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The risk analysis in portfolios of credits, or life insurance contracts, is

made difficult by the nonlinearities of risk models, the dependencies between

the individual risks, and the large size of the portfolios, which can include

several thousands of contracts. The granularity principle has been intro-

duced in the Basel II regulation for credit risk to solve these difficulties when

computing the reserves. The principle requires three steps. First, the mod-

elling step considers a Risk Factor Model (RFM), which distinguishes the

systematic risks from the unsystematic risks. Second, this model is applied

to a virtual portfolio of infinite size, leading to the so-called Asymptotic Risk

Factor Model (ARFM). This gives in general explicit formulas for the Value-

at-Risk and other risk measures, and thus for the required capital. Third,

for a portfolio of large but finite size, closed form approximations are de-

rived from an expansion around the ARFM. This provides the granularity

adjustment for the required capital. In fact, the granularity principle can be

applied to a variety of related problems. It can be applied for instance for

efficient estimation in panel factor models with micro- and macro-dynamics,

for improving macro-predictions from micro-data, or for pricing derivatives

written on large portfolios. The aim of this book is to provide a first overview

of granularity theory by following a progressive pedagogical approach.

This state-of-the-art book on granularity theory is ideal for graduate stu-

dents, researchers and professionals. All will benefit from the emphasis on

practical aspects of financial and insurance risk modeling. Doctoral candi-

dates will appreciate the inclusion of mathematical derivations of the deeper

results as well as the more advanced questions concerning risk control and

credit derivative pricing. By establishing the link between Basel III and Sol-

vency II regulations, the book also addresses the needs of applied researchers

employed by financial institutions. A minimal background in statistics and

finance is required, but easily completed by the review chapters included in

the book.
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Università della Svizzera Italiana and member of the Swiss Finance Institute.

His research interests focus on econometrics and financial econometrics, with

special emphasis on factor models, method of moments estimation, and ap-

plications in asset pricing and credit risk. On these topics he has published

papers in international econometrics and finance journals.

Christian GOURIEROUX is Professor at the University of Toronto and

Director of the Insurance and Finance Department at CREST in Paris. He is

author of several books in Econometrics, Financial Econometrics, and Credit

Risk and has published extensively in international journals both in econo-

metrics an finance. He is member of the scientific committees of the Euronext

indexes and of the French Financial Market Authority.



4



Contents

1 Introduction 9

1.1 The Basic Asymptotic Theorems . . . . . . . . . . . . . . . . 10

1.2 A Lack of Robustness to Cross-Sectional Dependence . . . . . 12

1.3 Panel Model with Common Factor . . . . . . . . . . . . . . . 14

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Appendix: Autoregression and Transition Density . . . . . . . 18

2 Gaussian Static Factor Model 21

2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Estimation of the Parameters . . . . . . . . . . . . . . . . . . 25

2.3 Mean-Variance Portfolio Management . . . . . . . . . . . . . . 35

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Appendix: Structure of the Variance-Covariance Matrix . . . . 43

3 Static Qualitative Factor Model 47

3.1 The Single Risk Factor Model for Default . . . . . . . . . . . . 47

3.2 The General Model and its Estimation . . . . . . . . . . . . . 54

3.3 Closed Form Expressions of the Estimators . . . . . . . . . . . 60

3.4 Stochastic Intensity Model with Factor . . . . . . . . . . . . . 69

3.5 Factor Analysis of Dependence . . . . . . . . . . . . . . . . . . 74

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Appendix: CSA Maximum Likelihood Estimator in Factor

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5



6 CONTENTS

4 Nonlinear Dynamic Panel Model 99

4.1 Qualitative Model with Gaussian Dynamic Factor . . . . . . . 100

4.2 Asymptotically Efficient Estimators . . . . . . . . . . . . . . . 102

4.3 Likelihood Expansions, CSA and GA Maximum Likelihood

Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Stochastic Migration Model . . . . . . . . . . . . . . . . . . . 112

4.5 Application to S&P Migration Data . . . . . . . . . . . . . . . 120

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.7 Appendix A: Asymptotic Variance-Covariance Matrix of the

Transition Frequencies . . . . . . . . . . . . . . . . . . . . . . 131

4.8 Appendix B: Likelihood Expansion and GAML Estimators . . 132

4.9 Appendix C: Migration Correlations . . . . . . . . . . . . . . . 134

5 Prediction, Filtering and Basket Derivative Pricing 145

5.1 Approximate Prediction Formulas . . . . . . . . . . . . . . . . 146

5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Basket Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4 Derivative pricing . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5 Derivatives Written on a Factor Proxy . . . . . . . . . . . . . 158

5.6 Application to Approximate Pricing of BDS . . . . . . . . . . 161

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.8 Appendix: Approximation of the Filtering Distribution . . . . 167

6 Granularity for Risk Measures 181

6.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.2 Local Analysis of a Quantile Function . . . . . . . . . . . . . . 186

6.3 Granularity Adjustment in the Static Model . . . . . . . . . . 189

6.4 Granularity Adjustment in the Dynamic Model . . . . . . . . 197

6.5 Portfolio of Derivatives Written on a Large Portfolio . . . . . . 205

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.7 Appendix: Interpretation of the Bahadur’s Expansion . . . . . 208



CONTENTS 7

7 A. Review on Econometrics 223

8 B. Review on Financial Theory 245



8 CONTENTS



Chapter 1

Introduction

The granularity principle is a methodology to perform asymptotic expansions

for panel models with common factor and large cross-sectional size. The panel

observations are doubly indexed by individual and time. The granularity

principle consists of two steps:

i) First, one analyzes the Cross-Sectional Asymptotic (CSA) model

corresponding to a (virtual) panel with infinite cross-sectional size n = ∞.

ii) Second, the cross-sectional size is assumed large, but finite, and an

expansion in 1/n is performed around the asymptotic model.

The granularity approach has been first introduced to analyze the risk in

large financial portfolios, and in particular to get accurate approximations

of the required capital in the framework of the recent Basel 2 regulation [see

BCBS (2001), Gordy (2003) and Chapters 6, 7]. The same principle can be

used for large portfolio management, or for pricing derivatives written on

large sets of risks such as longevity bonds, or derivatives written on an index

of Credit Default Swaps, such as the iTraxx (see Chapter 5). This principle

can also be used for analyzing the asymptotic behavior of estimators in large

panel models, or for obtaining approximate filtering and prediction formulas

of the underlying unobservable factor (Chapters 2-5).

9
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The importance of granularity theory is due to a lack of robustness of the

standard asymptotic theorems, such as the Law of Large Numbers (LLN)

and the Central Limit Theorem (CLT), in presence of a common factor. We

briefly review in Section 1.1 the standard asymptotic theorems with their

underlying regularity assumptions. In Section 1.2, we modify the standard

regularity assumptions by introducing a common unobservable factor and

discuss the new asymptotic behavior of the sample mean of the observations.

Finally, in Section 1.3, we present the different panel models with common

factor to which the granularity theory will be applied.

1.1 The Basic Asymptotic Theorems

In the basic framework, the asymptotic theorems are presented under a sim-

ple set of regularity conditions.

Assumption A.1: The observations Yi, i = 1, . . . , n, are independent, iden-

tically distributed, with finite second-order moments.

The observations Yi can be multidimensional, with dimension K, say. The

mean (resp. the variance-covariance matrix) of Yi is a (K, 1) vector denoted

by m = E(Yi) [resp. a (K,K) matrix denoted by V (Yi) = Σ]. The compo-

nents of the mean vector are the expectations of the components of Yi. The

variance-covariance matrix contains the variances of the components of Yi

on the diagonal, and the covariances between pairs of components out of the

diagonal.

Then, we have the two following theorems:

Theorem 1.1: Law of Large Numbers (LLN). Under Assumption A.1,

the sample mean Ȳn =
1

n

n∑
i=1

Yi converges almost surely to the theoretical

mean m, that is, Ȳn
a.s.→ m, as n→ ∞.

Theorem 1.2: Central Limit Theorem (CLT). Under Assumption A.1,

the sample mean is asymptotically (multivariate) Gaussian, that is,
√
n(Ȳn−
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m)
d→ N(0,Σ), where

d→ denotes the convergence in distribution as n→ ∞.

Thus, the first term in the asymptotic expansion of Ȳn is deterministic equal

to m (by LLN), whereas the second term is stochastic of order 1/
√
n (by

CLT).

The LLN and CLT are used in statistics and econometrics to prove the

consistency and asymptotic normality of maximum likelihood and moment-

type estimators (under standard regularity assumptions). They can also be

used to derive core results in economic and finance theory. As an illustration,

let us consider n risky assets i = 1, . . . , n, with unitary price at date t and

returns Yi,t+1, i = 1, . . . , n on period (t, t + 1). Let us assume that the risky

returns satisfy Assumption A.1 with mean mt and variance Σt, and denote

rf,t the riskfree return on the same period.

A portfolio including 1/n shares of each risky asset has a unitary price at

date t and a return on period (t, t + 1) equal to the cross-sectional average

return Ȳn,t+1 =
1

n

n∑
i=1

Yi,t+1. By applying the LLN, we see that Ȳn,t+1 tends

to mt. Equivalently, in financial terms:

Proposition 1.3: Under Assumption A.1, the risk is totally eliminated by

diversification for a large size portfolio.

Since the (asymptotic) portfolio is riskfree, we deduce by no-arbitrage

that mt = rf,t (see Review B.2 for the definition of no-arbitrage).

Proposition 1.4: Under Assumption A.1 and no-arbitrage, the (condi-

tional) expected return of the individual assets is equal to the riskfree rate.

Thus, in an economy satisfying Assumption A.1, the individual assets

cannot generate a conditional expected return strictly larger than the riskfree

rate. Equivalently, they necessary pay a zero risk-premium.
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1.2 A Lack of Robustness to Cross-Sectional

Dependence

The LLN and CLT can be extended to sequences of variables satisfying

weaker conditions than Assumption A.1, for instance to stationary time se-

ries, or to variables with heterogenous distributions. However, the limit the-

orems can be strongly modified for other changes in the basic assumptions.

As an illustration, let us assume that the one-dimensional observations

are such that:

Yi = F + ui, i = 1, . . . , n, (1.1)

where F, u1, . . . , un, are independent variables, u1, . . . , un have a same dis-

tribution with zero-mean and variance σ2, and F is a random variable with

mean μ, variance η2, and probability density function (pdf) g. The variables

Yi, i = 1, . . . , n have identical marginal distributions with mean E(Yi) = μ,

variance V (Yi) = σ2 + η2. However, these variables are dependent due to the

common factor F . For instance, the correlation between two observations is

Corr(Yi, Yj) =
η2

η2 + σ2
, for i �= j.

Let us consider the sample mean. We have:

Ȳn =
1

n

n∑
i=1

Yi = F +
1

n

n∑
i=1

ui.

By applying the LLN to the average of the idiosyncratic terms ui, we deduce

the following asymptotic behaviour:

Proposition 1.5: Under factor model (1.1), the sample mean tends to the

factor value. In particular this limit is stochastic and different from the

common mean E(Yi) = μ.

In financial terms, the ”idiosyncratic risks” ui, i = 1, . . . , n can be diversified,

but not the common risk1 F . Thus, diversification cannot totally eliminate

1Often called systematic or systemic risk in the financial literature.
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the risk.

Let us now consider the asymptotic distribution of the sample mean of

variables Yi.

i) If the cross-sectional dimension n is infinite, we have lim
n→∞

Ȳn = F and

the asymptotic distribution of the sample mean is simply the distribution of

F .

ii) If n is large, but finite, we obtain a more accurate approximation of

the distribution of this mean by applying the CLT to u1, . . . , un, conditional

on factor F . Conditional on factor F , we have approximately:

Ȳn|F d∼ N(F, σ2/n).

Then, we can integrate out the unobservable factor to get the approximate

pdf of Ȳn as:

hn(y) =

∫
1√

2πσ2/n
exp

[
−n(y − f)2

2σ2

]
g(f)df,

that is, a mixture of Gaussian distributions. In the limiting case n → ∞,

the Gaussian kernel concentrates at its mean and hn tends to g, which cor-

responds to limiting case i).

In this example we have to distinguish between the cross-sectional

asymptotic (CSA) analysis corresponding to the virtual situation n = ∞
and to the limiting distribution h∞(y) = g(y), and the granularity adjust-

ment (GA), equal to hn(y)− g(y), which has to be applied when n is large,

but finite.

The derivation above relies on the application of the standard LLN and

CLT conditional on factor F . When the conditional application of asymp-

totic theorems is possible, the model is said to be infinitely granular or

infinitely fine grained. The granularity terminology has been first intro-

duced by Gordy [Gordy (2003)]; see also Wilde (2001) and Martin, Wilde

(2002).
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1.3 Panel Model with Common Factor

We first define the notion of homogenous population before describing the

panel models of interest.

i) Homogenous population

The difference between model (1.1) and the i.i.d. Assumption A.1 is the

dependence between observations, which is the same across any pair. This

leads to the definition of an exchangeable, or homogenous, set of variables.

Definition 1.6: A set of variables Yi, i = 1, . . . , n is exchangeable (or

homogenous), if and only if the distribution of Y1, . . . , Yn is the same as the

distribution of Yσ(1), . . . , Yσ(n), for any permutation σ(·) of the set of indexes.

The notion of exchangeability is also valid for a set of individual histories

Yi = (Yi,1, . . . , Yi,t, . . .), i = 1, . . . , n, that is, for panel data.

Loosely speaking, the exchangeability condition requires that all the in-

dividuals are equivalent. This condition is satisfied for an i.i.d. sequence of

variables, but it is also compatible with a specific form of dependence (called

equidependence) between the variables, as seen in model (1.1).

A representation theorem for an exchangeable (homogenous) set of vari-

ables has been first derived by de Finetti (1931) and extended by Hewitt,

Savage (1955). We provide below the version of this theorem appropriate for

panel models.

Theorem 1.7: Factor representation of an infinite set of exchange-

able histories (n = ∞). The infinite set of histories Yi = (Yi,t, t ∈ N), i =

1, 2, . . . , is exchangeable, if and only if there exists an underlying factor pro-

cess F = (Ft, t ∈ N) such that the individual processes Y1, . . . , Yn, are i.i.d.

conditional on process F , for any n ∈ N.

The underlying factor process is generally multidimensional. Theorem

1.7 implies that an homogenous (exchangeable) set of histories is such that

the standard LLN and CLT can generally be applied conditional on factor
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path F , that is, this set is infinitely fine grained.

ii) Homogenous dynamic panel models

In the rest of the book, we generally consider an homogenous set of in-

dividual histories with state space dynamics. In terms of autoregressive

equations of order one 2, these models can be written as:

State equation:

Ft = a(Ft−1, ηt), (1.2)

Measurement equations:

yi,t = c(yi,t−1, Ft, εi,t), i = 1, . . . , n, (1.3)

where ηt, t ∈ N, and εi,t, i = 1, . . . , n, t ∈ N, are i.i.d standard Gaussian

vectors. Thus, the dynamics of individual histories (yi,t), i = 1, . . . , n is de-

fined in two steps. For fixed factor path, there is an individual dynamics, or

microdynamics, defined by autoregression (1.3). Then, the common dy-

namics, or macrodynamics, of the factor defined by (1.2) will also influence

the individual histories.

Functions a and c can be nonlinear, which will induce complicated serial

dependence and codependence between the variables. However, model (1.2)-

(1.3) is tractable, since the joint process (Ft, y1,t, . . . , yn,t) depends on the

past by lagged values of order 1 only, which is the Markov assumption on

this joint process.

In economic or financial applications, special cases of model (1.2)-(1.3)

are considered. For instance, the ”standard approach” of Basel 2 regulation 3

2They can equivalently be written in terms of transition distributions (see Appendix
1.4). We use in the next chapters one, or the other specification.

3The Basel 2 regulation allows for a choice between a basic risk analysis, called stan-
dard approach, and more sophisticated ones, called advanced approach. Ceteris
paribus, the required capital is higher under the standard approach. In our framework,
an advanced approach may consider multiple and dynamic factors, for instance.
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suggests a static model, that is a model without micro- or macro-dynamics,

and with Gaussian factor, such as:

State equation: Ft = ηt, (1.4)

Measurement equations: yi,t = c(Ft, εi,t), i = 1, . . . , n. (1.5)

The standard Gaussian linear state space model, which underlies the

implementation of the linear Kalman filter, assumes:

State equation: Ft = ΦFt−1 + ηt, (1.6)

Measurement equations: yi,t = α + β ′Ft + εi,t, i = 1, . . . , n. (1.7)

In this latter model, the whole dynamics passes through the common factor

and this dynamics corresponds to a Gaussian Vector AutoRegressive (VAR)

model.

1.4 Summary

In an homogenous population, the dynamics of individual histories can al-

ways be represented by means of unobservable dynamic factors. When the

joint dynamics of (Ft, yi,t, i = 1, ..., n) admits an autoregressive state space

representation, the model is easy to simulate, and the cross-sectional asymp-

totic analysis easy to interpret, as seen in the next chapters.
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1.5 Appendix: Autoregression and Transition

Density

i) One-dimensional continuously-valued process

Let us consider a one-dimensional process (Ft) with continuous distri-

bution, and denote by H(ft|ft−1) = P [Ft < ft|Ft−1 = ft−1] its transition

cumulative distribution function (cdf). We have the following Lemma (see

also Review A.1):

Lemma 1.8: The variable η∗t = H(Ft|Ft−1) is independent of Ft−1 and

follows a uniform distribution on (0, 1).

Proof: We have

P [η∗t < u|Ft−1 = ft−1] = P [H(Ft|Ft−1) < u|Ft−1 = ft−1]

= P [Ft < H−1(u|ft−1)|Ft−1 = ft−1]

= H [H−1(u|ft−1)|ft−1] = u, ∀u ∈ (0, 1),

where H−1(u|ft−1) denotes the inverse of H(f |ft−1) with respect to f . The

result follows, since G(u) = u is the cdf of the uniform distribution on (0, 1).

QED

Thus, ηt = Φ−1(η∗t ), where Φ is the cdf of a standard Gaussian distri-

bution, is also independent of Ft−1 and is N(0, 1) distributed. We have

ηt = Φ−1(η∗t ) = Φ−1[H(Ft|Ft−1)]. We deduce the autoregression:

Ft = H−1[Φ(ηt)|Ft−1] = a(Ft−1, ηt), (say).

This type of result can be extended to multivariate processes, but also to dis-

crete, or qualitative processes [see e.g. Gouriéroux, Monfort (1996), Section

1.4 and the reference therein].

ii) The exchangeable dynamics in terms of distributions
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Let us introduce the information available at time t− 1:

Jt−1 = (Ft−1, y1,t−1, . . . , yn,t−1, Ft−2, y1,t−2, . . . , yn,t−2, . . .).

The conditions equivalent to (1.2)-(1.3) are the following:

State equation: The conditional distribution of Ft given Jt−1 depends on the

past by means of lagged factor value Ft−1 only. The transition density of the

factor is denoted by g(ft|ft−1).

Measurement equations: Conditional on (Jt−1, Ft), the variables y1,t, . . . , yn,t

are independent. The conditional distribution of yi,t given (Jt−1, Ft) depends

on (yi,t−1, Ft) only and this dependence is identical for all individuals. The

conditional pdf is denoted by h(yi,t|yi,t−1, ft), with function h independent of

individual i.

iii) The joint distribution of individual histories

We deduce the joint density of (Ft, y1,t, . . . , yn,t, t = 1, . . . , T ) given the

initial values f0, y1,0, . . . , yn,0. It is given by:

T∏
t=1

{(
n∏

i=1

h(yi,t|yi,t−1, ft)

)
g(ft|ft−1)

}
.

Then, by integrating out the unobservable factor path, we get the joint den-

sity of the individual histories only (given J0) as :

∫
..

∫ T∏
t=1

{(
n∏

i=1

h(yi,t|yi,t−1, ft)

)
g(ft|ft−1)

}
T∏

t=1

dft.

This joint density involves an integral of a very large dimension, i.e., a di-

mension equal to the number of dates multiplied by the number of common

factors, which explains the need for tractable approximations of this density.
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Chapter 2

Gaussian Static Factor Model

The linear static factor model with Gaussian errors is a benchmark in panel

econometrics [see e.g. Rao (1971), Harville (1977)], portfolio management

[Markowitz (1952), Lintner (1965)], and arbitrage pricing theory [Ross (1976),

(1982), Chamberlain, Rothschild (1983)]. This type of panel model is com-

pletely analyzed in this chapter. In Section 2.1, we first discuss the model

and its structure. Then we make explicit the granularity adjustment for the

estimation of micro- and macro-parameters in Section 2.2. Granularity ad-

justment for portfolio management is considered in Section 2.3. For both

applications, we discuss the introduction of individual heterogeneity in the

basic exchangeable model.

2.1 The Model

The panel model considered in this section is known in the literature as the

variance-component, or random effect model. Its simplest version allows

for a closed form expression of the maximum likelihood estimators, easy to

interpret and to analyze [see e.g. Searle (1971)].

i) The regressions

Let us first introduce the state and measurement equations [see (1.2)-

21
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(1.3)]. We assume one-dimensional observations yi,t and factor Ft, and impose

a linear static structure. Then, the state equation is:

Ft = ut, (2.1)

whereas the measurement equations are:

yi,t = Ft + εi,t, i = 1, . . . , n, (2.2)

where (ut) and (εi,t) are i.i.d. Gaussian variables, ut ∼ N(μ, η2) and εi,t ∼
N(0, σ2). Note that the errors in both the state and measurement equations

have not been standardized and that the error in the state equation is not

zero-mean.

The model (2.1)-(2.2) is called Gaussian Linear Single Risk Factor

(LSRF) model. It involves two types of parameters: μ and η2 are macro-

parameters associated with the common factor, whereas σ2 is a micro-parameter

summarizing the individual (or idiosyncratic) risk. We will come back later

on the micro- or macro-interpretations of these parameters. The model (2.1)-

(2.2) has been used rather early in the literature on risky individual contracts.

This is the Buhlmann model considered in the actuarial science, which is the

basis for credibility theory [Buhlmann (1967), Buhlmann, Straub (1970)].

ii) First- and second-order moments

Let us denote by ỹt = (y1,t, . . . , yn,t)
′ the vector of individual observations

at date t. We have:

E(ỹt) = μe, (2.3)

where e is the (n, 1) vector with unitary components e = (1, . . . , 1)′. The

variance-covariance matrix of ỹt is:

V (ỹt) = σ2Id+ η2ee′ = Ω, say, (2.4)

whereas the random vectors ỹt and ỹt′ corresponding to two different dates

are uncorrelated. The dependence between individual observations (i.e. the



2.1. THE MODEL 23

cross-dependence) is captured by the term η2ee′ in the variance-covariance

matrix, which makes Ω non diagonal.

It is interesting to analyze more deeply the structure of variance-covariance

matrix Ω. For this purpose, let us first remark that the matrix M1 = ee′/n

[resp. M2 = Id − ee′/n] is the orthogonal projector on the 1-dimensional

linear space generated by vector e (resp. on the (n − 1)-dimensional linear

space orthogonal to the space generated by vector e). We recall that a ma-

trix M is an orthogonal projector if it is symmetric and idempotent, that is,

M ′ = M and M2 = M . The variance-covariance matrix can be decomposed

in terms of orthogonal projectors as follows:

Ω = σ2(Id− ee′

n
) + λ2 ee

′

n
, (2.5)

with:

λ2 = σ2 + nη2. (2.6)

The decomposition (2.5) can be used to derive the spectral decompo-

sition 1 and the inverse of matrix Ω (see Appendix 2.4).

Proposition 2.1: i) The matrix Ω admits as eigenvalues σ2, with multiplicity

order n−1, and λ2 with multiplicity order 1. The eigenspace associated with

λ2 is the space E generated by vector e. The eigenspace associated with σ2 is

the vector space E⊥ orthogonal to E . In particular, det Ω = (σ2)n−1λ2.

ii) The inverse of Ω is:

Ω−1 =
1

σ2
(Id− ee′

n
) +

1

λ2

ee′

n
.

iii) The cross-sectional distribution of the observations

In terms of the transition and measurements pdf’s [see Appendix 1.4 ii)],

model (2.1)-(2.2) can be specified as:

g(ft;μ, η
2) =

1√
2πη2

exp

{
−(ft − μ)2

2η2

}
, (2.7)

1The spectral decomposition of a matrix is the set of its eigenvalues and the associated
eigenvectors.
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and

h(yit|ft; σ
2) =

1√
2πσ2

exp

{
−(yi,t − ft)

2

2σ2

}
. (2.8)

Thus, the density of ỹt is [see Appendix 1.4 iii)]:

l(ỹt; σ
2, μ, η2)

=

∫ n∏
i=1

h(yi,t|ft; σ
2)g(ft;μ, η

2)dft

=

∫
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(yi,t − ft)
2

}
1√
2πη2

exp

{
− 1

2η2
(ft − μ)2

}
dft.

(2.9)

This joint pdf has a simplified expression, which can be derived directly

by noting that the vector ỹt is Gaussian ỹt ∼ N(μe,Ω) [see Subsection ii)].

We deduce that :

l(ỹt; σ
2, μ, η2) =

1

(2π)n/2(det Ω)1/2
exp

{
−1

2
(ỹt − μe)′Ω−1(ỹt − μe)

}
.

By Proposition 2.1, we know that:

det Ω = (σ2)n−1λ2, Ω−1 =
1

σ2
(Id− ee′

n
) +

1

λ2

ee′

n
.

We deduce:

l(ỹt; σ
2, μ, λ2)

=
1

(2π)n/2(σ2)
n−1

2 (λ2)1/2
exp

{
− 1

2σ2
(ỹt − μe)′(Id− ee′

n
)(ỹt − μe)

− 1

2λ2
(ỹt − μe)′

ee′

n
(ỹt − μe)

}
.

This likelihood is written in terms of the new parameter λ2 and this parame-

ter involves the number n of cross-sectional observations [see equation (2.6)].



2.2. ESTIMATION OF THE PARAMETERS 25

Since (Id− ee′

n
)e = 0, we get:

l(ỹt; σ
2, μ, λ2) =

1

(2π)n/2(σ2)
n−1

2 (λ2)1/2
exp

{
− 1

2σ2
ỹ′t(Id−

ee′

n
)ỹt

− 1

2λ2

1

n
[e′(ỹt − μe)]2

}
.

Let us now introduce the following cross-sectional summary statistics of

the panel data:

ȳt =
1

n

n∑
i=1

yi,t, (2.10)

is the cross-sectional sample mean of the individual data, and:

σ2
t =

1

n

n∑
i=1

(yi,t − ȳt)
2, (2.11)

is its cross-sectional variance. It is easily checked that:

e′(ỹt − μe) = n(ȳt − μ), (2.12)

ỹ′t(Id−
ee′

n
)ỹt = nσ2

t . (2.13)

By substituting in the expression of the pdf, we get:

l(ỹt; σ
2, μ, λ2)

=
1

(2π)n/2(σ2)(n−1)/2(λ2)1/2
exp
{
− n

2σ2
σ2

t −
n

2λ2
(ȳt − μ)2

}
. (2.14)

This means that the pair (ȳt, σ
2
t ) defined in (2.10)-(2.11) is a sufficient statis-

tic to capture all the information contained in the observations of date t.

2.2 Estimation of the Parameters

i) Maximum likelihood (ML) estimators
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From the simplified expression (2.14) of the cross-sectional pdf, we deduce

the log-likelihood function:

Ln,T (σ2, μ, λ2) =

T∑
t=1

log l(ỹt; σ
2, μ, λ2)

= −nT
2

log(2π) − T (n− 1)

2
log σ2 − T

2
log λ2

− n

2σ2

T∑
t=1

σ2
t −

n

2λ2

T∑
t=1

(ȳt − μ)2. (2.15)

The log-likelihood function can be first optimized with respect to the mean

parameter μ. The first- order condition is:

∂Ln,T

∂μ
(σ2, μ, λ2) = 0

⇐⇒
T∑

t=1

(ȳt − μ) = 0

⇐⇒ μ =
1

T

T∑
t=1

ȳt. (2.16)

Let us now introduce the following additional summary statistics of the

observations:

¯̄y =
1

nT

T∑
t=1

n∑
i=1

yi,t, (2.17)

is the sample average over all observations,

B(y) =
1

T

T∑
t=1

(ȳt − ¯̄y)2, (2.18)

is the variance between the cross-sectional averages of different dates, and:

W (y) =
1

T

T∑
t=1

σ2
t , (2.19)

is the sample average of the variances within dates.
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From (2.16), the ML estimator of the mean is:

μ̂nT = ¯̄y. (2.20)

Then, the log-likelihood can be concentrated with respect to parameter μ.

The concentrated log-likelihood, that is the log-likelihood preliminarily opti-

mized with respect to μ, is:

Lc
n,T (σ2, λ2) = −nT

2
log(2π) − T (n− 1)

2
log σ2 − T

2
log λ2

− nT

2σ2
W (y) − nT

2λ2
B(y). (2.21)

This concentrated log-likelihood is the sum of a function of σ2 and a function

of λ2. Therefore, the optimizations with respect to these parameters can be

performed separately. We get:

σ̂2
n,T =

n

n− 1
W (y), (2.22)

λ̂2
n,T = nB(y), (2.23)

and the ML estimator of η2 is deduced by using equation (2.6).

The results above are summarized in the following proposition:

Proposition 2.2: The maximum likelihood estimators of the parameters are:

μ̂n,T = ¯̄y, σ̂2
n,T =

n

n− 1
W (y), η̂2

n,T = B(y) − W (y)

n− 1
.

Thus, the ML estimators of the parameters have closed form expressions

in the basic variance component model. They are functions of the total

empirical mean, and of the within and between variances. Their properties

will be deduced from the properties of these three summary statistics.

ii) Asymptotic behaviour

As usual in panel models, there exist different settings for asymptotic

analysis, since we can have either n large, or T large, or both n and T

large. The appropriate asymptotic setting depends on the application and
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the available data. In the applications we are interested in, the individuals

are typically financial assets, contracts, or companies, and the number n can

be of the order of some thousands. The order of the time dimension T is

related to the frequency of observations. The number of observations dates

can be about 20 − 50 with yearly data (e.g., for corporate rating histories),

or of the order of some hundreds with monthly data (e.g. for households

mortgages).

Let us assume that the time and cross-sectional dimensions T and n are

both large, and focus on the effect of n.

(*) The ML estimator of μ can be decomposed as:

μ̂n,T =
1

nT

T∑
t=1

n∑
i=1

(Ft + εit) =
1

T

T∑
t=1

Ft +
1

nT

T∑
t=1

n∑
i=1

εit.

Thus:

μ̂n,T − μ =
1

T

T∑
t=1

(Ft − μ) +
1

nT

T∑
t=1

n∑
i=1

εi,t. (2.24)

The first term in decomposition (2.24) is Gaussian, zero-mean, with order

1/
√
T , while the second term is Gaussian, zero-mean, with order 1/

√
nT .

Moreover, the two terms are independent. We have:

V (μ̂n,T ) =
η2

T
+
σ2

nT
.

When n = ∞, only the first term matters, and the speed of convergence of

the estimator of μ corresponds to the number of observation dates T , which

is compatible with the interpretation of μ as a macro-parameter. When n is

large, but finite, the second term in the decomposition provides the necessary

adjustment for the cross-sectional effect, that is, the granularity adjustment.
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(**) The ML estimator of σ2 can be written as:

σ̂2
n,T =

n

n− 1

1

T

T∑
t=1

[
1

T

n∑
i=1

(yi,t − ȳt)
2

]

=
n

n− 1

1

T

T∑
t=1

[
1

n

n∑
i=1

(εi,t − ε̄t)
2

]

=
n

n− 1
W (ε).

Since the idiosyncratic errors are i.i.d. Gaussian, the variables
n∑

i=1

(εi,t − ε̄t)
2/σ2, t varying, are independent, with chi-square distribution

χ2(n− 1). Then, by the CLT we deduce that that σ̂2
n,T tends to σ2 at speed

1/
√
nT . This speed involves the total number of observations nT , which

corresponds to the interpretation of the idiosyncratic variance as a micro-

parameter. In the limiting case n = ∞, the estimator coincides with the true

parameter value σ2. Thus, the order of the granularity adjustment is equal

to the order of
n

n− 1
W (ε) − σ2, that is, to the order 1/

√
nT .

(***) Let us finally consider the behavior of the estimator of η2 for infinite

cross-sectional size n = ∞. For n = ∞, we get:

η̂2
n,T = B(y) =

1

T

T∑
t=1

(Ft + ε̄t − F̄ − ¯̄ε)2

=
1

T

T∑
t=1

(Ft − F̄ )2,

since ε̄t = ¯̄ε = 0, by the LLN. Thus, the CSA ML estimator is equivalent

to the empirical variance of the factor; it tends to η2 at speed 1/
√
T , corre-

sponding to the interpretation of η2 as a macro-parameter.

The results above are summarized in the Proposition below:

Proposition 2.3: i) If n = ∞, the estimator of σ2 is constant equal to the

unknown true parameter value. The estimators of μ and η2 are stochastic;
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they tend to the true value of the associated parameters when T tends to

infinity, at the macro-speed 1/
√
T .

ii) The different estimators are consistent, if both n and T tend to infin-

ity, with different speeds of adjustment, that are the micro-speed 1/
√
nT for

parameter σ2, the macro-speed 1/
√
T for parameters μ and η2.

The difference between cases i) and ii) in Proposition 2.3 provides the gran-

ularity adjustments for the distributions of the maximum likelihood estima-

tors.

iii) Finite sample behaviour

Let us now investigate the finite sample behaviour of estimators μ̂n,T ,

σ̂2
n,T and η̂2

n,T . Figures 2.1, 2.2 and 2.3 display the pdfs of these estimators

for different combinations of cross-sectional and time sample sizes, that are

n = T = 20, n = 20 and T = 100, n = 100 and T = 20, n = T = 100.

