∈ {1, ..., K}, K ≥ 2. Our first assumption is the exogeneity

4



of the instrument. Subsequently, we denote, for any random variables S and T , FS and
FS|T the cumulative distribution functions of S and of S conditional on T , respectively.
Similarly, we let Supp(S) and Supp(S|T ) denote the support of S and of S conditional on
T , respectively. Finally, we denote by X the interior of Supp(X).

Assumption 1 (Strong exogeneity) Z ⊥⊥ (V, (Ux)x∈X ).

Assumption 1 is at the basis of the control variable approach also followed by Newey
et al. (1999), Florens et al. (2008) and Imbens and Newey (2009). The reason is that
under this condition and additional restrictions (implied by Assumptions 3-4 below), X is
independent of U ≡ UX conditional on FX|Z(X|Z) (see, e.g., Theorem 1 of Imbens and
Newey, 2009). FX|Z(X|Z) is thus a control variable in the sense that conditioning on it
removes the endogeneity of X. An alternative to Assumption 1 is to suppose only that
Z ⊥⊥ (Ux)x∈X , following, e.g., Chernozhukov and Hansen (2005) or Chesher (2010). In this
case however, it is not possible to find a control variable in general.

Our second and third assumptions, also imposed by Chernozhukov and Hansen (2005),
are a rank similarity and a monotonicity conditions, which puts some restriction on the
potential outcome disturbances (Ux)x∈X and on functions ϕ and ψ. We let ψ1, ..., ψd denote
the different components of ψ.

Assumption 2 (Rank similarity) The distribution of Ux conditional on V does not depend
on x.

Assumption 3 (Strict monotonicity in the disturbances) (Ux, V ) ∈ R2 and for all (x, z,m) ∈
X × {1, ..., K} × {1, ...d}, u 7→ ϕ(x, u) and v 7→ ψm(z, v) are strictly increasing.

Assumption 2 is satisfied for instance under rank invariance (see, e.g., Doksum, 1974)
i.e. when Ux = U for all x. In the returns to education example, rank invariance means
that individuals would always be at the same rank of potential wages, for all possible
values of schooling. Such an assumption is restrictive, since it is likely that different
shocks affect individuals in all counterfactual situations. In this case, rank invariance does
not hold in general, while rank similarity may still be satisfied. For instance it holds if
Ux = q(U, νx), where U is a common term which can be anticipated by the individual
(and is thus correlated with V ) and νx are identically distributed unanticipated shocks,
which are thus independent of V . See also Chernozhukov and Hansen (2005) for a detailed
discussion on this condition.
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Supposing the error term to be real is standard and also assumed by, e.g., Chernozhukov
and Hansen (2005) or Chesher (2007, 2010), but is not imposed for instance by Hoderlein
and Mammen (2007) or Imbens and Newey (2009). The monotonicity condition on ϕ(x, .)

encompasses in particular the additive model ϕ(x, u) = g(x)+u and transformation models
ϕ(x, u) = h(g(x) + u), where h is strictly increasing (see, e.g., Chiappori et al., 2010, for a
recent analysis of this model).

Finally, we impose the following technical restrictions.

Assumption 4 (Technical restrictions) (i) V is continuously distributed, (ii) (u, v) 7→
FUx|V=v(u) is continuous and strictly increasing in u for all v ∈ Supp(V ), (iii) Supp(X|Z =

z) =
∏d

m=1[xm, xm] with −∞ ≤ xm < xm ≤ ∞ independent of z, (iv) ϕ(., .) and ψ(z, .) are
continuous on {(x, u) ∈ X × Supp(Ux)} and Supp(V ) respectively.

The first two conditions basically formalize the idea that Y and X are continuous. The
third allows the support of X to be either bounded or unbounded. It however imposes
that this support does not depend on Z. Our analysis below could be adapted without
this restriction, but at the price of an additional complexity. The fourth, finally, excludes
discontinuous effects of X on Y . It is important as we often obtain identification of ϕ(., u)

on dense subsets of X . By continuity, this ensures that ϕ is identified everywhere. We only
impose continuity of ϕ(., u) on the interior X of the support of X and not on the whole
support. This is important when ϕ(., u) tends to infinity on the boundaries.

We show below that actually, Assumptions 1 to 4 together have a strong identification
power, since they allow to achieve identification of ϕ with a discrete instrument, whereas
X is continuous. This result is at odds with those of Chernozhukov and Hansen (2005),
Florens et al. (2008) and Imbens and Newey (2009). They all require the instrument
to be continuous, together with other restrictions: completeness in the first, functional
restrictions in the second and a “large support” condition in the third. Our conclusion is
closer, on the other hand, with the one of Torgovitsky (2011) who considers assumptions
very similar to ours. We discuss in more details the relationship between our results and
those of Torgovitsky (2011) later on.
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3 The identification strategy

3.1 A reformulation of the identification problem

As mentioned previously, we suppose that we observe Y , X and Z, and we seek to recover
the function ϕ. It is well known that normalizations are possible in Model (2). First,
denoting V = (V1, ..., Vd), we can replace, for any m ∈ {1, ..., d}, Vm by any hm(Vm)

(hm being a continuous strictly increasing function) and modify ψm accordingly without
changing the model. We can thus always suppose that Vm is uniformly distributed. Under
this normalization, for any observation Vm = vm and Z = j, ψm(., .) satisfies ψm(j, v) =

F−1Xm|Z=j(vm), which is identified. ψm(j, vm) is the vm-th quantile of Xm conditional on
Z = j. Then ψ(j, v), and similarly V = FX|Z(X), are identified. Hence, the identification
of ϕ can be studied supposing that we observe not only Y , X and Z, but also V . In
the rest of the paper, we denote by ψ−1(j, .) the inverse of ψ(j, .). This inverses exists by
Assumption 3, and is defined on Supp(X) by Assumption 4.

For similar reasons, a normalization on Ux is also possible. Rather than imposing the
distribution of Ux0 to be uniform (for a given x0 ∈ X ), it is more convenient to suppose,
still without loss of generality, that the distribution of Ux0 conditional onX = x0 is uniform.
In this case, ϕ(x0, .) is identified by ϕ(x0, u) = F−1Y |X=x0

(u).

