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Abstract

We study the empirical content of an adverse selection model defined by the

objective function of the principal, the agents’ cost function and the distribution of

agents’ types. This model, though simple, encompasses the basic regulation, nonlinear

pricing and price discrimination models, first price auctions and simple insurance

settings. We analyse identification of the model in the presence of exogenous changes

which affect the contracts but not the agents’ cost and types. Our main result is that

one or two such changes are sufficient to obtain full identification of the model. To

establish this, we rely on functions that we call horizontal and vertical transforms

and which allow us to identify the functions of interest by induction. Partial or full

identification is then achieved by using either a fixed point strategy or results from

group theory and dynamical systems.
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1 Introduction

Over the past three decades, extensive attention has been devoted to asymmetries of infor-
mation and their consequences in economics. A canonical example where these asymmetries
play a fundamental role is the adverse selection model. This model has been helpful, for
instance, to better understand theoretically nonlinear pricing, regulation, financial con-
tracts or taxation theory. In recent years, the empirical literature on adverse selection
models has also grown rapidly.1 However, apart from the auction literature, most of these
papers adopt a parametric framework.2 Such parametric restrictions obscure what can
be identified nonparametrically from the model and data. This issue is yet important to
safely investigate optimality of contracts or do policy exercises, without being sensitive to
a particular choice of parametrization.

In this paper, we analyze the nonparametric inference on a simple adverse selection model
when the econometrician observes the contract and the associated trades. The model we
consider is characterized by the objective function of the principal, the distribution of
agents’ types and the cost function of the agents. The space of trades available to the
agent is supposed to be an interval of the real line, the agent’s type is unidimensional
and the cost is assumed to be separable. Such conditions discard discrete choices, which
are common in price discrimination for instance, as well as multidimensional screening,
and reduce the dimensionality of the cost function. Despite these limitations, the model
is well suited to several settings, such as the basic regulation, nonlinear pricing and price
discrimination models, financial contracts, delegation of tasks by firms, first price auctions
or simple insurance models. Thus, even if our model cannot take the particular features of
each possible application into account, we believe that our results deliver useful insights on
the empirical content of adverse selection models, in a spirit close to what has been done in
auctions, building on the work of Guerre et al. (2000). Understanding the econometrics of

1Applications include auction models (see e.g. Paarsch, 1992, and Guerre et al., 2000), regulatory con-
tracts (see, among others, Wolak, 1994, Gagnepain and Ivaldi, 2002, Perrigne, 2002, Perrigne and Vuong,
2008, and Lavergne and Thomas, 2005), nonlinear pricing (see Ivaldi and Martimort, 1994, Miravete, 2002,
Miravete and Roller, 2005, and Perrigne and Vuong, 2010) and price discrimination models (see Leslie,
2004, and Crawford and Shum, 2007, 2007). Adverse selection models have also been used to study the
provision of incentives in firms, see e.g. Ferrall and Shearer (1999) and Paarsch and Shearer (2000).

2Notable exceptions are the papers of Perrigne and Vuong (2008) and Perrigne and Vuong (2010). The
first studies the Laffont and Tirole (1986) regulation model in which ex-post costs are observed, and shows
that such a model is nonparametrically identified. The second considers a nonlinear pricing model, slightly
different from the one discuss below, and also proves nonparametric identifiability.
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the most simple common structure of these models is helpful before studying more complex
ones.

As shown in a companion paper (see D’Haultfoeuille and Février, 2010), the model is not
nonparametrically identified without variation in the contracts. On the other hand, exoge-
nous changes where the contracts vary while the cost function and the distribution of the
agents’ type remain constant can be used to recover the functions of interest. This amounts
to observing an instrumental variable which affects the principal’s objective function but
not the agent. In the nonlinear pricing model, for instance, one may use any cost shifter
of the firm (the principal), since it induces changes in its objective function but is unlikely
to affect the consumers directly. Similarly, in the delegation of a production to agents, any
demand shifter on the produced good is likely to be a valid instrument. In a first price
auction setting, the number of bidders also satisfies this requirement if it is independent of
the valuation of the good (Guerre et al., 2009).

Within this framework, our main result is that one or two exogenous changes are sufficient
to yield full identification of the model. To establish this result, we extensively use the
first-order condition of the agent, which defines the optimal choices of the agents, and the
link between the observed distribution of the trades and the unobserved distribution of the
agents’ types. The first equation allows us to define what we call horizontal transforms
whereas the second one yields vertical transforms. These transforms are identified in the
data and can be combined to identify recursively the functions of interest.

Building on this idea, we show that the model is fully identified with only one change if
two transfer functions cross. The idea is to used fixed points on the horizontal transform
to recover the structural functions elsewhere. This result is related to the recent result
of Guerre et al. (2009) on the nonparametric identification of risk aversion in first price
auctions. We extend here their result to other adverse selection frameworks. We also
prove that with two or more changes, the same idea can be used even if no pair of transfer
functions cross, because fixed points for compositions of the horizontal transforms may still
exist.

Nevertheless, the fixed point strategy breaks down in several settings, such as the one
considered by D’Haultfoeuille and Février (2010). We study identification in this case
by characterizing the set of points which can be reached using horizontal and vertical
transforms, starting from an initial point. In the language of group theory, this amounts
to studying the orbit of a point for the group generated by the horizontal transforms.
Using this strategy, we show that the model is set identified with one exogenous change in
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the contracts, but point identified under a very mild restriction with two or more changes.
Basically, this latter result states that the orbit of a point will be of the same topological
nature as additive subgroups of the real line, which are known to be dense under minimal
restrictions. As a result, the functions of interest are identified on a dense subset, and thus
everywhere by continuity.

An important feature of our identification procedure is that the cost function and the
distribution of the agents’ types are recovered using the agent’s program solely. This is
convenient when the optimality of the principal is questionable. For instance, the com-
mon knowledge assumption on the distribution function of the agents’ types or their cost
function may fail to hold, the principal may also be risk averse (see Lewis and Sappping-
ton, 1995) and the costs of implementing nonlinear contracts may modify significantly his
program (see Ferrall and Shearer, 1999). Our results are not affected by these problems.
Actually, our identification results may be used as a first step for testing the optimality of
the contracts, when theory provides restriction on the principal’s objective function, such
as in regulation or financial contracts (see, e.g., Baron and Myerson, 1982 and Freixas and
Laffont, 1990).

The paper is organized as follows. Section 2 recalls the main theoretical results for a
principal-agent model with adverse selection. Section 3 is devoted to the nonparametric
identification of this model. Section 4 develops some extensions. Section 5 concludes. All
proofs are deferred to the appendix.

2 The Adverse selection model

Since the seminal work of Myerson (1979, 1981), extensive attention has been devoted
to the theoretical properties of adverse selection models. We follow closely here the pre-
sentation of Laffont and Martimort (2002) and consider a basic adverse selection model
where a principal trades y with some agents and provides them with a monetary transfer
t. Agents are heterogeneous with a quasi-linear utility function U(t, y, θ) = t − C(y, θ).3

The monetary cost C(y, θ) of implementing y depends on their type θ which is unobserved
3The convention, here, is that y is produced by the agents as in the regulatory model. Equivalently, we

could assume that the agents consume y and that the utility function takes the form U(t, y, θ) = U(y, θ)−t
as in the price discrimination model. Note also that since the agent’s program is determinist, we could
suppose him to be risk averse (i.e. U(t, y, θ) = u(t−C(y, θ)) for a concave increasing function u) without
modifying the results of the program. We omit u from the discussion since it is obviously not identified.
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by the principal. We suppose that θ is real and nonnegative, so that we can interpret it as
a measure of the agent’s intrinsic efficiency, a smaller θ corresponding to a more efficient
agent. We denote by Fθ(.) (resp. fθ(.)) the distribution function (resp. density function)
of θ and suppose it to be common knowledge. Our first assumption restricts the functional
form of the cost function.