The true values of the parameters are μ = 0, σ2 = 1, η2 = 1. The pdfs

of the estimators are obtained by simulating 10, 000 independent samples,

computing the estimates of μ, σ2 and η2 for each sample, and then computing

the kernel density of the estimates.

[Insert Figure 2.1: Pdf of estimator μ̂n,t.]

[Insert Figure 2.2: Pdf of estimator σ̂2
n,t.]

[Insert Figure 2.3: Pdf of estimator η̂2
n,t.]

In Figure 2.1 it is seen that the pdf of the estimator of μ is centered around

the true value of the parameter. The pdf gets more concentrated when the

time dimension T of the sample increases (compare left and right panels),

but is rather insensitive to the cross-sectional dimension n (compare upper

and lower panels). This finding is compatible with the asymptotic analysis

in the previous section and the macro-speed 1/
√
T of parameter μ. The pdf

of estimator μ̂n,T is Gaussian for all sample sizes, since the estimator is a

linear transformation of the Gaussian data.

Figure 2.2 shows that the variance of the estimator of σ2 decreases, when
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either the time dimension T or the cross-sectional dimension n increase.

This confirms the interpretation of σ2 as a micro-parameter with rate of

convergence 1/
√
nT . The pdf of σ̂2

n,T appears rather close to a Gaussian

distribution for the considered sample sizes. In fact, from (2.25) the finite

sample distribution of σ̂2
n,T is σ2χ2[(n − 1)T ]/[(n − 1)T ]. Finally, in Figure

2.3 it is seen that the distribution of the estimator of parameter η2 gets

more concentrated around the true value when the time dimension increases,

but not when the cross-sectional dimension alone increases. Indeed, we have

seen in the previous section that parameter η2 admits a macro interpretation

and its estimator features a 1/
√
T rate of convergence. For sample size

T = 20, the distribution of estimator η̂2
n,T is rather far from Gaussian, even

for n = 100. The distribution is close to Gaussian for T = 100.

iv) Choice of the state-space representation

There exist different state space representations of a same dynamic system

with unobservable factor since the notion of factor is not defined in a unique

way. For instance system (2.1)-(2.2) can be equivalently written as:

System (1):

State equation: Ft = μ+ ηut, ut ∼ IIN(0, 1),

Measurement equations : yi,t = Ft + σεi,t, εi,t ∼ IIN(0, 1).

System (2):

State equation: Ft = ηut, ut ∼ IIN(0, 1),

Measurement equations : yi,t = μ+ Ft + σεi,t, εi,t ∼ IIN(0, 1).

System (3):

State equation: Ft = ut, ut ∼ IIN(0, 1),

Measurement equations : yi,t = μ+ ηFt + σεi,t, εi,t ∼ IIN(0, 1).

For a relevant economic interpretation, it is preferable to select a repre-

sentation including the micro-parameters in the measurement equations and

the macro-parameters in the state equation. We deduce ex-post from the
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analysis of the asymptotic properties of the estimators (see Proposition 2.3)

that the appropriate state-space representation is System (1), that is, the

initial representation (2.1)-(2.2).

v) Model with observed heterogeneity

The results derived for exchangeable panel models can be extended to

models including observed heterogeneity. To highlight this point, let us

consider the following extension of model (2.1)-(2.2):

State equation: Ft = ut, ut ∼ IIN [μ, η2],

Measurement equations: yi,t = βiFt + εi,t, εi,t ∼ IIN(0, σ2),

where βi, i = 1, . . . , n, are known scalars.

The parameter βi represents the sensitivity of observation yi,t to factor

Ft. In the model above the sensitivities can differ across individuals. The

sensitivities are usually called beta’s in the financial literature, which justifies

our notation.

By following an approach similar to the method used for the model with-

out heterogeneity, we get (see Appendix 2.4):

Ln,T (σ2, μ, λ2) = −nT
2

log(2π) − T (n− 1)

2
log σ2 − T

2
log λ2

− 1

2σ2

T∑
t=1

ỹ′t(Id− ββ ′/β ′β)ỹt − 1

2λ2

T∑
t=1

[β ′(ỹt − μβ)]2

β ′β
,

where the new parameter λ2 is equal to λ2 = σ2 + η2β ′β.

Let us focus on the estimation of the factor mean μ. By writing the

first-order condition with respect to μ, we get:

μ̂n,T (β) =
1

T

T∑
t=1

β ′ỹt

β ′β
. (2.25)

This estimator admits a two step interpretation. Let us consider the model
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for given date t, i.e,

yi,t = βiFt + εi,t, i = 1, . . . , n, εit ∼ IIN(0, σ2).

This cross-sectional equation could be considered as a regression model, with

unknown regression parameter Ft. In this case, Ft would be approximated

by the cross-sectional OLS estimator:

F̂n,t = β ′ỹt/β
′β. (2.26)

Intuitively, the common factor expectation μ = E(Ft) is accurately approxi-

mated by:

μ ∼ 1

T

T∑
t=1

Ft ∼ 1

T

T∑
t=1

F̂n,t,

which is exactly formula (2.25).

Let us now derive the factor decomposition of the estimator μ̂n,T (β). We

get:

μ̂n,T (β) − μ =
1

T

T∑
t=1

(Ft − μ) +
1

T

T∑
t=1

β ′ε̃t

β ′β
,

where ε̃t = (ε1,t, . . . , εn,t)
′. The finite sample distribution of this difference is

Gaussian with zero mean and variance:

η2

T
+
σ2

T

1
n∑

i=1

β2
i

=
η2

T
+
σ2

nT

1

(β̄n)2 + σ2
β,n

,

where β̄n =
1

n

n∑
i=1

βi, σ
2
β,n =

1

n

n∑
i=1

(βi − β̄)2 are the empirical mean and

variance of the sensitivity coefficients, respectively.

Let us assume that the individual heterogeneity is well-distributed across

individuals in the sense that β̄∞ = limn→∞ β̄n and σ2
β,∞ = limn→∞ σ2

β,n exist.

It is always possible to assume β̄∞ = 1, possibly by changing the definition
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of parameters μ, η2. Thus, for n large, the distribution is approximately

Gaussian with variance
η2

T
+
σ2

nT

1

1 + σ2
β,∞

. We get the following Proposition:

Proposition 2.4: In a Gaussian static factor model with observed beta het-

erogeneity, the distribution of the ML estimator of μ for n = ∞ does not

depend on the individual heterogeneity and has a variance proportional to

1/T . The granularity adjustment, i.e. the term of order 1/(nT ) in the vari-

ance, depends on the individual heterogeneity 2 by means of the variance of

the sensitivity coefficients.

The estimator is the least accurate, when σ2
β,∞ = 0, that is, when the

distribution of the betas is the most concentrated.

vi) Granularity Adjustment for factor prediction

Let us still consider the static factor model with observed heterogeneity.

The theoretical prediction of Ft given all observations yi,t, i = 1, . . . , n, t =

1, . . . , T , i.e. the smoothed value of Ft, is:

E[Ft|y] = E(Ft|ỹt)

= E(Ft) + Cov (Ft, ỹt)V (ỹt)
−1(ỹt −E(ỹt)),

by using standard results for Gaussian random vectors (see Review A.5). We

have:

E(Ft) = μ,E(ỹt) = μβ,

Cov(Ft, ỹt) = Cov(Ft, βFt) = η2β ′,

V (ỹt) = Ω = σ2Id+ η2ββ ′.

By using the results in Appendix 2.4, we get:

E(Ft|y) = μ+ η2β ′
[

1

σ2
(Id− ββ ′

β ′β
) +

1

λ2

ββ ′

β ′β

]
(ỹt − μβ),

2Also called concentration [Lutkebohmert (2008)].
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that is,

E(Ft|y) = μ+
η2β ′β
λ2

(F̂nt − μ)

= F̂nt − σ2

σ2 + η2β ′β
(F̂nt − μ)

∼ F̂n,t − σ2

σ2 + nη2[1 + σ2
β,∞]

(F̂n,t − μ)

∼ F̂n,t − σ2

nη2[1 + σ2
β,∞]

(F̂n,t − μ), (2.27)

when n is large. We deduce that:

(*) The cross-sectional OLS estimator F̂n,t of Ft is an accurate approxi-

mation of the smoothed factor value if n = ∞. In other words, F̂n,t is the

CSA optimal predictor of Ft.

(**) The cross-sectional OLS estimator has to be corrected for large, but

finite, sample size n. The granularity adjustment for prediction is equivalent

to:
σ̂2

nT

nη̂2
n,T

(
1 + σ2

β,n

)
(
F̂nt − 1

T

T∑
t=1

F̂n,t

)
,

after substitution of the parameters by consistent estimates.

2.3 Mean-Variance Portfolio Management

In this section, we consider a static linear factor model for excess asset returns

and analyze the standard mean-variance portfolio management. This allows

to distinguish the effects of the common factor and idiosyncratic errors on

the efficient allocation and Sharpe performance, respectively.

We assume that the excess asset returns on period (t − 1, t), that are

the differences between the risky and riskfree returns, satisfy the model with

heterogeneity of Section 2.2 iv), namely:

yi,t = βiFt + εi,t, i = 1, . . . , n,
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where Ft ∼ IIN(μ, η2) and εi,t ∼ IIN(0, σ2). Thus, the expected excess

returns are E(yi,t) = βiμ, and the idiosyncratic risk is measured by V (εi,t) =

σ2. There exists a systematic source of risk, through the common factor. This

creates an additional individual risk of β2
i η

2, but also a dependence between

excess returns of two different risky assets, since the correlations:

corr (yi,t, yj,t) =
βiβjη

2

(β2
i η

2 + σ2)1/2(β2
j η

2 + σ2)1/2
,

are non-zero for i �= j.

i) The mean-variance efficient allocation

Let us consider a mean-variance efficient allocation based on the n risky

assets and the riskfree asset, held at time t for horizon 1. The vector of

efficient allocations in the n risky assets is proportional to 3 [Markowitz

(1952), and Review B.1]:

an,t = Vt(ỹt+1)
−1Et(ỹt+1),

where Et and Vt denote the conditional expectation and variance, respec-

tively, given the information at date t. Due to the static assumption, the

conditional and unconditional moments coincide and the efficient allocation

is time independent, given by:

an = V (ỹt+1)
−1E(ỹt+1)

= Ω−1μβ

=

[
1

σ2
(Id− ββ ′

β ′β
) +

1

λ2

ββ ′

β ′β

]
μβ,

that is,

an =
μ

σ2 + η2β ′β
β. (2.28)

The associated Sharpe performance, that is, the marginal expected return

3with a scale depending on the absolute risk aversion of the investor.
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adjusted for risk of the n risky assets [Sharpe (1966) and Review B.1], is:

Sn = E(ỹt+1)
′V (ỹt+1)

−1E(ỹt+1)

= μ2β ′
[

1

σ2
(Id− ββ ′

β ′β
) +

1

λ2

ββ ′

β ′β

]
β

=
μ2

λ2
β ′β

=
μ2β ′β

σ2 + η2β ′β
. (2.29)

We get the next result.

Proposition 2.5: i) The efficient allocation in the LSRF model with hetero-

geneity is:

an =
μ

σ2 + η2β ′β
β.

ii) The associated Sharpe performance is:

Sn =
μ2β ′β

σ2 + η2β ′β
=
μ2

η2
− σ2

η2

μ2

σ2 + η2β ′β
.

As usual in such a factor model, the vector of efficient allocations is

proportional to the vector of beta’s. The Sharpe performance depends on

the beta’s by means of β ′β and is an increasing function of this quantity.

ii) Large portfolio

Proposition 2.5 provides the explicit expressions of the efficient alloca-

tion and Sharpe performance. Let us now study their behaviours for large

portfolio size, that is, for large n. Let us recall that:

β̄∞ = 1, and β ′β ∼ n(1 + σ2
β,∞).

We deduce the following Corollary:

Corollary 2.6: We have: limn→∞ an,j = 0, for any portfolio component j;

S∞ = limn→∞ Sn = μ2/η2.
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To understand the result above, let us consider the excess return of the

whole portfolio. Indeed, even if the allocation in each single asset tends to

zero, the whole risky portfolio return does not necessarily vanishes, due to

the increase in the number n of included assets. More precisely, we have:

a′nỹt =
μβ ′

σ2 + η2β ′β
(βFt + ε̃t)

=
μβ ′β

σ2 + η2β ′β
Ft +

μβ ′ε̃t

σ2 + η2β ′β
. (2.30)

Since β ′ε̃t ∼ N [0, σ2β ′β] is of order
√
n, we deduce that:

a′nỹt ∼ μ

η2
Ft, (2.31)

does not vanish asymptotically. The results are summarized below.

Proposition 2.7: For an infinitely large portfolio, the efficient risky alloca-

tion is constructed to perfectly hedge the common factor. In particular, the

Sharpe performance of the n assets tends to the Sharpe performance of the

common factor, namely
(EFt)

2

V (Ft)
=
μ2

η2
= S∞.

From a financial point of view, the common factor does not correspond a

priori to the return of a tradable asset. Nevertheless, the efficient portfolio an

defines a new asset, which is tradable, and mimicks perfectly factor Ft when

n = ∞. It is called the asymptotic mimicking portfolio. This portfolio

diversifies the idiosyncratic risks to capture the relevant common risk.

iii) Granularity adjustment

In practice the set of assets available to an investor is large, but not

”asymptotically large”. The portfolio performance is therefore influenced by

a residual of undiversified idiosyncratic risk. To account for this residual

risk, we can consider the next terms in the expansion with respect to n of

the Sharpe performance. For this purpose, let us assume that the square of

the beta’s are also well-diversified across individuals in the sense that:

1√
n

n∑
i=1

[
β2

i − (1 + σ2
β,∞)
]

= Δn
d→ N(0,Δ), say.



2.4. SUMMARY 39

We have:

Sn =
μ2

η2

(
1 +

σ2

η2β ′β

)−1

=
μ2

η2

[
1 − σ2

η2β ′β
+O(1/n2)

]

=
μ2

η2

⎡
⎢⎢⎣1 − σ2

η2

1

n(1 + σ2
β,∞)

1

1 +
Δn√

n(1 + σ2
β,∞)

+O(1/n2)

⎤
⎥⎥⎦

=
μ2

η2
− 1

n

μ2σ2

η4

1

1 + σ2
β,∞

+
1

n
√
n

μ2σ2

η4

Δn

(1 + σ2
β,∞)2

+O(1/n2).

We deduce the Proposition below:

Proposition 2.8: i) The second term (or granularity adjustment) in the

expansion of the Sharpe performance is deterministic, of order 1/n. It in-

volves the Sharpe performance of the factor, the ratio of the idiosyncratic and

factor risks, and a measure of heterogeneity (concentration).

ii) The third term in the expansion is of order 1/(n
√
n), and is stochastic.

It captures the uncertainty of the squared beta’s distribution.

Such expansions can also be performed for the efficient allocation, or

for the whole net portfolio return [see Gouriéroux, Monfort (2011), where

the extension to portfolio management under short-sell restrictions is also

considered].

2.4 Summary

The Gaussian linear single risk factor model is often used since it is simple

to understand and to implement. In particular we get closed form expres-

sions for the maximum likelihood estimators, for the predictions of the latent

factor, for the mean-variance efficient allocation and the associated Sharpe
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performance. These closed form expressions can be used to disentangle the

CSA and granularity adjustment components of the object of interest.
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2.5 Appendix: Structure of the Variance-Covariance

Matrix

Let us consider a variance-covariance matrix of the type:

Ω = σ2Id+ η2ββ ′,

where σ2, η2 are two positive scalars and β a vector of dimension n. By

introducing the orthogonal projectors ββ ′/β ′β and Id − ββ ′/β ′β, we can

write:

Ω = σ2(Id− ββ ′/β ′β) + (σ2 + η2β ′β)(ββ ′/β ′β). (a.1)

This equation provides the spectral decomposition of matrix Ω. Its eigenval-

ues are:

σ2, with multiplicity order n−1, and associated eigenspace the orthogonal

of the space generated by vector β;

λ2 = σ2 + η2β ′β, with multiplicity order 1, and eigenspace the space

generated by β.

In particular:

det Ω = (σ2)n−1λ2,

since it is equal to the product of the eigenvalues taking into account their

multiplicity orders, and:

Ω−1 =
1

σ2
(Id− ββ ′/β ′β) +

1

λ2
(ββ ′/β ′β),

as easily checked by computing the product of this latter matrix with matrix

Ω.
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Figure 2.1: Pdf of estimator μ̂n,t.
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The Figure displays the pdf of estimator μ̂n,T for different sample sizes, that are

n = T = 20 in the upper left panel, n = 20, T = 100 in the upper right panel, n = 100,

T = 20 in the lower left panel and n = T = 100 in the lower right panel. The true values

of the parameters are μ = 0 and σ2 = η2 = 1.
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Figure 2.2: Pdf of estimator σ̂2
n,t.
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The Figure displays the pdf of estimator σ̂2
n,T for different sample sizes, that are

n = T = 20 in the upper left panel, n = 20, T = 100 in the upper right panel, n = 100,

T = 20 in the lower left panel and n = T = 100 in the lower right panel. The true values

of the parameters are μ = 0 and σ2 = η2 = 1.
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Figure 2.3: Pdf of estimator η̂2
n,t.
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The Figure displays the pdf of estimator η̂2
n,T for different sample sizes, that are n = T = 20

in the upper left panel, n = 20, T = 100 in the upper right panel, n = 100, T = 20 in

the lower left panel and n = T = 100 in the lower right panel. The true values of the

parameters are μ = 0 and σ2 = η2 = 1.



Chapter 3

Static Qualitative Factor Model

This chapter proposes a unified setting for static factor models applied to

panels of qualitative observations. We first describe in Section 3.1 the Single

Risk Factor (SRF) model suggested in Basel 2 regulation for the analysis

of default correlation [BCBS (2001)]. This model is a probit model with a

common Gaussian factor. In Section 3.2, we consider a general qualitative

model with Gaussian factors and macro-parameters only. Then, we explain

how to get the CSA maximum likelihood estimator and GA estimator with

adjustment for the variance, and derive their asymptotic properties. In some

special cases the estimators and their asymptotic variances have closed form

expressions. These models are discussed in Section 3.3. Finally, the results

are applied to more complicated settings, such as stochastic intensity factor

model (in Section 3.4), or factor analysis of dependence between qualitative

variables (Section 3.5). Proofs are gathered in Appendix 3.6.

3.1 The Single Risk Factor Model for Default

This model has been initially introduced by Vasicek (1991) and is based on

Merton’s structural model [Merton (1974)].

i) The structural model

47
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The structural model defines the default of a corporation from a (crude)

analysis of its balance sheet. Let us denote by i, for i = 1, . . . , n, the corpo-

ration assumed to be alive at the beginning of period (t, t+ 1). The amount

of debt to be reimbursed at the end of the period is known at date t and

denoted Li,t (L for liability). The future asset value Ai,t+1 is uncertain.

Then, the corporation defaults at t + 1 if, and only if, the amount of asset

is not sufficient to pay the debt, that is, if Ai,t+1 < Li,t. Thus, the default

indicator is:

Yi,t+1 = 1, if Ai,t+1 < Li,t,

= 0, otherwise,

or equivalently:

Yi,t+1 = 1llog Ai,t+1<log Li,t
, (3.1)

where 1l denotes the indicator function.

If the log-asset value is Gaussian with mean mA,i,t and variance σ2
A,i,t, con-

ditional on the information available at time t, the conditional distribution

of the default indicator is a Bernoulli distribution with parameter:

Pt[Yi,t+1 = 1] = Φ

[
logLi,t −mA,i,t

σA,i,t

]
. (3.2)

The probability of default depends on the debt amount, on the expected

log-asset value and on its volatility.

ii) The Single Risk Factor (SRF) Model

Merton’s structural model is the basis for the specification proposed by

Vasicek (1991), which concerns jointly n firms and allows for default correla-

tion. In the original model, it is assumed that the n firms are identical. We

describe below an extension in which the set of companies can be partitioned

into K homogenous subpopulations, or cohorts, indexed by k = 1, . . . , K.

We characterize by a double index (i, k) the corporation i in cohort k,

for i = 1, . . . , nk and k = 1, . . . , K. In cohort k, the latent model for the log
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asset/liability ratio is:

logAi,k,t+1 − logLi,k,t = ak + bkFt + ui,k,t, (3.3)

where the variables Ft and ui,k,t, with i, k, t varying, are independent, such

that Ft ∼ N(0, 1) and ui,k,t ∼ N(0, σ2
k). The variable Ft is a common factor

representing systematic risk, while the errors ui,k,t correspond to idiosyncratic

(or unsystematic) risks. The parameters ak, bk and σk are equal for all firms

within cohort k, but may differ across cohorts. From (3.3) we deduce that

the individual default indicators are independent conditional on the factor

path, with conditional default probability:

PDk,t = P [Yi,k,t+1 = 1|Ft] = Φ

(
−ak + bkFt

σk

)
. (3.4)

The conditional default probability is stochastic and driven by the systematic

factor Ft.

As usual in a dichotomous qualitative model, the parameters are identi-

fiable up to a positive scaling factor. Equivalently, identifiable functions of

the structural parameters 1 are αk = −ak/σk and βk = −bk/σk, say. Then

the model becomes:

P [Yi,k,t+1 = 1|Ft] = Φ(αk + βkFt). (3.5)

Remark 3.1: An alternative parameterization is proposed in the documents

of the Basel Committee [see BCBS (2001), (2003)]. Since the unconditional

distribution of the log asset-to-liability ratio log(Ai,k,t+1/Li,k,t) is Gaussian

with mean ak and variance σ2
k + b2k, the unconditional probability of default

(PD) in cohort k is: 2

PDk = P (Yi,k,t = 1) = Φ

(
− ak√

σ2
k + b2k

)
.

1Up to the sign for βk.
2The unconditional default probability PDk is different from the conditional default

probability equal to PDk,t = Φ(αk + βkFt) (see also Figure 3.1).
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Moreover, the correlation between the log(asset/liability) of two firms in a

same cohort, called asset correlation, is: 3

Corr[log(Ai,k,t+1/Li,k,t), log(Aj,k,t+1/Lj,k,t)] = b2k/(b
2
k + σ2

k) = ρk > 0, say.

Thus, we get:

P (Yi,k,t+1 = 1|Ft) = Φ

[
−ak

σk
− bk
σk
Ft

]

= Φ

[
Φ−1(PDk)

σk/
√
σ2

k + b2k
− bk
σk

Ft

]

= Φ

(
Φ−1(PDk) −√

ρkFt√
1 − ρk

)
. (3.6)

This new parameterization through the unconditional probability of default

PDk and asset correlation ρk is interesting for financial interpretation, al-

though it is less convenient than the initial parameterization (3.5) for es-

timation purpose. Formula (3.6) shows how the conditional probability of

default stochastically varies in time around its historical mean equal to PDk.

This is illustrated in Figure 3.1 for a simulated path of the factor Ft in a

cohort of firms with unconditional default probability PD = 0.05. We con-

sider two different values of asset correlation, that are ρ = 0.10 and ρ = 0.30,

respectively.

[Insert Figure 3.1: Time-varying conditional default probability]

The conditional default probability features peaks at dates with large neg-

ative shocks in the factor. The time variability of the conditional default

probability is more pronounced for larger values of the asset correlation.

Specification (3.5) can be written in a hierarchical way as:

Pt[Yi,k,t+1 = 1] = Φ(ak,t),with ak,t = αk + βkFt, Ft ∼ IIN(0, 1),

3In the Basel documents, the asset correlation is denoted ρ2
k instead of ρk.
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or equivalently as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pt(Yi,k,t+1 = 1) = Φ(ak,t),

where vectors at = (a1,t, . . . , aK,t)
′, t varying, are independent,

with distribution N(α, ββ ′), α = (α1, . . . , αK)′, β = (β1, . . . , βK)′.

(3.7)

System (3.7) defines the canonical factors at and introduces restrictions on

their distribution. These restrictions correspond to an exact factor structure

for the components of vector at induced by the reduced factor Ft.

In the next two subsections we introduce simple estimation methodologies

for parameters α and β.

iii) CSA estimator

Due to the homogeneity within cohorts, the individual observations can

be summarized by the default frequencies:

Ȳk,t+1 =
1

nk

nk∑
i=1

Yi,k,t+1. (3.8)

To get the intuition for the CSA estimator, let us consider for a moment the

(virtual) limiting case where the cohorts have infinite size, that is, nk = ∞,

∀k = 1, . . . , K. Then, the cross-sectional default frequencies are equal to the

conditional probabilities of default:

Ȳk,t+1 = Et(Yi,k,t+1) = PDk,t = Φ(ak,t),

and the values of the canonical factors are known equal to:

ak,t = âk,t = Φ−1(Ȳk,t+1). (3.9)

We have to distinguish between the case with a single cohort, namely K = 1,

which corresponds to the original Vasicek (1991) model, and the extension
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with K ≥ 2 cohorts. In the first case, from (3.7) the canonical factor is such

that:

at ∼ IIN(α, β2). (3.10)

Then, (3.9) and (3.10) suggest that the scalar parameters α and β can be

estimated by ML applied to the time series of estimated canonical factors ât,

to get:

α̂ = ā =
1

T

T∑
t=1

ât =
1

T

T∑
t=1

Φ−1(Ȳk,t+1),

β̂2 =
1

T

T∑
t=1

(ât − ā)2 =
1

T

T∑
t=1

(
Φ−1(Ȳk,t+1) − 1

T

T∑
t=1

Φ−1(Ȳk,t+1)

)2

.

These estimators are called CSA estimators. Although the CSA estimators

have been motivated by the limiting argument of infinite cohort sizes, they

can be computed with finite cohort sizes and are expected to yield rather

accurate estimates when the cohort sizes are sufficiently large. The large

sample properties of the CSA estimators are discussed in Section 3.2 iii) for

the general model.

When we have more than one cohort (K ≥ 2), a similar approach cannot

be followed since the distribution of the canonical factors in (3.7) is degen-

erate with a singular variance-covariance matrix. This is because we have

a linear deterministic relationship between the canonical factors. Indeed, in

the limiting case of infinite cohort sizes, we could deduce without error the

values of parameter vectors α, β and factor values Ft, t = 1, . . . , T by solving

the system of KT equations:

ak,t = αk + βkFt, k = 1, . . . , K, t = 1, . . . , T,

in the 2K+T unknown quantities. When the estimation error for the canon-

ical factors is taken into account, it is seen in the next subsection that a non-

degenerate log-likelihood function is recovered. However, with more than one

cohort, it is natural to include cohort-specific effects in the canonical factors.

Then, the distribution of the canonical factors becomes non-singular and a
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well defined CSA estimator can be derived [see Section 3.3 ii) and in par-

ticular the discussion in Remark 3.3 for the financial relevance of including

cohort specific effects].

iv) Variance Granularity Adjusted (VGA) estimators

Since in reality the cohort sizes are large, but finite, we may expect that

the CSA approach can be improved by taking into account the estimation

error on the canonical factors. By applying the CLT by date and cohort, we

see that the default frequencies Ȳk,t+1 are asymptotically independent, with

mean PDk,t = Φ(ak,t) and variance
PDkt(1 − PDkt)

nk

=
Φ(ak,t)[1 − Φ(ak,t)]

nk

.

By applying the delta method and noting that the derivative of function

Φ−1(.) is 1/ϕ[Φ−1(.)], where ϕ denotes the pdf of the standard normal distri-

bution, we deduce that the approximations of the canonical factors are also

independent and asymptotically Gaussian:

âk,t = Φ−1(Ȳk,t+1) � N

(
ak,t,

Φ(ak,t)[1 − Φ(ak,t)]

nkϕ(ak,t)2

)
.

Equivalently:

âk,t � ak,t +

(
Φ(ak,t)[1 − Φ(ak,t)]

nkϕ(ak,t)2

)1/2

vk,t

� αk + βkFt +

(
Φ(âk,t)[1 − Φ(âk,t)]

nkϕ(âk,t)2

)1/2

vk,t,

where Ft and vk,t, k, t varying, are independent, standard Gaussian variables.

Let us denote by Δt the K ×K diagonal matrix with elements Φ(âk,t)[1 −
Φ(âk,t)]/[nkϕ(âk,t)

2], k = 1, . . . , K. The parameters α and β will be estimated

by optimizing the VGA log-likelihood function:

LV GA(α, β) =
T∑

t=1

{
−K

2
log(2π) − 1

2
log det(ββ ′ + Δt)

− 1

2
(ât − α)′(ββ ′ + Δt)

−1(ât − α)

}
. (3.11)
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These estimators are called Variance Granularity Adjusted (VGA)

maximum likelihood estimators. In order to take into account the fi-

nite cross-sectional size, we have introduced an adjustment of the variance

of the error term, which explains the terminology.

Remark 3.2: The VGA maximum likelihood method has to be compared

with the finite sample ML method. The true log-likelihood function is:

L(α, β)

=

T∑
t=1

log

[∫ K∏
k=1

{
Φ(αk + βkf)nk,t[1 − Φ(αk + βkf)]nk−nk,t

} 1√
2π

exp(−f 2/2)df

]
,

(3.12)

where nk,t =

nk∑
i=1

Yi,k,t = nkȲk,t is the number of defaults in cohort k for

period (t− 1, t). When the true log-likelihood is maximized, the integrals in

(3.12) are often approximated by simulation, leading to simulated maximum

likelihood estimators [see e.g. Gouriéroux, Monfort (1996)]. The approxima-

tion (3.11) circumvents the computation of the T integrals involved in (3.12).

We will see in Chapter 4 that function LV GA(α, β) can be derived from an

asymptotic expansion of L(α, β) when the cohort sizes nk are large, and the

estimators obtained by maximizing LV GA(α, β) are asymptotically equivalent

to the ML estimator. Moreover, we will see that it can be appropriate to

introduce a granularity adjustment for the mean too.

3.2 The General Model and its Estimation

The approaches described for the SRF model can be extended to more general

static qualitative factor models.

i) The model

As in the SRF model for default, let us consider a set of cohorts and

individual observations of a qualitative variable Yi,k,t, for i = 1, . . . , nk,



3.2. THE GENERAL MODEL AND ITS ESTIMATION 55

k = 1, . . . , K, t = 1, . . . , T. The qualitative variable is polytomous with

J alternatives 4.

The model is defined in two steps. We first explain how the distribution of

the observations depends on underlying canonical factors; then, restrictions

on the canonical factor distribution are introduced.

(*) Distribution of the observations given the canonical factors

The individual observations are assumed independent, conditionally on

canonical factors ak,t, k = 1, . . . , K, t = 1, . . . , T :

P [Yi,k,t = j|at] = p(j; ak,t), (3.13)

where p(j; .) denotes the elementary probability of alternative j, for j =

1, . . . , J . The distribution can depend on cohort and time by means of the

canonical factor, but does not depend on the individual within the cohort.

The canonical factor can be multidimensional, with dimension dim(ak,t) = S,

say, and we assume that it can take any value in IRS.

(**) Joint distribution of the canonical factors

The model is completed by specifying the distribution of the canonical

factors. Let us introduce the KS-dimensional vector of canonical factor val-

ues at date t, denoted by at = (a′1,t, . . . , a
′
K,t)

′. We assume that the random

vectors at, t = 1, . . . , T , are independent with identical Gaussian distribu-

tions:

at ∼ IIN [μ(θ),Ω(θ)], (3.14)

where θ is a p-dimensional unknown parameter, and matrix Ω(θ) is invertible.

The model is static due to the assumption of serial independence of the

factors.

4Recall that a one-dimensional polytomous variable with J alternatives can be equiva-
lently represented as a J-dimensional vector of dichotomous qualitative components. The
components are the indicators of the J different alternatives and sum up to one.
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The likelihood function of model (3.13)-(3.14) is:

l(yT ; θ) =

T∏
t=1

∫
. . .

∫ K∏
k=1

nk∏
i=1

p(yi,k,t; ak,t)

1

(2π)SK/2[det Ω(θ)]1/2
exp

{
−1

2
[at − μ(θ)]′Ω(θ)−1[at − μ(θ)]

}
dat,

(3.15)

where yT denotes the individual histories yi,1, . . . , yi,T for i = 1, . . . , n. The

likelihood function depends on macro-parameter θ and involves multidimen-

sional integrals with dimension KS. Since the cohorts are homogenous, the

likelihood function can be simplified. Let us denote by nj,k,t the number of

observations taking alternative j, in cohort k, at time t. We get:

l(yT ; θ) =
T∏

t=1

∫
. . .

∫ K∏
k=1

J∏
j=1

p(j; ak,t)
nj,k,t

1

(2π)SK/2[det Ω(θ)]1/2
exp

{
−1

2
[at − μ(θ)]′Ω(θ)−1[at − μ(θ)]

}
dat.

(3.16)

Thus, without loss of information, the cross-sectional observations for cohort

k can be summarized by the J cross-sectional aggregates nj,k,t, j = 1, . . . , J.

The likelihood function (3.16) is complicated because of the T numeri-

cal integrals of dimension KS. We consider below estimators of θ that are

computationally simpler than the Maximum Likelihood (ML) estimator.

ii) The fixed effect maximum likelihood estimator

By analogy with the discussion of the SFR model in Section 3.1, let us

consider the cross-sectional observations for a given date t, and treat at as an

unknown parameter. Approximate factor values are the fixed effects ML
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estimators defined by:

âk,t = arg max
ak,t

nk∑
i=1

log p(yi,k,t; ak,t) (3.17)

= arg max
ak,t

J∑
j=1

nj,k,t log p(j; ak,t), (3.18)

where the arg max operator provides the argument ak,t that maximizes the

objective function.

Identification assumptions have to be introduced to ensure a unique so-

lution to the cross-sectional optimization above. Intuitively, we must have

less ”parameters” than (linearly independent) aggregate observations, that

is the order condition:

S ≤ J − 1. (3.19)

When S = J − 1, the canonical factors are just-identified; they are overiden-

tified, if S < J − 1.