The idea of the control function approach is that we can yield an exogenous change in X
by moving Z while keeping V constant (since under the exogeneity condition, Ux ⊥⊥ Z|V ).
Observing the effect of such a change on Y , one can relate ϕ(x, u) and ϕ(x′, u) for an
appropriate value of x′, using the monotonicity and rank similarity conditions. Formally,
let us define gij(.) for all (i, j) ∈ {1, ..., K}2, by

gij(x) = ψ(j, ψ−1(i, x)),

where ◦ denote the composition operator (f ◦ g(x) = f(g(x))). gij(x)− x is the shift in X
when Z moves from i to j while V remains constant. Because ψ and ψ−1 are identified,
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gij also is. Moreover, for all x ∈ X ,

FY |Z=i,V=ψ−1(i,x)(ϕ(x, u)) = P (Yx ≤ ϕ(x, u)|Z = i, V = ψ−1(i, x))

= P (Ux ≤ u|Z = i, V = ψ−1(i, x))

= P (Ux ≤ u|V = ψ−1(i, x))

= P (Ugij(x) ≤ u|V = ψ−1(i, x))

= P (Ugij(x) ≤ u|Z = j, V = ψ−1(i, x))

= P (Ygij(x) ≤ ϕ(gij(x), u)|Z = j, V = ψ−1(i, x))

= FY |Z=j,V=ψ−1(i,x)(ϕ(gij(x), u)).

The second equality is satisfied because ϕ(x, .) is strictly increasing (Assumption 3). The
third stems from the independence between Z and (Ux, V ) (Assumption 1), which implies
that Ux is independent of Z conditional on V . This step is crucial in our analysis and
can be interpreted as a reduction of the dimensionality of the problem. Instead of working
in a space of dimension 2 (Z and V ), we can work in a space of dimension 1 (V only).
The fourth equality, which stems from the rank similarity condition (Assumption 2), is
also important, as it allows to relate the distribution of Ux with the one of Ugij(x). As a
result, we can also relate the distributions of the potential outcomes Yx and Ygij(x). The
last equalities apply the same reasoning as the first ones, but in a reverse way.

By Assumptions 3 and 4, y 7→ FY |Z=i,V=v(y) is strictly increasing for all v.5 Hence, its
inverse exists, and

ϕ(gij(x), u) = F−1Y |Z=j,V=ψ−1(i,x) ◦ FY |Z=i,V=ψ−1(i,x)(ϕ(x, u)). (3.1)

This equation shows that if ϕ(x, .) is identified, for a given x ∈ X , then ϕ(gij(x), .) is also
identified. We state this in the following lemma.

Lemma 3.1 Suppose that ϕ(x, .) is identified, for a given x ∈ Supp(X). Then, for any
(i, j) ∈ {1, ..., K}2, ϕ(gij(x), .) is also identified.

3.2 The link with group theory

Before showing the relationship between identification issues and group theory, let us recall
some definitions and results on groups. A group G is a set endowed with a binary operator

5As before, FY |Z=i,V=v(y) = FUx|V=v(ϕ
−1(x, y)), where ϕ−1(x, .) denotes the inverse of ϕ(x, .). The

result follows since both FUx|V=v(.) and ϕ−1(x, .) are strictly increasing.
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∗ which satisfies three properties. The first is associativity: for all (a, b, c) ∈ G3, (a∗b)∗c =

a∗(b∗c). The second is the existence of an identity element e ∈ G satisfying a∗e = e∗a = a

for all a ∈ G. The third is the existence of inverses. Every element a ∈ G admits an element
called its inverse and denoted a−1 which satisfies a ∗ a−1 = a−1 ∗ a = e. G is abelian if ∗ is
commutative, i.e. if for all a, b, a ∗ b = b ∗ a. A subgroup H of G is a subset of G which is
itself a group for ∗. If we let (Hi)i∈I denote a family of subgroups of G, one can check that
∩i∈IHi is also a group. The group generated by a subset I of G is the intersection of all
subgroups of G containing I. By definition, it is the smallest subgroup of G including I.

We also need to introduce the notion of group actions and orbits. For any set A and a
group G, a group action . is a function from G × A to A (denoted by g.x) satisfying, for
every (g, h) ∈ G2 and x ∈ A, (g ∗ h).x = g.(h.x) and e.x = x. The orbit Ox of x ∈ A is
then defined by

Ox = {g.x, g ∈ G}.

A property which will prove useful is freeness. We say that the group action . is free if, for
any x ∈ A, g.x = x implies g = e.

Finally, we recall definitions on equivalence relations. A relation R on a set A is an
equivalence relation if it+ is reflexive (xRx), symmetric (xRy implies yRx) and transitive
(xRy and yRz implies xRz). The class of equivalence of x is then defined as the set
{a ∈ A : xRa}.

Going back to our framework, we denote by G the group generated by the set of functions
(gij)(i,j)∈{1,...,K}2 and the composition operator ◦. This group includes for instance g12, g−112 ,
g12◦g12 (denoted g212)6 but also for instance, if K ≥ 3, g212◦g31◦g12. We can properly define
G because gij are bijections from X to itself.7 Indeed, for all m, both ψm(j, .) and ψ−1m (i, .)

are strictly increasing, and ψ−1m (i, .) is onto (0, 1) while ψm(j, .) is onto the interior of the
support of Xm. Hence, we can safely define the inverse function of any gij and take their
compositions. The function . from G × X to X satisfying g.x = g(x) is a group action,
since (g ◦ h)(x) = g(h(x)) and Id(x) = x, where Id denotes the identity function. Hence,
G acts on X through the composition operator. The orbit of x ∈ X is, by definition,
Ox = {g(x), g ∈ G}. Our first result, based on Lemma 3.1, is that ϕ(x0, u) is identified on
Ox0 , the closure of Ox0 .

Lemma 3.2 Under Assumptions 1-4, ϕ(., .) is identified on Ox0 × (0, 1).
6More generally, we let gk(x) denote g ◦ ... ◦ g(x), if k ≥ 1, x if k = 0 and g−1 ◦ ... ◦ g−1(x), if k ≤ −1.
7For technical reasons detailed below, we restrict elements of G to be defined on X instead of Supp(X).
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Proof: fix u ∈ (0, 1) and g ∈ G. There exists (i1, j1, ..., ip, jp) ∈ {1, ..., K}2 such that
g = gi1j1 ◦ ... ◦ gipjp . Because ϕ(x0, u) = F−1Y |X=x0

(u) is identified, we can identify, by
Lemma 3.1, ϕ(gipjp(x0), u) and, by a straightforward induction, ϕ(g(x0), u). Thus, ϕ(., .)

is identified on Ox0 × (0, 1). By continuity of ϕ(., u), ϕ(., .) is identified on Ox0 × (0, 1) �

Let us define the relation R by xRx′ if there exists x1 = x, ..., xn = x′ such that for all
i = 1, ..., n− 1,

Oxi ∩ Oxi+1
∩ X 6= ∅.

It is easy to see that R is an equivalence relation. We denote by X0 the equivalence class
of x0. X0 includes Ox0 , but is, in general, larger. Theorem 3.1 below extends Lemma 3.1
to this set.