Assumption 1 (cost separability) C(y, θ) = θC(y) where C(.) is three times continuously
differentiable, C ′(y) > 0 for all y > 0 and C ′′(.) > 0.

Basically, cost separability is a restriction that reduces the dimensionality of the problem.
In general, such a condition is necessary to obtain identification results. This assumption
is quite common in the theoretical literature (see e. g. Wilson, 1993, or Laffont and
Tirole, 1993) as well as in empirical works (see Wolak, 1994, Ferrall and Shearer, 1999,
Lavergne and Thomas, 2005). It is also assumed by Perrigne and Vuong (2008) in their
nonparametric analysis of the regulation model. We come back to this assumption in
Section 4, and show that our results can be extended to other restrictions on the cost
function, and even be relaxed in particular settings.

We now analyze separately the agent’s program from the firm’s one. Indeed, if everyone is
usually ready to believe that the agents behave optimally, it is less clear that the econome-
trician always wants to impose the optimality of the contracts. Hence we differentiate in
the paper the results that only rely on the optimal behavior of the agent from those that
also require the contracts to be optimal.

2.1 The agent’s program

The agent faces a set of contracts of the form [(y, t(y)); y ∈ R+, t(y) ∈ R+]. The agent
of type θ can either refuse all contracts or accept one of them. If he accepts a contract
(y, t), the agent delivers y and receives a transfer t. If he refuses, he obtains his outside
opportunity utility level U . Hence, the agent of type θ chooses the trade y(θ) satisfying

y(θ) ∈ argmax
y

[t(y)− θC(y)]. (2.1)

Moreover, y(θ) is implemented if and only if the agent participates, ie maxy t(y)−θC(y) ≥
U . In the following, we rely on the first-order condition of the agent. For this approach to
be valid, the regular conditions below are imposed.
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Assumption 2 (regular conditions 1) t(.) is three times differentiable and for all θ > 0,
t′′(.)−θC ′′(.) < 0, t′(0)−θC ′(0) > 0, limy→+∞ t

′(y)−θC ′(y) < 0 and maxy t(y)−θC(y) ≥ U .
Finally, Fθ(.) is continuous and strictly increasing on R+.

The main condition is on the smoothness of t, which rules out kinks in the transfer functions
and thus bunching, for which the contracts targeted for different types coincide.4 The other
conditions on t(.) hold for instance if t(.) is concave, C ′(0) = 0 and limy→∞C

′(y) =∞.

Under Assumptions 1 and 2, every agent participates and the agent’s program (2.1) admits
a unique solution which is defined by the first-order condition

t′(y(θ)) = θC ′(y(θ)). (2.2)

Moreover, by differentiating this equation, y′(θ) satisfies

[t′′(y(θ))− θC ′′(y(θ))]y′(θ) = C ′(y(θ)).

Thus, y′(θ) < 0 and there is indeed no bunching of types.

2.2 The principal’s program

Given the agent’s program (2.1), the principal chooses the transfer function in order to
maximize his objective function. We suppose here the principal to be risk neutral and his
objective function to be quasi linear, W (t, y, θ) = S(y, θ)− t. Let t∗(.) denote the optimal
contract for the principal. t∗(.) satisfies

t∗(.) ∈ arg max
t(.)

∫
[S(y(θ), θ)− t(y(θ))] fθ(θ)dθ s.t. y(θ) satisfies (2.1).

Without further restriction, t∗(.) does not necessarily satisfy Assumption 2. The optimal
contract may lead to bunching, for instance. Besides, the first-order condition of the
principal may neither be necessary nor sufficient to describe the optimal contracts. To
avoid these technicalities, we impose the following regularity conditions.

Assumption 3 (regularity conditions 2) S is three times differentiable with ∂S/∂y > 0,
∂2S/∂y2 ≤ 0 and ∂2S/∂y∂θ ≤ 0. fθ is continuously differentiable with fθ > 0 and θ 7→
θ + Fθ(θ)/fθ(θ) is strictly increasing. For all θ > 0, ∂S

∂y
(0, θ) − [θ + F (θ)/f(θ)]C ′(0) > 0

and limy→+∞
∂S
∂y

(y, θ)− [θ + F (θ)/f(θ)]C ′(y) < 0.

4Because bunching leads to rather different results both in theory and in terms of identification, we
leave this case for future research.
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These regularity conditions state that the objective function of the principal is increasing
and concave, and that the distribution of θ satisfies a technical condition which holds for
most single-peaked densities.

Theorem 2.1 Under Assumptions 1 and 3,

1. The trade y∗(θ) corresponding to the optimal transfer is defined by

∂S

∂y
(y∗(θ), θ) =

[
θ +

Fθ(θ)

fθ(θ)

]
C ′(y∗(θ)). (2.3)

2. The optimal transfer function is defined by t∗′(y∗(θ)) = θC ′(y∗(θ)) and the border
condition limθ→∞ t(y

∗(θ))− θC(y∗(θ)) = U . It satisfies Assumption 2.

The theorem is proved for instance in Laffont and Martimort (2002). Integrating (2.2)
shows that, compared to the symmetric optimal contract where agents’type is observed by
the principal, the firm has to leave a positive information rent

∫ +∞
θ

C(y∗(τ))dτ to agents
of type θ for them to reveal their types. This information rent increases with the efficiency
of the agent and creates inefficiencies in production (the term Fθ(θ)/fθ(θ)C

′(y∗(θ)) in
Equation (2.3)). Besides, one can remark that if contracts are optimal, Assumption 3
automatically entails Assumption 2. Hence, the first-order approach of the agent’s program
is valid and there is no bunching at equilibrium.

2.3 Examples

As mentioned in the introduction, this model encompasses several classical settings. A first
one is price discrimination. In Mussa and Rosen (1978), the principal is a firm that produces
a good of quality y at a cost H(y). Agents have heterogenous preferences for quality θ and
have a utility U = θy− t if they pay t for a good of quality y. The same model can be used
to study nonlinear pricing by a monopoly (see e.g. Maskin and Riley, 1984). A second
example is financial contracts. In Freixas and Laffont (1990) framework, the principal is
a lender who provides the borrower with a loan y. His utility is S(y) = t − Ry, where R
denotes the risk-free interest rate. Agents are firms with profit U = θf(y)−t, where θf(y) is
the production of the firm, y represents the units of capital and θ is a productivity index.
A third example is regulation. In the Baron and Myerson (1982) model, the regulator
maximizes a weighted sum of the consumers’ surplus and the regulated firms defined by
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heterogenous cost functions of the form θC(y). In our notations,

S(y, θ)− t(y) = (1− α)

[∫ y

0

p(u)du− t(y)

]
+ α [t(y)− θC(y)] , (2.4)

where p(.) denotes the price function.

Auctions also fit within this framework. In this case, the focus is primary put on the
agent’s program. The parameter θ (usually denoted v in these models) is the valuation for
the good and y corresponds to the bid. In a first price auction with n risk-neutral bidders
for example, the utility of the agents takes the form U(y, θ) = θF n−1

y (y)−yF n−1
y (y), where

Fy is the cumulative distribution function of y and F n−1
y (y) corresponds to the probability

of winning the auction with a bid y. Thus, we recover a separable form of the kind
U(y, θ) = θU(y)− t(y) that corresponds to the agent’s model.