The LLN and CLT can be applied conditionally on the canonical factor

values, if nk is large for any k = 1, . . . , K. Hence, the standard asymptotic

results for maximum likelihood estimators are valid. More precisely, the fixed

effect ML estimators âk,t, for k = 1, . . . , K, t = 1, . . . , T are asymptotically

independent, with:

√
nk(âk,t − ak,t)

d→ N(0,Σk,t), (3.20)

where

Σk,t =

{
E

[
−∂

2 log p(Yi,k,t; ak,t)

∂a∂a′
|ak,t

]}−1

. (3.21)

The asymptotic variance of âk,t is the inverse of an information matrix com-

puted as if ak,t were a (multidimensional) parameter. The derivatives are

taken with respect to ak,t and the computation of the expectation is per-

formed conditional on ak,t, that is, as if ak,t were a vector of constants.

iii) The CSA maximum likelihood estimator
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The motivation for the CSA estimator is best understood if we consider

for a moment the limiting (virtual) case where the cohort sizes are infinite,

that is, nk = ∞ for k = 1, . . . , K. Then, the fixed effects ML estimators

would coincide with the unknown canonical factor values by the LLN. The

log-likelihood function would become:

LCSA(θ) ∝ −T
2

log det Ω(θ) − 1

2

T∑
t=1

[ât − μ(θ)]′Ω(θ)−1[ât − μ(θ)]. (3.22)

This argument suggests to consider the CSA maximum likelihood estimator

of θ defined by:

θ̂CSA = arg max
θ
LCSA(θ). (3.23)

Let us now discuss the asymptotic distribution of the CSA estimator

when both the cross-sectional dimension T and the time dimension n are large

(n, T → ∞). When the cross-sectional dimension n is much larger than T (i.e.

T/n→ 0), the large sample distribution of θ̂CSA is the same as if the canonical

factors were observable at = ât, and we can apply the standard asymptotic

theory with respect to time (T → ∞) for the log-likelihood function (3.22)

[see references in Chapter 4 for the regularity conditions]. We deduce that the

CSA estimator is consistent, at speed 1/
√
T , with asymptotic distribution:

√
T (θ̂CSA − θ)

d→ N

(
0,

[
plim
T→∞

− 1

T

∂2LCSA(θ)

∂θ∂θ′

]−1
)
. (3.24)

In particular, the CSA estimator θ̂CSA is asymptotically equivalent to the

true ML estimator of θ that maximizes the likelihood (3.16). For the SRF

model with K = 1 cohort [see Section 3.1 iii)], the asymptotic variances of

the CSA estimators are AsV ar(α̂) =
1

T
β2 and AsV ar(β̂2) =

2

T
β4, and the

estimators of α and β are asymptotically independent.

iv) The VGA maximum likelihood estimator

The VGA estimator accounts for the difference between the fixed effects

estimates and the true factor values when the cohort sizes are large, but
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finite. From (3.20) we deduce that:

âk,t � ak,t +
1√
nk

Σ
1/2
k,t vk,t, (3.25)

where the errors (vkt) are standard normal, independent of each other, and

independent of the ak,t ’s. Therefore, by integrating out the unobservable

canonical factors, we get:

ât ≈ N [μ(θ),Ω(θ) + Σ̂n,t], (3.26)

where Σ̂n,t = diag [Σ̂kt/nk], and Σ̂kt is a consistent estimator of Σkt.

The variance granularity adjusted log-likelihood function is:

LVGA(θ) ∝ −1

2

T∑
t=1

log det[Ω(θ) + Σ̂n,t] (3.27)

−1

2

T∑
t=1

[ât − μ(θ)]′[Ω(θ) + Σ̂n,t]
−1[ât − μ(θ)]. (3.28)

Compared to the CSA log-likelihood function (3.22), the variance has been

adjusted to account for the variability of the fixed effects estimators of the

canonical factors. The VGA maximum likelihood estimator of θ is:

θ̂VGA = arg max
θ
LVGA(θ). (3.29)

For large n and T (n, T → ∞, T/n → 0), the asymptotic distribution

of the VGA estimator is the same as the one of the CSA estimator given in

(3.24). In particular, the VGA estimator is consistent at speed 1/
√
T and

asymptotically normal. The VGA estimator differs from the CSA estimator

in terms of higher order asymptotic properties, more specifically, in terms of

the bias at order 1/n (see Chapter 4, Section 4.3).
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3.3 Closed Form Expressions of the Estima-

tors

The CSA and VGA log-likelihood functions have closed form expressions,

and, in particular, they do not involve the multiple integrals appearing in the

finite sample likelihood function [see equation (3.16)]. In important special

cases of static qualitative model with factors, it is possible to get also closed

form expressions of the CSA maximum likelihood estimators themselves, and

of their asymptotic variance [see Gouriéroux, Monfort (2010)]. We describe

below such simplifications.

i) Just-identified canonical factors

Let us denote by pj,k,t = p(j; ak,t) the true elementary probabilities and

by pk,t = (p1,k,t, . . . , pJ,k,t)
′ the associated vector of probabilities for cohort k

and time t. Under the assumption of just identification S = J − 1, we can

write:

pk,t = Π(ak,t), (3.30)

where Π is a one-to-one function of IRJ−1 onto the simplex of IRJ , that is,

the set of discrete probability distributions:{
(p1, . . . , pJ)′, with pj ≥ 0, j = 1, . . . , J,

J∑
j=1

pj = 1

}
.

In several examples (see below and Sections 3.4, 3.5), function Π can be

inverted to express the canonical factors in terms of elementary probabilities

as:

ak,t = c(pk,t), say. (3.31)

It is easily checked that the solution of optimization (3.18) is such that:

p̂k,t = Π(âk,t), (3.32)

where p̂k,t = (n1,k,t/nk, . . . , nJ,k,t/nk)
′ are the observed cross-sectional fre-

quencies of the alternatives at date t. We deduce the closed form expression
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of the fixed effects ML estimators of the canonical factors:

âk,t = c(p̂k,t). (3.33)

It follows that [see e.g. Gouriéroux, Monfort (1989), Example 7.19, and the

δ-method]:

√
nk(âk,t − ak,t)

d→ N

(
0,
∂c(pk,t)

∂p′k,t

[diag(pk,t) − pk,tp
′
k,t]
∂c(pk,t)

′

∂pk,t

)
, (3.34)

and that the variance-covariance matrix Σk,t in (3.21) is consistently esti-

mated by:

Σ̂k,t =
∂c(p̂k,t)

∂p′k,t

(diag p̂k,t − p̂k,tp̂
′
k,t)

∂c(p̂k,t)
′

∂pk,t
. (3.35)

To summarize the result above, the derivations of the fixed effects ML

estimator of the canonical factor and of their estimated asymptotic variance

become simple, if the canonical factor can be interpreted as a reparameteri-

zation of the qualitative model by J − 1 real parameters. Such real parame-

terization have often been considered in the literature on qualitative models

for the purpose of introducing quantitative exogenous variables. We review

below such standard reparameterizations for the main qualitative models.

For expository purpose, we keep the index j, but omit indexes k and t. We

provide for each example the function Π and the function c.

Example 3.1: Dichotomous probit model (J = 2)

p1 = Φ(a1), p2 = 1 − Φ(a1).

This corresponds to the Merton (1987) - Vasicek (1991) default model de-

scribed in Section 3.1. The probability p1 is displayed as a function of the

canonical factor a1 in Figure 3.2.

[Insert Figure 3.2: Parameterization of the dichotomous probit model]

This mapping from IR to (0, 1) is one-to-one. We deduce a1 = Φ−1(p1), where

Φ−1 is the quantile function of the standard normal distribution, called probit

function.
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Example 3.2: Dichotomous logit model (J = 2)

p1 = [1 − exp(−a1)]
−1, p2 = exp(−a1)[1 + exp(−a1)]

−1.

The probability p1 is displayed as a function of the canonical factor a1 in

Figure 3.3.

[Insert Figure 3.3: Parameterization of the dichotomous logit model]

We deduce a1 = log[p1/(1 − p1)] and function c is the inverse of the logistic

function, that is the logit function [see Berkson (1944)].

Example 3.3: Multinomial logit model [McFadden (1973), (1976), any

J ≥ 2].

The model is reparameterized as:

pj = exp(aj)[
J∑

l=1

exp(al)]
−1, j = 1, . . . , J,

with the convention a1 = 0. We get:

aj = log(pj/p1), j = 2, . . . , J.

The canonical factors are log transforms of appropriate odd ratios. For the

case of J = 3 alternatives, we display in Figure 3.4 the canonical factors a2

and a3 as functions of the elementary probabilities (p1, p2, p3).

[Insert Figure 3.4: Canonical factors in the multinomial logit model]

The vector function (a2, a3) is a one-to-one mapping from the simplex in IR3

onto IR2. The component function a2 admits large positive (resp. negative)

values close to the boundary of the simplex with p2 = 0 and p1 > 0 (resp.

p1 = 0 and p2 > 0). We have a2 = 0 on the intersection of the simplex with

the plane p1 = p2, which corresponds to the lightest part of the coloured

surface. The point p1 = 0, p2 = 0, p3 = 1 is singular, since function a2

can admit any real value in a neighbourhood of this point. The component
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function a3 features a similar behaviour interchanging p3 with p2. For in-

stance, the lightest part of the coloured surface is obtained for p1 = p3, that

is, 2p1 + p2 = 1.

Example 3.4: Ordered polytomous probit model (any J ≥ 2).

The model is reparameterized as:

pj = Φ(aj) − Φ(aj−1), j = 1, . . . , J,

with the convention a0 = −∞, aJ = +∞. We deduce:

aj = Φ−1(p1 + . . .+ pj). (3.36)

This new parameterization does not completely fulfill our assumptions.

Indeed, parameters aj , j = 1, . . . , J , are real, but constrained to form an

increasing sequence. However, the Gaussian assumption on the canonical

factor [see (3.14)] is still relevant, if it concerns parallel shift on the canonical

factors only, that is, if we write:

ajt = αj + βFt, (3.37)

with α1 ≤ α2 ≤ . . . ≤ αJ−1, where Ft is a Gaussian random variable. Indeed,

since scalar parameter β is independent of the alternative, the ordering of

the intercepts implies the similar ordering for the canonical factors.

The Gaussian distribution of the random vector at implied by (3.37) is

degenerate, because of the deterministic relationships between the canonical

factors associated with the different alternatives. We have already encoun-

tered a similar feature in the SRF model with several cohorts in Section 3.1.

Due to this degeneracy, the results of Section 3.2 on the rate of convergence

of the estimators do not apply. In particular, some of the parameters among

αj and β have a micro-interpretation, and feature a convergence rate 1/
√
nT .

The estimators of parameters αj and β and their asymptotic properties can

be derived by using the results presented in Chapter 4, where we consider

models with both macro- and micro-parameters (see in particular Section 4.3

on rating migration models based on ordered qualitative specifications).
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ii) Gaussian factor analysis of the canonical factors

In order to structure the cross dependence between the canonical factors,

let us introduce a linear Gaussian factor model for the distribution of at. The

model is defined by:

at = α + βFt + ηwt, t = 1, . . . , T, (3.38)

where α [resp. β] is a vector of dimension KS [resp. a matrix of dimen-

sion (KS,L)], η is a positive scalar, (Ft) are independent Gaussian vectors

Ft ∼ IIN(0, Id) with size L < KS, and wt are independent standard Gaus-

sian vectors with size KS, that is, wt ∼ IIN(0, Id). Moreover, the factors

(Ft) and the errors (wt) are independent. We deduce that the common dis-

tribution of the canonical factor is:

at ∼ N(α, ββ ′ + η2Id). (3.39)

Thus, model (3.38) implies a special structure on the variance-covariance

matrix of the canonical factors. Indeed, the cross-covariances are captured

by means of a matrix ββ ′ of reduced rank L, where L is the number of

underlying static factors.

Remark 3.3: It is important to compare the static factor model (3.38)

with the latent factor model (3.3) usually introduced in the SRF model for

default. Model (3.3) includes individual error terms ui,k,t, whose effects vanish

by cross-sectional aggregation. This explains, why the associated model for

canonical factors reduces to at = α + βFt, that is, does not include the

error terms wt. When K ≥ 2, a consequence is the non invertibility of the

matrix Ω = V (at) = ββ ′, and the degeneracy of the CSA likelihood function

[see Section 3.1 iii)]. More importantly from a financial point of view, by

implicitly setting η = 0, the basic SRF model neglects the cohort specific

source of risk and consequently underestimates the required capital. Thus,

with K ≥ 2, it is preferable to include in the SRF model an additional error

term wt in the canonical factors as in (3.38), which corresponds to cohort-

specific effects. Finally, when we have a single cohort (K = 1), it is not
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possible to introduce an additional error term wt in the canonical factor,

since the associated parameter η is not identified.

The vector of parameters in model (3.38) is θ = [α′, (vecβ)′, η]′. However,

it is known that the factors F and the factor sensitivities β are defined up

to a linear orthogonal transformation. Therefore, without loss of generality,

we can impose the identification restrictions:

Identification restrictions: β ′
kβl = 0, ∀k �= l, where βl, l = 1, . . . , L, denote

the columns of matrix β.

Let us now derive the CSA estimator of parameter θ. Let us denote:

āT =
1

T

T∑
t=1

ât, (3.40)

the historical mean of the estimated canonical factors, and:

V̂T =
1

T

T∑
t=1

(ât − āT )(ât − āT )′, (3.41)

their historical variance-covariance matrix. The spectral decomposition of

the historical variance-covariance matrix V̂T provides a decreasing sequence

of nonnegative eigenvalues λ̂1,T ≥ λ̂2,T ≥ · · · , with associated orthonormal

eigenvectors ê1,T , ê2,T , · · · . The proposition below provides the explicit ex-

pressions of the CSA maximum likelihood estimator of parameter θ.

Proposition 3.3: The CSA maximum likelihood estimators of the compo-

nents of parameter θ are:

α̂T = āT , η̂2
T = [Tr(V̂T ) −

L∑
l=1

λ̂l,T ]/(KS − L),

β̂l,T = (λ̂l,T − η̂2
T )1/2êl,T , l = 1, . . . , L.

Proof: See Appendix 3.6.

These maximum likelihood estimators are based on the Spectral De-

composition of matrix V̂T [see e.g. Anderson (2003) and Review A.4]. The
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asymptotic variance-covariance matrix has also an explicit expression [see

e.g. Gouriéroux, Monfort (2010), Section 3.3]5.

iii) The estimation steps

Under the conditions of Subsections i) and ii) above, the estimation steps

can be summarized as follows:

Step 1: Reparameterize the qualitative model in the appropriate way to get

at = c(pt), with real values.

Step 2: Compute the observed frequencies p̂t and deduce the estimated

canonical factors as ât = c(p̂t).

Step 3: Compute the historical mean āT and variance V̂T of the estimated

canonical factors.

Step 4: Get the CSA estimates of α, β, η2 from the spectral decomposition

of matrix V̂T (see Proposition 3.3).

Step 5: Finally, get the VGA estimates by optimizing numerically the VGA

log-likelihood function with the CSA estimate as starting value of the

optimization algorithm.

iv) Illustration: Factor model for corporate default

As an illustration of the above methodology, we estimate a factor model

for corporate default. The binary variable Yi,k,t is a firm’s default indicator

(J = 2, see Section 3.1) and the cohorts k = 1, 2, 3 correspond to the non-

investment-grade rating classes BB, B and C in the Standard & Poor’s (S&P)

rating system (K = 3). The series of 1-year default frequencies Ȳk,t are

displayed in Figure 3.5 for the period 1990-2009 (T = 20). These default

frequencies are deduced from the S&P rating transition matrices, which are

5The initial derivation of these variances in Lawley, Maxwell (1971) provides only ap-
proximated variance-covariance matrices [see also Jennrich, Thayer (1977)].
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computed from a large pool of US large and medium-size firms (see Section

4.5 for a more detailed description of the data). The cohort size nk is of the

order of thousand firms for rating classes BB and B, and of the order of some

hundreds for rating class C.

[Insert Figure 3.5: S&P US corporate default frequencies for rating classes

BB, B and C.]

As expected, at any given date the default frequencies are ranked in terms

of the riskiness of the speculative rating class. Moreover, the series of de-

fault frequencies of the three rating classes feature a similar countercyclical

pattern, with peaks of default intensity associated with recessions in the US

economy (1990-91, 2001, and 2008-2009).

Since the risk variable is dichotomous, we have a single canonical fac-

tor for each rating class (S = 1), and the vector of canonical factors at is

trivariate. We adopt a probit specification (see Example 3.1). The series of

estimated canonical factor values âk,t = Φ−1(Ȳk,t) for the three rating classes

are displayed in Figure 3.6.

[Insert Figure 3.6: Estimated canonical factor values for rating classes

BB, B and C.]

The estimated canonical factor values are the quantiles of the standard Gaus-

sian distribution for the percentiles that correspond to the default frequencies

in Figure 3.5. Steps 1 and 2 of the estimation methodology are completed.

Let us now apply steps 3-4. The historical mean and variance of the

estimated canonical factor vectors are:

āT =

⎛
⎜⎝

−2.423

−1.671

−0.566

⎞
⎟⎠ , V̂T =

⎛
⎜⎝

0.126 0.094 0.085

0.094 0.174 0.129

0.085 0.129 0.200

⎞
⎟⎠ . (3.42)

The SVD of matrix V̂T is characterized by the 3 eigenvalues:

λ̂1,T = 0.379, λ̂2,T = 0.072, λ̂3,T = 0.049,
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with associated orthonormal eigenvectors:

ê1,T =

⎛
⎜⎝

0.447

0.613

0.652

⎞
⎟⎠ , ê2,T =

⎛
⎜⎝

0.702

0.212

−0.680

⎞
⎟⎠ , ê3,T =

⎛
⎜⎝

0.555

−0.761

0.335

⎞
⎟⎠ .

The first eigenvalue λ̂1,T of matrix V̂T is significantly larger than the other

two. Moreover, the components of the eigenvector associated with λ̂1,T have

the same sign across rating classes, while the eigenvectors associated with

the other two eigenvalues have components of both signs. Intuitively, these

findings are compatible with a single common factor having a similar impact

on the default risk of the three rating classes. Hence, we use a Gaussian

single-factor model for the canonical factors as in Equation (3.38) with L = 1.

Let us compute the CSA estimates of the model parameters. From Propo-

sition 3.3, the CSA estimate of the vector of intercepts is α̂T = āT given in

(3.42), while the CSA estimates of the vector of sensitivities β and idiosyn-

cratic variance η2 are:

β̂T =

⎛
⎜⎝

0.252

0.346

0.368

⎞
⎟⎠ , η̂2

T = 0.060.

As expected, the estimated intercepts are increasing w.r.t. the riskiness of

the rating class. The sensitivities to the common factor have the same sign

across rating classes, and are larger in magnitude for the riskiest rating classes

B and C than for rating class BB. The sign of the eigenvector associated

with the largest eigenvalue of V̂T has been selected to get positive factor

sensitivities and interpret the common factor as a default risk factor. From

equation (3.39), the estimates of the unconditional variances of the canonical

factors are 0.124, 0.180 and 0.195 for rating classes BB, B and C, respectively.

Hence, for rating class BB the systematic factor and the idiosyncratic factor

contribute each about an half of the unconditional variance of the canonical

factor. For rating classes B and C the proportions are about 2/3 from the

systematic factor and 1/3 from the idiosyncratic factor.
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3.4 Stochastic Intensity Model with Factor

A discrete random variable with a fixed number K of admissible values can

be identified with a polytomous qualitative variable by considering the set of

values as the set of alternatives. This interpretation is especially interesting

for duration variables representing the time to some given event, such as

default or prepayment in credit analysis, and death or lapse for life insurance

contracts.

i) Distribution of a duration variable

There exist alternative characterizations of the distribution of a dura-

tion variable Y , with values k = 1, . . . , K. We can consider the elementary

probabilities:

πk = P [Y = k], k = 1, . . . , K.

We can also consider the successive intensities of event occurrence.

These intensities measure the short term probability of occurrence of the

event by means of the following conditional probabilities:

pk = P [Y = k|Y ≥ k], k = 1, . . . , K. (3.43)

The elementary probabilities and the intensities are in a one-to-one relation-

ship. Indeed, we have:

pk = πk/
K∑

l=k

πl, (3.44)

and:

πk =

[
k−1∏
l=1

(1 − pl)

]
pk. (3.45)

There exist at least three advantages of an approach based on intensity.

First, the intensities pk, k = 1, . . . , K−1, can be fixed independently between

0 and 1 (with pK = 1), whereas the elementary probabilities are subject to the

unit mass restriction. Second, the sample counterparts of the intensities in
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an i.i.d. framework are asymptotically independent 6, Gaussian with mean

pk and variance pk(1 − pk)/nk, where nk is the number of individuals in

the Population-at-Risk (PaR), i.e. with duration larger, or equal to k.

Third, intensities allow for an appropriate treatment of two competing notion

of times, that are calendar time with time origin Jesus-Christ birth and

individual time with time origin the beginning of the contract.

ii) Stochastic intensity with factor

Let us now consider a large population of contracts originated at different

consecutive dates. This population is assumed homogenous; in particular all

the contracts have the same contractual term K, say. We assume that we

monitor the contracts over a given period of time t = 1, . . . , T , and observe

whether they get closed before their contractual term, or not. Thus, at

any given date t, we can observe K different categories of contracts still

alive, depending if they have been originated at date t − 1, t − 2, . . . , or

t −K. Among them, only the first K − 1 categories can lead to a contract

dying strictly before the contractual term. The numbers of contract of age

k still alive at the beginning of period t is time dependent and denoted by

nk,t, with k = 1, . . . , K − 1. The probability that such a contract (i, k),

i = 1, . . . , nkt, k = 1, . . . , K is closing at period t is:

Pt[Yi,k,t = 1] = pk,t, (3.46)

where pk,t is the intensity for age k and date t.

The introduction of an unobservable stochastic time factor in an inten-

sity model allows for differentiated effects of the factors depending on the

age of the contract. For instance, for loans and a single risk factor, these

effects are expected to be smaller at the beginning of the contract, or close

to the contractual term. A stochastic intensity model with factor and logit

6Indeed, it is easily checked that the log-likelihood function is a sum
∑K

k=1 Lk(y, pk),
say. The asymptotic independence follows from the expression of the information matrix,
since the Hessian of the log-likelihood function becomes a diagonal matrix.
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specification of the intensities is:

P [Yi,k,t = 1|Ft, εk,t] = [1 + exp(αk + βkFt + ηεk,t)]
−1, (3.47)

where Ft is the common factor and εk,t are age-specific errors.

iii) The consequences of stochastic intensity

Without stochastic intensity effects Fk,t and εk,t, and with constant αk,

the intensities:

P [Yi,k,t = 1] = [1 + expα]−1,

imply a lifetime following a geometric distribution. The introduction of

stochastic variables in the intensities has two different effects. At the indi-

vidual level, the marginal distribution of the lifetime is no longer geometric,

but can feature negative duration dependence, that is, an intensity function

decreasing with the age for instance. At the joint level, the presence of a com-

mon factor creates complicated patterns of dependence between the lifetimes

of two individuals of a same cohort.

iv) Longevity risk

A first historical introduction of stochastic intensity with dynamic factor

is due to Lee, Carter (1992) for the analysis of mortality in a given population.

The Lee-Carter methodology described below is still the basic model used

for life insurance and pension funds design and pricing.

Let us denote by pk,t the mortality intensity of an individual of age k at

period t. This intensity is specified as:

log

(
pk,t

1 − pk,t

)
= αk + βkFt, k = 1, ..., K, t = 1, ..., T, (3.48)

where αk and βk are parameters and Ft is a stochastic factor, which corre-

sponds to model (3.47) with η = 0 after a change of sign on αk and βk. The

logit transform ensures that pk,t is between 0 and 1. 7 Since the unobserv-

7In their seminal paper, Lee and Carter used a log-transform which does not ensure
this constraint.
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able factor values are identifiable up to an affine transformation, we can set

E[Ft] = 0 and V [Ft] = 1.

Then, Lee and Carter propose to use the published mortality tables which

are providing a sample counterpart p̂k,t of pk,t, and to write the approximate

factor model:

log

(
p̂k,t

1 − p̂k,t

)
= αk + βkFt + uk,t, (3.49)

where uk,t is a Gaussian error term. Then they estimate αk by

α̂k =
1

T

T∑
t=1

log

(
p̂k,t

1 − p̂k,t

)
, and deduce approximations of βk and Ft by

applying a singular value decomposition on the T × K matrix X with el-

ements Xt,k = log

(
p̂k,t

1 − p̂k,t

)
− α̂k. Specifically, the estimates of the factor

values are given by vector F̂ = (F̂1, ..., F̂T )′, which is the eigenvector of

the T × T matrix XX ′ associated with the largest eigenvalue and normal-

ized such that F̂ ′F̂ /T = 1. The estimates of the factor sensitivities are

β̂ = (β̂1, ..., β̂K)′ = Y ′F̂ /T .

This methodology has been applied to the main developed countries using

the data publicly available in the human mortality data base of Berkeley

University and Max Planck Institute 8. For instance, the results for France

are summarized in Figures 3.7 and 3.8. The analysis is performed separately

for female and male.

[Insert Figure 3.7: Estimated mortality factor values for French female

and male, 1950-2007.]

[Insert Figure 3.8: Estimated intercepts and factor loadings for French

female and male, 1950-2007.]

From Figure 3.7 we immediately observe that the mortality factor Ft features

a (stochastic) downward trend. It corresponds to the general increase of hu-

man lifetime, that is, the average increase by about three months of residual

lifetime every year. This increase varies in time and across genders. In Fig-

8Data can be downloaded from the web-page www.mortality.org.
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ure 3.8 we display estimated intercepts αk (left panels) and factor loadings

βk (right panels) for 1-year age classes [k − 1, k) with k = 1, ..., 111 years 9.

From the estimated intercepts, we see that the historical average mortality

rate in period 1950-2007 features a non-monotonous pattern with respect to

age. Mortality is higher for children and old people. Moreover, the average

mortality is generally larger for male than for female, in age classes between

20 and 80 years. Factor loadings are positive and overall decreasing with

respect to age, that is, the effect of the decreasing mortality trend is less

pronounced for older people. The pattern of the factor loadings is similar

across female and male, but factor loadings are generally larger for female

than male. Thus, the impact of the decreasing mortality trend seems overall

more important for female than male.

Let us now discuss the above estimation procedure in view of the general

results presented in this chapter. The traditional Lee-Carter model (3.48)

corresponds to a qualitative factor model as considered in Section 3.2, where

the qualitative observations Yi,k,t ∼ B(1, pk,t) are the death events in the

different age classes. However, the canonical factors ak,t = log
(

pk,t

1−pk,t

)
for

k = 1, ..., K admit a degenerate dependence structure (see Remark 3.3). A

non-degenerate dependence structure is obtained by adding age class specific

mortality risks:

ak,t = αk + βkFt + ηεk,t, (3.50)

where the shocks εk,t are IIN(0, 1) across age classes and time dates, and

η > 0 is the standard deviation of the class effects. Model (3.50) can be

estimated by means of the CSA approach described in Section 3.3. Specif-

ically, Theorem 3.3 implies that the CSA ML estimators are obtained from

the spectral decomposition of the K ×K matrix X ′X/T . In particular, the

estimates of the factor sensitivities correspond to the eigenvector associated

with the largest eigenvalue of matrix X ′X/T (appropriately rescaled). In Ap-

pendix A.4, we show that the spectral decompositions of matrices XX ′ and

X ′X are strongly related, namely, these matrices share the same non-zero

9The last age class includes people who are 110 years old or more.
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eigenvalues and associated eigenvectors. Thus, the CSA ML estimates of the

factor sensitivities coincide with those obtained from the standard procedure

used in the literature. The CSA approach however also provides estimates for

the standard deviation of the age class effects. In our empirical illustration

with the mortality data in French in the period 1950-2007, the estimates are

η̂ = 0.089 for females, and η̂ = 0.097 for males. They are small compared

to the estimates of the common factor loadings. Hence, age class specific

mortality effects do not seem very important for the considered datasets.

The basic estimation approach can be improved in several directions:

a) Even if the estimation method is close to the CSA approach with static

factor, this factor is clearly dynamic with a trend. This type of extension

will be considered in Chapter 4.

b) It is also possible to take into account the asymptotic variance of

log

(
p̂k,t

1 − p̂k,t

)
, which depends on the level pk,t and the number of individuals

of age k at date t (Population-at-Risk). Indeed, the size of the PaR is small

for large ages and the information less accurate; this arises for the individu-

als, who are intuitively the most sensitive to longevity factors. Accounting

for the asymptotic variance of the estimated canonical factors leads to VGA

estimates of the model parameters [see Section 3.2 iv)].

c) Finally, several factors can be introduced. Typically the longevity factors

are not necessarily the same for male and female, for workers or executives,

for European and American.

3.5 Factor Analysis of Dependence

The general methodology can also be followed to understand the structure

of dependence between two qualitative (or discrete) variables. Indeed, it is

important to allow for different factors impacting the marginal distributions

of two qualitative risks, or the dependence between these two risks. For this

purpose, it is useful to introduce a suitable reparameterization of the joint
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distribution of two qualitative variables.

i) An appropriate parameterization for a 2 × 2 contingency table

Let us denote X and Z the two qualitative variables of interest, and Y =

(X,Z) the qualitative variable representing both of them. The alternatives

for X [resp. Z, Y ] are k, k = 1, . . . , K [resp. j, j = 1, . . . , J ; (k, j), k =

1, . . . , K, j = 1, . . . , J ]. The distribution of Y at date t can be represented

in a (K, J) contingency table, where:

Pt[Yi,t = (k, j)] = pk,j,t.

Table 3.1: (K, J) Contingency Table.

X Z 1 . . . j . . . J

1
...

...
...

k · · · pk,j,t · · ·
...

...

K
...

A reparameterization of the contingency table with real parameters, able

to distinguish the marginal and dependence features, has been introduced in

the eighties for the analysis of tendency surveys [see e.g. Koenig, Nerlove,

Oudiz (1979), Nerlove (1983), Nerlove, Press (1986)]. It is called log-linear

probability model. We use this parameterization to introduce the canon-

ical factors. The idea is to separate in the log-probabilities the marginal

effects of alternatives k and j from their cross-effects. More precisely, we

consider the following decomposition:

log pk,j,t = μt + a1
k,t + a2

j,t + a1,2
k,j,t, (3.51)

where:

K∑
k=1

a1
k,t = 0,

J∑
j=1

a2
j,t = 0,

K∑
k=1

a1,2
k,j,t = 0, ∀j,

J∑
j=1

a1,2
k,j,t = 0, ∀k, (3.52)
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the leading term μt being deduced by the unit mass restriction.

Alternatively, model (3.51) can be seen as a special polytomous logit

model:

pk,j,t = exp(a1
k,t + a2

j,t + a1,2
k,j,t)/

[∑
k,j

exp(a1
k,t + a2

j,t + a1,2
k,j,t)

]
. (3.53)

ii) Factor analysis of a pair of dichotomous variables

For illustration, let us consider a pair of dichotomous variables and denote

as usual in this framework their alternatives as 0, 1. By taking into account

the restrictions in (3.52), the new parameters can be all written as functions

of a1
1,t = a1,t (say), a2

1,t = a2,t (say), a1,2
1,1,t = a3,t (say). We get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log p1,1,t = μt + a1,t + a2,t + a3,t,

log p1,0,t = μt + a1,t − a2,t − a3,t,

log p0,1,t = μt − a1,t + a2,t − a3,t,

log p0,0,t = μt − a1,t − a2,t + a3,t,

(3.54)

and: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1,t =
1

4
[log p1,1,t + log p1,0,t − log p0,1,t − log p0,0,t],

a2,t =
1

4
[log p1,1,t + log p0,1,t − log p1,0,t − log p0,0,t],

a3,t =
1

4
[log p11,t + log p0,0,t − log p1,0,t − log p0,1,t].

(3.55)

The canonical factors a1,t and a2,t have a positive impact on the probabilities

of the events defined by X = 1, and Z = 1, respectively. To interpret the
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third canonical factor, note that a3,t can also be written as:

a3,t =
1

4
log

(
p1,1,tp0,0,t

p1,0,tp0,1,t

)
. (3.56)

It takes value zero if and only if variables X and Z are independent at date t.

It takes its maximal value +∞, if either p1,0,t, or p0,1,t is equal to zero. The

minimal value −∞ is achieved, when either p1,1,t, or p0,0,t, is 0. Thus, a3,t

is a measure of the dependence between X and Z. By introducing different

factors for a1,t, a2,t and a3,t, we can interpret these factors in terms of either

marginal, or cross-effects.

iii) Illustration: The effect of the financial crisis

We illustrate the above methodology with an application to the analysis

of the dynamics of the cross-sectional distribution of stock returns during the

recent financial crisis. Let us consider the stocks that define the S&P 500

index. Let ri,t, for i = 1, ..., n and n = 500, and rm,t denote the return at day

t of stock i, and the return of the index, respectively. Returns are percentage

and concern the time period from May 7, 2007 to May 6, 2011. Figure 3.9

displays the time series of the S&P 500 index returns.

[Insert Figure 3.9: Time series of S&P 500 daily percentage returns,

2007/05/07 - 2011/05/06.]

We observe a period of large volatility between September 2008 and June

2009 corresponding to the recent financial crisis.

We consider the stock return ri,t − rm,t of asset i in excess of the market,

and discretize the support of this variable into four subsets, that are I =

{ri,t−rm,t < −λ}, II = {−λ ≤ ri,t−rm,t < 0}, III = {0 ≤ ri,t−rm,t < λ} and

IV = {ri,t − rm,t ≥ λ}, respectively, where λ > 0 is a threshold independent

of asset and time. The threshold λ is fixed at λ = 1.802, which corresponds

to the 75% quantile of |ri,t − rm,t| across assets and dates in our sample.