Theorem 3.1 Under Assumptions 1-4, ϕ(., .) is identified on X0 × (0, 1).

This theorem establishes that as soon as one orbit is “related” to the one of x0, in the sense
that the intersection of their closure is nonempty, we can identify ϕ(., u) on this closure.
Then, by induction, we can identify ϕ(., u) on all orbits indirectly “related” to the one of
x0. To establish this result, we prove the nontrivial fact that if x′ ∈ ∂Ox (the frontier
of Ox) and ϕ(x′, u) is identified, then we can actually identify ϕ(., u) on Ox. To better
understand this point, we will discuss it in details in the univariate setting.

An important consequence of Theorem 3.1 is that identification of ϕ(x, .) can be rephrased
in terms of determining the set X0. In turn, the nature of this set depends on the dimension
of X and on how G acts on X . In the following, we separate the univariate case X ⊂ R
from the multivariate one, and free actions from nonfree ones.

4 Results in the univariate case

We first consider the univariate case where X = (x, x), for which the topology of X0 is
more simple. It turns out that under mild restrictions, X0 is either equal to X or discrete,
so that ϕ is either fully identified or identified on a sequence of points.

4.1 Free actions

We first suppose that the action of G on X is free: apart from the identity function, no
g ∈ G admits any fixed point.
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Assumption 5 (Free action) G acts freely on X : if g(x) = x for any (g, x) ∈ G × X ,
then g is the identity function.

When the instrument is binary, G acts freely if and only if g12 admits no fixed point or
is equal to the identity. The latter case corresponds to an instrument independent of X.
Otherwise, we have either ψ(1, .) > ψ(2, .) or ψ(2, .) > ψ(1, .). Hence, this assumption may
be seen as an extension, in a continuous setting, to the monotonicity condition considered
by Imbens and Angrist (1994) in the case of a dummy endogenous variable. The important
difference with their monotonicity condition, however, is that we can test it directly in the
data, by checking that FX|Z=1 stochastically dominates (or is dominated by) FX|Z=2 at the
first-order.

In this case of a binary instrument, the orbit of x0 is discrete, and consists of the monotonic
sequence (xk)k∈Z defined by xk = gk12(x0). Figure 1 depicts the correspondence between
this sequence and the identification of ϕ(., u). The left graph shows how to build (xk)k∈Z

by applying g12(.) successively. The right graph depicts in dash the true curve x 7→ ϕ(x, u)

and the black points corresponding to the sequence where ϕ(., u) is identified. By Lemma
3.1, we can indeed identify ϕ(xk, u) as soon as ϕ(xk−1, u) has been recovered. One may
expect that ϕ(., u) is identified only on this sequence. Theorem 4.1 formalizes this result,
by proving that X0 = Ox0 and that no other point can be identified outside X0.8

Theorem 4.1 If K = 2 and Assumptions 1-5 hold, ϕ(x, u) is identified for any u ∈ (0, 1)

if and only if x ∈ {xk : k ∈ Z}.
8When g12 is the identity function, we identify ϕ(., u) only at x0, which makes sense since this case

corresponds to an instrument independent of X.
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Figure 1: X0 in the free case, K = 2.

Even if we obtain identification only on a sequence of points, we can still identify several in-
teresting parameters.9 Consider the average treatment effect ∆ATE

jkl = E
(
Yxk − Yxj |X = xl

)
and the quantile treatment effect ∆QTE

jkl (τ) = F−1Yxk |X=xl
(τ)− F−1Yxj |X=xl

(τ). ∆ATE
jkl is the av-

erage effect of moving X from xj to xk for people with X = xl. ∆QTE
jkl (τ) is the effect of

moving from xj to xk for people who remain on the τ -th quantile of potential outcomes
and with X = xl. Corollary 4.2 shows that both parameters can be identified.

Corollary 4.2 If K = 2 and Assumptions 1-4 and 5 hold, ∆ATE
jkl and ∆QTE

jkl (τ) are iden-
tified, for any (j, k, l, τ) ∈ Z3 × (0, 1).

A consequence of Corollary 4.2 is that we can identify in particular ∆ATE
jkk , which corre-

sponds to the average treatment (of going from xj to xk) for the treated. On the other
hand, without further assumption, we cannot identify average treatment effect on the whole
population or average marginal effects such as E (∂ϕ/∂x(x, Ux)|X = x).

When K ≥ 3, the situation is very different from the binary case, because the orbit of x0
does not reduce to a monotonous sequence. To see this, consider Figure 2. As previously

9For x 6∈ X0, bounds on ϕ(x, u) can also be achieved under additional restrictions on ϕ(., u) such as
monotonicity.
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x1 = g12(x0) > x0 lies in Ox0 . Suppose in this example that we apply g−113 to x1, and then
g12. We obtain a point x2 ∈ Ox0 that lies between x0 and x1. Contrary to the binary
case, we are thus able to get some information on (x0, x1). Many points can be reached
this way. Actually, we show below that under Assumption 2 and a mild restriction, Ox0 is
dense in Supp(X). As a result, x0 has only one equivalence class and ϕ is fully identified
by Theorem 3.1.
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Figure 2: Some points in the orbit of x0 in the free case, K ≥ 3.

To get some intuition on this result, consider the generalized location model defined by

X = λ

(
K∑
k=2

ak1{Z = k}+ q(V )

)
, (4.1)

for continuous and strictly increasing functions q and λ (from (0, 1) to R and from X to
itself, respectively). In this case, gij(x) = λ(−ai + aj + λ−1(x)) (with a1 = 0), so that any
g ∈ G satisfies

g(x) = λ

(
K∑
k=2

ckak + λ−1(x)

)
, (4.2)

with (c2, ...cK) ∈ ZK−1. Hence, we have either g(x) > x, g(x) < x or g(x) = x for
all x ∈ Supp(X), depending on the sign of

∑K
k=2 ckak. In other words, Assumption 5 is
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satisfied: the group action is free. Besides, the orbit of x0 satisfies

Ox0 =

{
λ

(
K∑
k=2

ckak + λ−1(x0)

)
, (c2, ..., cK) ∈ ZK−1

}
.

The set
∑K

k=2 akZ is an additive subgroup of R. By a classical result on these additive
subgroups (see, e.g., Stillwell, 1992, p.33), it is either discrete or dense. Density is achieved
if and only if there exists (i, j) ∈ {1, ..., K}2 such that ai/aj 6∈ Q, a very mild condition
since the Lebesgue measure of Q is zero. As a result, Ox0 is also either discrete or dense
on Supp(X), depending on whether the ratios ai/aj are all rational or not.