Finally, this agent’s model is also useful for simple insurance settings without moral haz-
ard. The insurance company proposes to agents contracts of the form (y, d(y)) where y
and d(y) denote respectively the premium and the corresponding deductible. Agents are
heterogenous with respect to the probability p of facing an accident. Letting u(.) denote
their vNM utility, the expected utility of agent p when choosing y is given by

U(y, p) = u(−y) + p [u(−y − d(y))− u(−y)] ,

and the first-order condition satisfies

1− d′(y) =
p− 1

p

u′(−y)

u′(−y − d(y))
.

The model fits within the previous framework by letting t′(y) = 1−d′(y), C ′(y) = u′(−y)
u′(−y−d(y))

and θ = p−1
p
.

The model we consider has however some limits. For instance, the space of trades available
to the agent is supposed to be an interval of the real line and the agent’s type is unidimen-
sional. Such conditions discard discrete choices, which are common in price discrimination
for instance, as well as multidimensional screening (see Pioner, 2009, and Aryal et al.,
2010, for identification results on this case). Similarly, the participation constraint does
not depend on the agent’s type θ, since the outside opportunity utility level U is constant.
Finally, this model assumes that agents perfectly control the output y. No supplementary
error term enters in the program, which might sometimes be restrictive. In all these cases,
our results should be seen as a first step to understand the econometrics of these more
complex models.
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3 Identification

3.1 The setting

We now turn to the empirical content of the model. We suppose that the econometrician
observes the trades at equilibrium yX,Z(θ) for an infinite sample of agents and for several
menus of contracts indexed by covariates X and instruments Z whose role is clarified
below. We also suppose that the corresponding transfers tX,Z(yX,Z(θ)) are observable, for
each menu of contracts.5 The trades and transfers enable one to identify the cumulative
distribution function of yX,Z(θ), FyX,Z

(.) and the transfer function tX,Z(.). The question is
whether the cost functions CX,Z(.), the distributions of types Fθ,X,Z(.) and the principal’s
objective function SX,Z(.) can be recovered from these functions and the model.

In general, variation in the menus of contracts are due to changes in the cost function,
the distribution of types or the principal objective function. Without exclusion restriction,
such variations do not have any effect on identification since only the data for X = x and
Z = z can be used to identify Cx,z, Fθ,x,z and Sx,z. We impose here the exclusion restriction
(CX,Z , Fθ,X,Z) = (CX , Fθ,X). In other terms, Z does not affect neither the cost function
nor the distribution of types. Variation in the contracts only stems from a change in the
principal’s function through a change in Z.

We suppose here that Z has a finite support, because we believe that in most empirical
applications, only few changes in contracts are observed. The value of the instrument does
not play any role, so we can suppose without loss of generality that Z ∈ {1, ..., K}, K ≥ 2.6

Finally we suppress X in our notations for the ease of exposition. Agents are thus supposed
to be homogenous except for their unknown types; if they differ by observed characteristics,
our results below must be understood to be conditional on these characteristics.7 With
these notations, the exclusion restriction takes the following form:

Assumption 4 (exclusion restriction) C1 = ... = CK = C and Fθ,1 = ... = Fθ,K = Fθ.

There are several situations where Assumption 4 is likely to hold. In the monopoly price
5This assumption may be strong (see Wolak, 1994, and Ferrall and Shearer, 1999, for examples where

the transfers are unknown).
6We only focus on the case where an instrument is available because the model is not identified otherwise

(see D’Haultfoeuille and Février, 2010). The cases where a continuous instrument is available is considered
in Subsection 4.3.

7The case where they differ by unobserved characteristics is postponed until Subsection 4.2.
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discrimination model, the price of an input may vary, inducing a change in the cost function
of the monopoly and thus in S. However, this variation does not affect the utility function
of the consumer. As usual in this literature, any cost shifter Z may play the role of the
instrument. Similarly, in the delegation of a production to agents, exogenous variations
of the market value of the product affects the principal’s objective function but not the
agents’ one. In such cases, any demand shifter is a valid instrument Z. An example of
this kind is developed in D’Haultfoeuille and Février (2010). In the regulation context,
one may use for example changes in the government color. Such a change is likely to
induce variation in the weight that the principal put on the firms profit compared to the
consumers surplus, but not in C(.) and Fθ(.) (Gagnepain and Ivaldi, 2007). Finally, in an
auction context, one may rely on changes in the number of bidders, following Guerre et al.
(2009).

Our framework can sometimes be applied even if the changes in the menus are due to
modifications of C(.) and Fθ(.). Indeed, suppose that these modifications appear continu-
ously, while the principal only modifies his menu of contracts from time to time, because
of menu costs. This situation typically arises in nonlinear pricing or price discrimination.
Then trades and transfers just before and after the menu change satisfy Assumption 4.
This idea is close to the one of regression discontinuity (see e.g. Hahn et al., 2001). In this
case, the menu of contracts just before the change is inoptimal in the sense that it does
not correspond to the one defined in Theorem 2.1. However, as will become clear below,
this does not preclude identification of C(.) and Fθ(.).

Other examples involving inoptimal variations of contracts are experiments, in which dif-
ferent menus of contracts are proposed to people in a random way. For instance, the Rand
Health Insurance experiment (see Manning et al., 1987) randomly assigned families who
participate in the experiment to 14 different insurance plans. Similarly, Ausubel (1999)
and Karlan and Zinman (2009) analyse the market for bank credit by using randomized
mailed solicitations. The propositions vary among several dimensions such as the interest
rate or the duration of the loan.

3.2 The horizontal and vertical transforms

First, note that a normalization is necessary since we can replace (θ, C(.)) by (αθ, C(.)/α)

and leave the model unchanged. Hence, for a given y0 > 0, we can choose any θ0 > 0 such
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that θ1(y0) = θ0, where θk(.) denotes the inverse of yk(.).8 Now, our identification results
are based on two transforms. First, under Assumption 2, θk(.) is strictly decreasing. As a
result, for all y ≥ 0,

1− Fyk(y) = P (yk(θ) > y) = P (θ ≤ θk(y)) = Fθ(θk(y)), (3.1)

where the second equality stems from the fact that the distribution of θ is atomless, by
Assumption 2. This equation, together with Assumption 3, also implies that Fyk(.) is
strictly increasing and for all (i, j) ∈ {1, ..., K}2,

Fyj(yj(θ)) = Fyi(yi(θ)).

Hence, letting Hij(y) = F−1yj
[Fyi(y)] denote the quantile-quantile transformation between

the distribution of yj(θ) and yi(θ), we get

yj(θ) = Hij(yi(θ)). (3.2)

Because Hij(.) is identified, the knowledge of yi(θ) implies the knowledge of yj(θ). From an
economic perspective, this equality simply states that it is possible to recover the output of
an agent of type θ when Z = j if we know which production he chooses when Z = i. To do
so, even if his type θ is unobserved, it suffices to pick the quantile of Fyj corresponding to
Fyi(yi(θ)). In Figure 1, we can recover point (1) for instance if we know point (0). Another
consequence is that it suffices to identify y1(.) (or equivalently θ1(.)) to recover the other
functions yk(.)2≤k≤K (or θk(.)2≤k≤K).

The second transform relies on the agent’s first-order condition, which defines the unique
solution of the program under Assumption 2. Taking Equation (2.2) at θk(y), we obtain

t′k(y) = θk(y)C ′(y). (3.3)

This implies in turn that for all y > 0,

t′i(y)

θi(y)
=
t′j(y)

θj(y)
.