The subsets I, II, III and IV correspond to a large negative return, a

moderate negative return, a moderate positive return and a large positive

return, respectively. At each date t, we compute the cross-sectional frequency
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of stocks with returns in the subsets I-IV and study the dynamics of these

frequencies.

The occurrence of a stock return in a subset I-IV can be characterized

by means of two dichotomous variables. Let Xi,t = 1, if ri,t − rm,t > 0, and

= 0, otherwise. Moreover, let Zi,t = 1, if |ri,t − rm,t| > λ, and = 0, otherwise.

Hence, Xi,t is the indicator of a positive stock return and Zi,t is the indicator

of a large absolute stock return. Then, subsets I-IV are characterized by

I = {Xi,t = 0, Zi,t = 1}, II = {Xi,t = 0, Zi,t = 0}, III = {Xi,t = 1, Zi,t = 0}
and IV = {Xi,t = 1, Zi,t = 1}, respectively.

The evolution of the cross-sectional marginal distributions of the dichoto-

mous variables X and Z are given in Figure 3.10.

[Insert Figure 3.10: Time series of probabilities p1·,t and p·1,t.]

The market return can be interpreted as a weighted average of individual

returns. The value of p1·,t = p11,t + p12,t gives information on the skewness of

the cross-sectional distribution of individual returns. This marginal proba-

bility is equal to 0.5 (resp., larger, smaller than), if the median is equal to the

mean (resp., larger, smaller than). From the first panel of Figure 3.10 (see

also Table 3.1), we see that the distribution of X is in average moderately

left skewed. However, we observe a large variability of this probability over

time, and some periodic behaviour: periods in which there is a large number

of assets performing better than the market are followed by periods in which

much more assets underperform. The marginal probability p·1,t = p11,t +p21,t

of Z is a market adjusted measure of individual risk. During the recent finan-

cial crisis, we get simultaneously an increased market volatility (see Figure

3.9), but also an increase of the market adjusted risks.

We provide in Figure 3.11 the evolutions of the contingency tables and in

Figure 3.12 the evolutions of the log-linear parameters.

[Insert Figure 3.11: Time series of probabilities p00,t, p01,t, p10,t and p11,t.]
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[Insert Figure 3.12: Time series of factors a1,t, a2,t and a3,t.]

Factor a2,t is another measure of market adjusted risk, with an evolution

largely similar to the evolution of p·1,t. More interesting is the evolution of

the cross-sectionl measure of dependence a3,t between X and Z. We might

expect a kind of positive risk premium for market adjusted returns, that is

extreme returns compensated by right skewed distribution, or equivalently

more periods with positive values of factor a3,t. This feature is clearly not

observed on the third panel of Figure 3.12. This dependence measure is very

erratic over time, as if we get a stochastic dependence, and this stochastic

dependence fluctuates around 0 corresponding to the cross-sectional inde-

pendence hypothesis.

3.6 Summary

The maximum likelihood method is complicated in factor models with unob-

servable factors. It can be approximated by the CSA and VGA approaches.

In qualitative models with static factors, these approximated estimation

methods are easy to implement, if (i) the models are written in terms of well-

chosen canonical factors, and (ii) the canonical factors are linear functions of

a reduced number of Gaussian underlying factors. The methodology can be

applied to dichotomous or multinomial probit and logit models as well as to

duration models or log-linear probability models with unobservable factors.

The approach is especially relevant for longevity analysis.
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3.7 Appendix: CSA Maximum Likelihood Es-

timator in Factor Model

(*) Inverse and determinant of matrix Ω

Let us denote by β̃l = βl/(β
′
lβl)

1/2 the column vectors of matrix β rescaled

to have a unit norm. Set β̃l, l = 1, . . . , L, can be completed in order to get

a set β̃l, l = 1, . . . , KS, which forms an orthonormal basis of IRSK . We get:

Ω =
L∑

l=1

βlβ
′
l + η2Id =

L∑
l=1

(η2 + β ′
lβl)β̃lβ̃

′
l + η2

KS∑
l=L+1

β̃lβ̃
′
l.

This provides the spectral decomposition of matrix Ω. We deduce that:

det Ω = (η2)KS−L

L∏
l=1

(η2 + β ′
lβl),

Ω−1 =
L∑

l=1

1

η2 + β ′
lβl

β̃lβ̃
′
l +

KS∑
l=L+1

1

η2
β̃lβ̃

′
l

= −
L∑

l=1

βlβ
′
l

1

η2(η2 + β ′
lβl)

+
1

η2
Id.

(**) The CSA log-likelihood function

We have:

1

T
LCSA(θ) ∝ −1

2
log det Ω(β, η2) − 1

2T

T∑
t=1

(ât − α)′Ω(β, η2)−1(ât − α).

(***) CSA estimator of α
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The first-order condition with respect to α is:

T∑
t=1

[Ω(β, η2)]−1(ât − α) = 0

⇐⇒
T∑

t=1

(ât − α) = 0

⇐⇒ α̂T =
1

T

T∑
t=1

ât = āT .

(****) Concentrated CSA log-likelihood function

Therefore, the log-likelihood function concentrated with respect to α is:

1

T
L̃CSA(β, η2) ∝ −1

2
log det Ω(β, η2) − 1

2T

T∑
t=1

[(ât − α̂T )′Ω(β, η2)−1(ât − α̂T )]

= −1

2
log det Ω(β, η2) − 1

2
Tr[Ω(β, η2)−1V̂T ],

where V̂T =
1

T

T∑
t=1

(ât − āT )(ât − āT )′ is the historical variance-covariance

matrix of the estimated canonical factors, and Tr denotes the trace operator

which computes the sum of the diagonal elements of a square matrix. From

the expressions of det Ω and Ω−1 derived in (*), we deduce:

1

T
L̃CSA(β, η2) ∝ −KS − L

2
log η2 − 1

2

L∑
l=1

log(η2 + β ′
lβl) − 1

2η2
Tr(V̂T )

+
1

2

L∑
l=1

β ′
lV̂Tβl

η2(η2 + β ′
lβl)

.

(*****) Estimators of β and η2

Let us consider the first-order condition with respect to βl without taking

into account the orthogonality restrictions between the sensitivity vectors.
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We get:

1

T

∂L̃CSA

∂βl
=

{
− 1

η2 + β ′
lβl

− β ′
lV̂Tβl

η2(η2 + β ′
lβl)2

}
βl +

V̂Tβl

η2(η2 + β ′
lβl)

= 0.

This first-order condition implies that V̂Tβl and βl are proportional, that is,

βl is an eigenvector of matrix V̂T .

Let us denote by êl an eigenvector of V̂T with unit norm proportional to

βl, and by λ̂l the associated eigenvalue. We have:

βl = γ
1/2
l êl,

where γl = β ′
lβl. By substituting in the first-order condition, we get an

equation which defines γl :

− 1

η2 + γl
− λ̂lγl

η2(η2 + γl)2
+

λ̂l

η2(η2 + γl)
= 0

⇐⇒ γl = β ′
lβl = λ̂l − η2.

Let us finally concentrate with respect to the optimal β ′
ls. We get:

1

T
L̃CSA(η2)

∝ −KS − L

2
log η2 − 1

2

L∑
l=1

log λ̂l − 1

2η2
Tr(V̂T ) +

1

2

L∑
l=1

(λ̂l − η2)

η2

= −KS − L

2
log η2 − 1

2η2

[
Tr(V̂T ) −

L∑
l=1

λ̂l

]
− 1

2

L∑
l=1

log λ̂l − L

2
.

The first-order condition with respect to η2 provides :

η2 =

Tr(V̂T ) −
L∑

l=1

λ̂l

KS − L
.
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Since Tr(V̂T ) =

KS∑
l=1

λ̂l, the corresponding value of the concentrated CSA

log-likelihood is equal (up to an additive constant) to:

−KS − L

2
log

(
KS∑

l=L+1

λ̂l

)
− 1

2

L∑
l=1

log λ̂l.

This value is maximized when the L largest eigenvalues are selected. This

proves Proposition 3.3.
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Figure 3.1: Time-varying conditional default probability.

0 10 20 30 40 50
−3

−2

−1

0

1

2

3
Factor path

time

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2
Conditional default probability with ρ = 0.10

time

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2
Conditional default probability with ρ = 0.30

time

The upper panel displays a simulated path of the factor Ft ∼ IIN(0, 1) of time length

50 periods. The middle panel displays the corresponding path of conditional default

probability (solid line) in a cohort of firms with unconditional default probability

PD = 0.05 (dashed horizontal line) and asset correlation ρ = 0.10. The lower panel

displays the pattern of conditional default probability with asset correlation ρ = 0.30.
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Figure 3.2: Parameterization of the dichotomous probit model.
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The figure displays the probability p1 as a function of the canonical factor a1 in the

dichotomous probit model.

Figure 3.3: Parameterization of the dichotomous logit model.
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The figure displays the probability p1 as a function of the canonical factor a1 in the

dichotomous logit model.
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Figure 3.4: Canonical factors in the multinomial logit model.
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The upper panel displays the level-color map of the canonical factor a2 as a function

of the elementary probabilities (p1, p2, p3) in the multinomial logit model with J = 3

alternatives. Colors on the simplex correspond to function values. The lower panel

displays the level-color map for the canonical factor a3.
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Figure 3.5: S&P US corporate default frequencies for rating classes BB, B

and C.
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The Figure displays the series of S&P US corporate default frequencies for rating classes

BB, B, C in the period 1990-2009. Shaded periods correspond to NBER recessions in US.
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Figure 3.6: Estimated canonical factor values for rating classes BB, B and

C.
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â
t

BB

B

C

The Figure displays the series of estimated canonical factor values âk,t for rating classes

BB, B, C in the period 1990-2009.
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Figure 3.7: Estimated mortality factor values for French female and male,

1950-2007.
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The Figure displays the series of estimated mortality factor values for French female (left)

and male (right) in the period 1950-2007. The factor is normalized such that its historical

mean is zero and its historical variance is 1.
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Figure 3.8: Estimated intercepts and factor loadings for French female and

male, 1950-2007.
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The Figure displays the estimated intercepts αk and factor loadings βk for French female

and male in 1-year age classes [k − 1, k), for k = 1, ..., 111 years. The factor is normalized

such that its historical mean is zero and its historical variance is 1.
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Figure 3.9: Time series of S&P 500 daily percentage returns, 2007/05/07 -

2011/05/06.
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The Figure displays the time series of daily percentage returns of the S&P 500 index in

the period from 2007/05/07 to 2011/05/06.
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Figure 3.10: Time series of probabilities p1·,t and p·1,t.
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The upper panel displays the time series of probability p1·,t = Pt[Xi,t = 1] of positive

stock return. The lower panel displays the time series of probability p·1,t = Pt[Zi,t = 1]

of large absolute stock return. Stock returns are in excess of the market return.
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Figure 3.11: Time series of probabilities p00,t, p01,t, p10,t and p11,t.
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This Figure displays the time series of probabilities p00,t (first panel), p01,t (second

panel), p10,t (third panel), and p11,t (fourth panel), where pkl,t = Pt[Xi,t = k, Zi,t = l] for

k, l = 0, 1.
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Figure 3.12: Time series of factors a1,t, a2,t and a3,t.
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This Figure displays the time series of factors a1,t (upper panel), a2,t (middle panel) and

a3,t (bottom panel).
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Table 3.1: Sample 2 × 2 contingency table of variables Xi,t an Zi,t.

Xi,t

0 1

0 0.384 0.366 0.75

Zi,t

1 0.121 0.129 0.25

0.505 0.495

Table 3.2: The 2 × 2 contingency table of variables Xi,t an Zi,t under the

independence assumption.

Xi,t

0 1

0 0.379 0.371 0.75

Zi,t

1 0.126 0.124 0.25

0.505 0.495
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Chapter 4

Nonlinear Dynamic Panel

Model

The application of granularity theory to estimation is presented in this chap-

ter for general nonlinear dynamic panel models with common factors. These

models can feature nonlinear dynamics in both the measurement and state

equations. Intuitively, the specification distinguishes between the dynamics

at the individual level through the lagged individual observations (micro-

dynamics), and the dynamics at the aggregate level through the factors

(macro-dynamics). Consequently, the parameterization of these models in-

volves macro-parameters as well as micro-parameters.

In Section 4.1, we explain why the GA methodology remains simple in

qualitative models with dynamic Gaussian latent factors. Indeed, in these

specifications with macro-parameters only, both the CSA and GA approxi-

mated models are linear state space models, for which the standard Kalman

filter applies. The results for general models with both macro- and micro-

parameters and nonlinear factor dynamics are described in Section 4.2. We

explain how to derive estimators of the micro- and macro-parameters, which

are asymptotically efficient when both the cross-sectional dimension n and

the time dimension T tend to infinity. We also provide approximations of

99
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the factor values (see also Chapter 5). As expected, the rates of conver-

gence differ: they are 1/
√
nT for the micro-parameters, 1/

√
T for the macro-

parameters and 1/
√
n for the factor values, respectively. A sketch of the

proof of the asymptotic results is given in Section 4.3, where we also intro-

duce the CSA and GA maximum likelihood estimators of the parameters.

The application to stochastic migration models is presented in Section 4.4.

These models are used for a joint analysis of the corporate rating migrations

in an homogeneous set of companies. An empirical analysis using S&P rating

data of US companies in the period 1990-2009 is presented in Section 4.5.

4.1 Qualitative Model with Gaussian Dynamic

Factor

i) The model

The static qualitative factor model of Section 3.2 can be extended to

include factor dynamics. Let us assume individual qualitative observations

such that:

P [Yi,k,t = j|at] = p(j; ak,t), j = 1, . . . , J, k = 1, . . . , K, t = 1, . . . , T,

(4.1)

where at = (a′1,t, . . . , a
′
K,t)

′ ∈ IRKS denotes the canonical factor. More-

over, suppose that the canonical factors are noisy linear transformations of

a smaller number L < KS of underlying macro-factors Ft ∈ IRL with a

Gaussian Vector Autoregressive (VAR) dynamic:

at = α + βFt + ηwt, (4.2)

where:

Ft = ΦFt−1 + εt, (4.3)

and the errors (wt), (εt) are independent, such that wt ∼ IIN(0, Id) and

εt ∼ IIN(0,Ω), say. Model (4.1)-(4.3) above is a state space model with
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static nonlinear measurement equations (4.1) and Gaussian dynamic linear

state equation (4.2)-(4.3).

ii) Approximated linear state space model

For large cross-sectional dimensions nk of the cohorts, the nonlinear state

space model can be approximated by a Gaussian linear state space model,

for which standard softwares based on the linear Kalman filter are available.
1 These softwares can be used for parameter estimation as well as prediction

of the future individual qualitative variables, or filtering of the unobservable

factor values.

Let us consider the fixed effect maximum likelihood estimator of the

canonical factor values [see Section 3.2 ii)]:

âk,t = arg max
ak,t

J∑
j=1

nj,k,t log p(j; ak,t). (4.4)

Under identification conditions, we know that asymptotically [see (3.20)-

(3.21)]:

ât
d∼ N

(
at, Σ̂n,t

)
, (4.5)

where Σ̂n,t = diag[Σ̂k,t/nk], and that the ât, t varying, are (asymptotically)

independent. Thus, the nonlinear static measurement equations written on

individual qualitative observation yi,k,t, i = 1, . . . , nk, k = 1, . . . , K, t =

1, . . . , T can be asymptotically replaced by the linear measurement equations

(4.5) written on the aggregate statistics ât, t = 1, . . . , T . In other words, the

initial model can be replaced by the following VGA linear state space model:

State equation:

Ft = ΦFt−1 + εt, εt ∼ IIN(0,Ω); (4.6)

VGA measurement equation:

1See e.g. the sspace object in EVIEWS, or the Kalman function in the Control and
System Toolbox in MATLAB.
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ât = α + βFt + ut, ut ∼ IIN(0, η2Id+ Σ̂n,t). (4.7)

The GA appears by means of the additional variance-covariance matrix

Σ̂n,t in the measurement equation. If nk = ∞, for any k = 1, . . . , K, this

term would disappear. This yields the CSA linear state space model:

State equation:

Ft = ΦFt−1 + εt, εt ∼ IIN(0,Ω); (4.8)

CSA measurement equation:

ât = α + βFt + ut, ut ∼ IIN(0, η2Id). (4.9)

Thus, both the CSA and VGA approximated models are linear state space

models and can be analyzed by the standard linear Kalman filter (see the

Review Appendix A.5). The Kalman filter is used to estimate parameters α,

β, μ, Φ, Ω and η, and to filter the latent factor values.

4.2 Asymptotically Efficient Estimators

i) The model

Let us now consider the general nonlinear dynamic model with unobserv-

able factor (see Chapter 1, Section 1.3). For expository purpose, the model

is presented for a single cohort. It is defined by its transition densities which

are parameterized as follows:

State equation: The conditional density of ft given ft−1 is g(ft|ft−1; θ).

Measurement equations: The conditional density of yi,t given yi,t−1 and

ft is h(yi,t|yi,t−1, ft; β).

Conditional on the factor path, the individual histories (yi,t), i = 1, · · · , n, are

independent Markov processes, with a same transition density h(yi,t|yi,t−1, ft; β)

between t − 1 and t depending on the factor value ft. The factor varies
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stochastically in time according to a Markov process with transition density

g(ft|ft−1; θ). The model involves a vector of micro-parameters β that char-

acterize the dynamics at the individual level (micro-dynamics), as well as

a vector of macro-parameters θ that characterize the dynamics of the fac-

tor (macro-dynamics). The unknown true values of these parameters are

denoted β0 and θ0, respectively. When the unobservable stochastic factors

(ft) are integrated out, the model for the observable variables features both

cross-sectional dependence and non-Markovian serial dependence.

If the variables yi,t, i = 1, . . . , n, and ft were observable at each date, the

joint density (conditional on the initial observations) would be:

l∗(yT , fT ; β, θ) = [
T∏

t=1

g(ft|ft−1; θ)]
T∏

t=1

n∏
i=1

h(yit|yi,t−1, ft; β). (4.10)

Thus, the latent log-likelihood function could be decomposed as:

L∗(yT , fT ; β, θ) = log l∗(yT , fT ; β, θ)

= LM(fT ; θ) +
T∑

t=1

LCS(yt|yt−1, ft; β), (4.11)

where:

LM(fT ; θ) =
T∑

t=1

log g(ft|ft−1; θ), (4.12)

is the log-likelihood corresponding to the macro-economic factor, called the

latent macro log-likelihood function, and:

LCS(yt|yt−1, ft; β) =
n∑

i=1

log h(yi,t|yi,t−1, ft; β), (4.13)

is the log-likelihood corresponding to individual transitions between dates

t − 1 and t. It is called the latent cross-sectional micro log-likelihood

function.

The different log-likelihood functions described in (4.11)-(4.13) are latent,

since they assume the latent factors observable. As already mentioned, the
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true log-likelihood function is deduced by integrating out the unobservable

factors. It is given by

log l(yT ; β, θ),

where:

l(yT ; β, θ) =

∫
. . .

∫
[

T∏
t=1

g(ft|ft−1; θ)]
T∏

t=1

n∏
i=1

h(yi,t|yi,t−1, ft; β)
T∏

t=1

dft.

(4.14)

This log-likelihood function has a complicated expression, which involves a

multiple integral with a huge dimension equal to T times the number of

factors. In particular, the dimension of this integral tends to infinity with

time dimension T .

When n and T are large, it is possible to derive asymptotically efficient

estimators of both types of parameters without having to compute the huge

integral in (4.14). This is shown next.

ii) The estimation method

If micro-parameter β were known, the factor value at date t could be

approximated by the fixed effects estimator:

f̂nt(β) = arg max
ft

LCS(yt|yt−1, ft; β)

= arg max
ft

n∑
i=1

log h(yi,t|yi,t−1, ft; β). (4.15)

The name fixed effects is used because estimator f̂nt(β) is computed by treat-

ing ft as a parameter in the latent cross-sectional micro-likelihood, that is,

by considering the factor values as fixed time effects.

However, micro-parameter β is unknown, and thus the factor approxi-

mations f̂nt(β) as well. But these values can be reintroduced in the latent

micro-likelihood functions aggregated over time, to get a function of the ob-

servations yT and parameter β only. This leads to an estimator of β defined
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by:

β̂nT = arg max
β

T∑
t=1

n∑
i=1

log h[yi,t|yi,t−1, f̂nt(β); β]. (4.16)

Equivalently, it can also be derived by considering the solution in β in the

joint optimization problem:

max
β,f1,...,fT

T∑
t=1

n∑
i=1

log h(yi,t|yi,t−1, ft; β). (4.17)

The definition of the estimator through (4.17) shows that the unknown

factor values have been treated as nuisance parameters. Such an approach

might create an incidental parameter problem, since the number of nui-

sance parameters tends to infinity with T [Neyman and Scott (1948)]. This

problem does not exist in our framework, where the cross-sectional dimension

is much larger than the time dimension (see Proposition 4.1 below and the

discussion thereafter).

The estimator of the micro-parameter can be introduced in the expression

of the fixed effects estimator of the factor value to get an approximation of

factor value at date t:

f̂nT,t = f̂n,t(β̂nT ). (4.18)

These approximated factor values can serve as proxies for the unobserved

factor values. This leads to the following estimator of the macro-parameter

θ:

θ̂nT = arg max
θ

T∑
t=1

log g(f̂nT,t|f̂nT,t−1; θ). (4.19)

The estimator θ̂nT maximizes the latent macro log-likelihood LM after re-

placing the factor values by their proxies.

Remark 4.1: The models presented in Chapters 2, 3, and in Section 4.1

were models with macro-parameters only. In such cases, the fixed effects
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estimator of the first step is a function of the individual observations only,

that is,

f̂nT,t = f̂n,t = arg max
ft

n∑
i=1

log h(yi,t|yi,t−1, ft). (4.20)

iii) Asymptotic properties of the estimators

The asymptotic properties of the estimators of micro- and macro-parameters

introduced above have been derived in Gagliardini, Gouriéroux (2009) (see

also the discussion in Section 4.3). Their asymptotic distribution involves

information matrices corresponding to the latent macro-likelihood and cross-

sectional micro-likelihood. More precisely:

i) The cross-sectional information matrix at date t is:

ICS(t) = E0

[
−∂

2 log h(yi,t|yi,t−1, ft; β0)

∂(β ′, f ′)′∂(β ′, f ′)
|ft

]
. (4.21)

It involves the conditional expectation of the second-order derivative matrix

of the micro log-density w.r.t. the micro-parameter and the factor value,

given the current and past history of factor values ft = (ft, ft−1, · · · ). This

information matrix can be written in block form as follows:

ICS(t) =

⎡
⎢⎣
Iββ(t) Iβf(t)

Ifβ(t) Iff(t)

⎤
⎥⎦ . (4.22)

ii) The macro information matrix is:

IM = E0

[
−∂

2 log g(ft|ft−1; θ0)

∂θ∂θ′

]
. (4.23)

We have the following proposition valid under the set of regularity con-

ditions in Gagliardini, Gouriéroux (2009):

Proposition 4.1: If the dimensions n, T tend to infinity such that T b/n =

O(1), for b > 1, then:
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i) The estimators are consistent and asymptotically normal:

⎡
⎢⎣

√
nT (β̂n,T − β0)

√
T (θ̂n,T − θ0)

⎤
⎥⎦ d→ N

⎛
⎜⎝
⎡
⎢⎣ 0

0

⎤
⎥⎦ ,
⎡
⎢⎣ (I∗ββ)−1 0

0 (IM)−1

⎤
⎥⎦
⎞
⎟⎠ ,

where:

I∗ββ = E0[Iββ(t) − Iβf(t)Iff (t)−1Ifβ(t)].

ii) The estimators are asymptotically efficient.

iii) For any date t, conditional on the factor path we have:

√
n(f̂nT,t − ft)

d→ N [0, Iff(t)
−1].

All estimators converge to their corresponding true values when both n

and T tend to infinity at suitable relative rates (namely when n is infinitely

larger than T in the limit). However, the convergence rates of the estima-

tors differ: they are equal to 1/
√
nT for the micro-parameters, 1/

√
T for the

macro-parameters and 1/
√
n for the factor values, respectively. Estimators

β̂n,T and θ̂n,T are asymptotically independent. Thus, asymptotically the in-

ference on β and θ can be done separately. In other words, parameters β

(resp. θ) are actually micro-parameters (resp. macro-parameters), since they

do not include macro-information (resp. micro-information).

The estimators β̂nT and θ̂nT are asymptotically efficient in the sense that

they are asymptotically equivalent to the maximum likelihood estimators

that maximize the true likelihood function (4.14). Intuitively, when both n

and T are large, estimators β̂nT and θ̂nT have the lowest possible variance

within a very large class of regular consistent estimators. Let us now discuss

the expressions of the asymptotic variance-covariance matrices of the estima-

tors. The information matrix IM corresponds to the Fisher information on

θ when the factor values are observable. Thus, for large n, the replacement

of these values ft, t = 1, . . . , T, by their approximations f̂nT,t, t = 1, . . . , T,

has no effect on the estimator of macro-parameter θ. This is because the
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approximation errors of order Op(1/
√
n) on the factor values are irrelevant

for estimation of parameter θ at rate 1/
√
T , when T/n→ 0.

The information matrix I∗ββ is the information matrix for β in the micro-

model with parameters β, f1, . . . , fT . It does not coincide with E0[Iββ(t)],

since the estimation errors on the factor values have to be taken into account

for estimation of the micro-parameters at rate 1/
√
nT . However, we observe

that the matrix I∗ββ does not depend on the selected dynamic factor model.

We deduce that β̂n,T is both asymptotically efficient and semi-parametrically

efficient [see Gagliardini, Gouriéroux (2009) and the Review Appendix A.2].

Finally, the usual panel literature emphasizes the role of incidental pa-

rameters, that is, the fact that in some models the number of unknown pa-

rameters increases with sample size [see Lancaster (2000) for the discussion of

incidental parameters in panel models with individual effects]. In our panel

model with common factor, the incidental parameters are the factor values,

whose number increases with the time dimension T . If the cross-sectional

dimension n were fixed, the presence of incidental parameters would imply

the inconsistency of β̂n,T even for large T . By assuming that n also tends

to infinity faster than T , not only the convergence, but also the asymptotic

efficiency, are obtained.

4.3 Likelihood Expansions, CSA and GA Max-

imum Likelihood Estimators

The asymptotic properties of the estimators of micro- and macro-parameters

presented in Section 4.2 rely on asymptotic expansions of the complicated

likelihood function of the model. We describe below the principle of this

expansion [see Gagliardini, Gouriéroux (2009) for complete proofs], since

the same principle will also be used for prediction purpose (see Chapter 5).

Moreover, these asymptotic expansions of the likelihood function are the

basis for deriving the CSA and GA maximum likelihood estimators.
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i) First-order expansion of the log-likelihood function

The joint density of the observations is [see (4.14)]:

l(y
T
; β, θ) =

∫
. . .

∫ T∏
t=1

n∏
i=1

h(yi,t|yi,t−1, ft; β)
T∏

t=1

g(ft|ft−1; θ)
T∏

t=1

dft

=

∫
. . .

∫
exp

{
T∑

t=1

n∑
i=1

log h(yi,t|yi,t−1, ft; β)

}
T∏

t=1

g(ft|ft−1; θ)
T∏

t=1

dft.

For large n the integral with respect to the factor values can be approx-

imated by expanding the integrand around its maximum w.r.t. the factor

along the lines of the Laplace approximation [see Jensen (1995), Arellano,

Bonhomme (2009), and Appendix 4.7 i)]. We get the following expansion:

Proposition 4.2: If n, T tend to infinity, with T b/n = O(1), for b > 1, we

have:

LnT (β, θ) =
1

nT
log l(yT ; β, θ)

= L∗
nT (β) +

1

n
L1,nT (β, θ) + op(1/n), (4.24)

where:

L∗
nT (β) =

1

nT

T∑
t=1

n∑
i=1

log h[yi,t|yi,t−1, f̂nt(β); β],

L1,nT (β, θ) = −1

2

1

T

T∑
t=1

log det Int(β) +
1

T

T∑
t=1

log g[f̂nt(β)|f̂n,t−1(β); θ],

and:

Int(β) = −1

n

n∑
i=1

∂2 log h

∂ft∂f ′
t

(yi,t|yi,t−1, f̂nt(β); β).

The decomposition above explains the main asymptotic results given in

Proposition 4.1. Let us first consider the micro-parameters. They are in-

volved in both components of the right hand side of decomposition (4.24).
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However, since the second component is negligible w.r.t. the first one when

n is large, the ML estimator of the micro-parameters is equivalent to the

estimator based on the optimization of the micro log-likelihood L∗
nT . This is

exactly the definition of the fixed effects estimator β̂n,T given in Section 4.2.

Let us now consider macro-parameters θ. They are involved in the second

term of the expansion (4.24). Since the estimators of the micro-parameters

converge faster than the rate 1/
√
T , the maximum likelihood estimator of

the macro-parameters can be approximated by the solutions of:

max
θ

L1,n,T (β̂n,T , θ)

⇐⇒ max
θ

T∑
t=1

log g[f̂nt(β̂n,T )|f̂n,t−1(β̂n,T ); θ].

This yields the estimator θ̂n,T introduced in Section 4.2. The asymptotic

independence between the estimators of the micro- and macro-parameters is

due to the additive decomposition of the log-likelihood function in (4.24),

where the first component concerns β and the second one θ (since β can be

replaced asymptotically by β̂n,T in the second component).

In fact, the estimators (β̂nT , θ̂nT ) are asymptotically equivalent to the es-

timators derived by optimizing the first-order expansion of the log-likelihood

function in Proposition 4.2. Let us denote by:

LCSA
n,T (β, θ) = L∗

nT (β) +
1

n
L1,n,T (β, θ), (4.25)

the cross-sectional asymptotic (CSA) log-likelihood function, and

define the CSA ML estimators as:

(β̂CSA
nT , θ̂CSA

nT ) = arg max
β,θ

LCSA
n,T (β, θ). (4.26)

The CSA ML estimators are asymptotically equivalent to the estimators

(β̂nT , θ̂nT ), and in particular asymptotically efficient.

ii) Granularity adjustment



4.3. LIKELIHOOD EXPANSIONS, CSA AND GA MAXIMUM LIKELIHOOD ESTIMATORS111

The true maximum likelihood estimators of the parameters can be ap-

proximated more accurately by considering a second-order expansion of the

log-likelihood function w.r.t 1/n. We have:

LnT (β, θ) = L∗
nT (β) +

1

n
L1,n,T (β, θ) +

1

n2
L2,n,T (β, θ) + op(1/n

2), (4.27)

where the additional term L2,n,T has a closed form expression [see Gagliar-

dini, Gouriéroux (2009)] and does not involve integrals w.r.t. the unobserv-

able factors. This second-order expansion defines the GA log-likelihood

function:

LGA
n,T (β, θ) = L∗

n,T (β) +
1

n
L1,n,T (β, θ) +

1

n2
L2,n,T (β, θ). (4.28)

Then, granularity adjusted estimators are defined by maximizing the GA

log-likelihood function:

(β̂GA
nT , θ̂

GA
nT ) = arg max

β,θ
LGA

n,T (β, θ). (4.29)

In the general framework, the granularity adjustment is more important

for the estimators of the macro-parameters, whose speed of convergence is

slower. The granularity adjustment allows to modify the bias at order 1/n

of the CSA estimator θ̂CSA
nT . In particular, it is possible to show that the

difference between θ̂GA
nT and the true ML estimator of θ is of order op(1/n),

while this difference would be of order Op(1/n) for the CSA estimator θ̂CSA
nT

and for the estimator θ̂nT defined in Section 4.2. Thus, the GA and the true

ML estimator of the macro-parameters are equivalent at order 1/n.

iii) Newton-Raphson algorithm

It is easily checked that estimators asymptotically equivalent to the GA

estimators are obtained by applying a single iteration in an appropriate

Newton-Raphson algorithm with the CSA estimator as starting value [see
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Appendix 4.7 ii)]. We have:

(
β̂GA

nT

θ̂GA
nT

)
=

(
β̂CSA

nT

θ̂CSA
nT

)
+

[
−∂

2LCSA
nT (β̂CSA

nT , θ̂CSA
nT )

∂(β ′, θ′)′∂(β ′, θ′)

]−1

· ∂LGA
nT

∂(β ′, θ′)′
(β̂CSA

nT , θ̂CSA
nT ), (4.30)

up to order op(1/n
2) for the micro-parameters, and op(1/n) for the macro-

parameters, respectively.

4.4 Stochastic Migration Model

The Basel 2 regulation was not only asking for an accurate analysis of default

risk and default correlation (see Section 3.1), but also of the risk associated

with possible rating downgrades and upgrades [BCBS (2001),(2003)]. In-

deed, the current rating has a significant impact on the value of the debt,

and this effect has to be taken into account when assessing the risk of a

credit portfolio. For this purpose, a dynamic analysis of the qualitative

rating histories is required, with special focus on rating migration correla-

tion. Unobservable dynamic factors are typically introduced in the models

to create downgrade (resp. upgrade) correlation. Following the demand by

regulators, stochastic migration models have been recently introduced in the

academic literature, with special emphasis on corporate ratings and business

cycle [see e.g. Gordy, Heitfield (2002), Gagliardini, Gouriéroux (2005a, b),

Feng, Gouriéroux, Jasiak (2008)].

i) Stochastic transition matrices

Let us consider an homogenous subpopulation and individual qualitative

histories (yi,t, t = 1, . . . , T ), for i = 1, . . . , n. Variables yi,t are polytomous

qualitative with K possible alternatives, denoted k = 1, . . . , K. In the ap-

plication to corporate bonds, these alternatives are the possible ratings, e.g.