Qualitatively, the same phenomenon arises in the general case where Assumption 5 holds
but without necessarily a generalized location model. Provided that the functions gij
are regular enough, The orbit Ox0 is either discrete or dense, the discrete case being the
exception. Assumption 6 rules out this particular case.

Assumption 6 (Regularity and non periodicity) There exists (i, j, k) ∈ {1, ..., K}3 such
that ψ(i, .), ψ(j, .) and ψ(k, .) are C2 diffeomorphisms and for all (m,n) ∈ Z2, (m,n) 6=
(0, 0), gmij 6= gnik.

Theorem 4.3 If K ≥ 3 and Assumptions 1-4 and 5-6 hold, X0 = X , and ϕ is fully
identified.

The proof relies on Hölder and Denjoy theorems, two deep results in group and dynamical
systems theories. Denjoy theorem, in particular, ensures that Ox0 is either discrete or dense
in Supp(X), depending on whether a scalar called the rotation number (which corresponds
to the ratio a2/a3 in the example above) is rational or not. Assumption 6 ensures that
this number is irrational, establishing the density of Ox0 . Interestingly, the proof shows
that only three different values of Z are needed to achieve point identification of ϕ(., .). If
K ≥ 4 and Assumption 6 holds for four indices or more, we can use different subsets of this
set of indices to recover ϕ(., .). If the different corresponding functions do not coincide, the
model is rejected. In other words, the model is overidentified in general when K ≥ 4.

Theorem 4.3 presents the identification result under what we believe is the most common
case on ψ (namely, when Assumption 6 holds). If, on the contrary, for any (i, j, k) ∈
{1, ..., K}2 there exists (m,n) such that gmij = gnik, one can show that ϕ(., u) is identified
only on a sequence of points as in the binary case. Moreover, when the ψ(j, .) functions are
not C2, we cannot apply Denjoy theorem. The orbits may neither be discrete nor dense in
this case, but related to Cantor sets (see, e.g., Ghys, 2001, Proposition 5.6).
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One may wonder how to test for Assumption 5 in practice. Actually, by Hölder theorem,
the group G is abelian in this case. Hence, if K = 3 for instance, we can test for the much
simpler condition g12 ◦ g13 = g13 ◦ g12.

4.2 Nonfree actions

We now turn to the situation where the action of G on X is not free. Recall that this
means that there exists x ∈ X and g ∈ G different from the identity function such that
g(x) = x. Actually, we slightly reinforce this condition here by limiting the number of fixed
points to be finite.10

Assumption 7 (Non freeness) There exists g ∈ G different from the identity function
which admits a positive and finite number of fixed points.

To provide intuitions on identification in the nonfreeness case, let us consider a function
g that satisfies this condition. Suppose for simplicity that it has only one fixed point xf ,
with g(x) > x for x < xf and g(x) < x otherwise (see Figure 3). Then for any value of
x0, xf = limk→∞ g

k(x0), so that xf ∈ Ox0 . We can identify ϕ(., u) at gk(x0) and also, by
continuity, at xf (see Figure 3). To go further, we rely on a property we have not exploited
so far: by Theorem 3.1, we can identify ϕ(x, u) for all x such that xf ∈ Ox, because in this
case x0Rx. As any x 6= xf satisfies this property, the model is fully identified.

To understand this last step, consider a point x which is not in Ox0 , and choose a value
a for ϕ(x, u) (the upper cross in Figure 3). By Equation (3.1), ϕ(gk(x), u) should then
be equal to a function of a, say hk(a) (other crosses in Figure 3). Because the sequence
(gk(x))k∈N converges to xf , the sequence (hk(a))k∈N also converges (let h∞(a) denote its
limit). h∞(a) should be equal to ϕ(xf , u), which is identified. This imposes constraints
on the choice of a. The proof of Theorem 3.1 implies actually that there is a unique a
(namely, the true value ϕ(x, u)) such that h∞(a) = ϕ(xf , u). Figure 3 illustrates this: for
a given a 6= ϕ(x, u), we obtain h∞(a) 6= ϕ(xf , u). This implies that ϕ(x, u) is identified.

Hence, when g admits a unique fixed point, X0 = X and the model is fully identified.
Theorem 4.4 extends this result to functions with a finite number of fixed points.

10Hence, our classification in the univariate case rules out pathological situation where all elements of
G cross an infinite number of times the identity function, without being the identity functions.
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Figure 3: Illustration of X0 = X under Assumption 7.

Theorem 4.4 If Assumptions 1-4 and 7 hold, X0 = X . As a result, ϕ is fully identified.

To better understand the nonfreeness property, suppose that FX|Z=i and FX|Z=j cross at
least once and at most a finite number of times, for some i 6= j ∈ {1, ..., K}2. Such a case
is likely to hold when the effect of Z on X is heterogenous. Reconsider the example of
returns to education, and suppose that individuals face two tuition fee policies. In the first
case, tuition fees remain constant through years while in the second, they are larger than
the first for first years of college, and then lower. If the assignment of the policy is random,
we can use the tuition fee policy as an instrument (Z denoting the label of the policy). It is
likely that FX|Z=1 and FX|Z=2 cross, because by the policies design, FX|Z=1(x) < FX|Z=2(x)

for small x, and FX|Z=1(x) > FX|Z=2(x) for large x. In such a case, Assumption 7 holds,
because gij will have as many fixed points as crossing points between FX|Z=i and FX|Z=j.

Corollary 4.5 Suppose that FX|Z=i and FX|Z=j cross at least once and at most a finite
number of times on X . Then ϕ is fully identified.

This corollary implies in particular that the model is fully identified with a binary in-
strument when FX|Z=1 and FX|Z=2 cross, i.e. when the monotonicity condition discussed
above fails to hold. The intuition conveyed by the result of Imbens and Angrist (1994)

16



that monotonicity helps for identification is actually reversed here: it is better to have a
nonmonotonic instrument.

The “crossing case” on FX|Z considered in Corollary 4.5 is studied by Torgovitsky (2011),
who also shows, in a closely related paper, that the model is fully identified thanks to
crossing points.11 It is also related to the main result of Guerre et al. (2009), who shows
identification of an auction model with (discrete) variations in the number of players, and
its generalization by D’Haultfœuille and Février (2007) to other adverse selection models.
All these papers rely on the fact that two curves cross to identify the model of interest.