If we define the vertical transform Vij(., .) by Vij(θ, y) = t′j(y)× θ/t′i(y), we get

θj(y) = Vij(θi(y), y). (3.4)
8In our setting, the choice of y0 will be innocuous except in the partial identification case corresponding

to Theorem 3.3 (see D’Haultfoeuille and Février, 2010 for a discussion in this particular case). Besides,
once a normalization has been done on θ1(.), no other normalization on the θk(.), k ≥ 2, is needed. Indeed,
the normalization on θ1(y0) induces a normalization on C ′(.) and Fθ(.) by Equations (3.3) and (3.1). This
normalization then applies to all other menus of contracts.
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Figure 1: The horizontal and vertical transforms.

Because Vij(., .) is identified on R+2, the knowledge of θi(y) implies the knowledge of θj(y).
Contrary to the horizontal transform which links different outputs that similar agents
choose facing different values of Z, the vertical transform links different types of agents
who chooses the same level of output in those different situations. Knowing the type of
an agent with an optimal output of y when Z = i, it is possible to recover the type of the
agent that chooses the same level y when Z = j.9

Coming back to Figure 1, we can identify point (2) starting from point (1). Hence,
starting from (y0, θ1(y0)), we can identify (y1, θ1(y1)) where y1 = H12(y0) and θ1(y1) =

V21(θ1(y0), y1). By induction, we can then identify θ1(.) on a set of points. Then we also
recover C ′(.) and Fθ(.) on some points, as the following lemma shows.

Lemma 3.1 Suppose that for a given y, θ1(y) is identified. Then C ′(y) and Fθ(θ1(y)) are
identified.

Proof: the first-order condition (3.3) shows that C ′(.) is identified on y. Besides, because
y1(.) is identified and Fθ(θ1(y)) = 1− Fy1(y) by (3.1), Fθ(.) is identified at θ1(y). �

Although straightforward, this lemma has some interesting consequences. First, it shows
that it suffices to focus on the identification of θ1(.). Second, this lemma can be useful to

9The cost separability assumption is essential to define the vertical transforms. As shown in Subsection
4.1, it is possible however to define other transforms similar to the vertical one if other restrictions are
imposed.
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identify the model without exogenous variation but when side information is available. If
for instance C ′(.) (resp. Fθ(.)) is known or identified, we can recover θ1(.) by (3.3) (resp.
by (3.1)) and thus also Fθ(.) (resp. C ′(.)).10

The way we use horizontal and vertical transforms varies depending on how contracts
change. As a result, we separate two main kind of changes (referred to as crossing and
noncrossing cases) where both proofs and identification results are quite different.

3.3 The crossing case

We first consider the case where two functions t′i(.) and t′j(.) cross.

Assumption 5 (Crossing condition 1) There exists i 6= j ∈ {1, ..., K}2 and a finite set of
points 0 < y0 < ... < yM such that t′i(yl) = t′j(yl) for l = 0, ...,M .

In this case, the model can be fully recovered thanks to the intersection points. The
intuition of this can be explained as follows. By the normalization, the value θ1(y0) of an
intersection point y0 of t′1(.) and t′2(.) can always be fixed to any θ0 > 0. For any yα and θ0,
define the sequence (θn)n∈N as in Figure 2. We show that (θn)n∈N always converges, but
reaches θ0 if and only if θ0 = θ1(yα). This allows us to recover θ1(yα), since θ0 is known.
Because yα was arbitrary, this proves that θ1(.) is fully identified. Then by Lemma 3.1,
the functions of interest can be recovered.

10An example is regulation. Suppose that total costs are observable ex post, as in Wolak (1994) and
Perrigne and Vuong (2008), i.e. that θ(y)C(y) is identified. Because θ(y)C ′(y) = t′1(y) is also identified,
[C ′/C](.) is identified. Then, by integration, C ′(.) can be recovered up to a multiplicative constant, which
is then given by the normalization θ(y0) = θ0. As a result, θ1(.), and thus Fθ(.), are identified.

13
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Figure 2: Identification when t′1(.) and t′2(.) cross.

Theorem 3.1 If Assumptions 1, 2, 4 and 5 hold, C ′(.) and Fθ(.) are identified.

Theorem 3.1 shows that full identification can be achieved provided that Assumption 5
holds. It is reminiscent of the result of Guerre et al. (2009) in the context of first-price
auctions with risk averse bidders. They also use exogenous variations (namely, variation in
the number of bidders) to obtain identification of the model at the limit, using a converging
sequence (see their Proposition 1). We provide further details on the link between the result
of Guerre et al. (2009) and ours in Subsection 4.1.

Assumption 5 may be considered restrictive. We now show that actually, it is possible to
weaken it substantially when K ≥ 3. To see this, remark that identification is secured
above thanks to the existence of a fixed point on Hij(.) (since Hij(y) = y if and only if
t′i(y) = t′j(y)). But in this reasoning, we need not restrict ourselves to Hij(.). Any identified
transform may be used instead. We thus consider the following condition.11

Assumption 6 (Crossing condition 2) There exists (j1, k1, ..., jp, kp) ∈ {1, ..., K}2p and
(l1, ..., lp) ∈ Np such that G = H l1

j1k1
◦ ... ◦H lp

jpkp
admits a positive and finite number of fixed

points in R∗+.

When K = 2, Assumption 6 is equivalent to Assumption 5. However, when K ≥ 3, it may
hold even if t′i and t′j never cross, for all i 6= j ∈ {1, ..., K}2. As an illustration, consider

11We let subsequently ◦ denote the composition operator so that f ◦ g(x) = f(g(x)). For any function
f , we also let fk = f ◦ ... ◦ f if k ≥ 1, f0(x) = x and f−k = f−1 ◦ ... ◦ f−1 (for k ≥ 1) if f is one to one.
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the case where K = 3, C ′(y) = y, and, for all y ∈ R+, t′1(y) = δ1/(1 + y), t′2(y) = δ2 and
t′3(y) = δ3 , with δ1 < δ2 < δ3. These functions do not cross. Besides, some algebra show
that H23(y) = (δ3/δ2)y and

H21(y) =

√
1 + 4δ1y

δ2
− 1

2
.

Thus, for all k ≥ 1,

Hk
23 ◦H21(y) =

(
δ3
δ2

)k √1 + 4δ1y
δ2
− 1

2
. (3.5)

Let k0 ≥ 1 be such that (δ3/δ2)
k0δ1/δ2 > 1. It follows from (3.5) that Hk0

23 ◦ H21(y)/y is
continuous, decreasing, tends to (δ3/δ2)

k0δ1/δ2 > 1 at zero and to zero at infinity. Thus,
by the intermediate value theorem, Hk0

23 ◦H21 admits a unique fixed point and Assumption
6 is satisfied, though the marginal transfer functions do not satisfy Assumption 6.

Theorem 3.2 If Assumptions 1, 2, 4 and 6 hold, C ′(.) and Fθ(.) are identified.

Theorem 3.2 extends Theorem 3.1 by establishing full identification under the weaker
crossing condition. It shows that the previous idea can be applied as soon as there exists
an identified function, perhaps different from the horizontal transforms, which admits a
fixed point.

3.4 The noncrossing case

We now turn to the noncrossing case, which formally corresponds to the following assump-
tion.12

Assumption 7 (Noncrossing condition) For all p ∈ N, (j1, k1, ..., jp, kp) ∈ {1, ..., K}2p and
(l1, ..., lp) ∈ Np, H l1

j1k1
◦ ... ◦H lp

jpkp
(y) = y for a given y ∈ R∗+ implies that H l1

j1k1
◦ ... ◦H lp

jpkp

is the identity function.