AAA, AA, A, BBB, ..., D in the Standard & Poor’s (S&P) rating system.
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Their number is typically either 8, or 10, depending whether ratings CCC,

CC, C are put together, or not. However, the stochastic migration model

described below can be applied to other frameworks as well.

As before, the dynamic model is defined by state and measurement equa-

tions.

State equation: The transition density of the factor is g(ft|ft−1; θ);

Measurement equations: They are defined by the transition probabilities:

P [yi,t = k|yi,t−1 = l, ft; β] = πlk(ft; β), say,

for k, l = 1, . . . , K.

Since the individual observations are qualitative, the transition pdf of yi,t

given yi,t−1 and ft is characterized by the (K,K) transition matrix:

Π(ft; β) = [πlk(ft; β)]. (4.31)

This transition matrix has nonnegative elements, which sum up to one by

row. Its diagonal elements provide the probabilities to keep the same rating

between dates t − 1 and t, whereas the out-of-diagonal elements are the

probabilities to migrate up or down, from one rating class to another one.

For a given factor history, the individual qualitative rating histories are in-

dependent, identically distributed. Each individual rating history is a Markov

chain, which is time heterogenous since the transition matrices evolve in time.

When the factor is considered stochastic, we get Markov chains with stochas-

tic transition matrices. This justifies the alternative names given to this type

of model, that are, stochastic migration model, stochastic transition

model, or model with stochastic intensity (see also Section 3.4 for the

two-state case with an absorbing state). When the factor is integrated out,

the individual histories become dependent and the Markov property is lost.

Intuitively, the whole past of all series is informative and needed to reconsti-

tute approximately the current factor value.
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There exist different migration models according to the specification of

the transition matrix. Intuitively, each row of the transition matrix defines a

probability distribution for which an ordered polytomous model (see Example

3.4 in Section 3.3), or a multinomial logit model (see Example 3.3 in Section

3.3), can be chosen. Moreover, the models for the different rows can be

linked as seen below for the model usually considered for the analysis of

rating histories.

ii) The dynamic ordered qualitative model for rating histories

This model is the direct extension of the SRF model of Section 3.1 to

more than two alternatives and to a dynamic framework. In the spirit of

Merton’s structural model, the rating is based on the level of the log asset-

to-liability ratio. More precisely, let us introduce a partition of the real line:

c0 = −∞ < c1 < c2 < ... < cK−1 < cK = +∞. We assume that:

yi,t = k, if and only if ck−1 < log(Ai,t/Li,t) ≤ ck, (4.32)

for k = 1, . . . , K, where Ai,t and Li,t denote the asset value and the debt

of firm i at date t. In this way, the rating classes are numbered in order

of increasing credit quality, with alternative k = 1 typically corresponding

to default 2. Then, we have to define the conditional distribution of the log

asset-to-liability ratio given the factor and the past individual histories. We

assume that this dependence is through the most recent rating only. The

latent model, which extends (3.3), is:

logAi,t − logLi,t = al + blFt + σlui,t, (4.33)

for companies with rating yi,t−1 = l at date t − 1, where ui,t ∼ N(0, 1) is

independent of Ft. By comparing with equation (3.3), we see that the con-

ditioning with respect to the last rating is equivalent to the creation at each

2In the basic Merton’s model, c1 = 0. In practice the constraint c1 = 0 is generally not
introduced, especially due to the regulatory definition of default. For instance, a default
can be reported if the lender thinks that a failure of a company is highly probable in the
next future, even if this failure has not yet occurred. Thus, threshold c1 can be strictly
positive and its magnitude depends on the more or less severe judgement of the lender.
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date t of a set of K homogenous subpopulations, in which the corporations

are grouped according to their previous rating.

Under (4.32)-(4.33) the stochastic transition probabilities are given by:

πl,k(ft; β) = Φ

(
ck − al − blft

σl

)
− Φ

(
ck−1 − al − blft

σl

)
, (4.34)

where Φ is the cdf of the standard normal. These transition probabilities

involve two types of micro-parameters, that are the parameters al, bl, σl,

l = 1, . . . , K of the latent model for the individual asset-to-liability ratios,

and the thresholds ck, k = 1, . . . , K − 1, used to define the ratings. Whereas

al, bl and σl appear in row l of the transition matrix only, the threshold

parameters are in all rows, introducing links between rows. Moreover, while

we have focused above on a model with a single factor in analogy to Section

3.1, the extension to include a multivariate factor Ft of dimension d, say,

is straightforward. In this case, for each row l of the transition matrix we

would have a (d, 1) vector bl of sensitivities to the different factors.

Finally, the measurement equations (4.34) are usually completed by a

state equation corresponding to a Gaussian VAR model:

Ft = μ+ AFt−1 + εt, εt ∼ IIN(0,Ω), (4.35)

where A is a (d, d) matrix of autoregressive coefficients.

iii) Identification

Parameter identification has to be considered carefully before applying

any estimation method. The vector of model parameters is identified if it

is not possible to find two distinct parameter vectors that imply the same

distribution for the observable variables, that is, for the joint history of the

ratings of the n firms [see e.g. Gourieroux, Monfort (1995)]. In the ordered

qualitative model for ratings described in Section ii), the lack of identifica-

tion can result from the loss in information incurred when passing from the

quantitative scoring variable (the asset-to-liability ratio) to the qualitative

rating, and from the unobservable factors being defined up to an invertible
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linear transformation. The identification restrictions have to account for the

links existing between the rows of the transition matrix and have to conserve

the distinction between micro- and macro-parameters.

For instance, in a stochastic migration model for rating histories with

a single factor and absorbing state k = K, identification restrictions are

c1 = a1 = 0 and b1 = σ1 = 1. Therefore, the identifiable micro-parameters

are β = (ak, bk, σk, ck, k = 2, ..., K − 1), whereas the macro-parameters are

θ = (μ,A,Ω), that are all the parameters of the state equation. In the

general case, we denote by β and θ the vectors of identifiable micro- and

macro-parameters of the model, once suitable identification restrictions are

imposed.

iv) Asymptotically efficient estimators

The asymptotically efficient estimators of the micro- and macro-parameters,

and the factor approximations, are derived from the general results in Section

4.2, equations (4.16), (4.18) and (4.19). For expository purpose, we focus on

a single-factor model.

Let us denote by Nk,t and Nl,k,t the number of companies in rating

class k at date t, and the number of companies migrating from class l to

class k between dates t − 1 and t, respectively. The transition frequencies

π̂l,k,t = Nl,k,t/Nl,t−1, for l, k = 1, . . . , K, are the empirical counterpart of

the stochastic transition probabilities between dates t − 1 and t. Then, the

cross-sectional micro-density of the model at date t is given by:

LCS(yt|yt−1, ft; β) =

K∑
l=1

K∑
k=1

Nl,k,t log πl,k,t(ft; β)

=
K∑

l=1

Nl,t−1

K∑
k=1

π̂l,k,t log

[
Φ

(
ck − blft − al

σl

)

−Φ

(
ck−1 − blft − al

σl

)]
.

It follows that the counts Nl,t−1 and the empirical transition frequencies π̂l,k,t
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for l, k = 1, . . . , K and t = 1, . . . , T , are summary statistics for the stochastic

migration model (conditionally on the initial observations and factor values).

These empirical counts and transition frequencies are freely available from

websites of either rating agencies, or central banks [see e.g. Gupton, Finger,

Bhatia (1997)].

From the cross-sectional micro-density, we get the fixed effects estimators

of the factor values given the micro-parameters:

f̂n,t(β) = arg max
ft

K∑
l=1

Nl,t−1

K∑
k=1

π̂lk,t log

[
Φ

(
ck − blft − al

σl

)

−Φ

(
ck−1 − blft − al

σl

)]
,

for t = 1, · · · , T , and the estimator of the micro-parameters:

β̂nT = arg max
β

T∑
t=1

K∑
l=1

Nl,t−1

K∑
k=1

π̂lk,t log

[
Φ

(
ck − blf̂n,t(β) − al

σl

)

−Φ

(
ck−1 − blf̂n,t(β) − al

σl

)]
.

The numerical computation of the estimate β̂nT involves two nested opti-

mization problems. For given β, the factor approximation f̂n,t(β) can be

computed by grid search, and then estimate β̂nT is computed by applying the

Newton-Raphson algorithm. Estimator β̂nT is used to get the cross-sectional

approximations of the factor values:

f̂nT,t = f̂n,t(β̂nT ). (4.36)

Finally, the estimators of the macro-parameters μ, A and Ω are obtained by

replacing the factor proxies in the macro-dynamics and applying Maximum

Likelihood (ML) on the autoregressive model:

f̂nT,t = μ+ Af̂nT,t−1 + εt, εt ∼ IIN(0,Ω), t = 1, · · · , T. (4.37)
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For this autoregressive model, the ML estimator coincides with the Ordinary

Least Squares (OLS) estimator. When the factor is multivariate and the Vec-

tor Autoregressive (VAR) model (4.37) involves several equations, the OLS

estimators of the components of μ and A are computed equation-by-equation

[see e.g. Gourieroux, Jasiak (2001)]. The estimator of Ω is obtained from

the sample variance-covariance matrix of the estimated regression residuals

ε̂t. The convergence rates of estimators β̂nT and θ̂nT = (μ̂nT , ÂnT , Ω̂nT ) are

1/
√
nT and 1/

√
T , respectively, and their asymptotic variance-covariance

matrices are deduced from Proposition 4.1.

v) Approximate linear state space model

An alternative estimation methodology can be introduced by writing the

stochastic migration model as an approximate linear state space model, and

applying a procedure similar to the one described in Section 4.1. The basic

idea is that the qualitative model (4.34) can be ”linearized” by considering

the canonical factors for each row of the transition matrix as in the ordered

probit model in Example 3.4 of Section 3.3. More precisely, let us introduce

the cumulated transition probabilities:

π∗
l,k(ft; β) = P [Yi,t ≤ k|Yi,t−1 = l, ft; β]

=
k∑

h=1

πl,h(ft; β)

= Φ

(
ck − al − blft

σl

)
, (4.38)

for l = 1, · · · , K and k = 1, · · · , K − 1. By applying the quantile function

of the standard normal distribution to both sides of the above equation, we

get:

Φ−1[π∗
l,k(ft; β)] =

ck − al − blft

σl
. (4.39)

These nonlinear transformations of the cumulated transition probabilities

play the role of the canonical factors:

at = vec[al,k,t], (4.40)
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where:

al,k,t =
ck − al − blft

σl
, (4.41)

is linear w.r.t. ft. The canonical factors are cross-sectionally approximated

by their sample analogues:

âl,k,t = Φ−1

(
k∑

h=1

π̂l,h,t

)
. (4.42)

For large cross-sectional size n, the estimated factors are such that ât
d∼

N(at,Σn,t) asymptotically conditional on the factors, and the expression of

the estimated asymptotic variance-covariance matrix Σ̂n,t is derived in Ap-

pendix 4.6. In particular, the block of matrix Σ̂n,t corresponding to the

canonical factors for row l involves the number Nl,t−1 of companies in class

l at date t − 1. Then, the parameters can be estimated by applying the

Kalman filter on the VGA linear state space model:

State equation:

Ft = μ+ AFt−1 + εt, εt ∼ IIN(0,Ω);

VGA measurement equations:

âl,k,t =
ck − al

σl

− bl
σl

ft + ul,k,t, vec(ul,k,t) ∼ IIN(0, Σ̂n,t),

for l = 1, · · · , K − 1 and k = 1, · · · , K.

Thus, the nonlinear measurement equations for the individual ratings are

approximated by linear measurement equations for suitable cross-sectional

aggregates. Contrary to the linear state space models in Section 4.1, the

variance of the errors in the measurement equations tend to zero as n tends

to infinity. This explains the different rates of convergence for the micro-

parameters and the macro-parameters, that are 1/
√
nT and 1/

√
T , respec-

tively.
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4.5 Application to S&P Migration Data

In this section we present an application of stochastic transition models to

rating migration data of S&P [see Gagliardini, Gouriéroux (2005b) for a

similar analysis with data of the French central bank].

i) Description of the data

The data consist of T = 20 1-year empirical migration matrices for US

firms in the period from 1990 to 2009. The migration matrices are provided

by S&P in public reports and are computed on an annual basis from a pool

of large and medium size US firms. S&P relies on a rating system based on 8

classes (in the simplest version), denoted AAA, AA, A, BBB, BB, B, C, D.

Category AAA corresponds to the lowest risk (i.e. the best credit quality),

and category C to the highest risk. Category D corresponds to default. The

rating is assigned by expertise, accounting for available information on the

firm’s business and financial ratios. The pool of monitored firms is constantly

updated in time to replace defaulting firms and including new firms. For

instance, the distributions of the firms in the pool across rating classes in

1990, and in 2009, are given in Table 4.1.

[Insert Table 4.1: Distribution of firms in the S&P pool across rating

classes in 1990 and in 2009.]

The total size n of the pool has almost tripled between 1990 and 2009, pass-

ing from about 2000 to almost 6000 firms. The relative importance of rating

classes BBB, BB, B, C has increased, while that of classes AAA and AA has

decreased. Possible explanations for this phenomenon are either a deteriora-

tion of the average credit quality of the firms considered in the pool, or an

increased severity in the judgment of the rating agency, or a selectivity when

updating the pool.

The transition matrix in 2009 is displayed in Table 4.2. The rows and

columns are arranged in order of increasing risk.

[Insert Table 4.2: 1-year transition matrix in 2009]
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The matrix in Table 4.2 contains an additional column for firms that are not

rated (NR) at the end of year 2009. The firms in category NR likely failed

to report their balance sheets, or the reported data had missing information.

The percentages of not rated firms are between 3% and 18%, and tend to

increase as the quality of the rating at the beginning of 2009 deteriorates.

Missing data is mainly due to lack of information disclosure, that may be

voluntary or not. Similarly to other rating agencies, S&P does not provide

the row corresponding to the transition frequencies from the NR category

to the other categories. Hence, the transition matrix in Table 4.2 has to

be transformed into a square matrix by imputing the companies in the NR

category to the other rating classes. It is usually proceeded by a proportional

assignment, that is, for each row the NR companies are assigned to the other

rating classes proportionally to the transition frequencies of the latter. It

is important to check that the proportional assignment does not induce a

selectivity bias. By using migration data of the French central bank, Foulcher

et al. (2004) provide evidence that incomplete reporting of balance sheets

data is not an indicator of imminent default. This finding supports the

practice of proportional assignment and suggests that the increase of the NR

percentage in the worst rating classes may be due to the fact that disclosing

information is not a priority for firms in a difficult situation.

After the transformation to eliminate the NR category, the transition

matrix in 2009 is displayed in Table 4.3.

[Insert Table 4.3: Adjusted 1-year transition matrix in 2009]

The largest transition probabilities appear on the main diagonal of the ma-

trix, pointing to a tendency to stability of the ratings. Moreover, the other

transition probabilities that are significantly different from zero correspond

in general to transitions involving one bucket. Thus, rating down- or up-

grades of more than one rating class over one year are unlikely, unless for the

riskiest categories. The last column of the matrix displays the default prob-

abilities. As expected, the default probabilities increase as the rating quality
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decreases. Finally, the elements in the last row of the transition matrix are

all zeros, except a 100% in the last column, reflecting the fact that default is

an absorbing state.

Let us now discuss the dynamics of the transition matrices. We focus on

up- and down-grade probabilities ul,t =
∑K

k=l+1 π̂l,k,t and dl,t =
∑l−1

k=1 π̂l,k,t,

respectively, indexed by the initial rating class l [see Section 3.3 iv) for a

description of the time series of default probabilities]. We display the time

series of up-grade probabilities ul,t in Figure 4.1, and the series of down-grade

probabilities dl,t in Figure 4.2. The shaded periods in these figures correspond

to recessions in US as identified by the National Bureau of Economic Research

(NBER).

[Insert Figure 4.1: Up-grade probabilities]

[Insert Figure 4.2: Down-grade probabilities]

The transition probabilities vary cyclically over time, with similar patterns

across rating classes. Peaks of downgrade probabilities, and troughs of up-

grade probabilities, are associated with the economic recessions in US. The

variations in the down-grade and up-grade probabilities over the time span

1990-2009 have been of the order of 5 − 10% for most rating classes, and of

the order of 30% for the riskiest rating class C. The evidence in Figures 4.1

and 4.2 supports the idea that transition probabilities are driven by stochas-

tic factors that are common across rating classes, which is at the core of the

stochastic transition model.

ii) Estimation results

We estimate the ordered qualitative stochastic transition model intro-

duced in Section 4.4 ii) with K = 8 rating classes by applying the method-

ology presented in Section 4.4 iv). For compatibility with the notation in

Section 4.4, we renumber the rating classes of S&P into 1, 2, ..., 8 with k = 1

corresponding to default, k = 2 corresponding to C, and so on until k = 8

for AAA.
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Before applying the estimation procedure, we have to determine the num-

ber of factors. For this purpose, in a preliminary step we compute the series

of estimated canonical factors âl,k,t in (4.42) for k, l, and perform their prin-

cipal component analysis, that is, the spectral decomposition of the T×T
matrix Y Y ′, where the row t of matrix Y is given by âl,k,t − āl,k, k, l vary-

ing, with āl,k = 1
T

∑
t al,k,t (see the Review Appendix A.4). The associated

eigenvalues are given in decreasing order in the following table:

81.87 13.92 11.88 9.75 5.58 3.05 2.15 1.66 1.44 0.76

0.50 0.27 0.22 0.10 0.05 0.00 0.00 0.00 0.00 0.00

The first eigenvalue is much larger than the other ones. The second, third

and fourth eigenvalues are about of the same magnitude. The components

of the standardized eigenvectors (zero sample mean and unitary variance)

corresponding to the four largest eigenvalues are displayed in Figure 4.3 as

functions of date t.

[Insert Figure 4.3: Eigenvectors from Principal Component Analysis]

The pattern of the eigenvector associated with the largest eigenvalue is com-

patible with the time evolution of the transition probabilities in Figures 4.1

and 4.2. Indeed, small factor values correspond to large default and down-

grade risk (assuming positive factor sensitivities). The troughs in the factor

pattern in the periods 1990-91, 2001-2002 and 2008-09 are associated with

the troughs in upgrade probabilities and the peaks in downgrade probabilities

in Figures 4.1 and 4.2. The pattern of the eigenvector associated with the

second largest eigenvalue features a downward trend in the period 1990-1996

and an upward trend in the period 1996-2009, corresponding to an increase,

resp. a decrease, in downward risk. Finally, the patterns of the eigenvectors

associated with the third and fourth eigenvalues are rather erratic.

Based on the above evidence, we consider a specification with a single

factor [see Gagliardini, Gouriéroux (2005b) for a multifactor analysis using
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French data]. We impose the identification restrictions a5 = 0, b5 = σ5 = 1

and c4 = 0. These identification restrictions concern the parameters of rating

class BBB and the threshold between rating classes BBB and BB [see Section

4.4 iii)]. The estimates of the parameters are displayed in Table 4.4.

[Insert Table 4.4: Parameter estimates]

The upper panel displays the estimates of the threshold parameters ck. As

expected, the estimated thresholds are increasing w.r.t. the rating class in-

dex. The middle panel displays the estimates for the parameters in rows

l = 2, 3, · · · , 8 of the transition matrix, which correspond to rating classes

C, B, ..., AAA in the S&P rating system. The intercepts al are increasing

with respect to the rating index, which confirms that the underlying quan-

titative score for credit quality is larger for the less risky rating classes. The

parameters bl are the sensitivities of the different rating classes to the factor.

The estimated factor sensitivities are all positive, that is, an increase in the

factor improves the underlying quantitative score for credit quality in all rat-

ing classes. The volatility parameters σl are generally smaller for the riskier

rating categories. Finally, the lower panel in Table 4.4 displays the estimates

for the parameters of the factor dynamics. The autoregressive coefficient is

positive and corresponds to a quite strong persistence of the factor.

Let us now discuss the approximated factor path and the link with the

business cycle literature [see also Nickell, Perraudin, Varotto (2000)]. The

approximated factor values f̂nT,t in (4.36) are displayed in Figure 4.4. The

factor estimates are standardized to get zero mean and unit variance in the

sample.

[Insert Figure 4.4: Approximated factor values]

The approximated path of the factor in Figure 4.4 is very close to the compo-

nents of the eigenvector associated with the largest eigenvalue in the PCA of

the estimated canonical factors in Figure 4.3. The cyclical pattern of the fac-

tor in Figure 4.4 is clearly related to the business cycle. Indeed, the troughs
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in the factor pattern are associated with the periods of economic recession

in the US. Hence, as expected we find a link between the credit cycle and

the business cycle. We notice however some lead-lag effects between the two

cycles. For instance, we observe a rather long period of decrease in the credit

factor from the peak in 1996 until to trough in 2002 associated with the

economic recession in 2001. Instead, in the recent economic crisis, there is

a decrease in the credit factor at the inception of the recession in 2008 [see

also Gagliardini, Gouriéroux (2005b) for a causality analysis between credit

and business cycles using French data].

iii) Estimation of asset and migration correlations

The estimated model can be used to get estimates of asset and migration

correlations [De Servigny, Renault (2002), Gagliardini, Gourieroux (2005a)].

Let us consider two firms i and j, that are currently in rating classes l and k,

respectively. The asset correlation between these two firms, conditional on

the current factor value Ft, is defined as: 3

ρa,lk,t = corr [log(Ai,t+1/Li,t+1), log(Aj,t+1/Lj,t+1)|Yi,t = l, Yj,t = k, Ft] .

(4.43)

From equations (4.33) and (4.35), we get:

ρa,lk,t =
blbkV [Ft+1|Ft]√

b2l V [Ft+1|Ft] + σ2
l

√
b2kV [Ft+1|Ft] + σ2

k

=
blbk√

b2l + 1−A2

Ω
σ2

l

√
b2k + 1−A2

Ω
σ2

k

.

The asset correlation ρa,lk,t does not depend on the firms names i and j, but

only on their current ratings l and k, since the individual risks are exchange-

able within a rating class. Moreover, ρa,lk,t ≡ ρa,lk is independent of the

3The conditioning set in the definition of asset correlation ρa,lk,t for firms i and j

involves neither the ratings of other firms, nor the past values of ratings and factors.
Indeed, this additional information is irrelevant due to the conditional independence of
the rating histories given the factor path, and the Markov property of the factor.
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date t, since the conditional variance of the Gaussian autoregressive factor

is constant. The asset correlation involves both micro parameters bl, bk, σ
2
l ,

σ2
k and macro-parameters A, Ω.

The asset correlations ρa,lk for the different rating classes can be arranged

in a symmetric matrix, whose row and column indices l, k correspond to the

current firms ratings. The matrix of estimated asset correlations is displayed

in Table 4.5.

[Insert Table 4.5: Matrix of estimated asset correlations]

Estimated asset correlations range between about 3% for firms within rating

class AAA, and about 26% for firms within rating class C. Hence, the risks

in class AAA are mostly driven by the idiosyncratic component, while the

systematic factor impacts significantly the risks in class C. This effect can

also be seen by comparing the estimated ratios bl/σl for classes l = 2 and

l = 8 in Table 4.4. However, estimated asset correlations are not monotone

with respect to the riskiness of the rating class. Indeed, the estimated asset

correlation is rather large and equal to about 20% for class AA, while it is

equal to about 10% for classes A, BBB, and BB. This finding can be due to

the heterogeneity in these latter classes, whose size is large especially in the

last part of the sample (see Table 4.1).

Let us now consider the migration correlations. The upgrade correlation

between the future ratings of two firms, conditional on the current ratings

and factor value, is defined as:

ρu,lk,t = corr
[
1lYi,t+1=l+1, 1lYj,t+1=k+1|Yi,t = l, Yj,t = k, Ft

]
,

where l and k are the current ratings of the two firms. Hence, upgrade

correlations are correlations between the indicators for the events of rating

upgrades. We show in Appendix C that upgrade correlations can be rewrit-

ten in terms of conditional moments and cross-moments of the stochastic



4.5. APPLICATION TO S&P MIGRATION DATA 127

migration probabilities given the current factor value:

ρu,lk,t =
Cov [πl,l+1,t+1, πk,k+1,t+1|Ft]√

E[πl,l+1,t+1|Ft](1 − E[πl,l+1,t+1|Ft])
√
E[πk,k+1,t+1|Ft](1 − E[πk,k+1,t+1|Ft])

,

(4.44)

where πl,l+1,t+1 = πl,l+1(Ft+1) are the stochastic upgrade probabilities. As

for asset correlations, the upgrade correlations depend on the current ratings

of the two firms, but not on their names. Moreover, upgrade correlations

depend on the current factor value Ft through the conditional distribution of

Ft+1 given Ft, and not only on the conditional variance of the factor. Hence,

upgrade correlations are stochastic and time varying. Finally, we can define

similarly downgrade correlations and we have:

ρd,lk,t = corr
[
1lYi,t+1=l−1, 1lYj,t+1=k−1|Yi,t = l, Yj,t = k, Ft

]
=

Cov [πl,l−1,t+1, πk,k−1,t+1|Ft]√
E[πl,l−1,t+1|Ft](1 − E[πl,l−1,t+1|Ft])

√
E[πk,k−1,t+1|Ft](1 −E[πk,k−1,t+1|Ft])

,

(4.45)

where πl,l−1,t+1 = πl,l−1(Ft+1) are the stochastic downgrade probabilities.

Migration correlations involve the micro-parameters through the transition

probabilities, and the macro-parameters through the conditional expecta-

tions given the current factor value.

We display in Tables 4.6 and 4.7 the matrices of estimated upgrade and

downgrade correlations. The current factor value is Ft = −2.44, which is the

approximated factor value for 2009 found in Section ii).

[Insert Table 4.6: Matrix of estimated upgrade correlations]

[Insert Table 4.7: Matrix of estimated downgrade correlations]

The conditional expectations with respect to the factor are computed by

Monte-Carlo integration based on 1, 000, 000 repetitions (see Review Ap-

pendix A.1). Estimated upgrade correlations are much smaller than asset

correlations, and range between 0.04% for rating class AAA and about 2%
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for rating class C. Moreover, estimated upgrade correlations are monotoni-

cally increasing with respect to the riskiness of the rating class. Estimated

downgrade correlations are typically larger than estimated upgrade correla-

tions. For instance, the estimated downgrade correlation is almost 5% for

two firms in rating class C. The impact of the systematic factor is asymmet-

ric with respect to downside and upside risk, and is more pronounced for the

former.

4.6 Summary

In a general dynamic framework, we have to account for both micro- and

macro-dynamics. We have developed efficient estimation methods for es-

timating micro- and macro-parameters and shown that they have different

rates of convergence. We have also explained how to reconstitute the unob-

servable dynamic factors. The approach has been applied to the dynamic

analysis of corporate rating by means of a stochastic migration model, as

recommended by Basel 2 regulation.
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4.7 Appendix A: Asymptotic Variance-Covariance

Matrix of the Transition Frequencies

Let us denote π̂l,t = (π̂l,1,t, . . . , π̂l,K,t)
′, l = 1, . . . , K, t = 1, . . . , T the rows of

the empirical transition matrices. These rows are asymptotically independent

conditionally on the factor history such that [see e.g. Bartholomew (1982)]:

√
n(π̂l,t − πl,t)

d→ N [0, diag (πl,t) − πl,tπ
′
l,t],

as n → ∞, where n denotes the number of individuals in class l at date

t − 1. The cumulated transition frequencies π̂∗
l,t = (π̂∗

l,1,t, . . . , π̂
∗
l,K−1,t)

′ are

also conditionally independent for different rows and dates, with asymptotic

Gaussian distribution:

√
n(π̂∗

l,t − π∗
l,t)

d→ N [0, Q(diag(πl,t) − πl,tπ
′
l,t)Q

′],

where Q = [ql,k] is the (K − 1, K) matrix with ql,k = 1, if k ≤ l, and = 0,

otherwise.

Finally, the rows of the estimated canonical factor:

âl,t = [Φ−1(π̂∗
l,1,t), . . . ,Φ

−1(π̂∗
l,K−1,t)]

′, l = 1, . . . , K, t = 1, . . . , T,

are also asymptotically independent with asymptotic distribution:

√
n(âl,t − al,t)

d→ N
(
0,Δl,tQ[diag(πl,t) − πl,tπ

′
l,t]Q

′Δl,t

)
,

where Δl,t = diag{(ϕ[Φ−1(πk,l,t)])
−1, k = 1, · · · , K − 1} by applying the δ-

method. The estimated asymptotic variance Σ̂n,t of ât is such that the block

corresponding to row l is:

Σ̂n,l,t =
1

Nl,t−1
Δ̂l,tQ[diag(π̂l,t) − π̂l,tπ̂

′
l,t]Q

′Δ̂l,t,

where Δ̂l,t is defined in terms of the empirical transition frequencies.
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4.8 Appendix B: Likelihood Expansion and

GAML Estimators

i) Expansion of the log-likelihood

We have :

l(yT ; β, θ) =

∫
. . .

∫
exp

{
T∑

t=1

n∑
i=1

log h(yi,t|yi,t−1, ft; β) +
T∑

t=1

log g(ft|ft−1; θ)

}
T∏

t=1

dft.

Let us now expand the integrand w.r.t. ft around f̂nt(β), t = 1, . . . , T , and

define:

ψnt(ft, ft−1) =
n∑

i=1

log h(yi,t|yi,t−1, ft; β) −
n∑

i=1

log h(yi,t|yi,t−1, f̂nt(β); β)

+
1

2

√
n(ft − f̂nt(β))′Int(β)

√
n(ft − f̂nt(β))

+ log g(ft|ft−1; θ) − log g(f̂nt(β)|f̂n,t−1(β); θ).

Then:

l(yT ; β, θ) =

T∏
t=1

n∏
i=1

h(yi,t|yi,t−1, f̂nt(β); β)

T∏
t=1

g(f̂nt(β)|f̂n,t−1(β); θ)

∫
. . .

∫
exp

{
−1

2

T∑
t=1

√
n(ft − f̂nt(β))′Int(β)

√
n(ft − f̂nt(β))

}

exp

{
T∑

t=1

ψn,t(ft, ft−1)

}
T∏

t=1

dft.

Let us introduce the change of variable:

Zt =
√
n[Int(β)]1/2(ft − f̂nt(β)) ⇐⇒ ft = f̂nt(β) +

1√
n

[Int(β)]−1/2Zt.
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Then:

l(yT ; β, θ)

=

(
2π

n

)TL/2 T∏
t=1

[det Int(β)]−1/2
T∏

t=1

n∏
i=1

h(yi,t|yi,t−1, f̂nt(β); β)
T∏

t=1

g(f̂nt(β)|f̂n,t−1(β); θ)

1

(2π)TL/2

∫
. . .

∫
exp

{
−1

2

T∑
t=1

Z ′
tZt

}

exp

{
T∑

t=1

ψn,t

(
f̂n,t(β) +

1√
n

[In,t(β)]−1/2Zt, f̂n,t−1(β) +
1√
n

[In,t−1(β)]−1/2Zt−1

)} T∏
t=1

dZt,

where L is the dimension of the factor ft. Thus, we can write:

l(yT ; β, θ) =

(
2π

n

)TL/2 T∏
t=1

[det In,t(β)]−1/2

·
T∏

t=1

n∏
i=1

h(yi,t|yi,t−1, f̂n,t(β); β)

T∏
t=1

g(f̂n,t(β)|f̂n,t−1(β); θ)Jn,T ,

where:

Jn,T = E

[
exp

{
T∑

t=1

ψn,t

(
f̂n,t(β) +

1√
n

[In,t(β)]−1/2Zt,

f̂n,t−1(β) +
1√
n

[In,t−1(β)]−1/2Zt−1

)}]
,

is an expectation with respect to independent standard normal variables Zt,

t = 1, . . . , T . The result in Proposition 4.2 is deduced by expanding up to

order 1/n the function within the expectation, and taking into account that

the odd power moments of a standard normal variable Z are zero, while

E[Z2] = 1, E[Z4] = 3 and E[Z6] = 15 [see Gagliardini, Gouriéroux, (2009)

for the detailed derivation].

ii) Newton-Raphson expansion of the GA estimator
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By definition of the CSA and GA maximum likelihood estimators, we get:

∂LCSA

∂(β ′, θ′)′
(β̂CSA, θ̂CSA) = 0,

∂LGA

∂(β ′, θ′)′
(β̂GA, θ̂GA) = 0.

By considering the expansion of the second set of first-order conditions around

the CSA estimator, we get:

∂LGA

∂(β ′, θ′)′
(β̂CSA, θ̂CSA) � −∂

2LGA(β̂CSA, θ̂CSA)

∂(β ′, θ′)′∂(β ′, θ′)

⎡
⎢⎣
⎛
⎜⎝

β̂GA

θ̂GA

⎞
⎟⎠−

⎛
⎜⎝

β̂CSA

θ̂CSA

⎞
⎟⎠
⎤
⎥⎦ .

This is equivalent to:⎛
⎜⎝ β̂GA

θ̂GA

⎞
⎟⎠−

⎛
⎜⎝ β̂CSA

θ̂CSA

⎞
⎟⎠ �

[
−∂

2LGA(β̂CSA, θ̂CSA)

∂(β ′, θ′)′∂(β ′, θ′)

]−1
∂LGA(β̂CSA, θ̂CSA)

∂(β ′, θ′)′

�
[
−∂

2LCSA(β̂CSA, θ̂CSA)

∂(β ′, θ′)′∂(β ′, θ′)

]−1
∂LGA(β̂CSA, θ̂CSA)

∂(β ′, θ′)′
.