In the case of a binary instrument, Assumption 7 is equivalent to the “crossing” condition
stated above, and there is no need to introduce the group G to understand identification.
However, when the instrument takes three values or more, reasoning on G is important
because Assumption 7 is much weaker than the simple “crossing” condition. It may hold
even if none of the functions FX|Z=i and FX|Z=j cross, for all (i, j) ∈ {1, ..., K}2, so that
none of the gij, (i, j) ∈ {1, ..., K}2, admits a fixed point. To illustrate this claim, consider
for instance that shifting Z from 1 to 2 has a pure location effect, so that FX|Z=2(x) =

FX|Z=1(x−m) for a given m > 0, and suppose that FX|Z=3(x) = FX|Z=1(x−m−exp(−x)).
The functions FX|Z=1, FX|Z=2 and FX|Z=3 do not cross each other, because FX|Z=1(x) >

FX|Z=2(x) > FX|Z=3(x) for all x. Now, g21(x) = x−m, so that g221(x) = x− 2m. Similarly,

g31(x) = F−1X|Z=1(FX|Z=3(x)) = x−m− exp(−x).

Because the equation x − 2m = x −m − exp(−x) admits a unique solution in x (namely
− ln(m)), g221 ◦ g13 admits a unique fixed point, and Assumption 7 is satisfied.

Up to now, we have supposed that the number of fixed points was finite. An interesting case
where it fails to hold is when the instrument has a “local” effect on the endogenous variable.
Consider for instance the case where K = 2 and suppose that FX|Z=1(x) = FX|Z=2(x) for
all x ≥ x0 and FX|Z=1(x) > FX|Z=2(x) for x < x0. Such a case is likely to hold when
the instrument targets a very specific population. Reconsidering the returns to schooling
example, for instance, it is plausible that a reform which raises the maximum compulsory
age of school only has only an effect at the bottom of the distribution of years of schooling.
In this case, g12(x) = x for x ≥ x0, so that Assumption 7 fails to hold. Still, X0 = (x, x0],

11Torgovitsky (2011) strengthens Assumption 4 by supposing that the support of X is bounded in at
least one direction and by imposing that ϕ(., u) is continuous on the whole support of X. This allows him
to use, at the limit, a crossing point at one boundary of the support.
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so that we can point identify ϕ(., u) on this whole interval.12

5 The multivariate case

In the multivariate case, the topology of X0 may be more complicated than before. As a
result, it seems difficult to yield a full classification, contrary to the univariate case. Yet,
Theorem 3.1 is still valid and previous ideas can be partially extended.

5.1 The free case

Let us suppose first that Assumption 5 holds. When K = 2, we get a similar result as
in Theorem 4.1. X0 = {gk12(x0), k ∈ Z} and we identify ϕ(., u) on this sequence only.
The case K ≥ 3 is far more delicate. In particular, we cannot apply Hölder and Denjoy’s
theorems to yield a similar result as Theorem 4.3, because these theorems only apply to
real, univariate functions. Still the generalized location model provides some interesting
insights. Suppose, as in the univariate case, that

X = λ

(
K∑
k=2

ak1{Z = k}+ q(V )

)
, (5.1)

with ak = (ak1, ...akd) ∈ Rd, q = (q1, ..., qd), λ = (λ1, ..., λd) and where qm and λm (m =

1...d) are strictly increasing continuous functions. As before, gij(x) = λ(ai − aj + λ−1(x)).
As a result,

Ox0 =

{
λ

(
K∑
k=2

ckak + λ−1(x0)

)
, (c2, ..., cK) ∈ ZK−1

}
.

Using a characterization of additive subgroups of Rd, we obtain a necessary and sufficient
condition for X0 = X to hold. Introducing H =

∑K
k=2 Zak, we denote, for any x ∈ Rd,

< x,H >=
∑K

k=2 < x, ak > Z, where < ., . > is the usual scalar product in Rd.

Theorem 5.1 Under Assumptions 1-4, if Equation (5.1) holds, X0 = X if and only if

{x ∈ Rd :< x,H >⊂ Z} = {0}. (5.2)

A necessary condition for X0 = X is that K ≥ d+ 2.
12We could also prove, in the same spirit as in Theorem 4.1, that ϕ(x, u) is not identified on (x0, x).

Such an example is also considered by Torgovitsky (2011).
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Theorem 5.1 provides interesting insights on how K should grow with d to yield X0 = X .
A necessary condition is K ≥ d+ 2. Actually, it turns out that this condition is sufficient
under mild additional restrictions. To see this, reconsider the univariate case d = 1 and
suppose that K = 3. Then < x,H >⊂ Z implies that xa2 ∈ Z and xa3 ∈ Z. Hence, as
discussed before, X0 = X as soon as a2/a3 6∈ Q. Similar (but more tedious) restrictions
arise when d > 1. Another implication of Theorem 5.1 is that the usual intuition that we
need one instrument per endogenous variable is misleading here. When d = 4 for instance,
K = 6 is sufficient in general. One binary and one ternary instrument are thus sufficient
to get full identification.

5.2 The nonfree case

Let us turn to the free case where Assumption 7 holds. We can still use fixed points to
characterize X0, however another element comes into play, namely the attractiveness of
these fixed points. To understand this, consider the bivariate case with K = 2, and let
xf = (x1,f , x2,f ) denote a fixed point of g12 = (g1,12, g2,12).
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Figure 4: A case where X0 6= X when K = d = 2 under Assumption 7.

Consider first a situation where g1,12(x1) > x1 if and only if x1 < x1,f , while g2,12(x2) < x2

if and only if x2 < x2,f (see Figure 4). Then no sequence (gk12(x))k∈N converges in X . When
x = (x1, x2) ∈ (−∞, x1,f ) × (−∞, x2,f ), the sequence (gk1,12(x1))k∈N converges to x1,f but
the sequence (gk2,12(x2))k∈N tends to −∞, with (x1,f ,−∞) 6∈ X (case (a)). Similarly, when
x = (x1, x2) ∈ (−∞, x1,f ) × (x2,f ,+∞), the sequence (gk1,12(x1))k∈N converges to x1,f but
the sequence (gk2,12(x2))k∈N tends to +∞ (case (b)). In this case, one would like to apply
simultaneously g1,12 and g−12,12, but (g1,12, g

−1
2,12) 6∈ G. As a result, the fixed point does not

allow us to relate different points together, and X0 corresponds to a sequence of points, as
in the free case studied before. The model is partially identified.

On the other hand, suppose that gm,12(xm) < xm if and only if xm < xm,f , for m ∈
{1, 2}. Then, for any x = (x1, x2), the sequence (g−k12 (x))k∈N converges to xf . In Figure
5, we represent such a sequence for x ∈ (−∞, x1,f ) × (−∞, x2,f ) (case (a)) and for x ∈
(−∞, x1,f ) × (x2,f ,+∞) (case (b)). As in the univariate case, X0 = X and the model is
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fully identified.
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Figure 5: A case where X0 = X when K = d = 2 under Assumption 7.