Assumption 7 states that no composition of the horizontal transforms admits any fixed
point, unless this composition is the identity function. When K = 2, this condition is
actually equivalent to the fact that t′1(.) and t′2(.) do not cross. It is more restrictive
when K ≥ 3 because, as discussed above, Assumption 6 may hold even if none of the

12Assumption 7 is the contrary of Assumption 6, if we rule out the pathological cases where some
compositions H l1

j1k1
◦ ...◦H lp

jpkp
admit an infinite number of fixed points without being the identity function,

while all other compositions do not admit any fixed point.
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marginal transfer functions cross. Still, there are important examples where Assumption
7 is satisfied, such as separable transfer functions. If, indeed, t′k(y) = δkm(y) for all y and
k = 1...K, then θk(y) = (δk/δ1)θ1(y), so that Hjk = θ−11 ◦ [(δj/δk)θ1]. As a result, for all
p ≥ 1 and (j1, k1, ..., jp, kp),

H l1
j1k1
◦ ... ◦H lp

jpkp
(y) = θ−11

[
p∏

m=1

(
δjm
δkm

)lm
× θ1(y)

]
. (3.6)

Such functions are either strictly above, equal to, or strictly below the identity function,
depending on the position of the constant inside the brackets with respect to one. Thus,
they are equal to the identity function as soon as they admit a fixed point, and Assumption
7 holds.

Of course, under this condition, one cannot rely on the previous fixed point strategy any-
more. Instead, the idea is to start from y0, where θ1(.) is identified, and describes the
set of points S which can be reached by applying successively the horizontal transforms.
At this stage, it is helpful to state this problem in terms of group theory, in order to use
powerful results on the topological nature of orbits. Let G denote the group generated by
(Hij)(i,j)∈{1,...,K}2 and the composition operator.13 Then S is equal to the orbit of y0, Oy0 ,
defined by

Oy0 = {g(y0), g ∈ G}.

Identification then depends on how large is Oy0 .

When K = 2, G simply consists of the iterated functions Hn
12, n ∈ Z, so that Oy0 cor-

responds to the sequence (yn)n∈Z defined by yn = Hn
12(y0) (the black points in Figure 3).

Because it is impossible to recover exactly θ1(.) between two points, the model is partially
identified.

13For definitions related to group theory, see the proof of Theorem 3.4.
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Figure 3: Identification in the noncrossing case, with K = 2.

Theorem 3.3 If K = 2 and Assumptions 1, 2, 4 and 7 hold, C ′(.) and Fθ(.) are point
identified respectively on (yn)n∈Z and (θn)n∈Z, with θn = θ1(yn). Elsewhere, they are par-
tially identified by:

t′1(y)

infn∈Z: yn≤y θn
≤ C ′(y) ≤ t′1(y)

supn∈Z: yn≥y θn
, (3.7)

1− Fy1
(

inf
n∈Z: θn≤θ

yn

)
≤ Fθ(θ) ≤ 1− Fy1

(
sup

n∈Z: θn≥θ
yn

)
. (3.8)

Theorem 3.3 extends Theorem 4.1 of D’Haultfoeuille and Février (2010) to any kinds of
transfer functions, provided that they do not cross. It shows that Fθ(.) and C ′(.) are point
identified on an infinite sequence, and by monotonicity, can be bounded elsewhere.14 Even
if we do not obtain full identification in this case, Theorem 3.3 implies that standard para-
metric models on C ′(.) and Fθ(.) are identified with an exogenous change. For instance,
the parameters of a lognormal, Weibull or gamma distribution are identified thanks to the
knowledge of Fθ(.) on the sequence (θ1(yn))n∈Z. Actually, because we retrieve an infinite
sequence of points on C ′(.) and Fθ(.), such standard parametric models are overidenti-
fied. The sequences (C ′(yn))n∈Z and (Fθ(θ1(yn)))n∈Z may thus serve as a guidance for

14The bounds (3.7) and (3.8) are not sharp in general, because we do not use the restrictions implied by
second-order conditions. However, it is possible to show that these restrictions are not informative when
transfer functions are convex. In such cases, our bounds are sharp.
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choosing appropriate parametric restrictions (see D’Haultfoeuille and Février, 2010, for an
application).

When K ≥ 3, we may use H12 but also H13. As shown in Figure 4, this allows us to define
nonmonotonic sequences where θ1(.) is identified. In particular, and contrary to previously,
we are able to recover some information between y0 and y1. We may thus expect S to be
large. We show below that under Assumption 7 and a mild restriction, this set is actually
dense in R+. This implies that θ1(.) is identified on a dense subset of R+, and thus, by
continuity, on R+. As a result, the model is fully identified with two changes.





k y

 
 

y



y 0 y 1y 2

Figure 4: Identification in the noncrossing case, with K ≥ 3.

To get some intuition on this result, reconsider the case of separable transfer functions
t′k(y) = δkm(y), with K = 3. Equation (3.6) shows that

Oy0 =

{(
δ2
δ1

)m(
δ3
δ1

)n
, (m,n) ∈ Z2

}
.

This implies that θ1 ◦ exp(.) is identified on

A =
{
mE2 + nE3, (m,n) ∈ Z2

}
,

with Ei = ln(δi/δ1) for i ∈ {2, 3}. A is an additive subgroup of R. By a classical result
on these additive subgroups (see, e.g., Stillwell, 1992, p.33), A is either discrete or dense.
Density is achieved if and only if E2/E3 6∈ Q, a very mild condition since the Lebesgue
measure of Q is zero.
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Qualitatively, the same phenomenon arises in the general case where Assumption 7 holds
but transfer functions are not separable. The set Oy0 is either discrete or dense, the discrete
case being the exception. Assumption 8 rules out this particular case.

Assumption 8 (non periodicity) There exists (i, j, k) ∈ {1, ..., K}3 such that for all (m,n) ∈
Z2, (m,n) 6= (0, 0), Hm

ij 6= Hn
ik.

Theorem 3.4 If K ≥ 3 and Assumptions 1, 2, 4, 7 and 8 hold, C ′(.) and Fθ(.) are
identified.

The proof relies on Hölder and Denjoy theorems, two deep results in group and dynamical
systems theories. Denjoy theorem, in particular, ensures that Oy0 is either discrete or dense
in R+, depending on whether a scalar called the rotation number (which corresponds to
the ratio E2/E3 in the example above) is rational or not. Assumption 8 ensures that this
number is irrational, establishing the density of Oy0 . Interestingly, the proof shows that
only three different contracts (i.e. two exogenous changes) are needed to achieve point
identification of C ′(.) and Fθ(.). If K ≥ 4 and Assumption 8 holds for four indices or more,
the model is overidentified. Indeed, we can use different subsets of contracts to recover
C ′(.) and Fθ(.). If the different corresponding functions do not coincide, then the model is
rejected.

Assumption 7 is abstract, so one may wonder how it can be tested in practice. Actually, by
Hölder theorem, the horizontal transforms commute under this condition. Hence, if K = 3

for instance, we can test for the much simpler condition H12 ◦H13 = H13 ◦H12.