4.9 Appendix C: Migration Correlations

In this Appendix we prove equations (4.44) and (4.45). By the Law of Iter-

ated Expectation, we have:

E
[
1lYi,t+1=l+1|Yi,t = l, Yj,t = k, Ft

]
= E

[
E
[
1lYi,t+1=l+1|Yi,t = l, Yj,t = k, Ft+1, Ft

] |Yi,t = l, Yj,t = k, Ft

]
= E [P [Yi,t+1 = l + 1|Yi,t = l, Yj,t = k, Ft+1, Ft] |Yi,t = l, Yj,t = k, Ft]

= E [πl,l+1(Ft+1)|Yi,t = l, Yj,t = k, Ft] = E [πl,l+1(Ft+1)|Ft] .

By a similar argument, and by using the conditional independence of the

rating histories given the factor path, we have:

E
[
1lYi,t+1=l+11lYj,t+1=k+1|Yi,t = l, Yj,t = k, Ft

]
= E [P [Yi,t+1 = l + 1, Yj,t+1 = k + 1|Yi,t = l, Yj,t = k, Ft+1, Ft] |Yi,t = l, Yj,t = k, Ft]

= E [πl,l+1(Ft+1)πk,k+1(Ft+1)|Ft] .
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Thus, we get:

V
[
1lYi,t+1=l+1|Yi,t = l, Yj,t = k, Ft

]
= E [πl,l+1(Ft+1)|Ft] (1 −E [πl,l+1(Ft+1)|Ft]),

and:

Cov
[
1lYi,t+1=l+1, 1lYj,t+1=k+1|Yi,t = l, Yj,t = k, Ft

]
= Cov [πl,l+1(Ft+1), πk,k+1(Ft+1)|Ft] .

Equation (4.44) follows. The proof of (4.45) is similar.
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Figure 4.1: Up-grade probabilities.
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The figure displays the time-series of 1-year up-grade probabilities for rating classes AA,

A, BBB (left panel), and BB, B, C (right panel) in the period 1990-2009. Migration

probabilities are in percentage. Shaded periods correspond to NBER recessions in US.
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Figure 4.2: Down-grade probabilities.
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The figure displays the time-series of 1-year down-grade probabilities for rating classes

AAA, AA, A (left panel), and BB, B, C (right panel) in the period 1990-2009. Migration

probabilities are in percentage. Shaded periods correspond to NBER recessions in US.
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Figure 4.3: Eigenvectors from Principal Component Analysis.
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The figure displays the patterns of the eigenvectors associated with the four largest eigen-

values in the principal components analysis of the estimated canonical factors. Shaded

periods correspond to NBER recessions in US.
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Figure 4.4: Approximated factor values.
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The figure displays the pattern of the approximated factor values f̂nT,t [see (4.36)] for

t = 1, ..., 20. The factor estimates are standardized to get zero mean and unit variance in

the sample. Shaded periods correspond to NBER recessions in US.



140 CHAPTER 4. NONLINEAR DYNAMIC PANEL MODEL

Table 4.1: Distribution of firms in the S&P pool across rating classes in 1990

and in 2009.

AAA AA A BBB BB B C Total

1990 147 373 560 347 282 363 48 2120

2009 81 470 1396 1498 1002 1223 190 5860

Table 4.2: 1-year transition matrix.

2009

AAA AA A BBB BB B C D NR

AAA 87.65 8.64 0 0 0 0 0 0 3.71

AA 0 76.17 15.96 0.64 0.21 0 0 0 7.02

A 0 0.36 84.67 7.74 0.43 0.29 0 0.21 6.3

2008 BBB 0 0 2 83.71 5.94 0.8 0.20 0.53 6.81

BB 0 0 0 3.09 72.95 11.48 0.60 0.70 11.18

B 0 0 0.16 0 2.29 69.34 8.42 10.14 9.65

C 0 0 0 0 0 6.32 27.37 48.42 17.89

D 0 0 0 0 0 0 0 100 0

1-year transition matrix for 2009. Transition probabilities are in percentage. Rating classes

are ordered from AAA (lowest risk) to D (default). The column NR corresponds to firms

that are not rated at the end of 2009.
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Table 4.3: Adjusted 1-year transition matrix.

2009

AAA AA A BBB BB B C D

AAA 91.02 8.98 0 0 0 0 0 0

AA 0 81.92 17.16 0.69 0.23 0 0 0

A 0 0.38 90.36 8.26 0.46 0.31 0 0.22

2008 BBB 0 0 2.15 89.83 6.37 0.86 0.21 0.57

BB 0 0 0 3.48 82.13 12.93 0.68 0.79

B 0 0 0.18 0 2.53 76.75 9.32 11.22

C 0 0 0 0 0 7.70 33.33 58.97

D 0 0 0 0 0 0 0 100

Adjusted 1-year transition matrix for 2009. Transition probabilities are in percentage.

Rating classes are ordered from AAA (lowest risk) to C (default).
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Table 4.4: Parameter estimates

c1 = −2.635 c2 = −2.517 c3 = −1.818 c4 = 0 c5 = 6.304

c6 = 22.679 c7 = 64.906

a2 = −2.947 b2 = 0.084 σ2 = 0.045

a3 = −2.888 b3 = 0.230 σ3 = 0.141

a4 = −2.010 b4 = 0.333 σ4 = 0.355

a5 = 0 b5 = 1 σ5 = 1

a6 = 4.524 b6 = 2.849 σ6 = 2.397

a7 = 9.849 b7 = 8.586 σ7 = 5.358

a8 = 78.067 b8 = 8.063 σ8 = 15.084

μ = 1.108 A = 0.628 Ω = 0.062

Estimated parameters for the factor ordered probit model. Thresholds c, intercepts a,

factor sensitivities b, volatilities σ and parameters of the factor dynamics μ, A, Ω are

displayed.

Table 4.5: Matrix of estimated asset correlations.

AAA AA A BBB BB B C

AAA 2.83 7.66 5.96 5.11 4.81 7.76 8.69

AA 7.66 20.73 16.15 13.84 13.04 21.01 23.54

A 5.96 16.15 12.58 10.78 10.15 16.36 18.33

BBB 5.11 13.84 10.78 9.24 8.70 14.02 15.71

BB 4.81 13.04 10.15 8.70 8.20 13.21 14.80

B 7.76 21.01 16.36 14.02 13.21 21.28 23.84

C 8.69 23.54 18.33 15.71 14.80 23.84 26.71

This Table displays the estimated asset correlations ρa,lk between two firms (in percent-
age). Row and column indices l and k, respectively, correspond to the current rating
classes of the firms.
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Table 4.6: Matrix of estimated upgrade correlations.

AA A BBB BB B C

AA 0.04 0.07 0.08 0.10 0.17 0.28

A 0.07 0.11 0.13 0.15 0.26 0.45

BBB 0.08 0.13 0.16 0.19 0.32 0.54

BB 0.10 0.15 0.19 0.22 0.37 0.63

B 0.17 0.26 0.32 0.37 0.64 1.09

C 0.28 0.45 0.54 0.63 1.09 1.85

This Table displays the estimated upgrade correlations ρu,lk,t between two firms (in per-
centage). Row and column indices l and k, respectively, correspond to the current rating
classes of the firms. The current factor value is equal to the approximated factor value for
year 2009.

Table 4.7: Matrix of estimated downgrade correlations.

AAA AA A BBB BB B C

AAA 0.14 0.49 0.29 0.21 0.25 0.34 0.82

AA 0.49 1.79 1.06 0.75 0.92 1.21 2.93

A 0.29 1.06 0.63 0.45 0.55 0.72 1.74

BBB 0.21 0.75 0.45 0.32 0.39 0.51 1.24

BB 0.25 0.92 0.55 0.39 0.48 0.63 1.53

B 0.34 1.21 0.72 0.51 0.63 0.83 2.02

C 0.82 2.93 1.74 1.24 1.53 2.02 4.95

This Table displays the estimated downgrade correlations ρd,lk,t between two firms (in
percentage). Row and column indices l and k, respectively, correspond to the current
rating classes of the firms. The current factor value is equal to the approximated factor
value for year 2009.
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Chapter 5

Prediction, Filtering and

Basket Derivative Pricing

We consider in this chapter an exchangeable set of individual histories, with

only macro-dynamics. From Chapter 1, the dynamics is specified by means

of a state space model. The measurement equations are defined by the con-

ditional pdf h(yit|ft) of the individual variables given the common factor.

The transition equation is defined by the conditional pdf g(ft|ft−1) of the

current factor value given its own past. For expository purpose, we focus in

this chapter on a single factor model, but the results can be generalized to

multiple-factor models.

As usual, the joint distribution of individual histories involves multiple

integrals. Such multiple integrals are also involved when predicting future

values of the individual variables, or when trying to reconstitute the un-

observed factor values from the observed individual variables, the so-called

filtering problem (see Review A.5). Granularity approximations for predic-

tion and filtering problems are the subject of this chapter.

The first section considers granularity adjustments for factor filtering and

extends the example considered in Section 2.2 to a general framework. Then,

the result is used to deduce the granularity adjustment when we are interested

in the prediction of a function of future values of the individual variables.

145
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The results are illustrated in Section 5.2 by various examples. Under the

assumption of absence of arbitrage opportunities in the market, the problem

of derivative pricing is a prediction problem after an appropriate discount-

ing (see Review B.2 on arbitrage). This explains why the results of Section

5.1 can be used to derive approximate prices for derivatives written on an

homogenous basket of individual risks. We give in Section 5.3 examples of

such derivatives recently introduced on financial markets. They include Bas-

ket Default Swap (BDS), derivatives written on the iTraxx index, longevity

bonds, or Mortality Linked Securities (MLS). The corresponding approxi-

mated pricing formulas are given and discussed in Section 5.4. Section 5.5

explains how to introduce appropriately designed derivatives for hedging a

common risk. Finally, in Section 5.6 we present a numerical illustration for

the approximate pricing of BDS.

5.1 Approximate Prediction Formulas

We first derive an approximation at order 1/n of the predictive distribution

of ft given all individual histories up to date t. Then, this formula is used

to derive the prediction of future values of the factor and of the individual

variables.

i) Approximate filtering

Let us assume known the individual histories up to date t. They are

denoted by yi,t, for i = 1, . . . , n. The cross-sectional maximum likelihood

estimate:

f̂nt = arg max
ft

n∑
i=1

log h(yi,t|ft), (5.1)

provides a first approximation of the unknown factor value. This approxima-

tion is based on the cross-sectional information, but neglects the information

contained in past observations. The proposition below explains how it can

be improved. It provides a result valid for the predictive distribution itself,

which can be characterized by the knowledge of its Laplace transform,
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that is, by the knowledge of the prediction of any exponential transform of

ft. This transformation can be real (moment generating function), or com-

plex (characteristic function). In the latter case, it provides directly the

predictions of sine and cosine transforms of ft, and then of any function of

ft by Fourier inversion.

The proposition below is derived in Appendix 5.7 i).

Proposition 5.1: We have

E[exp(uft)|y1,t, . . . , yn,t, ft−1]

= E[exp(uft)|y1,t, . . . , yn,t] + o(1/n)

= exp{u[f̂nt +
1

n
I−1
nt

∂ log g

∂ft
(f̂nt|f̂n,t−1) +

1

2n
I−2
nt Knt] +

1

2n
I−1
nt u

2 + o(1/n)},

where In,t = −1

n

n∑
i=1

∂2 log h

∂f 2
t

(yi,t|f̂nt) and Knt =
1

n

n∑
i=1

∂3 log h

∂f 3
t

(yit|f̂n,t).

The predictive distribution of ft, that is, the filtering distribution, de-

pends on the individual histories by means of a small number of summary

statistics, that are f̂nt, f̂n,t−1, Int, which approximate the cross-sectional in-

formation matrix, and Knt, which is a component in the bias at order 1/n of

the cross-sectional maximum likelihood estimator.

We immediately deduce from Proposition 5.1 the following Corollaries:

Corollary 5.2: The lagged factor values are not informative at order 1/n to

predict ft.

This is a direct consequence of the first equality in Proposition 5.1.

Corollary 5.3: At order 1/n, the filtering distribution is Gaussian:

N

(
f̂nt +

1

n
[I−1

nt

∂ log g

∂ft
(f̂nt|f̂n,t−1) +

1

2
I−2
nt Knt],

1

n
I−1
nt

)
.
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Indeed the Laplace transform of the Gaussian distributionN(m, σ2) is exp[um+

u2σ2/2] and the result is deduced from Proposition 5.1.

Proposition 5.1 and its Corollaries show that the initial non Gaussian

filter can be replaced by an approximate Gaussian filter. This approximate

Gaussianity is a numerical result due to a Laplace approximation of the in-

tegral underlying the conditional expectation in Proposition 1 [see Appendix

5.7 i)], and not a consequence of a Central Limit Theorem.

When n diverges to infinity, the Gaussian distribution in Corollary 5.3 be-

comes degenerate, with mean f̂n,t and zero variance. For finite n, the GA has

two components, that concern the mean and variance of the approximately

Gaussian filtering distribution, respectively. The macrodynamics appears

by means of the adjustment of the mean [see the term
∂ log g

∂ft
(f̂nt|f̂n,t−1)],

whereas cross-sectional effects impact both the mean and variance GA.

From the approximate filtering distribution, we deduce an approximation

of the prediction of any smooth function a(ft) of the factor [see Appendix

5.7 ii)].

Corollary 5.4: For any twice differentiable function a, we have:

E[a(ft)|y1,t, . . . , yn,t] = a(f̂nt) +
1

n

da

df
(f̂nt)[I

−1
nt

∂ log g

dft
(f̂nt|f̂n,t−1) +

1

2
I−2
nt Knt]

+
1

2n

d2a

df 2
(f̂nt)I

−1
nt + o(1/n).

The filtering formula above is a kind of Ito’s formula [Ito (1951)] for

prediction, with both the effect of mean and variance GA at order 1/n.

ii) Approximate prediction

Let us now consider the prediction of a function α(y1,t+h, . . . , yn,t+h, ft+h),

say, performed at time t. By the iterated expectation theorem, we know that:

E[α(y1,t+h, . . . , yn,t+h, ft+h)|y1,t, . . . , yn,t, ft−1] = E[α∗(ft+h)|y1,t, . . . , yn,t, ft−1],
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where α∗(ft+h) = E[α(y1,t+h, . . . , yn,t+h, ft+h)|y1,t+h−1, . . . , yn,t+h−1, ft+h]

depends on the conditioning variables by means of ft+h only.

Let us denote:

α∗(h, ft) = E[α∗(ft+h)|ft] = E[α∗(ft+h)|y1,t, . . . , yn,t, ft]. (5.2)

By the iterated expectation theorem, we deduce the following result:

Proposition 5.5: We have:

E[α(y1,t+h, . . . , yn,t+h, ft+h)|y1,t, . . . , yn,t, ft−1] = E[α∗(h, ft)|y1,t, . . . yn,t, ft−1],

where α∗(h, f) is given in (5.2).

Thus, we can apply Corollary 5.4 to deduce the GA for any predictor.

Corollary 5.6: At order 1/n the predictor of α(y1,t+h, . . . , yn,t+h, ft+h) is

given by:

α∗(h, f̂nt) +
1

n

∂α∗

∂f
(h, f̂nt)[I

−1
nt

∂ log g

∂ft
(f̂nt|f̂n,t−1) +

1

2
I−2
nt Knt] +

1

2n

∂2α∗

∂f 2
(h, f̂nt)I

−1
nt .

The different predictions are simply derived by combining the quantities

α∗(h, f̂nt),
∂α∗

∂f
(h, f̂nt),

∂2α∗(h, f̂nt)

∂f 2
with weights independent of the predic-

tion horizon and of the quantity to be predicted.

iii) Approximate linear state space models

When the factor dynamics is Gaussian autoregressive, the approximate

filtering distribution in Corollary 5.3 coincides up to order o(1/n) with the fil-

tering distribution derived from the Kalman filter applied to an approximate

linear state space model (see Review A.5 on Kalman filter). Specifically, let

us assume that factor (ft) follows a Gaussian autoregressive process:

ft = μ+ γft−1 + ηut, ut ∼ IIN(0, 1), (5.3)

where the autoregressive coefficient γ is such that |γ| < 1. Then, let us

consider the linear state space model that is defined by the measurement
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equation:

ξn,t = ft +
1√
n
I
−1/2
n,t εt, εt ∼ IIN(0, 1), (5.4)

where ξn,t = f̂n,t +
1

2n
I−2
n,tKn,t, and transition equation (5.3). In the measure-

ment equation, the variable ξn,t is the cross-sectional factor approximation

f̂n,t adjusted by a bias correction term at order 1/n, while the variance of

the error is
1

n
I−1
n,t and vanishes when n diverges to infinity. In Appendix 5.7

iii) we show that the filtering distribution of factor ft obtained by applying

the Kalman filter to the linear state space model (5.3)-(5.4) equals the Gaus-

sian distribution in Corollary 5.3 up to terms of order o(1/n). Moreover,

the results in Gagliardini and Gourieroux (2010) show that the approximate

linear state space model (5.3)-(5.4) can be used to compute estimators of the

macro-parameters μ, γ, η, that are asymptotically equivalent to GA maxi-

mum likelihood estimators (see also Chapters 3 and 4 for similar results when

variables yi,t are qualitative). Hence, by appropriately linearizing the orig-

inal nonlinear state space model, we can compute jointly macro-parameter

estimates and filtering distributions by applying the standard Kalman filter.

5.2 Examples

In the standard cases, the GA adjustments for the mean and variance have

simple expressions. However, function α∗(h, f) can be difficult to derive for

large horizon h and complicated function α. We will see in Section 5.5 a

case in which it is easily approximated at order 1/n. We consider below the

computations of mean and variance GA coefficients in various examples.

i) Gaussian linear factor model

The individual variables are real valued, such that:

yi,t = a+ bft + σuit, (5.5)

where the error terms uit are IIN(0, 1) conditional on factor ft. Since the
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factor ft is unobservable, the factor can be transformed such that we have

a = 0 and b = 1. Then, the microdensity is:

n∏
i=1

h(yi,t|ft) =
1

(2πσ2)n/2
exp{−n

2
log σ2 − 1

2σ2

n∑
i=1

(yit − ft)
2}.

The cross-sectional maximum likelihood estimator is f̂nt =
1

n

n∑
i=1

yi,t, and we

have In,t = 1/σ2, Kn,t = 0.

ii) Stochastic volatility model with factor

The individual observations are such that:

yi,t = f
1/2
t ui,t, (5.6)

where factor (ft) is a positive Markov process and the error terms ui,t are

IIN(0, 1) conditional on factor ft. The microdensity is:

n∏
i=1

h(yi,t|ft) =
1

(2π)n/2
exp{−n

2
log ft − 1

2ft

n∑
i=1

y2
it}.

The cross-sectional maximum likelihood estimator of ft is f̂nt =
1

n

n∑
i=1

y2
i,t. It

is equal to a cross-sectional realized variance. Moreover, we have

Int = 1/(2f̂ 2
nt) and Knt = 2/(f̂ 3

nt).

iii) Dichotomous qualitative model with factor

The individual variables are dichotomous qualitative; they are indepen-

dent conditional on the value of a common factor ft with Bernoulli distribu-

tion such that yi,t ∼ B(1, ft). The factor ft takes values in the interval (0, 1).

The cross-sectional estimator of ft is f̂n,t = ȳn,t =
1

n

n∑
i=1

yi,t, and we have:

Int = 1/[ȳn,t(1 − ȳn,t)], Knt = 2(1 − 2ȳn,t)/[ȳn,t(1 − ȳn,t)]
2. (5.7)
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iv) Gamma model with factor

In this case the individual observations are independent, conditional on

factor ft with common distribution γ(ft, λ); thus, factor ft is a stochastic

degree of freedom, with positive real values. The microdensity is:

n∏
i=1

h(yi,t|ft) =
1

Γ(ft)n
exp(−λ

n∑
i=1

yi,t)(

n∏
i=1

yi,t)
ft−1λnft1lmini yi,t>0,

where Γ denotes the gamma function. The cross-sectional maximum likeli-

hood estimator of ft, derived by maximizing
n∏

i=1

h(yi,t|ft) with respect to ft,

does not admit a closed form expression. It is given by:

f̂n,t = ψ−1[
1

n

n∑
i=1

log yi,t + log λ],

where ψ(s) =
d log Γ(s)

ds
is the digamma function, and we have:

In,t =
dψ

ds
(f̂n,t) and Kn,t = −d

2ψ

ds2
(f̂n,t).

v) Beta model with factor

The individual observations take value in the interval (0,1). They are

independent conditionally on factor ft, with density:

h(yi,t|ft) =
Γ(ft)

Γ(αft)Γ[(1 − α)ft]
yαft−1

i,t (1 − yi,t)
(1−α)ft−11l0<yi,t<1, (5.8)

where α is a scalar parameter in (0, 1) and ft a positive factor. For this beta

distribution, the conditional mean E(yi,t|ft) = α is constant. Moreover, the

conditional variance of a variable on [0, 1] is upper bounded:

V (yi,t|ft) ≤ E(yi,t|ft)[1 − E(yi,t|ft)] = α(1 − α),

and the upper bound is reached when the total mass is distributed on the

two-points set {0, 1}. It is easily checked that:

ft + 1 = α(1 − α)/V (yi,t|ft),
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measures the concentration of the distribution. Thus, we get a beta model

with a stochastic concentration parameter.

As in example iv), the cross-sectional maximum likelihood does not admit

a simple closed form expression. It is given by:

f̂n,t = ψ−1
α (

1

n

n∑
i=1

[α log yi,t + (1 − α) log(1 − yi,t)]),

where ψα(s) = αψ(αs) + (1 − α)ψ[(1 − α)s] − ψ(s), and ψ(s) =
d log Γ(s)

ds
.

Moreover, we have:

In,t =
dψα

ds
(f̂n,t) and Kn,t = −d

2ψα

ds2
(f̂n,t).

5.3 Basket Derivatives

A basket derivative is a derivative written on a large number of individual

risks yi,t, for i = 1, . . . , n. These risks can correspond to individual asset re-

turns, or simply to individual risky events not necessarily traded on financial

markets, such as human lifetimes [see the example of longevity in Section 3.4

iii)]. Let us denote by t the current date; a European basket derivative with

time-to-maturity h will pay the contractual amount a(y1,t+h, . . . , yn,t+h), say,

at date t+ h. Its current price is denoted by πt(a, h).

Various basket derivatives have recently been introduced on markets for

securitized products, with the aim of making easier an appropriate hedging

of some common risks.

i) Basket Default Swap

Let us consider at date t a set of loans i = 1, . . . , n called the basket. A

Basket Default Swap (BDS) with maturity t+h, will pay 1$, say, at time

t + h, if the proportion of loans with default at date t + h in the basket is

larger than a given contractual threshold α, with α ∈ (0, 1). Thus, the design

of the BDS is characterized by the composition of the basket, the maturity

and the threshold on the default frequency.
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Let us represent the individual loan histories by means of the default

indicator yi,t, such that yi,t = 1, if the loan is defaulted at time t, and

yi,t = 0, otherwise. The payoff of the BDS is:

a(yi,t+h, . . . , yn,t+h;α) = 1lȳn,t+h>α,

where ȳn,t+h =
1

n

n∑
i=1

yi,t+h.

Let us assume that the basket is homogenous, and that, at a given date,

the default indicators of the loans which are still alive are independent, with

identical Bernoulli distributions B(1, ft), say, conditionally on a common

factor ft. This factor is the stochastic default probability. In the limiting case

of a basket of infinite size, we have ȳn,t+1 ∼ ft+1, ȳn,t+2 ∼ ft+1+(1−ft+1)ft+2,

. . .. Thus, the BDS are derivatives to hedge extreme values of ft+1, ft+1 +

(1− ft+1)ft+2, . . .. When n is large, but finite, the interpretation of the BDS

as an hedging product is similar, but the insurance against common factor

movements cannot be perfect, since the factor values are never observed.

ii) CDO Tranche

A CDO tranche is also based on a contractual basket of loans, with

payoff at t+ h of the type:

a(y1,t+h, . . . , yn,t+h;α1, α2) = (ȳn,t+h − α1)
+ − (ȳn,t+h − α2)

+,

where α1 < α2 are called the attachment and detachment points, respec-

tively, and X+ = max(X, 0). The payoff of the CDO tranche as a function

of the default frequency at maturity is displayed in Figure 5.1.

[Insert Figure 5.1: Payoff of a CDO tranche]

The payoff function is nonlinear and corresponds to the payoff of a portfolio

which is long in a call option written on ȳn,t+h with strike α1 and short in a

call option with strike α2.

iii) Derivatives on iTraxx
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The Credit Default Swaps are life insurance contracts written on in-

dividual corporates and are traded on secundary financial markets. In the

simplest case of digital CDS, the payoff is equal to:

1$, if the corporation is still alive at t+ h,

0$, otherwise.

Such CDS are regularly traded on the market for a variety of names. The

price of such a CDS for maturity h is always smaller than the price of the

riskfree zero-coupon bond with the same maturity. The ratio of the prices at

t of the CDS and of the associated riskfree bond is a quantity yi,t,h between

0 and 1, which can be interpreted as the market price at t of default of the

firm between t and t+ h.

We expect that the common factor involved in individual default occur-

rences will also have an effect on the associated CDS prices. For this reason,

some indexes of CDS prices analogues to an average:

ȳn,t,h =
1

n

n∑
i=1

yi,t,h,

are regularly published. Examples are the iTraxx indexes covering the

European and Asian markets and the CDX indexes for North-American

markets. These indexes can be used as support for derivatives. For instance,

a synthetic CDO tranche written on iTraxx, with time-to-maturity 1 will pay

at t+ 1:

a(y1,t+1,h, . . . , yn,t+1,h) = (ȳn,t+1,h − α1)
+ − (ȳn,t+1,h − α2)

+.

Even if the design of the payoff is similar for the CDO tranche written an

a basket of loans, the two types of derivatives are different, since they are not

written on the same type of individual risks, which are default occurrences

and levels of CDS prices, respectively.

iv) Securitization in Insurance
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Similar principles have been followed in Insurance to hedge longevity

risk, that is, the uncertain general increase of human life. In practice the

derivatives are written on observed mortality rates of individuals. They can

be computed on a given subpopulation in a country, such as the generations

of male born in US between 1960 and 1965. This is the case for the longevity

bonds. They can also correspond to a portfolio of life insurance contracts

securitized by an Insurance company. They are called Mortality Linked

Securities (MLS).

5.4 Derivative pricing

i) No-arbitrage and stochastic discount factor

The no-arbitrage condition is the impossibility to make a certain positive

gain at some future date with an initial zero (or negative) investment (see

Review B.2). The no-arbitrage condition is equivalent to the existence of

a pricing operator, characterized by a stochastic discount factor (sdf)

[Harrison, Kreps (1979)]. More precisely, let us consider an information set

at date t, which includes the current and past values of variables observed

by the investors. In our framework this information set will be:

Jt = (y1,t, . . . , yn,t, ft−1). (5.9)

Thus, the investors know the individual risks, but have an imperfect knowl-

edge on the common factor. They know its past, but not its current value.

Then, a stochastic discount factor for period (t, t+ 1) is a positive function

mt,t+1, which depends on information Jt+1.

Under no-arbitrage, there exists a sdf such that the prices at date t of

European derivative assets with payoff at+h at t+ h can be written as:

πt(a, h) = Et[mt,t+1 . . .mt+h−1,t+hat+h], (5.10)

where Et denotes the expectation conditional on the information Jt at time

t.
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Later on, we assume that the sdf depends on the information by means

of ft only, that is, mt,t+1 = m(ft).

ii) Pricing basket derivatives

Let us now consider an homogenous set (basket) of risks yi,t, with i =

1, . . . , n, t = 1, . . . T , satisfying the assumptions recalled in the introduction

of Chapter 5. A basket derivative pays at t+h an amount a(y1,t+h, . . . , yn,t+h),

say. Its price at date t is:

πt(a, h) = Et[mt,t+1 . . .mt+h−1,t+ha(y1,t+h, . . . , yn,t+h)]. (5.11)

By the iterated expectation theorem and by using the assumptions on

the state and measurement equations, the price can also be written as:

πt(a, h) = Et[m(ft)ψ(ft, a, h)], (5.12)

where:

ψ(ft, a, h) = E[m(ft+1) . . .m(ft+h−1)a(y1,t+h, . . . , yn,t+h)|ft, y1t, . . . , yn,t].

(5.13)

Thus, the price of the initial basket derivative with time-to-maturity h is

equal to the price of a virtual short term derivative written on ft with payoff

ψ(ft, a, h) at t+1. Function m(ft)ψ(ft, a, h) corresponds to function α∗(ft, h)

in Proposition 5.5.

We have seen in Corollary 5.3 that the conditional distribution of ft given

Jt can be approximated at order 1/n by the Gaussian distribution with pdf

given by:

ϕ̂n,t(ft) =
1

σn,t
φ

(
ft − μn,t

σn,t

)
, (5.14)

where φ is the pdf of the standard Gaussian distribution and:

μn,t = f̂nt +
1

n
[I−1

nt

∂ log g

∂ft
(f̂nt|f̂n,t−1) +

1

2
I−2
nt Knt], σ2

n,t =
1

n
I−1
nt .

We deduce the following proposition:
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Proposition 5.7: The price of the basket derivative paying a(y1,t+h, . . . , yn,t+h)

at t+ h is such that:

πt(a, h) =

∫
m(ft)ψ(ft, a, h)ϕ̂n,t(ft)dft + o(1/n),

where function ψ is defined in (5.13) and pdf ϕ̂n,t is given in (5.14).

Up to order 1/n, the basket derivative price can be approximated by a

function of f̂nt, f̂n,t−1, Int and Kn,t only. This approximated price does not

require the knowledge of any past observation of the common factor. This is

important for the two following reasons:

i) First, even if the investors observe the lagged factor values, the econo-

metricians do not. Nevertheless, the latter ones can approximate the deriva-

tive price rather accurately by taking into account the cross-sectional infor-

mation.

ii) Second, indirect observation on the values of the underlying factor

could be deduced from the prices of highly traded derivatives written on the

yi,t+h. Since these factor values are not needed to compute the approximate

derivative price, the approximate pricing formula in Proposition 5.7 can be

used at the creation of a new derivative market to propose a coherent system

of quotes for derivatives. In this situation, the sdf m(.) is not a market cor-

rection for risk, but reflects the risk aversion and choices of the monopolistic

firm, which is quoting first. The sdf has to be updated during the emergence

of this derivative market to account for the adjustment of derivative prices

due to demand and supply.

5.5 Derivatives Written on a Factor Proxy

i) The derivatives and their prices

As mentioned earlier, basket derivatives are usually introduced on finan-

cial markets as instruments to hedge the common risks. Since the common
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factor is not observed, they are usually written on a suitable proxy of this

factor reflecting its risk dynamics. We derive below another approximate

pricing formula when the derivatives are written on the cross-sectional maxi-

mum likelihood estimator of factor ft [see Gagliardini, Gourieroux (2011) for

the proof]. We focus on derivatives with exponential payoff, since these are

the basis for the pricing of derivatives with more general payoff (see Section

5.6).

Proposition 5.8: The true price at time t of the derivative with payoff

exp(uf̂n,t+h) at time t+ h is:

πn,t(u, h) =

∫
m(ft)ψn(ft, u, h)ϕ̂n,t(ft)dft + o(1/n),

where:

ψn(ft, u, h) = E[m(ft+1) . . .m(ft+h−1) exp[uft+h − u

2n
I−2
t+hβt+h +

u2

2n
I−1
t+h)|ft],

and pdf ϕ̂n,t is given in (5.14), with:

It+h = E

[−∂2 log h(yi,t+h|ft+h)
∂f2

|ft+h

]
,

βt+h = Cov

[
∂ log h(yi,t+h|ft+h)

∂f
,
∂2 log h(yi,t+h|ft+h)

∂f2
+
(

∂ log h(yi,t+h|ft+h)
∂f

)2

|ft+h

]
.

Compared to the general result in Proposition 5.7, in the framework of

Proposition 5.8 we exploit the large size n of the basket to approximate func-

tion ψ(ft, u, h) by means of an expectation w.r.t. the factor path ψn(ft, u, h),

up to order o(1/n). This simplifies considerably the numerical calculation of

the approximate derivative price.

A BDS is an example of a basket derivative whose payoff is written on

the ML estimate of the systematic risk factor. Indeed, let us consider a short

term BDS. The individual risks are measured by the 0-1 default occurrences,

with Bernoulli distribution B(1, ft). The cross-sectional ML estimator of ft
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is equal to the observed default frequency f̂n,t = ȳn,t [see 5.2 iii)]. This is

exactly the proxy of the factor used as support for BDS.

Let us now consider a CDO tranche on iTraxx. The underlying individual

risks correspond to the implied default probabilities equal to the ratios of

the CDS prices by the associated riskfree zero-coupon bonds. The individual

risk corresponds to a real variable taking value between 0 and 1. A beta

model with factor [see 5.2 v)] is a natural choice for describing these risks.

Unfortunately, the CDO tranche is written on the average ȳn,t, which is not

equal to the cross-sectional ML estimator.

The adjustment coefficients It and βt in Proposition 5.8 are given in Table

5.1 for the models introduced in Section 5.2.

Table 5.1: The adjustment coefficients

Gaussian linear factor model It = 1/σ2 βt = 0

Stochastic volatility model with factor It = 1/(2f 2
t ) βt = 0

Dichotomous qualitative model with factor It = 1/[ft(1 − ft)] βt = 0

Gamma model with factor It =
dψ

ds
(ft) βt =

d2ψ

ds2
(ft)

Beta model with factor It =
dψα

ds
(ft) βt =

d2ψα

ds2
(ft)

ii) SRF model for default correlation

Let us consider basket derivatives written on a default frequency f̂n,t =

ȳn,t, where the individual risks yi,t are 0-1 variables with distribution B(1, ft).