In short, a condition on the position of the coordinates of g12 is necessary and sufficient to
secure identification when K = d = 2. The sufficient part of this result actually extends
to any K and d, as Theorem 5.2 shows.

Theorem 5.2 Under Assumptions 1-4, if there exists g = (g1, ..., gd) ∈ G with exactly one
fixed point xf = (x1,f , ..., xd,f ) and such that sgn [(gm(x)− x)(x− xm,f )] does not depend
on m ∈ {1, ..., d}, then X0 = X .

The restriction on signs and on the uniqueness of the fixed point may be unnecessary when
K ≥ 3, because we can use other functions in the group G to extend the set where ϕ(., u)

is identified. However, it seems difficult to find general sufficient conditions for getting
X0 = X in this case.
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6 Conclusion

In this paper, we study the identification, with a discrete instrument at hand, of a nonsep-
arable function relating a continuous outcome to a continuous endogenous variable. Using
group theory, we show that with one endogenous variable, the model is either partially or
fully identified with a binary instrument, and fully identified under mild restrictions when
the instrument takes three values or more. These results have implications for the design
of experiments where the aim is to evaluate the effect of a continuous and endogenous
treatment. We show that under very mild conditions, we can recover any treatment effects
as soon as the instrument used in the experiment takes three values. With two values only,
we can either identify some or all treatment effects, depending on whether the instrument
acts monotonically or not.

We partially extend these results to the multivariate case. This latter case seems to raise
delicate issues, and a future avenue of research is to obtain general sufficient conditions for
full identification. Another issue we have not addressed here is estimation. In the free case,
we could rely on an estimator defined by induction, as in the context of adverse selection
models (see D’Haultfoeuille and Février, 2007). The adaptation to the current context of
nonparametric IV models remains however to be done. Finally, we believe that the idea of
using group theory for identification, which we also put forwards in our study of adverse
selection models (see D’Haultfoeuille and Février, 2010), may be applied to other economic
models.
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Appendix: proofs

6.1 Proof of Theorem 3.1

First, by Lemma 3.2, we can identify ϕ(., .) on Ox0×(0, 1). Let x1 be such that Ox1∩Ox0∩
X 6= ∅, and let us show that ϕ(., .) is identified on Ox1 × (0, 1). Let x̃ ∈ Ox0 ∩ Ox1 ∩ X .
x̃ ∈ Ox0 implies that ϕ(x̃, .) is identified. Besides, by definition of the closure of Ox1 and
because this orbit is identified, we can build an identified sequence (xn)n∈N in Ox1 such
that limn→∞ x

n = x̃. Fix y in the interior of Supp(Y |X = x0), and let u be such that
ϕ(x0, u) = y. We shall show that u is identified. Because y is arbitrary, this proves that
the inverse of ϕ(x0, .), and thus ϕ(x0, .), is identified. Then, reasoning as with x0, ϕ(., .) is
identified on Ox0 = Ox1 .

By definition of the orbit of x1, there exists gn ∈ G such that xn = gn(x1), for all n ≥ 0.
Hence, there exists g̃n ∈ G (defined by g̃n = gn ◦ g−10 ) such that xn = g̃n(x0). Because
g̃n ∈ G and G is the group generated by the (gij)(i,j)∈{1,...,K}2 , there exists (i1, j1, ..., ik, jk)

such that g̃n = gi1j1 ◦ ... ◦ gikjk . Using Equation (3.1) and a simple induction, there exists
an identified function Qn such that

ϕ(xn, u) = Qn ◦ ϕ(x0, u) = Qn(y).

Because ϕ(., u) is continuous, the left-hand side tends to ϕ(x̃, u). As a result, the right-hand
side also admits a limit, and

u = ϕ−1(x̃, lim
n→∞

Qn(y)).

where ϕ−1(x, .) denotes the inverse of ϕ(x, .). The right-hand side is identified since ϕ(x̃, .)

and Qn are identified. Hence u is identified, and ϕ(., .) also is on Ox1 .

Finally, let x′ ∈ X0. By definition, there exists x1, x2, ..., xn = x′ such that for all i =

0, ..., n− 1,
Oxi ∩ Oxi+1

∩ X 6= ∅.

Using what precedes, we identify by a straightforward induction ϕ on Oxi for i = 0, ..., n,
and in particular at x′ = xn. �

6.2 Proof of Theorem 4.1

Let us first prove the “if” part, by showing that X0 = {gk12(x0) : k ∈ Z}. It follows from the
discussion above the theorem that Ox0 = {xk : k ∈ Z}. The sequence (xk)k∈Z being strictly
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monotonic, its limit at +∞ (and similarly at −∞) is either inf Supp(X) or sup Supp(X).
Because neither belongs to X ,

Ox0 ∩ X = Ox0 .

Now consider x ∈ X\Ox0 , so that there exists k ∈ Z satisfying xk < x < xk+1. As before,
Ox = {gk12(x) : k ∈ Z} and Ox ∩ X = Ox. Besides, because g12 is strictly increasing,
xk+k′ < gk

′
12(x) < xk+k′+1 for all k′ ∈ Z, and

Ox ∩ Ox0 ∩ X = ∅.

Hence, for all x ∈ X\Ox0 , x does not belong to the equivalence class of x0, and X0 = Ox0 .
The “if” part of Theorem 4.1 follows from Theorem 3.1.

Let us turn to the “only if” part, by showing that ϕ(x̃, .) is not identified for any given
x̃ 6∈ X0. For that purpose, we show that for any arbitrary strictly increasing function γ,
we can define ϕ̃, (Ỹx, Ũx)x∈X such that

(i) ϕ̃(x, u) = ϕ(x, u) for all x ∈ Ox0 and ϕ̃(x̃, u) = γ(u);

(ii) Ỹx = ϕ̃(x, Ũx) for all x ∈ X and FỸ |X,Z = FY |X,Z ;

(iii) Assumptions 1-4 are satisfied for the model defined by (Ỹx)x∈X , X, Z, V, (Ũx)x∈X and
ϕ̃.

We first define ϕ̃ so that (i) holds. Let k ∈ Z be such that xk < x̃ < xk+1. We define ϕ̃(., .)

by any continuous function on [xk, xk+1)× (0, 1) such that ϕ̃(x, .) is strictly increasing for
all x ∈ [xk, xk+1), ϕ̃(xk, u) = ϕ(xk, u), ϕ̃(x̃, u) = γ(u) and

lim
x→xk+1,u′→u

ϕ̃(x, u′) = ϕ(xk+1, u). (6.1)

We then extend ϕ̃(., .) on X × (0, 1) using inductively

ϕ̃(g12(x), u) = F−1Y |Z=j,V=ψ−1(i,x) ◦ FY |Z=i,V=ψ−1(i,x)(ϕ̃(x, u)), (6.2)

ϕ̃(g−112 (x), u) = F−1Y |Z=i,V=ψ−1(i,x)FY |Z=j,V=ψ−1(i,x)(ϕ̃(x, u)).