3.5 Implication for the principal’s model

The identification results obtained so far only rely on the agent’s model. This is convenient
since the principal’s model is often questionable. However, if one is willing to assume
optimality of contracts, the first-order condition of the principal (2.3) can be used to
recover some information about the objective function of the principal. More precisely, if
Fθ(.) and C ′(.) are point identified for instance, as in Theorems 3.2 and 3.4, we identify
the function y 7→ ∂Sk

∂y
(y, θk(y)). In general, this is not sufficient to recover the principal’s

objective function Sk(.).15 However, it is useful for testing the optimality of contracts,
15If one assumes that Sk(.) does not not depend on θ, as is supposed in the standard price discrimination

model for instance, this function is identified up to an additive constant.
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provided that economic theory provides some restriction on Sk(.). For instance, in the case
of regulation, the principal objective function considered by the theory satisfies Equation
(2.4). In this case,

αk =

∂Sk

∂y
(y, θk(y))− pk(y)

t′k(y)
.

Thus, αk is overidentified by this equation, and we can test for the optimality of the
contracts by checking that the right-hande side is constant.

4 Discussion and extensions

4.1 The cost separability assumption

The vertical transform relies strongly on the cost separability assumption C(θ, y) = θC(y).
This condition is nevertheless not as important as one may think in the first place. As
mentioned above, what really matters is to reduce the dimensionality of the cost function
C(y, θ) to secure identification. In some settings, other restrictions than the cost separabil-
ity may be more natural. One example is the delegation of a task to an agent, as in, e.g.,
Ferrall and Shearer (1999) or Paarsch and Shearer (2000). Suppose that his production
depends on an heterogeneity term θ that he observes ex ante, and on his effort e, so that
y = g(θ, e). θ may represent the agent’s productivity or the difficulty of the task itself.
g is supposed to be increasing in e and known (or specified) by the econometrician. The
cost C(e) only depends on the effort e. Because there is no uncertainty for the agent, this
model is not a moral hazard model but a truly adverse selection one.16 We can reformulate
it in our framework by replacing e by g−12 (θ, y), where g−12 (θ, .) denotes the inverse function
of g(θ, .). In this case, the cost function satisfies the restriction C(y, θ) = C(g−12 (θ, y)).

In this setting, the horizontal and vertical transforms still apply, but on variables (e, θ)

instead of (y, θ). Letting ek(θ) denote the effort chosen by agent θ when facing menu k,
we have

ej(θ) = g−12

[
θ, F−1yj

◦ Fyi (g(θ, ei(θ)))
]
,

which defines the horizontal transform in this context. Besides, by the agents’ first-order
condition,

t′i [g (θi(e), e)]
∂g

∂e
(θi(e), e) = t′j [g (θj(e), e)]

∂g

∂e
(θj(e), e),

16It is sometimes referred to as a “false moral hazard” model (see e.g. Laffont and Martimort, 2002).
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where θk(.) denotes the inverse of ek(.). Solving this equation in θj(e) defines the vertical
transform.17 As a result, the previous results also apply in this setting.

Another example of a restriction different from the cost separability condition arises in the
first price auction model with n risk averse bidders. In this model, the expected utility of
the bidders satisfies U(y, θ) = F n−1

y (y)u(θ − y) if the player with valuation θ bids y, u(.)

denoting the vNM utility of the player. The restriction, implied by the model, is that the
function U(y, θ)/F n−1

y (y) only depends on θ − y. The first-order condition of the agent
satisfies (see Guerre et al., 2008)

θn(y) = y +
( u
u′

)−1
(L(y)),

where L(y) = Fy(y)

(n−1)fy(y) . With exogenous variation in the number n of bidders, our results
can be adapted. The horizontal transform is defined as usual but the vertical transform is
replaced by a “diagonal” transform D(.) defined by

θn2(D(y)) = θn1(y) +D(y)− y,

where n1 and n2 are two different number of bidders.18

4.2 Endogenous changes in the menus of contracts

Up to now, we have discussed cases where menus of contracts change exogenously, according
to an observable instrument Z.19 In practice, it may happen that a random term ε observed
by the principal but not by the econometrician affects the cost function of the agents or
their distribution of types. In this case, contracts change endogenously and the transfer
function depends not only on Z but also on ε. Similarly to Guerre, Perrigne and Vuong
(2008) when considering endogenous participation to auctions, our method can still be
applied, under the exclusion restriction that CZ,ε = Cε and Fθ,ε,Z = Fθ,ε. Suppose that

t′Z,ε(y) = ψ(y, Z, ε),

where ψ is strictly monotonic in ε and ε ⊥⊥ Z. This latter condition is usual in instrumental
variable models (see e.g. Imbens and Newey, 2009). It is also natural in our framework for

17Of course, assumptions on the primitives are needed to ensure the unicity of the solution, as well as
the validity of the first-order approach.

18Guerre et al. (2009) show that this model is identified. This result is similar to Theorem 3.1, because
θn1 and θn2 cross (see Guerre et al., 2009).

19As previously, we omit covariates X for the ease of exposition.
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which Z is a determinant of the principal’s objective function whereas ε only affects the
agent’s side.

If ε is continuously distributed, and under the strict monotonicity of ψ(y, z, .), we can
suppose without loss of generality (up to redefining ψ) that ε is uniformly distributed.
Then Pr(t′Z,ε(y) ≤ t|Z = z) = Pr(ε ≤ ψ−1(y, Z, t)) = ψ−1(y, Z, t), where ψ−1(y, Z, .) is the
inverse of ψ(y, Z, .). Hence, ε = ψ−1(y(θ), Z, t′Z,ε(y(θ))) is identified. Then we can control
for ε, and our method applies conditional on ε, just as it applies conditional on covariates
X. This idea is close to the one of control variables in identification of nonparametric
models with endogenous variables (see e.g. Imbens and Newey, 2009). In this framework,
the causal effect of the endogenous variable (the marginal transfer function) on a dependent
variable is identified by adding a control variable (ε) resulting from a first step regression
on instruments (Z).

As an illustration, consider the case where ε is an heterogeneity term on the cost function
only, and ε 7→ C ′ε is increasing. Then, by, the principal’s first-order condition and the fact
that SZ does not depend on θ here,

θZ,ε(y) = G−1
(
S ′Z(y)

C ′ε(y)

)
,

where G(θ) = θ + Fθ/fθ(θ). Thus, the optimal contract t∗Z,ε satisfies

t∗Z,ε
′(y) = G−1

(
S ′Z(y)

C ′ε(y)

)
C ′ε(y).

If θ 7→ Fθ/θfθ(θ) is increasing,20 we can show that t∗Z,ε′ is strictly increasing in ε, and our
previous result applies.

4.3 Continuous instruments

It may happen that the econometrician has a continuous instrument at his disposal. In the
price discrimination example, the price of an input of the monopoly may take any value
in an interval, implying that the value function of the principal changes continuously. In
this case, Theorem 4.1 shows that full identification can be obtained without the cost
separability assumption. In other terms, no restriction is needed on C(., .), defined as a
function of the two variables (y, θ). In this case, we can always normalize θ to be uniform.

20This condition is satisfied for instance by all Fréchet, Weibull and Pareto distributions.
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Theorem 4.1 Suppose that Z takes values in Z = [z, z], θ is uniformly distributed on
[0, 1], (y, z) 7→ t(y, z) is twice differentiable and ∂2t

∂y∂z
(y, z) > 0.21 Then ∂C

∂y
(., .) is identified

on {(y, θ) : ∃z ∈ Z : θ(y, z) = θ}.