From Table 5.1 we get It+1 = 1/[ft+1(1 − ft+1)] and βt+1 = 0. We deduce
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that the true price of the exponential derivative with short time-to-maturity

h = 1 is:

πn,t(u, 1) =

∫
m(ft)E(exp[uft+1 +

u2

2n
ft+1(1 − ft+1)]|ft)ϕ̂n,t(ft)dft + o(1/n),

(5.15)

where ϕ̂nt is the Gaussian pdf (5.14) with:

μn,t = f̂n,t+
1

n
[f̂n,t(1−f̂n,t)

∂ log g

∂ft
(f̂n,t|f̂n,t−1)+(1−2f̂n,t)], σ2

n,t =
f̂n,t[1 − f̂n,t]

n
.

One GA term appears by means of the term
u2

2n
ft+1(1− ft+1) in formula

(5.15). It involves the uncertainty on the probability of default at date t+1,

since V [f̂n,t+1|ft+1] =
ft+1(1 − ft+1)

n
. An increase in this uncertainty, for

instance, if n diminishes, implies an increase in the derivative price, that is,

in the price of the corresponding insurance product.

5.6 Application to Approximate Pricing of

BDS

In this section we present a numerical illustration for the approximate pricing

of BDS [see Gagliardini, Gourieroux (2011)].

i) The risk factor model

The risk variables yi,t are binary default indicators for an homogenous

portfolio of corporate loans. Their joint distribution is given by a dynamic

version of the Merton (1974)-Vasicek (1991) Value of the Firm model [see

Chapter 3.1 ii)]. We have yi,t = 1, if Ai,t < Li,t, and yi,t = 0, otherwise,

where Ai,t and Li,t denote the firm asset and liability, respectively. The log

asset/liability ratios follow a linear single risk factor model:

log(Ai,t/Li,t) = −Φ−1(PD) +
√
ρFt +

√
1 − ρui,t, (5.16)
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where shocks ui,t are IIN(0, 1) across firms and time dates, PD ∈ (0, 1)

and ρ ∈ (0, 1). The systematic factor Ft follows a Gaussian autoregressive

process:

Ft = γFt−1 +
√

1 − γ2εt, (5.17)

where εt ∼ IIN(0, 1) and the autoregressive coefficient γ is such that |γ| < 1.

The stationary distribution of Ft is standard Gaussian. Then, the parameter-

ization in (5.16) is such that PD is the unconditional default probability of a

firm, while ρ is the contemporaneous correlation between the asset/liability

ratios of two firms.

The time unit is 1 year. We set an unconditional 1-year default probability

equal to PD = 0.04. We consider three values for the asset correlation,

that are ρ = 0.01, 0.10, 0.30. They cover the range of asset correlation

values which are compatible with default correlation estimates reported in

the literature [De Servigny, Renault (2002), Gagliardini, Gourieroux (2005)],

as well as values suggested by Basel II regulation [BCBS (2001), (2003)]. The

portfolio size is n = 1000.

Model (5.16)-(5.17) is such that the default indicators yi,t, for i varying,

are i.i.d. conditional on factor Ft, with Bernoulli distribution B(1, ft), where

the transformed factor ft is the conditional default probability:

ft = P [log(Ai,t/Li,t) < 0|Ft] = Φ

(
Φ−1(PD) −√

ρFt√
1 − ρ

)
, (5.18)

[see Example iii) in Section 5.2]. The transition density of Markov process

(ft) is deduced from (5.17) and (5.18):

g(ft|ft−1) =
1√

1 − γ2
φ

(
Ft − γFt−1√

1 − γ2

) √
1 − ρ√
ρ

1

φ[Φ−1(ft)]
, (5.19)

where Ft =
Φ−1(PD) −√

1 − ρΦ−1(ft)√
ρ

. This transition pdf is displayed in

Figure 5.2 for different values of the lagged factor when asset correlation is

ρ = 0.10.

[Insert Figure 5.2: Transition pdf of transformed factor ft]
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The lagged value ft−1 has an impact on both the location and the variance

of the distribution of ft. Moreover, the transition pdf is right skewed.

ii) Approximate filtering distribution

In order to assess the accuracy of the Gaussian approximation in Propo-

sition 5.1 and its Corollaries, let us now compare the distribution of factor ft

given the investor information Jt and the Gaussian approximate filtering dis-

tribution in Corollary 5.3. The pdf of ft conditional on Jt = (ft−1, y1,t, ..., yn,t)

is given by:

g(ft|Jt) =
g(ft, y1,t, ..., yn,t)∫
g(ft, y1,t, ..., yn,t)dft

=

n∏
i=1

h(yi,t|ft)g(ft|ft−1)

∫ n∏
i=1

h(yi,t|ft)g(ft|ft−1)dft

=
f

nȳn,t

t (1 − ft)
n(1−ȳn,t)g(ft|ft−1)∫

f
nȳn,t

t (1 − ft)
n(1−ȳn,t)g(ft|ft−1)dft

, (5.20)

and depends on the conditioning information Jt by means of current default

frequency ȳn,t and lagged factor ft−1 only. The Gaussian approximation of

the filtering ditribution is obtained from Corollary 5.3 with factor approxi-

mation equal to the default frequency f̂n,t = ȳn,t, statistics In,t, Kn,t given in

(5.7) [see Section 5.2 iii)], and partial derivative of the factor log-transition

density
∂ log g

∂ft
(f̂n,t|f̂n,t−1) computed from (5.19). The approximate filter-

ing distribution depends on default history by means of current and lagged

default frequencies f̂n,t and f̂n,t−1 only.

In Figure 5.3 we display the predictive distribution of ft given investor

information Jt, for f̂n,t = 0.04 and different values of the lagged factor ft−1.

In Figure 5.4 we display the approximate filtering distribution of ft, for

f̂n,t = 0.04 and different values of the lagged default frequancy f̂n,t−1. Asset

correlation is ρ = 0.10.

[Insert Figure 5.3: Predictive distribution of factor ft given the investor

information]
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[Insert Figure 5.4: Approximate filtering distribution of factor ft]

By comparing Figures 5.2 and 5.3, it is seen that the default history is very

informative for the distribution of the unobservable factor. Indeed, by includ-

ing default frequency f̂n,t in the conditioning set, the distribution of ft given

ft−1 is less dispersed, and much closer to a Gaussian distribution. More-

over, this distribution is rather insensitive to the lagged factor value ft−1,

as explained by Corollary 5.2. Similarly, the Gaussian approximation of the

filtering distribution in Figure 5.4 is quite independent of the lagged default

frequency f̂n,t−1. Finally, by comparing Figures 5.3 and 5.4 we deduce that

the Gaussian approximation of the filtering distribution is rather accurate.

iii) Approximate pricing of BDS

Let us now consider the approximate pricing of short-term BDS. For

expository purpose, we consider the sdfmt,t+1 = 1, that is, we set the risk-free

rate and the risk premium for systematic risk equal to zero. The derivative

payoff is a(y1,t+1, ..., yn,t+1) = 1lf̂n,t+1>α, with α ∈ (0, 1) [see Section 5.3 i)].

By using the Fourier Transform Inversion formula [see e.g. Proposition 2

in Duffie, Pan, Singleton (2000)], it is possible to write the price πt(α, 1) of

such a derivative as an integral transform of the prices of derivatives with

exponential payoff. More precisely, we have:

πt(α, 1) =
1

2
+

1

π

∫ ∞

0

Im [π̃t(iv, 1) exp (−ivαt)]

v
dv, (5.21)

where i is the imaginary unit, Im denotes the imaginary part of a complex

number, and:

π̃t(u, 1) = E
[
exp(uf̂n,t+1)|Jt

]
. (5.22)

We use equation (5.12) and Proposition 5.7 to derive the true and approx-

imate prices of derivatives with exponential payoff, and then apply trans-

formation (5.21) to get the true and approximated prices of the BDS. The

advantage of this approach by Fourier transform inversion is that function

ψ in (5.13) can be computed in closed form for exponential derivatives, up
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to an expectation w.r.t. the factor value. More precisely, by the iterated

expectation theorem we have:

ψ(ft, u, 1) = E
[
exp(uf̂n,t+1)|ft, y1,t, ..., yn,t

]
= E

[
E
[
exp(uf̂n,t+1)|ft+1, y1,t, ..., yn,t

]
|ft, y1,t, ..., yn,t

]
.

Then, by using that the risks yi,t+1 are iid B(1, ft+1) given ft+1, y1,t, ..., yn,t,

we get:

ψ(ft, u, 1) = E
[(

1 + (eu/n − 1)ft+1

)n |ft, y1,t, ..., yn,t

]
= E

[(
1 + (eu/n − 1)ft+1

)n |ft

]
.

Thus, the true and approximated prices of the exponential derivatives are

π̃t(u, 1) =

∫
ψ(ft, u, 1)g(ft|Jt)dft and π̃n,t(u, 1) =

∫
ψ(ft, u, 1)φ̂n,t(ft)dft, re-

spectively, where the pdf g(·|Jt) given the investor information and the ap-

proximate filtering distribution φ̂n,t(·) are derived in Section ii). The true

price depends on the available information by means of f̂n,t and ft−1, while

the approximate price depends on the default history by means of f̂n,t and

f̂n,t−1. The expectations w.r.t. ft+1 in function ψ, and w.r.t. ft in the true

and approximated prices, can be computed by Monte-Carlo integration. The

integral in (5.21) can be computed by numerical integration.

In Figures 5.5 and 5.6 we display the true and approximate BDS price

for time-to-maturity h = 1 year, respectively, as a function of threshold α,

and for different values of default correlation. In Figure 5.5 the available

information is such that f̂n,t = ft−1 = 0.04, and in Figure 5.6 the default

history is such that f̂n,t = f̂n,t−1 = 0.04.

[Insert Figure 5.5: True price of the BDS]

[Insert Figure 5.6: Approximate price of the BDS]

The true BDS price is clearly a decreasing function of the threshold α. Its

pattern corresponds to the (risk-neutral) conditional survivor function of the
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future default frequency f̂n,t+1 given the available information. For small

values of the asset correlation, the BDS price is close to 1 for α smaller than

the current default frequency f̂n,t = 0.04, and close to 0 for α larger than

f̂n,t = 0.04. In the latter case the BDS price corresponds to the market

price of a rare joint default event. The default correlation parameter ρ has

a significant impact on the BDS price. On Figure 5.5 it is seen that an

increase of the asset correlation ρ implies an increase of the BDS price for

α above f̂n,t, and a decrease for α below f̂n,t. This is due to the positive

effect of asset correlation ρ on the conditional variance of f̂n,t+1 given the

available information. By comparing Figures 5.5 and 5.6 we deduce that

the approximation of the BDS price provided by Proposition 5.7 is rather

accurate.

5.7 Summary

In factor models the prediction and filtering formulas involve large-dimensional

integrals. However, for large panels, these formulas can be approximated un-

der closed form at order 1/n, where n is the cross-sectional dimension. These

approximations correspond to the standard prediction and filtering formulas

applied to an appropriately linearized state space model. These approxi-

mated prediction formulas can be applied to compute at order 1/n the prices

of derivatives on a basket of individual risks.
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5.8 Appendix: Approximation of the Filter-

ing Distribution

i) Proof of Proposition 5.1

Let us first derive an approximation for the conditional Laplace transform

of ft given y1,t, ...,yn,t and ft−1 :

Lnt(u) = E
[
exp (uft) |y1,t, ..., yn,t, ft−1

]
=

∫
euftg(ft|ft−1)

n∏
i=1

h (yi,t|ft) dft

∫
g(ft|ft−1)

n∏
i=1

h (yi,t|ft) dft

,

(5.23)

which depends only on y1,t, ..., ynt and ft−1.

Let us expand the micro-density around f̂nt :

n∑
i=1

log h (yi,t|ft) =
n∑

i=1

log h
(
yi,t|f̂nt

)

+
1

2

1

n

n∑
i=1

∂2 log h

∂f 2
t

(
yi,t|f̂nt

) [√
n
(
ft − f̂nt

)]2

+
1

6
√
n

1

n

n∑
i=1

∂3 log h

∂f 3
t

(
yi,t|f̂nt

) [√
n
(
ft − f̂nt

)]3

+
1

24n

1

n

n∑
i=1

∂4 log h

∂f 4
t

(
yi,t|f̂nt

) [√
n
(
ft − f̂nt

)]4
+ o (1/n) .

Let us introduce the change of variable:

X = I
1/2
nt

√
n
(
ft − f̂nt

)
⇐⇒ ft = f̂nt +

1√
n
I
−1/2
nt X.

Then, we have:

n∑
i=1

log h (yi,t|ft) =

n∑
i=1

log h
(
yi,t|f̂nt

)
−1

2
X2+

1

6
√
n
JntX

3+
1

24n
QntX

4+o(1/n),
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where:

Jnt = I
−3/2
nt Knt and Qnt = I−2

nt

1

n

n∑
i=1

∂4 log h

∂f 4
t

(
yi,t|f̂nt

)
.

Thus:
n∏

i=1

h (yi,t|ft) =
n∏

i=1

h
(
yi,t|f̂nt

)
exp

(
−1

2
X2

)
exp

(
1

6
√
n
JntX

3 +
1

24n
QntX

4 + o(1/n)

)

=

n∏
i=1

h
(
yi,t|f̂nt

)
exp

(
−1

2
X2

)
[
1 +

1

6
√
n
JntX

3 +
1

24n
QntX

4 +
1

72n
J2

ntX
6 + o(1/n)

]
. (5.24)

Similarly, we have an expansion for log g(ft|ft−1) as:

log g(ft|ft−1) = log g

(
f̂nt +

1√
n
I
−1/2
nt X|ft−1

)

= log g
(
f̂nt|ft−1

)
+

1√
n
I
−1/2
nt AntX +

1

2n
I−1
nt BntX

2 + o(1/n),

where:

Ant =
∂ log g

∂ft

(
f̂nt|ft−1

)
and Bnt =

∂2 log g

∂f 2
t

(
f̂nt|ft−1

)
.

Thus:

g(ft|ft−1) = g
(
f̂nt|ft−1

)
exp

(
1√
n
I
−1/2
nt AntX +

1

2n
I−1
nt BntX

2 + o(1/n)

)

= g
(
f̂nt|ft−1

)[
1 +

1√
n
I
−1/2
nt AntX +

1

2n
I−1
nt BntX

2 +
1

2n
I−1
nt A

2
ntX

2 + o(1/n)

]
.

(5.25)

Finally, we have an expansion for exp (uft) :

exp (uft) = exp
(
uf̂nt

)
exp

(
u√
n
I
−1/2
nt X

)

= exp
(
uf̂nt

)[
1 +

u√
n
I
−1/2
nt X +

u2

2n
I−1
nt X

2 + o(1/n)

]
.

(5.26)
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Let us now substitute expansions (5.24)-(5.26) into the numerator in equa-

tion (5.23) (the denominator is obtained by setting u = 0). We have:∫
euftg(ft|ft−1)

n∏
i=1

h (yi,t|ft) dft = euf̂nt

n∏
i=1

h
(
yi,t|f̂nt

)
g
(
f̂nt|ft−1

)

EX

[(
1 +

u√
n
I
−1/2
nt X +

u2

2n
I−1
nt X

2 + o(1/n)

)
(

1 +
1√
n
I
−1/2
nt AntX +

1

2n
I−1
nt

(
Bnt + A2

nt

)
X2 + o(1/n)

)
(

1 +
1

6
√
n
JntX

3 +
1

24n
QntX

4 +
1

72n
J2

ntX
6 + o(1/n)

)]
,

where the expectation EX is w.r.t. the standard normal variable X. Since

odd power moments of X are equal to zero, the terms of order 1/
√
n [and

similarly the terms of order 1/ (n
√
n), if the expansion is considered up to

order 1/n2] cancel and the expectation is equal to:

1 +
u

n

[
I−1
nt Ant +

1

2
I
−1/2
nt Jnt

]
+

1

2n
u2I−1

nt + Λnt +O(1/n2),

where:

Λnt =
1

2n
I−1
nt

(
Bnt + A2

nt

)
+

1

2n
I
−1/2
nt JntAnt +

1

8n
Qnt +

1

72n
J2

ntE
[
X6
]
,

is independent of u. Thus, we deduce:

Lnt(u)

= euf̂nt

1 + u
n

(
I−1
nt Ant + 1

2
I
−1/2
nt Jnt

)
+ 1

2n
u2I−1

nt + Λnt +O(1/n2)

1 + Λnt +O(1/n2)

= euf̂nt

(
1 +

u

n

(
I−1
nt Ant +

1

2
I
−1/2
nt Jnt

)
+
u2

2n
I−1
nt + Λnt +O(

1

n2
)

)(
1 − Λnt +O(

1

n2
)

)

= euf̂nt

[
1 +

u

n

(
I−1
nt Ant +

1

2
I
−1/2
nt Jnt

)
+
u2

2n
I−1
nt +O(

1

n2
)

]
.

By definition of Jnt and Ant, we conclude:

Lnt(u) = euf̂nt

{
1 +

u

n

(
I−1
nt

∂ log g

∂ft

(
f̂nt|ft−1

)
+

1

2
I−2
nt Knt

)
+

1

2n
u2I−1

nt

}
+O(1/n2),
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and

Lnt(u) = exp

{
uf̂nt +

u

n

(
I−1
nt

∂ log g

∂ft

(
f̂nt|ft−1

)
+

1

2
I−2
nt Knt

)
+

1

2n
u2I−1

nt +O(1/n2)

}
.

Another approximation valid at order 1/n can be obtained by replacing

ft−1 by f̂n,t−1. We have:

Lnt(u) = exp

{
uf̂nt +

u

n

(
I−1
nt

∂ log g

∂ft

(
f̂nt|f̂n,t−1

)
+

1

2
I−2
nt Knt

)
+

1

2n
u2I−1

nt + o(1/n)

}
.

Then, Proposition 5.1 follows.

ii) Proof of Corollary 5.4

Let us expand function a at second-order around f̂nt:

a (ft) = a
(
f̂nt

)
+
da

df

(
f̂nt

)(
ft − f̂nt

)
+

1

2

d2a

df 2

(
f̂nt

)(
ft − f̂nt

)2

+o

((
ft − f̂nt

)2
)
.

Then, by computing the conditional expectation w.r.t. the Gaussian density

for ft given in Corollary 5.3, Corollary 5.4 follows.

iii) Approximate linear state space model and Kalman filter

Let us prove that the filtering distribution obtained by applying the

Kalman filter on the linear state space model (5.3)-(5.4) equals the Gaussian

distribution in Corollary 5.3 up to order o(1/n). For expository purpose, we

set μ = 0 (the proof for μ �= 0 is similar).

From the Kalman filter (see Review A.5), the distribution of ft given the

history ξn,t, ξn,t−1, ... is Gaussian, with mean f̂t|t and variance Σ̂t|t satisfying

recursive equations. To write these equations, let f̂t|t−1 and Σ̂t|t−1 denote

the conditional mean and variance of factor ft given the lagged information

ξn,t−1, ξn,t−2, .... Then, from Review A.5 we have:

f̂t|t = f̂t|t−1 +Kt|t(ξn,t − f̂t|t−1)

= γ(1 −Kt|t)f̂t−1|t−1 +Kt|tξn,t, (5.27)

and:

Σt|t = (1 −Kt|t)Σt|t−1, (5.28)



5.8. APPENDIX: APPROXIMATION OF THE FILTERING DISTRIBUTION171

where the Kalman gain Kt|t is such that:

Kt|t =
Σt|t−1

Σt|t−1 +
1

n
I−1
n,t

, (5.29)

and:

Σt|t−1 = γ2Σt−1|t−1 + η2. (5.30)

From equations (5.28)-(5.30) we deduce:

Σt|t =
1

n
I−1
n,t + o(1/n), (5.31)

Σt|t−1 = η2 +O(1/n), Kt|t = 1 − 1

nη2
I−1
n,t + o(1/n).

Then, from equation (5.27) we get:

f̂t|t =
γ

nη2
I−1
n,t f̂t−1|t−1 + ξn,t − 1

nη2
I−1
n,t ξn,t + o(1/n)

= f̂n,t +
1

2n
I−2
n,tKn,t − 1

nη2
I−1
n,t (f̂n,t − γf̂t−1|t−1) + o(1/n).

We deduce:

f̂t|t = f̂n,t +
1

2n
I−2
n,tKn,t − 1

nη2
I−1
n,t (f̂n,t − γf̂n,t−1) + o(1/n). (5.32)

Then, by using that
∂ log g

∂ft

(ft|ft−1) = −ft − γft−1

η2
, from equations (5.31)

and (5.32) the conclusion follows.
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Figure 5.1: Payoff of a CDO tranche.
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The figure displays the payoff of a CDO tranche as a function of the default frequency

ȳt+h at maturity. Thresholds α1 and α2 are the attachment and detachment points,

respectively.
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Figure 5.2: Transition pdf of transformed factor ft.
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The Figure plots the conditional distribution of factor ft given lagged value ft−1, for differ-

ent values of ft−1. The conditioning values ft−1 are given in terms of their corresponding

Gaussian factor values Ft−1; they are Ft−1 = 0, Ft−1 = 2, Ft−1 = −2, respectively. Asset

correlation is ρ = 0.10.
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Figure 5.3: Predictive distribution of ft given the investor information.
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The Figure plots the conditional distribution of factor ft given investor information Jt,

such that f̂n,t = 0.04, and for different values of ft−1. The conditioning values of ft−1

are given in terms of their corresponding Gaussian factor values Ft−1; they are Ft−1 = 0,

Ft−1 = 2, and Ft−1 = −2 respectively. Asset correlation is ρ = 0.10.
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Figure 5.4: Approximate filtering distribution of ft.
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The Figure plots the approximate distribution of ft given past default history, such that

f̂n,t = 0.04, and for different values of f̂n,t−1. Asset correlation is ρ = 0.10.
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Figure 5.5: True price of the BDS.
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The Figure plots the price of the BDS at time-to-maturity 1 year as a function of threshold

α, for three different values of asset correlation ρ = 0.01 (dotted line), ρ = 0.10 (solid line)

and ρ = 0.30 (dashed line). The available information is such that f̂n,t = ft−1 = 0.04.
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Figure 5.6: Approximate price of the BDS.
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The Figure plots the approximate price of the BDS at time-to-maturity 1 year as a function

of threshold α, for three different values of asset correlation ρ = 0.01 (dotted line), ρ = 0.10

(solid line) and ρ = 0.30 (dashed line). The past default history is such that f̂n,t = f̂n,t−1 =

0.04.
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Chapter 6

Granularity for Risk Measures

The current interest in risk measures is explained by the recent changes in

regulation in the Finance and Insurance industries. New measures of risk

have been introduced and are commonly used for risk management and risk

control. In particular, they are the basis for determining the regulatory

capital required to hedge the risk of a portfolio, or of a business line in a

balance sheet.

The main risk measures, that are, the Value-at-Risk (VaR), the Ex-

pected Shortfall (ES) or TailVaR, and the Distortion Risk Measures

(DRM) are introduced in Section 6.1. Section 6.2 deals with the local anal-

ysis of risk measures, that is, their sensitivity to shocks on the distribution

of the portfolio value. This local analysis is used in Section 6.3 to determine

the granularity adjustment on theoretical risk measures for large homoge-

nous portfolios in a static factor model. The extension to dynamic factor

models is discussed in Section 6.4, where we consider how to account for

the nonobservability of the current and lagged factor values. We finally con-

sider in Section 6.5 the computation of risk measures for large portfolios of

derivative assets written on a factor proxy (see also Chapter 5).

181
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6.1 Risk Measures

Let us consider a given portfolio of assets. This portfolio can include stocks,

corporate bonds, consumer loans, mortgages, or life insurance contracts. At

date t, the value Wt of this portfolio is known, but its future value Wt+h at

horizon h is unknown. This uncertainty is summarized in the Profit and

Loss (P&L) distribution, which gives the conditional distribution of Wt+h

given the information available at time t. To hedge this uncertainty some

reserves R are introduced. With these reserves, which receive a zero return,

the total value of the portfolio at date t+ h becomes Wt+h +R.

i) Value-at-Risk

Let us fix a probability of loss α, where α = 1, 5, or 10%, say. The

reserve level can be chosen such that:

Pt(Wt+h +R < 0) = α, (6.1)

where Pt denotes the conditional P&L distribution. By solving equation

(6.1), we see that the corresponding reserve level is the opposite of the α-

quantile of the P&L distribution. This level of reserve:

R = R(t, h, α), (6.2)

depends on date t, in particular on the information available at this date, on

horizon h (there is a term structure of risk and a term structure of reserve),

and on the loss probability α. This reserve R(t, h, α) is a decreasing function

of α.

When the assets in the portfolio are stocks traded on the market, the

portfolio value Wt generally features a nonstationary evolution, which can

make difficult the determination of R. To circumvent this technical difficulty,

it has been proposed to introduce the Value-at-Risk defined by:

V aR(t, h, α) = R(t, h, α) +Wt. (6.3)

Thus, the VaR is characterized by:

Pt(Wt+h −Wt < −V aR(t, h, α)] = α, (6.4)
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and is the opposite of the conditional α-quantile of the distribution of change

in portfolio value (see Figure 6.1). The VaR defined on these changes features

a more stationary evolution than the reserve.

[Insert Figure 6.1: VaR defined from P&L distribution]

The reserve and VaR can equivalently be defined from the Loss and

Profit (L&P) distribution as:

Pt(−Wt+h < R) = 1 − α = α∗, (6.5)

Pt(Wt −Wt+h < V aR) = 1 − α = α∗. (6.6)

From (6.5), the level of reserve is the (1 − α) -quantile of the loss and profit

distribution. In this approach, α∗ = 1 − α takes large values such as 99%,

95%, or 90%. Definitions (6.1)-(6.4) and (6.5)-(6.6) are equivalent, but their

choice depends on the interest. The P&L definition is generally considered

by banks, which focus on profits, whereas the L&P definitions are typically

adopted by regulators, which are more concerned in controlling losses.

In case of primary products such as consumer loans, or mortgages, which

are not directly traded on financial markets, the benchmark value Wt cor-

responds to the accounting value, which is generally the contractual value

of the loan or mortgage. This value does not account for default risk and

systematically overestimate the ”true” value of the portfolio. The difference

Wt − Wt+h measures the loss due to default and is always positive. The

associated VaR is called CreditVaR (see Figure 6.2).

[Insert Figure 6.2: CreditVaR defined from L&P distribution]

Example 6.1: Gaussian P&L distribution

Let us consider a Gaussian P&L distribution:

Wt+h|It ∼ N(mt, σ
2
t ),

where It is the available information, mt and σ2
t the conditional mean and
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variance of the future portfolio value, respectively. We have:

Pt[Wt+h +R < 0] = α

⇐⇒ Pt[mt + σtZ +R < 0] = α

⇐⇒ Pt

(
Z < −R +mt

σt

)
= α

⇐⇒ Φ

(
−R +mt

σt

)
= α

⇐⇒ −R = mt + σtΦ
−1(α) = Qt(α), say, (6.7)

where Z denotes a standard normal variable, and

Qt(α) = mt + σtΦ
−1(α), (6.8)

is the quantile function, that is, the inverse of the cdf of the profit and loss dis-

tribution. Since α is small in practice, Φ−1(α) is negative and, from (6.7), we

see that the reserve diminishes when the expected portfolio value increases,

and increases when its variance increases. In practice, the P&L distributions

often feature fat tails and the Gaussian model above is inappropriate, leading

to an underestimation of the risk and of the reserve.

The levels of the reserves, that are the quantiles, are natural measures

of risk. They are rather easy to understand by professionals and are largely

used in the industry. From the regulatory point of view, the required capital

has to be defined without ambiguity, and therefore It, h, α have to be fixed.

These quantities typically depend on the type of risk, that is, market risk,

credit risk, etc., and on the level of sophistication of the risk model. For

instance, for credit risk in the ”standard approach” of Basel 2 (Pillar 1) one

generally chooses h = 1 year and α = 5%, while the information set It cor-

responds to the absence of information. Then, the P&L distribution reduces

to an unconditional distribution, called historical in Basel 2 terminology.

However, for internal models of risk management (which correspond to Pillar

2 of Basel 2) and in the ”advanced approach”, several conditional quantiles

have to be followed jointly to take into account the effect of information, the

term structure of risk and the more or less severe risk control.
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ii) Distortion Risk Measures

The set of all quantiles risk measures, that are the VaR’s for all risk

levels α and terms h, is highly informative, since it provides the entire P&L

distribution for all horizons. However, when a single VaR is selected, for

instance to define the required capital, this risk measure has a drawback.

Indeed, it accounts for the probability of loss, but not for the magnitude of

the loss, when a loss arises. An extended set of risk measures is obtained by

considering weighted combinations of opposite quantiles.

Definition 6.1: Let us consider a profit and loss distribution with quantile

function Q, and a positive probability measure H. A distortion risk measure

(DRM) is defined by:

π(Q,H) = −
∫ 1

0

Q(u)dH(u).

The measure H is called the distortion measure.

This family of risk measures has been extensively studied in a series of

papers by Wang [Wang (1996), (2000)]. In order a DRM to have desirable

properties as a risk measure, function H has to be concave (see Review

Appendix B.3).

Example 6.2: VaR

The Value-at-Risk at level α corresponds to the limiting case of a point

mass distortion measureHα(u) = 1lu≥α (see Figure 6.3). The lack of concavity

of the indicator function explains some drawbacks of the VaR (α) used as a

single measure of risk.

[Insert Figure 6.3: VaR distortion measure]

Example 6.3: TailVaR

When Hα(u) = min(u/α, 1), with α ∈ (0, 1) (see Figure 6.4), we get the
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equally weighted average of VaR on the interval [0, α]:

π(Q,Hα) = −
∫ α

0

Q(u)

α
du

= − 1

α

∫ Q(α)

0

vdF (v) [by change of variable v = Q(u)]

= E[−W |W < Q(α)],

which measures the expected loss behind the VaR. This measure is also called

the Expected Shortfall [Acerbi, Tasche (2002)].

[Insert Figure 6.4: Distortion measure for the TailVaR]

6.2 Local Analysis of a Quantile Function

Let us now analyse the sensitivity of a risk measure with respect to a small

change in the P&L distribution.

i) Bahadur’s expansion

Let us consider a sequence of one-dimensional continuous distributions

with cdf Fn and positive density fn, tending to a probability distribution

with cdf F and positive density f , as the index n tends to infinity. We

assume that the limiting density is differentiable. The assumptions above

imply the existence of the quantile functions Qn and Q defined by:

Fn[Qn(u)] = u, F [Q(u)] = u, ∀u ∈ (0, 1). (6.9)

Proposition 6.1: (Bahadur’s expansion) We have:

Qn(u) −Q(u) � −Fn[Q(u)] − F [Q(u)]

f [Q(u)]
.

Proof: From definitions (6.9) of the quantile functions, we deduce that:

0 = Fn[Qn(u)] − F [Q(u)]

= Fn[Qn(u)] − Fn[Q(u)] + Fn[Q(u)] − F [Q(u)],
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and thus:

Fn[Qn(u)] − Fn[Q(u)] = − (Fn[Q(u)] − F [Q(u)]) .

By considering a first-order expansion of the left hand side, we get:

fn[Q(u)][Qn(u) −Q(u)] � − (Fn[Q(u)] − F [Q(u)]) .

Equivalently we have:

Qn(u) −Q(u) � −Fn[Q(u)] − F [Q(u)]

fn[Q(u)]

� −Fn[Q(u)] − F [Q(u)]

f [Q(u)]
,

which is the result of the Proposition.

QED

The first-order expansion of the quantile function has been derived in Ba-

hadur (1966) and is largely used in nonparametric estimation of the quantile

function [see e.g. Koenker (2005)], or equivalently in nonparametric estima-

tion of the VaR [see e.g. Gouriéroux (2009)]. As seen in Section 6.3, in the

applications to risk measures, the difference Fn −F is of order 1/n, and thus

by Proposition 6.1, the same order is expected for the difference between the

quantile functions.

ii) Interpretation in terms of variables

It is useful to give an interpretation of Bahadur’s expansion in terms of

random variables. For this purpose, let us assume that Fn is the distribution

of a sum Yn = Y + Wn, where variable Wn tends to zero, when n tends to

infinity. Then the limiting distribution F is simply the distribution of Y .

The proposition below is proved in Appendix 6.6.

Proposition 6.2: Let us assume that Fn is the distribution of Yn = Y +

Wn, with Wn tending to zero as n → ∞. Let us also assume that Y has
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a continuous distribution with positive differentiable density f , that Wn is

second-order integrable conditional on Y = y, and that E(W 2
n |Y = y) is

differentiable with respect to y. Then, the Bahadur’s expansion can also be

written as:

Qn(u) −Q(u) � E[Wn|Y = Q(u)]

−1

2

d log f [Q(u)]

dy
E[W 2

n |Y = Q(u)] − 1

2

∂E[W 2
n |Y = Q(u)]

∂y
.

(6.10)

Equivalently, the sum of the last two terms in the right hand side of approx-

imation (6.10) is equal to:

− 1

2f [Q(u)]

d

dy

{
f(y)E[W 2

n |Y = y]
}

y=Q(u)
.

The interpretation in terms of random variables has been first derived

in the literature when Wn = εnW , where εn is a scalar tending to zero [see

Gouriéroux, Laurent, Scaillet (2000), Wilde (2001), Martin, Wilde (2003)].

In this case, we get:

Qn(u) −Q(u) � εnE[W |Y = Q(u)]

−ε
2
n

2

(
∂ log f [Q(u)]

∂y
E[W 2|Y = Q(u)] +

∂E[W 2|Y = Q(u)]

∂y

)
.

(6.11)

In the granularity framework, we have εn = 1/
√
n and E[W |Y = Q(u)] = 0.

Thus, only the second component of the right hand side of (6.11) matters

(see Sections 6.3 and 6.4).

iii) Local analysis of a distortion risk measure
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This local analysis is immediately deduced from the definition of a DRM.