By a straightforward induction, ϕ̃(x, u) = ϕ(x, u) for all x ∈ Ox0 , and (i) is satisfied.

We now define (Ỹx, Ũx)x∈X such that (ii) holds. Consider a random variable Ũ independent
of X conditional on V and such that for all (j, x, u) ∈ {1, ..., K} × X × Supp(U),

FŨ |V=ψ−1(j,x))(u) = FUx0 |V=ψ−1(j,x)(ϕ
−1(x, ϕ̃(x, u))). (6.3)
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Letting for all x ∈ X Ũx = Ũ and Ỹx = ϕ̃(x, Ũx), we have

P (Ỹ ≤ y|X = x, Z = j) = P (ϕ̃(x, Ũ) ≤ y|X = x, V = ψ−1(j, x))

= P (Ũ ≤ ϕ̃−1(x, y)|X = x, V = ψ−1(j, x))

= P (Ũ ≤ ϕ̃−1(x, y)|V = ψ−1(j, x))

= FUx0 |V=ψ−1(j,x)(ϕ
−1(x, ϕ̃(x, ϕ̃−1(x, y))))

= FUx0 |V=ψ−1(i,x)(ϕ
−1(x, y))

= FY |X=x,Z=j(y),

and (ii) is satisfied.

Finally, let us prove (iii). First, by construction, Ũ ⊥⊥ X|V or equivalently, (Ũx)xX ⊥⊥ Z|V .
Because V ⊥⊥ Z, one can check easily that ((Ũx)xX , V ) ⊥⊥ Z, and Assumption 1 is satisfied.
Second, the rank similarity condition trivially holds since Ũx = Ũ for all x. Third, the
function ϕ̃(x, .) is strictly increasing. Indeed, it is strictly increasing on [xk, xk+1) and
F−1Y |Z=j,V=ψ−1(i,x) ◦FY |Z=i,V=ψ−1(i,x) is strictly increasing. Thus Assumption 3 holds. Fourth,
we have to verify that Assumption 4, (ii) and (iv) hold, (i) and (iii) being automatically
satisfied. ϕ̃ is continuous on [xk, xk+1) × (0, 1). We have ϕ̃(xk+1, u) = ϕ(xk+1, u), so that
by (6.1), ϕ̃ is continuous at (xk+1, u) for all u ∈ (0, 1) and when coming on the left with
x. To prove that ϕ̃(., .) on X × (0, 1), it suffices, by (6.2), to prove that F−1Y |Z=j,V=ψ−1(i,x) ◦
FY |Z=i,V=ψ−1(i,x) is continuous. First, reasoning as in Subsection 3.1,

FY |Z=i,V=ψ−1(i,x)(y) = FUx0 |V=ψ−1(i,x)(ϕ
−1(x, y)),

where ϕ−1(x, .) denotes the inverse of ϕ(x, .). Thus, by Assumption 4, (i) and (iv), (x, y) 7→
FY |Z=j,V=ψ−1(i,x)(y) is continuous. Similarly, (x, τ) 7→ F−1Y |Z=j,V=ψ−1(i,x)(τ) is continuous.
As a result, ϕ̃(., .) is continuous on X × (0, 1) and Assumption 4, (iv) holds. Finally, the
function (u, v) 7→ FUx0 |V=v(ϕ

−1(x, ϕ̃(x, u))) is continuous and strictly increasing in u as a
composition of continuous and strictly increasing functions. Thus, by (6.3), FŨ |V satisfies
Assumption 4, (ii). The result follows. �

6.3 Proof of Corollary 4.2

It suffices to show that for all (k, l) the distribution of Yxk conditional on X = xl is
identified. We prove actually more, i.e. that the distribution of Yxk conditional on (X =
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xl, Z = z) is identified. Fixing y ∈ Supp(Y |X = x, Z = 1), we have

P (Yxk ≤ y|X = xl, Z = 1) = P (Uxk ≤ ϕ−1(xk, y)|V = vl, Z = 1)

= P (Uxk ≤ ϕ−1(xk, y)|V = vl)

= P (Uxl ≤ ϕ−1(xk, y)|V = vl)

= P (Uxl ≤ ϕ−1(xk, y)|V = vl, Z = 1)

= P (Yxl ≤ ϕ(xl, ϕ
−1(xk, y))|X = xl, Z = 1)

= P (Y ≤ ϕ(xl, ϕ
−1(xk, y))|X = xl, Z = 1).

The last term is identified, so that the distribution of Yxk conditional on (X = xl, Z = 1)

is also identified. Similarly, the distribution of Yxk conditional on (X = xl, Z = 2) is
identified. Hence, the distribution of Yxk conditional on X = xl is also identified. This
implies that ∆ATE

jkl and ∆QTE
jkl (τ) are identified. �

6.4 Proof of Theorem 4.3

Before proving the theorem, let us introduce some notations. We let hereafter t(x) =

x + 1 denote the translation on the real line and π(x) denotes the fractional part of x
or, equivalently, the projection on the unit circle [0, 1).13 A group generated by functions
f1, ..., fp and the composition operator is denoted [f1, ..., fp]. Because we consider several
groups, we let, to avoid any confusion, OG′x denote the orbit of x generated by the group
G′, with the group action g.x = g(x). To establish the result, we shall show in three steps
that OGx0 = Supp(X).

1. There exists a function f such that if O[f,t]

x is dense for all x, then OGx0 = Supp(X).

First, without loss of generality, we set the indices (i, j, k) defined in Assumption 6 to 1, 2, 3.
g12 does not admit any fixed point. Suppose without loss of generality that g12(x) > x

(otherwise it suffices to consider x 7→ x − 1 instead of t(.)). By Assumption 6, g12 =

ψ(2, .) ◦ ψ(1, .)−1 is a C2 diffeomorphism on (x, x). We first prove that there exists an
increasing C2 diffeomorphism h from R to (x, x) such that g12 = h◦ t◦h−1. Let us consider
an increasing C2 diffeomorphism h̃ defined on [0, 1) such that h̃(0) > x, limx→1 h̃(x) =

g12 ◦ h̃(0), limx→1 h̃
′(x) =

[
g12 ◦ h̃

]′
(0) and limx→1 h̃

′′(x) =
[
g12 ◦ h̃

]′′
(0). Such a h̃ exists.