4.4 Selection effects

We have supposed until now that variation in the transfer functions does not yield any
changes in Fθ(.). However, selection effects can be important. Lazear (2000), for instance,
showed that half of the productivity increase observed in a car glass company after moving
from constant wages to piece rates could be explained by the arrival of more productive
workers. More generally, these effects may arise in competitive environments where agents
can choose between several menus of contracts proposed by different principals. In this
case indeed, a change in one principal’s menu may induce some agents with particular θ
to choose the new menu of contracts. Such effects are not taken into account in our model
where all types of agent participate in all menus of contracts.22 Hence, our analysis is not
valid in general when selection occurs.

However, selection effects are not problematic if panel data are available. First, such effects
can be detected by comparing the distributions of the stayers’ and entrants’ type, as in
Lazear (2000). Moreover, our method still applies even in the presence of selection effects,
provided that the distribution F̃θ(.) of the stayers (i.e., those who participate in all menus
of contracts) remains the same for the different menus. If the exclusion restrictions hold on
the population of stayers, F̃θ(.) can be recovered as well as the marginal cost function C ′(.).
Then, once C ′(.) has been identified, we can use data on the movers to recover their own
distribution of types, thanks to Lemma 3.1. At the end, the distribution of the types of the
whole population of agents (i.e., movers and stayers) is identified, showing that selection
effects can be handled in this framework.

21We also assume that the first-order condition of the agent is necessary and sufficient for optimality.
For this to be satisfied, Assumption 2 could be modified in order to take into account the non-separability
of the cost function.

22Selection effects could be modeled by letting the participation constraint of agent θ depends on θ.
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5 Conclusion

This work contributes to the recent structural analysis of incentive problems.23 We show in
particular that when contracts vary exogenously, full identification of the model is achieved
with at two most two changes. Our results are based on a new induction method that we
apply to derive our identification results. In our companion paper (see D’Haultfoeuille and
Février, 2010), we also rely on this induction technique to derive a consistent estimator with
one exogenous change and no crossing. It would be interesting to extend this estimator to
the more general setting considered here. When point identification is achieved, another
possibility would be to develop a sieve estimator, following the suggestion of Guerre et al.
(2009) on the estimation of auction models with risk averse bidders.

23For a structural analysis of moral hazard, see Ke (2008).
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Appendix: proofs

Theorem 3.1

By the normalization and the fact that y0 > 0, we can always fix 0 < θ0 < ∞ such that
θ0 = θi(y0). We also suppose, without loss of generality that t′j(.) > t′i(.) for all y < y0.

Let yα < y0, and define the increasing sequence (yn)n∈N by y0 = yα and, for all n ≥ 1,
yn = Hn

ij(yα). We have yn < y0 for all n ∈ N. Indeed, the result is true for n = 0.
Moreover, if it holds for n − 1, then yn = Hij(y

n−1) < Hij(y0) = y0 since Hij is strictly
increasing. The sequence is increasing and bounded above by y0, so that it admits a limit
y∞ which satisfies y∞ = Hij(y

∞) and y∞ ≤ y0. Hence y∞ = y0.

Now, by the first-order condition,

θi(y
n+1) = V21(θi(y

n), yn+1) =
t′i(y

n+1)

t′j(y
n+1)

θi(y
n).

Thus, by a straightforward induction,

θi(yα) = θi(y
n)

n∏
i=1

[
t′j(y

i)

t′i(y
i)

]
.

Because (yn)n∈N converges to y0 and θi(.) is continuous, the sequence (θi(y
n))n∈N converges

to θ0. Because θ0 ∈ (0,∞), the product on the right-hand side also admits a finite and
positive limit as n→∞, and

θi(yα) = θ0

∞∏
i=1

[
t′i(y

i)

t′j(y
i)

]
.

The right-hand side can be recovered from the data, which proves that θi(yα) is identified.
yα < y0 was arbitrary, so that θi(.) is identified on ]0, y0].

If M = 0, i.e. there is a unique crossing point, we can identify θi(yα) for all yα > y0 as
previously, using a decreasing sequence instead of an increasing one. Thus θi(.) is actually
identified on R∗+ in this case. IfM ≥ 1, we can identify similarly θi(yα) for all y1 > yα > y0.
θi(y1) is then identified by continuity. Hence, θi(.) is identified on ]0, y1]. A straightforward
induction on M then shows that θi(.) is identified on (0,∞). The result then follows from
Lemma 3.1. �

25



Theorem 3.2

The proof is similar although a bit more involved than the one of Theorem 3.1. Let
0 < y0 < ... < yM be the fixed points of G = H l1

j1k1
◦ ... ◦H lp

jpkp
. By the normalization, we

can always fix 0 < θ0 <∞ such that θ0 = θjp(y0). By the intermediate value theorem, for
all y ∈ (0, y0) we have either G(y) < y or G(y) > y. We suppose, without loss of generality,
that G(y) > y on this interval.

Let yα ∈ (0, y0), and define the sequence (yn)n∈N by yn = Gn(yα). As previously, (yn)n∈N

is increasing and bounded above by y0, so that it converges to y0.

Now, applying the horizontal and vertical transforms, we get

θjp(yn) = θkp(Hjpkp(yn))

= Vjpkp(θjp(Hjpkp(yn)), Hjpkp(yn))

=
t′kp(Hjpkp(yn))

t′jp(Hjpkp(yn))
θjp(Hjpkp(yn)).

Thus, by a straightforward induction,

θjp(yn) =
t′kp(Hjpkp(yn))

t′jp(Hjpkp(yn))
× ...×

t′kp

(
H
lp
jpkp

(yn)
)

t′jp

(
H
lp
jpkp

(yn)
) θjp (H lp

jpkp
(yn)

)
. (5.1)

By the vertical transform once more,

θjp

(
H
lp
jpkp

(yn)
)

=
t′jp

(
H
lp
jpkp

(yn)
)

t′jp−1

(
H
lp
jpkp

(yn)
)θjp−1

(
H
lp
jpkp

(yn)
)
. (5.2)

Equations (5.1) and (5.2) imply that there exists a function Qjpkpjp−1 , identified in the
data, such that

θjp(yn) = Qjpkpjp−1(y
n)θjp−1

(
H
lp
jpkp

(yn)
)
.

Applying the same reasoning to θjp−1

(
H
lp
jpkp

(yn)
)
, θjp−2

(
H
lp−1

jp−1kp−1
◦H lp

jpkp
(yn)

)
,... shows

that there exists a function Q̃ which is identified and such that θjp(yn) = Q̃(yn)θj1(G(yn)) =

Q̃(yn)θj1(y
n+1). Finally, by an application of the vertical transform to θj1(y

n+1) and
θjp(yn+1), there is a function Q identified in the data satisfying

θjp(yn) = Q(yn)θjp(yn+1).

As a result,

θjp(yα) = θjp(yn)

[
n∏
i=1

Q(yi−1)

]
.
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Because (yn)n∈N converges to y0 and θjp(.) is continuous, the sequence (θjp(yn))n∈N con-
verges to θ0. Because θ0 ∈ (0,∞), the product into bracket also admits a finite and positive
limit as n→∞, and

θjp(yα) = θ0

∞∏
i=1

Q(yi−1).

The right-hand side can be recovered from the data, proving that θjp(yα) is identified. As
yα ∈ (0, y0) was arbitrary, θjp(.) is identified on (0, y0]. The rest of the proof is similar to
the one of Theorem 3.1. �

Theorem 3.3

Because H12(.) and H21(.) are identified, it follows from the discussion before Theorem 3.3
that θ1(.) is point identified on (yn)n∈Z. For other y, we get, by monotonicity of θ1(.),

sup
n: yn≥y

θn ≤ θ1(y) ≤ inf
n: yn≤y

θn,

where the supremum (resp. the infimum) is set to zero (resp. infinity) when the set is
empty. Similarly,

sup
n∈Z: θn≥θ

yn ≤ y1(θ) ≤ inf
n∈Z: θn≤θ

yn.

Then Equations (3.1) and (3.3) imply Inequalities (3.8) and (3.7). �

Theorem 3.4

Before proving the results, let us recall some definitions and results on groups. A group G is
a set endowed with an operator ∗ such that for all (a, b, c) ∈ G3, a∗b ∈ G, (a∗b)∗c = a∗(b∗c)
and such that an identity element e satisfying a ∗ e = e ∗ a = a for all a ∈ G exists.
Moreover, every element a ∈ G admits an element (called the inverse of a) b which satisfies
a ∗ b = b ∗ a = e. G is abelian if, for all a, b, a ∗ b = b ∗ a. A subgroup H of G is a
subset of G which is itself a group for ∗. The group generated by a subset I of G is the
smallest subgroup of G containing I. For any set X and a group G, a group action . is a
function from G ×X to X (denoted by g.x) satisfying, for every (g, h) ∈ G2 and x ∈ X,
(g ∗ h).x = g.(h.x) and e.x = x. A group action is free if, for any x ∈ X, g.x = x implies
g = e. The orbit Ox of x is then defined by

Ox = {g.x, g ∈ G}.
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We also consider functions on the unit circle [0, 1).24 For any real x, let π(x) denote the
fractional part of x. A map q on [0, 1) is orientation-preserving if there exists an increasing
function Q such that q ◦ π = π ◦Q and Q(x+ 1) = Q(x) + 1. Then q is continuous (resp.
a Ck diffeomorphism) on the unit circle if Q is continuous (resp. a Ck diffeomorphism) on
the real line. If q is continuous, its rotation number ρ(q) is defined by

ρ(q) = lim
n→∞

Qn(x)− x
n

.

Poincaré (1885) showed that this limit exists and is independent of x and Q. Finally, we
use subsequently the following lemma.

Lemma 5.1 For any increasing C2 diffeomorphism r on R∗+ satisfying r(x) > x, there
exists an increasing C2 diffeomorphism h from R to R∗+ such that r = h ◦ ϕ ◦ h−1, where
ϕ is the translation ϕ(x) = x+ 1 on the real line.

Proof: let us consider an increasing C2 diffeomorphism h̃ defined on the interval (0, 1)

with a positive limit at 0 and such that limx→1 h̃(x) = limx→0 r ◦ h̃(x), limx→1 h̃
′(x) =

limx→0

[
r ◦ h̃

]′
(x) and limx→1 h̃

′′(x) = limx→0

[
r ◦ h̃

]′′
(x). Such a h̃ exists. Then define

the function h by h = h̃ on (0, 1) and extend it on the real line, using h(x+ 1) = r ◦ h(x)

or h(x) = r−1 ◦ h(x + 1). By construction, h is strictly increasing and C2. Hence, it
admits a limit at −∞ and +∞. Suppose that limx→−∞ h(x) = M > 0. Then, because
h(x+ 1) = r ◦ h(x), we would have r(M) = M , a contradiction. Thus, limx→−∞ h(x) = 0.
Similarly, limx→+∞ h(x) = +∞. Consequently, h is a C2 diffeomorphism from R to R∗+. �

Now, let us prove Theorem 3.4. Without loss of generality, we set the indices (i, j, k)

defined in Assumption 8 to (1, 2, 3). By Assumptions 1 and 2 and the first-order condition,
θ1 and θ2 are C2 diffeomorphisms on R∗+. Then H12 = θ−12 ◦ θ1 and H13 = θ−13 ◦ θ1 are
also C2 diffeomorphisms on R∗+. By Assumptions 7 and 8, H12 does not admit any fixed
point. Suppose without loss of generality that H12(x) > x. By Lemma 5.1, there exists an
increasing C2 diffeomorphism h such that H12 = h ◦ ϕ ◦ h−1. Let f = h−1 ◦ H13 ◦ h, so
that f is a real, increasing C2 diffeomorphism. Let us denote by G the subgroup of real
diffeomorphisms on the real line (endowed with the composition operator ◦) generated by
ϕ and f . Consider the group action of G on R defined by g.x = g(x). By Assumption 7,
this group action is free. Then, by a theorem of Hölder (see, e.g., Ghys, 2001, Theorem

24Formally, the unit circle corresponds to classes of equivalence for the equivalence relationshipR defined
on R by xRy ⇔ x− y ∈ Z, but this can be ignored here.
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6.10), G is abelian. As a result, f(x + 1) = f ◦ ϕ(x) = ϕ ◦ f(x) = f(x) + 1 for all x ∈ R.
Define f̃ on the unit circle by f̃ ◦ π = π ◦ f . This defines properly f̃ because

π(x) = π(y) ⇔ ∃ k ∈ Z / x = y + k = ϕ(k)(y)

⇒ f(x) = ϕ(k) ◦ f(y)

⇒ π ◦ f(x) = π ◦ f(y).

By construction, f̃ is an orientation-preserving C2 diffeomorphism on the unit circle. Then,
by Denjoy’s theorem (see, e.g., Navas, 2009, Theorem 3.1.1), any orbit for the group
generated by f̃ is finite if ρ(f̃) ∈ Q, and dense otherwise.

Suppose that the orbits are finite. Then there exists n ∈ Z such that f̃n(x) = x. It is
easy to see that this implies that there exists m ∈ Z such that fn(x) = ϕm(x). Hence, by
definition of f and ϕ, Hn

13(x) = Hm
12(x), contradicting Assumption 8. We thus conclude that

any orbit for the group generated by f̃ is dense in the unit circle. Now, fix (x, y) ∈ R2 and
consider a neighbourhood Vy of y. By definition, π(Vy) is a neighbourhood of π(y) in the
unit circle. Thus, there exists n ∈ Z such that f̃n ◦π(x) ∈ π (Vy). Because f̃n ◦π = π ◦ fn,
π ◦ fn(x) ∈ π (Vy). Hence, there exists m ∈ Z such that

ϕm ◦ fn(x) ∈ Vy.

This proves that any orbit Ox for the group generated by f and ϕ is dense in R∗+. Now,
the orbit O′x for the group generated by H12 and H13 satisfies O′x = h

(
Oh−1(x)

)
. Thus O′x

is dense in R∗+. In other words, starting from a given y0 > 0, we can identify θ1(.) on a
subset which is dense in R+. θ1(.) is thus identified everywhere by continuity. As a result,
C ′(.) and Fθ(.) are also identified. �

Theorem 4.1

By uniformity of θ, (3.1) now writes θ(y, z) = 1 − Fy|z(y|z). Thus, θ(., z) is identified on
Yz = {y : ∃θ ∈ Θ : θ(y, z) = θ}. By (3.3), ∂C

∂y
(., .) is also identified on {(y, θ(y, z)), y ∈ Yz},

for all z ∈ Z. Now, for all y ∈ Yz,
∂2C

∂y∂z
(y, θ(y, z)) =

∂2C

∂y∂θ
(y, θ(y, z))

∂θ

∂z
(y, z).

Moreover, ∂2t
∂y∂z

(y, z) > 0 implies that ∂θ
∂z

(y, z) > 0. Thus, for all y ∈ Yz, ∂2C
∂y∂θ

(y, θ(y, z)) is
identified by

∂2C

∂y∂θ
(y, θ(y, z)) =

∂2C
∂y∂z

(y, θ(y, z))
∂θ
∂z

(y, z)
�
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