Then define the function h by h = h̃ on [0, 1) and extend it on the real line, using h(x+1) =

13Formally, the unit circle corresponds to classes of equivalence for the equivalence relationship R′

defined on R by xR′y ⇔ x− y ∈ Z, but this can be ignored here.
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g12 ◦h(x) or h(x) = g−112 ◦h(x+ 1). By construction, h is strictly increasing and C2. Hence,
it admits a limit at −∞ and +∞. Suppose that limx→−∞ h(x) = M > x. Then, because
h(x+1) = g12◦h(x), we would have g12(M) = M , a contradiction. Thus, limx→−∞ h(x) = x.
Similarly, limx→+∞ h(x) = x. Consequently, h is a C2 diffeomorphism from R to (x, x).

Now, let f = h−1 ◦ g13 ◦ h. By a straightforward induction, OGx0 = h
(
OHh−1(x0)

)
. Thus,

because h is continuous and onto (x, x), OGx0 is dense if O[f,t]

x is dense for all x ∈ R.

2. There exists a function f̃ on [0, 1) such that if O[f̃ ]

ẋ is dense on the unit circle for all
ẋ ∈ [0, 1), then O[f,t]

x is dense for all x ∈ R.

By definition of f and by Assumption 5, the group action of [f, t] is free. Thus, by a
theorem of Hölder (see, e.g., Ghys, 2001, Theorem 6.10), [f, t] is abelian. As a result,
f(x + 1) = f ◦ t(x) = t ◦ f(x) = f(x) + 1 for all x ∈ R. This allows us to define f̃ on the
unit circle [0, 1) by f̃ ◦ π = π ◦ f . f̃ is well defined because

π(x) = π(y) ⇔ ∃ k ∈ Z / x = y + k

⇒ f(x) = f(y + k) = f(y) + k

⇒ π ◦ f(x) = π ◦ f(y).

Fix (x, y) ∈ R2 and consider a neighbourhood Vy of y. By definition of the topology
on the unit circle, π(Vy) is a neighbourhood of π(y) in the unit circle. Because O[f̃ ]

π(x) is
dense in [0, 1), there exists n ∈ Z such that f̃n ◦ π(h−1(x0)) ∈ π (Vy). By definition of f̃ ,
f̃ 2 ◦ π = f̃ ◦ (π ◦ f) = π ◦ f 2, so that, by a direct induction,

f̃n ◦ π = π ◦ fn, ∀n ∈ Z (6.4)

Hence, π ◦ fn(h−1(x0)) ∈ π (Vy), and there exists m ∈ Z such that tm ◦ fn(x) ∈ Vy. This
proves that if O[f̃ ]

ẋ is dense for all ẋ ∈ [0, 1), then O[f,t]
x is dense on the real line for all

x ∈ R.

3. O[f̃ ]

x is dense on the unit circle for all ẋ ∈ [0, 1).

Because g13 and h are increasing C2 diffeomorphisms, so is f . Because f̃ ◦ π = π ◦ f , f̃
is thus an orientation-preserving C2 diffeomorphism on the unit circle. We can thus apply
Denjoy’s theorem (see, e.g., Navas, 2009, Theorem 3.1.1), and O[f̃ ]

ẋ is either finite or dense.
Suppose that it is finite. Then there exists n ∈ Z∗ such that f̃n(ẋ) = ẋ. Let x ∈ R be such
that π(x) = ẋ. Then, using (6.4), there exists m ∈ Z such that fn(x) = tm(x). Hence, by
definition of f and t, gn13(x) = gm12(x) with n 6= 0, contradicting Assumption 6. We thus
conclude that any orbit for the group generated by f̃ is dense in [0, 1). �
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6.5 Proof of Theorem 4.4

Let x1 < ... < xM denote the fixed points of g, x0 = x and xM+1 = x and let i be such
that x0 ∈ [xi, xi+1). Suppose for instance that g(x) > x for all x ∈ (xi, xi+1) (the proof
is identical if g(x) < x). Suppose first that x0 > xi. A straightforward induction shows
that the sequence (gn(x0))n∈N is increasing and bounded by xi+1. Thus, it converges to
l ∈ (xi, xi+1] which satisfies g(l) = l, and l = xi+1. Hence xi+1 ∈ Ox0 . Using similarly the
sequence (g−n(x0))n∈N shows that xi ∈ Ox0 .

Applying the same reasoning to any x ∈ (xi, xi+1) establishes that xi ∈ Ox. This proves
that xRx0, and [xi, xi+1] ⊂ X0. In a similar way, xi ∈ Ox for all x ∈ (xi−1, xi) (if i > 0),
and we get x0Rx for any x ∈ (xi−1, xi). By induction, (x, x) ⊂ X0, and thus X0 = X .

Finally, suppose that x0 = xi. Then, as previously, x0 ∈ Ox for any x ∈ (xi, xi+1), and
x0Rx, for any x ∈ [xi, xi+1]. We conclude as before. �

6.6 Proof of Theorem 5.1

Bourbaki (1974) shows (see paragraph 1, n◦3) that H is dense in Rd if and only if Condition
(5.2) holds. The first result follows because Ox0 = λ(H + λ−1(x0)) and λ is continuous.
To prove the necessary condition, suppose that K = d + 1 (the case where K < d + 1 is
similar), and let A denote the d×d-matrix of typical (i, j) element aij. If A is nonsingular,
taking x = A−1f , for any nonzero f ∈ Zd implies that Ax ∈ Zd. As a result, < x,H >⊂ Z,
implying that {x ∈ Rd :< x,H >⊂ Z} 6= {0}. If A is singular, then any x 6= 0 in the kernel
of A satisfies Ax ∈ Zd, and then again {x ∈ Rd :< x,H >⊂ Z} 6= {0}. Thus, Condition
(5.2) fails to hold, and X0 6⊂ X . �

6.7 Proof of Theorem 5.2

Suppose without loss of generality that sgn [(gm(x)− x)(x− xm,f )] = −1 for all m = 1...d.
To prove Theorem 5.2, it suffices to show that xf = limk→∞ g

k(x) for all x = (x1, ..., xd) ∈
X , or, equivalently, that for all m = 1...d, xm,f = limk→∞ g

k
m(xm).

If xm < xm,f , a straightforward induction shows that (gkm(x))k∈N is increasing and bounded
above by xm,f . Because g has a unique fixed point, xm,f = limk→∞ g

k
m(xm). Similarly, if

xm > xm,f , gkm(x) is decreasing and bounded below by xm,f , and the sequence also converges
to xm,f . �
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