Indeed, we have:

π(Qn, H) − π(Q,H) = −
∫ 1

0

[Qn(u) −Q(u)]dH(u)

�
∫ 1

0

Fn[Q(u)] − F [Q(u)]

f [Q(u)]
dH(u),

if we consider the expression of Bahadur’s expansion in Proposition 6.1.

6.3 Granularity Adjustment in the Static Model

In this section, we consider a large portfolio of homogenous risks y1,t+1, . . . , yn,t+1,

satisfying the assumption of exchangeability. Conditionally on the factor

ft+1, the risks are i.i.d. with density h(yi,t+1|ft+1). The future portfolio

value is Wt+1 =

n∑
i=1

yi,t+1. Let us assume that the underlying factor values

ft, with t varying, are i.i.d. with density g, which corresponds to a static

framework. The P&L density of Wt+1 is:∫
h∗n(w|ft+1)g(ft+1)dft+1, (6.12)

where h∗n denotes the n− th convoluate1 of density h(.|ft+1). It is difficult to

compute the n− th convoluate, which involves a n− 1 dimensional integral.

The aim of this section is to derive an approximation of the P&L distribution

valid up to order 1/n and to deduce the corresponding approximation of the

risk measures by applying the results of Section 6.2.

We first consider the static Gaussian linear factor model. Then the results

are extended to the general static framework. In this section, we consider

the level of reserve by individual asset, that is, the total reserve divided by

n. Equivalently, we focus on the quantile of Wt+1/n = ȳn,t+1.

1That is the density of the sum of independent random variables with identical distri-
bution.
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i) Static Gaussian linear factor model

The individual risks are:

yi,t+1 = Ft+1 + ui,t+1, i = 1, . . . , n,

where Ft+1 ∼ N(m, σ2), ui,t+1 ∼ IIN(0, η2), and Ft+1 and ui,t+1 for i =

1, . . . , n are serially and cross-sectionally independent. In this simple Gaus-

sian framework, the P&L distribution (6.11) is known in closed form:

Wt+1 ∼ N [nm, n2σ2 + nη2],

and:

Wt+1/n ∼ N(m, σ2 + η2/n).

The quantile function for Wt+1/n is (see Example 6.1):

Qn(u) = m+ (σ2 + η2/n)1/2Φ−1(u).

Its first-order expansion in 1/n is:

Qn(u) = m+ σΦ−1(u) +
1

2n

η2

σ
Φ−1(u) + o(1/n)

= Q(u) +
1

2n

η2

σ
Φ−1(u) + o(1/n). (6.13)

The quantile function Q(u) corresponds to a limit portfolio of infinite size

with Gaussian P&L distribution N(m, σ2). Then, the second term in the

right hand side of (6.13) gives the GA for the quantile at order 1/n. This

GA depends on the loss probability u and on the ratio of the common risk

variance and the idiosyncratic risk volatility.

The GA for the quantile can also be derived by considering the Bahadur’s

expansion. We have:

Wt+1/n = Ft+1 +
1

n

n∑
i=1

ui,t+1 = Ft+1 + ūn,t+1,
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where ūn,t+1|Ft+1 ∼ N(0, η2/n). In particular we have:

E(ūn,t+1|Ft+1) = 0, E(ū2
n,t+1|Ft+1) = η2/n,

d

df
E(ū2

n,t+1|Ft+1 = f) = 0.

By using Proposition 6.2 with Y = Ft+1 and Wn = ūn,t+1, we get:

Qn(u) � Q(u) − 1

2

d log f [Q(u)]

dy

η2

n
,

where f and Q are the pdf and the quantile function of Ft+1, respectively.

Now, we know that:

log f(y) = −1

2
log 2π − 1

2
log σ2 − 1

2

(y −m)2

σ2
,

and Q(u) = m+ σΦ−1(u). We deduce that:

d log f [Q(u)]

dy
= −Q(u) −m

σ2
= −Φ−1(u)

σ
.

By substitution, we recover formula (6.13).

ii) The general static framework

Let us now consider the general static framework of iid factor values.

The factor is not necessarily Gaussian, can be multivariate, and the relation

between factor and individual risks can be nonlinear. The standardized P&L

is the distribution of Wt+1/n =
1

n

n∑
i=1

yi,t+1. Since the individual risks are

independent and identically distributed given the future factor value, we have

at order 1/n:

(Wt+1/n)|Ft+1 ≈ N [m(Ft+1), σ
2(Ft+1)/n], (6.14)

where

m(Ft+1) = E[yi,t+1|Ft+1] and σ2(Ft+1) = V [yi,t+1|Ft+1]. (6.15)

The approximation (6.14) is derived by applying the CLT in the cross-section

at date t+ 1 conditional on the factor value Ft+1.
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Equivalently, we can write:

Wt+1/n � m(Ft+1) +
σ(Ft+1)√

n
Z, (6.16)

where Z ∼ N(0, 1) is independent of Ft+1. Then, by applying Proposition

6.2 with Y = m(Ft+1) and Wn =
σ(Ft+1)√

n
Z, we have:

E

(
σ(Ft+1)Z√

n
|m(Ft+1)

)
=

1√
n
E[σ(Ft+1)|m(Ft+1)]E(Z) = 0,

and:

E

(
σ2(Ft+1)Z

2

n
|m(Ft+1)

)
= E

[
σ2(Ft+1)Z

2

n
|m(Ft+1)

]

= E

[
σ2(Ft+1)

n
|m(Ft+1)

]
E(Z2)

=
1

n
E[σ2(Ft+1)|m(Ft+1)],

where we have used the independence between Z and Ft+1. We deduce the

GA for the VaR.

Proposition 6.3: In a static factor model we have:

Qn(u) −Q(u) � − 1

2n

(
∂ log f [Q(u)]

∂y
E[σ2(Ft+1)|m(Ft+1) = Q(u)]

+
∂E [σ2(Ft+1)|m(Ft+1) = Q(u)]

∂y

)
,

where f (resp. Q) is the pdf (resp. the quantile function) of m(Ft+1).

The quantile Q(u) is the CSA approximation. This quantile is computed

for the limit (virtual) portfolio of infinite size and corresponds to the quantile

of the distribution of m(Ft+1). Indeed, by the LLN applied in the cross-

section at date t + 1 conditional on Ft+1, the standardized portfolio value

Wn,t+1 converges to the conditional mean m(Ft+1). The CSA approximation
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of the portfolio quantile by means of functionQ(u) corresponds to the Vasicek

(1991) approach. The GA Qn(u)−Q(u) in Proposition 6.3 is the correction

at order 1/n for the finite portfolio size. This GA involves the density of

m(Ft+1), the conditional mean of volatility σ2(Ft+1) given m(Ft+1), as well

as their first-order derivative, evaluated at the loss level Q(u).

Example 6.4: Let us consider a portfolio of zero-coupon corporate bonds

with time-to-maturity 1 and same nominal equal to 1. The risk variables

yi,t+1 are dichotomous and correspond to the individual default events. Then,

Wt+1/n corresponds to the portfolio loss per bond. The risk variables yi,t+1

are conditionally i.i.d. with Bernoulli distribution B(1, Ft+1) given Ft+1. The

factor Ft+1 admits values in (0, 1) and corresponds to the stochastic default

probability at date t+ 1. We have m(Ft+1) = Ft+1 and σ2(Ft+1) = Ft+1(1 −
Ft+1). From Proposition 6.3 we deduce:

Qn(u) −Q(u)

� − 1

2n

{
d log f [Q(u)]

dy
E[σ2(Ft+1)|Ft+1 = Q(u)] +

∂E[σ2(Ft+1)|Ft+1 = Q(u)]

∂y

}

= − 1

2n

[
d log f [Q(u)]

dy
Q(u)[1 −Q(u)] + 1 − 2Q(u)

]
,

where f (resp. Q) is the density of Ft+1 (resp. the quantile function).

When Φ−1(Ft) follows a Gaussian distribution N(μ, η2), we get f(y) =
1

η
φ

[
Φ−1(y) − μ

η

]
/φ[Φ−1(y)] and Q(u) = Φ[μ + ηΦ−1(u)], for y, u ∈ (0, 1).

For instance, in the single risk factor model for default based on the Merton

(1974) and Vasicek (1991) structural models, we have [see Section 3.1, in

particular equation (3.6)]:

μ =
Φ−1(PD)√

1 − ρ
, η2 =

ρ

1 − ρ
,

where PD is the unconditional default probability and ρ is the asset corre-

lation. Then, we get the CSA quantile function [see Gagliardini, Gourieroux
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(2010)]:

Q(u) = Φ

[
Φ−1(PD) +

√
ρΦ−1(u)√

1 − ρ

]
, (6.17)

and the GA:

GA =
1

2n

{
Q(u)[1 −Q(u)]

φ(Φ−1[Q(u)])

(√
1 − ρ

ρ
Φ−1(u) − Φ−1[Q(u)]

)
+ 2Q(u) − 1

}
.

(6.18)

iii) A discussion of the GA order

As for estimation (Chapters 2-4) and prediction (Chapter 5), the GA for

the quantile is of order 1/n. This is due to the unobservable factor. To

clarify this point, let us consider the Gaussian model without factor, that is

σ2 = 0 in Section 6.3 i). The distribution of the standardized portfolio value

becomes:

Wt+1/n ∼ N(m, η2/n).

The cdf of this distribution is Φ

(
y −m

η/
√
n

)
. Its quantile function is Qn(u) =

m+
η√
n

Φ−1(u), and its Laplace transform is:

ψ(u) = E[exp(uW/n)] = exp

(
um+

u2η2

n

)
.

The first terms in the expansions of these functions with respect to 1/n have

different orders. This order is 1/
√
n for the quantile function, 1/n for the

Laplace transform. The convergence is very fast and the order depends on

argument y for the cdf, whereas we expect a uniform order for deducing from

Bahadur’s expansion a uniform order for the quantile function.

To understand why the order is 1/n uniformly when an unobservable

factor is introduced, while the order can be varying without this unobservable

factor, let us consider the expectation of a twice continuously differentiable



6.3. GRANULARITY ADJUSTMENT IN THE STATIC MODEL 195

function a of Wt+1/n. We have:

E[a(Wt+1/n)]

= E[a(m+
η√
n
Z)], where Z ∼ N(0, 1),

� a(m) +
da(m)

dm

η√
n
E(Z) +

1

2

d2a(m)

dm2

η2

n
E(Z2) + o(1/n)

= a(m) +
η2

2n

d2a(m)

dm2
+ o(1/n). (6.19)

The difficulty encountered for the cdf and quantile function in a model with-

out unobservable factor is due to the interpretation of the cdf as an expec-

tation of an indicator function:

Fn(y) = E[1lWt+1/n<y] = E[1lm+ η√
n

Z<y].

Since the indicator function is not differentiable, the expansion (6.19) does

not apply. Let us now consider the model with factor Ft+1 ∼ N(0, σ2), say.

We have:

Fn(y) = E[1lWt+1/n<y] = E[1lm+Ft+1+
η√
n

Z<y] = E[a(Z)],

where:

a(Z) = P

[
m+ Ft+1 +

η√
n
Z < y|Z

]
= Φ

⎛
⎜⎝y −m− η√

n
Z

σ

⎞
⎟⎠ .

This intermediate integration with respect to the factor transforms the dis-

continuous indicator function into the smooth conditional probability func-

tion. This smoothing explains why the GA order 1/n is uniform in a factor

model.

iv) Illustration: CSA and GA VaR in the static single risk factor

model for default

In this subsection we study the CSA and GA approximations in a numer-

ical illustration for the static single risk factor model for corporate default
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(see Example 6.4 and Section 3.1). Let us first consider given values for

the annual unconditional default probability PD and unconditional asset

correlation, that are PD = 0.01 and ρ = 0.12. They correspond to the an-

nual unconditional default probability of a firm with rating about BB, and

to the smallest value of asset correlation suggested in Basel 2 [see BCBS

(2001), (2003)]. The CSA and GA approximations for the portfolio VaR in

equations (6.17) and (6.18) are displayed in Figure 6.5 as functions of the

confidence level u, for u close to 1. The GA approximations are for portfolio

sizes n = 25, 100 and 1000.

[Insert Figure 6.5: CSA and GA approximations in the static single risk

factor model]

As expected, the approximated quantiles are increasing with respect to the

confidence level. Moreover, the GA quantile curves are above the CSA quan-

tile curve, and the granularity adjustment is decreasing with respect to the

portfolio size because of diversification of the unsystematic risk component.

For portfolio size n = 1000, the GA approximation is very close to the CSA

approximation, while for n = 100 the granularity adjustment is quite impor-

tant.

In order to assess the accuracy of the GA approximation, for some con-

fidence levels we display in Figure 6.5 quantiles computed by Monte-Carlo

simulation (see Review Appendix A.1). These quantiles are the empirical

quantiles for a simulated sample of 500, 000 replications of the portfolio loss.

The discrepancy between the GA approximation and the simulated quantiles

decreases with the portfolio size n, and is already rather small for portfolio

size n = 100. For small values of portfolio size such as n = 25, the disconti-

nuity of the portfolio quantile w.r.t. the confidence level can be clearly seen

from the simulated quantile values.

The GA approximation can be used to study the behaviour of the portfolio

risk measure as a function of the model parameters, that are the uncondi-

tional probability of default PD and the asset correlation ρ. Such a study
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would be very time consuming if performed using Monte-Carlo simulation.

In Figure 6.6 we display the CSA approximation and the GA as functions of

ρ, for different values of PD. In Figure 6.7 we display the CSA approxima-

tion and the GA as functions of PD, for different values of ρ. The portfolio

size is n = 1000 and the confidence level is 1 − α = 0.99.

[Insert Figure 6.6: CSA VaR and GA in the static single risk factor model

as functions of the asset correlation]

[Insert Figure 6.7: CSA VaR and GA in the static single risk factor model

as functions of the probability of default]

Figure 6.6 shows that the CSA VaR is monotone increasing w.r.t. asset corre-

lation ρ, when the probability of default is such that PD ≥ α; for PD < α,

the CSA VaR is not monotone w.r.t. ρ and it converges to zero as ρ ap-

proaches 1. The granularity adjustment is decreasing w.r.t. asset correlation

ρ, when ρ is not close to 1. Figure 6.7 shows that the CSA VaR is monotone

increasing w.r.t. the probability of default PD. The granularity adjustment

features instead an inverse-U shape. The maximum GA occurs for values of

PD corresponding to speculative grade ratings, when ρ is between 0.12 and

0.24.

6.4 Granularity Adjustment in the Dynamic

Model

Let us now consider the dynamic framework, with a factor transition density

given by g(ft|ft−1). In this extended framework, two granularity adjustments

are required. The first one concerns the theoretical risk measure itself and is

the analogue of the adjustment derived in the static framework. The second

granularity adjustment is a consequence of the unobservability of the factor

values and is derived by using the approximate filtering formula of Chapter

5.
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i) Granularity adjustment for the distribution of the portfolio value

We have:

Wt+1/n = m(Ft+1) +
σ(Ft+1)√

n
Z +O(1/n), (6.20)

where functions m(Ft+1) and σ(Ft+1) are defined as in (6.15), and Z ∼
N(0, 1) is independent of the factor path. Term O(1/n) is conditionally

zero-mean since the normalized portfolio value is an unbiased estimator of

m(Ft+1), conditionally on Ft+1. Let us denote:

a(y; ft, ε) = P [m(Ft+1) + σ(Ft+1)ε < y|Ft = ft]

=

∫
1lm(ft+1)+σ(ft+1)ε<y g(ft+1|ft)dft+1.

The cdf of the standardized portfolio value given the observable information

I∗t = (y1,t, · · · , yn,t) only is:

Fn(y) = P [Wt+1/n < y|I∗t ]

= E(P [Wt+1/n < y|Ft, Z]|I∗t )

= E

[
a(y, Ft,

Z√
n

)|I∗t
]

+ o(1/n).

Then, by applying the GA for the filtering distribution of Ft given in Corol-

lary 5.3, we get:

Fn(y) = E

[
a(y, f̂nt +

1

n
μnt +

1√
n
I
−1/2
nt Z∗,

Z√
n

)|I∗t
]

+ o(1/n),

where Z∗ is a standard normal variable, f̂n,t is the cross-sectional approx-

imation of the factor value, μnt = I−1
nt

∂ log g

∂ft
(f̂nt|f̂n,t−1) +

1

2
I−2
nt Knt is the

mean adjustment in the filtering distribution and the term I
−1/2
nt Z∗ is the
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adjustment for the variance. Moreover, the Gaussian variables Z and Z∗ are

independent, since the first one is due to the Central Limit Theorem, whereas

the second one corresponds to the numerical approximation of the filtering

distribution which involves no stochastic argument. The expression of the

cdf can be expanded at order 1/n. Since E[Z] = 0, E[Z∗] = 0, E[ZZ∗] = 0,

E[Z2] = E[(Z∗)2] = 1, we get:

Fn(y) = a(y, f̂nt, 0) +
1

n

∂a(y, f̂nt, 0)

∂ft
μnt

+
1

2n

[
I−1
nt

∂2a(y, f̂nt, 0)

∂f 2
t

+
∂2a[y, f̂nt, 0)

∂ε2

]
+ o(1/n). (6.21)

The CSA approximation of the cdf is a(y, f̂nt, 0). The GA is the sum of two

components corresponding to

i) the granularity adjustment for filtering, that is,

∂a(y, f̂nt, 0)

∂ft
μnt +

1

2
I−1
nt

∂2a(y, f̂nt, 0)

∂f 2
t

;

ii) the granularity adjustment for the theoretical cdf, that is,

1

2

∂2a(y, f̂nt, 0)

∂ε2
.

Due to the independence between Z and Z∗, there is no cross GA.

ii) Granularity adjustment for the Value-at-Risk

The GA for the VaR is directly deduced from the GA of the cdf by

applying the Bahadur’s expansion (see Proposition 6.1). Let us consider the

conditional mean m(Ft+1). Its cdf conditional to Ft = ft is a(y, ft, 0), which

is the leading term in the expansion (6.21). The associated quantile function

(resp. density function) is denoted by Q(u; ft) [resp. f(y; ft)]. We get:

Qn(u) � Q(u; f̂n,t) +GArisk +GAfilter,
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and the GA for the VaR at risk level u is the sum of two components:

i) The granularity adjustment for filtering is

GAfilter = −1

n

1

f [Q(u; f̂nt)]

[
∂a[Q(u; f̂nt), f̂nt, 0]

∂ft

μnt +
1

2
I−1
nt

∂2a[Q(u, f̂nt), f̂n,t, 0)

∂f 2
t

]
.

ii) The granularity adjustment for the theoretical risk measure is:

GArisk = − 1

2n

1

f [Q(u, f̂nt)]

∂2a[Q(u, f̂nt), f̂nt, 0)

∂ε2
.

This latter GA can also be written as [see Gagliardini, Gourieroux (2010)]:

GArisk = − 1

2n

{
∂ log f [y; f̂nt]

∂y
E[σ2(Ft+1)|m(Ft+1) = y, Ft = f̂n,t]

+
∂

∂y
E[σ2(Ft+1)|m(Ft+1) = y, Ft = f̂n,t]

}
y = Q(u; f̂nt)

.

This expression is the analogue of the GA in the static factor model of Sec-

tion 6.3. The distribution of Ft+1 is now conditional on the current factor

value Ft, and this unobservable value is finally replaced by the cross-sectional

approximation f̂n,t.

It is interesting to note that the major part of the existing literature has

proposed the GArisk component as the total adjustment to be applied to

the VaR. In a dynamic model, the computations above show that the other

component due to the factor unobservability has the same magnitude and

has also to be taken into account as shown in the illustration below.

iii) Illustration to dynamic model with stochastic default and re-

covery

In this illustration we consider an extension of the single risk factor model

for corporate default presented in Section 6.3 iv) to account for the dynam-

ics of the systematic factor and a non-zero recovery rate [see Gagliardini,

Gourieroux, Monfort (2010)]. The percentage loss on the loan to firm i at
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the maturity date t+ 1 is:

yi,t+1 = 1lAi,t+1<Li,t+1

(
1 − Ai,t+1

Li,t+1

)
=

(
1 − Ai,t+1

Li,t+1

)+

, (6.22)

where Ai,t+1 and Li,t+1 are the stochastic asset value and liability of the

firm, and x+ = max{x, 0} denotes the positive part of x. The loss variable

yi,t+1 is the product of the default indicator 1lAi,t+1<Li,t+1
, that is equal to

1, when the asset value is below the liability, and 0, otherwise, and the

percentage loss given default (LGD), that is, 1 − Ai,t+1

Li,t+1

. The dynamics of

the log asset/liability ratios of the firms follow a linear single risk factor

model:

log

(
Ai,t

Li,t

)
= Ft + σui,t, (6.23)

where the idiosyncratic shocks (ui,t) are IIN(0, 1) across time and firms. The

single systematic factor Ft follows an autoregressive Gaussian process:

Ft = μ+ γ(Ft−1 − μ) + η
√

1 − γ2εt, (6.24)

where the innovations εt ∼ IIN(0, 1) are independent of (ui,t). The model

parameters are the volatility of the idiosyncratic shocks σ > 0, the uncon-

ditional mean μ and volatility η > 0 of the systematic factor, and its auto-

correlation coefficient γ. The latter is assumed such that |γ| < 1 to ensure

stationarity. When γ �= 0, the systematic risk factor features serial depen-

dence.

As for the static model for corporate default (see Remark 3.1 in Section

3.1), there exists alternative parameterizations of model (6.22)-(6.24) admit-

ting a more direct financial interpretation. More precisely, let us consider

the unconditional probability of default:

PD = P [log (Ai,t/Li,t) < 0] = Φ

(
− μ√

η2 + σ2

)
, (6.25)

and the unconditional asset correlation:

ρ = corr [log (Ai,t/Li,t) , log (Aj,t/Lj,t)] =
η2

η2 + σ2
, (6.26)
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for i �= j, respectively. Furthermore, let us introduce the unconditional

expected (percentage) loss given default (ELGD):

ELGD = E

[
1 − Ai,t

Li,t
|Ai,t

Li,t
< 1

]
. (6.27)

Gagliardini, Gourieroux and Monfort (2010) derive an expression for ELGD

in terms of the structural parameters σ, μ and η [see also Geske (1977)].

Then, the probability of default PD, the asset correlation ρ, the expected

loss given default ELGD and the factor autocorrelation γ provide an equiv-

alent parameterization of the model. In Table 6.1 we display the values of

the structural parameters σ, μ and η corresponding to some choices of the

reduced form parameters PD, ρ and ELGD.

[Insert Table 6.1: Reduced form and structural parameters]

In particular, the values 0.45 and 0.75 of ELGD in Table 6.1 are the values

of expected loss given default suggested by Basel 2 regulation [see BCBS

(2001), (2003)] for senior debt classes on corporate, sovereigns and banks

not secured, and subordinated classes on corporate, sovereigns and banks,

respectively.

The CSA and GA quantile approximations are derived from the general

results in Section 6.4 ii). We present here some steps of the analysis and

invite the reader to refer to Gagliardini, Gourieroux, Monfort (2010) for the

detailed derivation.

a) The cross-sectional factor approximation at date t is:

f̂n,t = arg max
ft

⎧⎨
⎩− 1

2σ2

∑
i:yi,t>0

[log(1 − yi,t) − ft]
2 + (n− nt) log Φ(ft/σ)

⎫⎬
⎭ ,

(6.28)

where nt =
n∑

i=1

1lyi,t>0 denotes the number of defaults at date t. The factor ap-

proximation corresponds to the Maximum Likelihood estimator of the mean

parameter in a Gaussian Tobit regression model with endogenous variable
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log(1− yi,t), mean ft and variance σ2. The Gaussian approximation at order

1/n of the filtering distribution of the unobservable factor ft in Corollary 5.3

involves statistics f̂n,t, f̂n,t−1 and nt.

b) Functions m(ft+1) and σ(ft+1) can be derived from the Black-Scholes

pricing formula by exploiting the put option structure of the loss variable

(1 − Ai,t+1/Li,t+1)
+ and the conditional log-normality of Ai,t+1/Li,t+1 given

Ft+1 = ft+1. We get:

m(ft+1) = Φ(−ft+1/σ) − exp

(
ft+1 +

σ2

2

)
Φ (−ft+1/σ − σ) , (6.29)

and:

σ2(ft+1) = m(ft+1)[1 −m(ft+1)] − exp

(
ft+1 +

σ2

2

)
Φ (−ft+1/σ − σ)

+ exp(2ft+1 + 2σ2)Φ (−ft+1/σ − 2σ) . (6.30)

Function m is monotone decreasing, since the loss yi,t+1 is decreasing w.r.t.

the factor value Ft+1.

c) Finally, function a(w, f̂n,t, 0) is given by:

a(w, f̂n,t, 0) = P [m(Ft+1) ≤ w|Ft = f̂n,t] = P [Ft+1 ≥ m−1(w)|Ft = f̂n,t]

= Φ

(
−m

−1(w) − μ− γ(f̂n,t − μ)

η
√

1 − γ2

)
, (6.31)

where m−1 denotes the inverse of function m.

In Figure 6.8 we display the CSA and GA VaR approximations, and

the GA risk and filtering components, as functions of the cross-sectional

approximation of the current factor value.

[Insert Figure 6.8: CSA and GA VaR as a function of the cross-sectional

factor approximation]

The parameters are such that the annual default probability is PD = 0.05,

the asset correlation is ρ = 0.12, the expected loss given default is ELGD =
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0.45 and the factor autocorrelation is γ = 0.5. The corresponding uncon-

ditional mean of the factor is μ = 3.05. The information set is such that

nt/n = PD and f̂n,t = μ, while the confidence level is 1 − α = 0.995. The

CSA VaR is decreasing w.r.t. the factor approximation, since the systematic

factor has a positive impact on the asset/liability ratios of the firms. The

granularity adjustment is quite small for portfolio size n = 1000, but is rel-

evant for portfolio size n = 100. By comparing the patterns of the GA risk

and filtering components, it is seen that the granularity adjustment comes

mostly from filtering, at least when the factor approximation is above the fac-

tor mean. Indeed, the filtering GA component accounts for the uncertainty of

the cross-sectional factor approximation. When this approximation is above

the factor mean, the filtering GA component yields an upward correction

of the CSA VaR, which reflects a less optimistic belief on the unobservable

factor value compared to the cross-sectional approximation.

In Figure 6.9 we display simulated paths of the default frequency nt/n,

the percentage portfolio loss Wn,t/n, the factor value ft and its cross-sectional

approximation f̂n,t. In Figure 6.10 we display the corresponding simulated

paths of the CSA and GA VaR, and of the GA risk and filtering components.

[Insert Figure 6.9: Time series of simulated default frequency, portfolio

loss, systematic factor and cross-sectional approximation of the factor]

[Insert Figure 6.10: Time series of simulated CSA VaR, GA VaR, and

GA risk and filtering components]

The portfolio size is n = 100, the confidence level is 1 − α = 0.995 and the

model parameters are as above. The time series of default frequency and

portfolio loss have a similar pattern, since they are driven by the same sys-

tematic factor. Moreover, at each date the portfolio loss is smaller than the

default frequency because of the non-zero recovery rate. The cross-sectional

factor approximation is rather accurate. Figure 6.10 shows that the GA VaR

is larger and features a smoother time evolution than the CSA VaR. More-
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over, whereas the risk component of the granularity adjustment is always

positive and rather stable in time, its filtering component varies quite a lot

in time and can eventually take negative values. As already remarked in Fig-

ure 6.8, the filtering GA component is responsible for most of the granularity

adjustment.

Finally, Gagliardini, Gourieroux and Monfort (2010) perform a backtest-

ing analysis to compare the GA VaR and CSA VaR in terms of the frequency

and dynamic pattern of violations, that are, the exceedancies of the realized

portfolio loss above VaR. They show that the GA VaR is a more accurate

approximation of the true portfolio quantile than the CSA VaR.

6.5 Portfolio of Derivatives Written on a Large

Portfolio

The VaR and its granularity adjustments have also to be computed for port-

folio of derivatives written on a given large portfolio of individual contracts.

These derivatives are called Collateralized Debt Obligations (CDO). Typ-

ically, the support of such credit derivatives is a given pool of credits, or

of Credit Default Swaps (CDS). Then the derivative payoffs are defined by

tranching the (normalized) portfolio value W̄n,t+1 = Wn,t+1/n, that is, by

considering payoffs of the type:

bj(W̄n,t+1) =

{
W̄n,t+1, if W̄n,t+1 ∈ (aj , aj+1), say,

0, otherwise,

where the aj and aj+1 are called attachment and detachment points, re-

spectively, or by considering straddles defined by combining appropriately

European calls with payoffs:

bj(W̄n,t+1) = (W̄n,t+1 − aj)
+, say.

To get a flavour of the GA for a portfolio of such derivatives, we consider

a portfolio of CDO’s with maturity t+ 1. Their value at t+ 1 is equal to the
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payoff, and the future derivative portfolio value is: 2

WD
n,t+1 =

J∑
j=1

bj(W̄n,t+1),

where J denotes the number of CDO’s in the portfolio. Thus, from (6.20)

we deduce the expansion of the derivative portfolio value as:

WD
n,t+1 =

J∑
j=1

bj [m(Ft+1) + σ(Ft+1)
Z√
n

+O(1/n)]

=

J∑
j=1

bj [m(Ft+1)] +

J∑
j=1

dbj
dm

[m(Ft+1)]σ(Ft+1)
Z√
n

+
1

2

J∑
j=1

d2bj
dm2

[m(Ft+1)]σ
2(Ft+1)

Z2

n
+O(1/n),

where the O(1/n) term is zero-mean conditional on the factor.

Then, we can apply the GA formula of Proposition 6.2, with Y =

J∑
j=1

bj [m(Ft+1)]

as the limiting future derivative portfolio value for infinite n, and the sum

Wn, say, of the two other components of the right hand side to capture the

next terms in the expansion. By using the moments E[Z] = 0, E[Z2] = 1,

we get:

E(Wn|Y = y) =
1

2n
E

[
J∑

j=1

d2bj [m(Ft+1)]

dm2
σ2(Ft+1)|

J∑
j=1

bj [m(Ft+1)] = y

]
+ o(1/n),

E(W 2
n |Y = y) =

1

n
E

⎡
⎣
(

J∑
j=1

dbj [m(Ft+1)]

dm

)2

σ2(Ft+1)|
J∑

j=1

bj [m(Ft+1)] = y

⎤
⎦+ o(1/n).

2When the maturity of the derivatives is strictly larger than 1, the derivatives maturity
does not correspond to the selected horizon for the VaR and it is necessary to compute the
future derivative price. This can be done by the approximate derivative pricing approach
introduced in Chapter 5, accounting in particular for the GA of the derivative prices.
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Then, the GA is derived from Proposition 6.2.

6.6 Summary

The recent regulations require the computation of reserves for large portfolios,

possibly including derivatives. The required capital is based on risk measures

such as the VaR or the Expected Shortfall. Granularity theory is used to

derive closed form expressions for the reserves at order 1/n. The explicit

formulas can be introduced in the software for risk management and risk

control.
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6.7 Appendix: Interpretation of the Bahadur’s

Expansion

Let us prove Proposition 6.2 when Y and Wn admit a joint pdf [see Gagliar-

dini, Gourieroux (2010) for the general case]. We have:

−Fn(y) − F (y)

f(y)
=

P (Y < y) − P (Y +Wn < y)

f(y)

=
1

f(y)

∫
[

∫ y

y−w

fn(z, w)dz]dw,

where fn(y, w) denotes the joint density of (Y,Wn). Thus, we deduce:

− Fn(y) − F (y)

f(y)

=
1

f(y)

∫
[

∫ y

y−w

fn(y, w)dz]dw+
1

f(y)

∫
[

∫ y

y−w

[fn(z, w) − fn(y, w)]dz]dw

� 1

f(y)

∫
wfn(y, w)dw+

1

f(y)

∫
∂fn(y, w)

∂y
[

∫ y

y−w

(z − y)dz]dw

= E[Wn|Y = y] − 1

2
E[W 2

n

∂ log fn(y,Wn)

∂y
|Y = y]. (6.32)

Let us now decompose the joint density into the unconditional density of

Y and the conditional density of Wn given Y , i.e. fn(y, w) = f(y)fn(w|y),
say. We get:

− Fn(y) − F (y)

f(y)

� E[Wn|Y = y] − 1

2

∂ log f(y)

dy
E[W 2

n |Y = y] − 1

2

∫
w2∂ log fn(w|y)

∂y
fn(w|y)dw

= E[Wn|Y = y) − 1

2

∂ log f(y)

dy
E(W 2

n |Y = y) − 1

2

∂

∂y
(

∫
w2fn(w|y)dw)

= E(Wn|Y = y) − 1

2

∂ log f(y)

dy
E(W 2

n |Y = y) − 1

2

∂

∂y
E(W 2

n |Y = y).
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From Proposition 6.1, the result follows.
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Table 6.1: Reduced form and structural parameters.

Reduced form parameters Structural parameters

ELGD PD ρ μ η σ

0.12 4.799 0.766 2.074

0.45 1.5% 0.24 4.799 1.083 1.928

0.50 4.799 1.564 1.564

0.12 3.050 0.642 1.739

0.45 5% 0.24 3.050 0.908 1.616

0.50 3.050 1.311 1.311

0.12 16.993 2.713 7.346

0.75 1.5% 0.24 16.993 3.836 6.827

0.50 16.993 5.537 5.537

0.12 10.669 2.247 6.085

0.75 5% 0.24 10.669 3.178 5.655

0.50 10.669 4.587 4.587
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Figure 6.1: VaR defined from the P&L Distribution.

0 0−VaR(t,h,α) W
t+h

−W
t
  

probability α

The Value-at-Risk V aR(t, h, α) is the opposite of the quantile at level α of the conditional

distribution of Wt+h − Wt given date t information (P&L distribution). The shaded area

corresponds to a probability of α.



212 CHAPTER 6. GRANULARITY FOR RISK MEASURES

Figure 6.2: CreditVaR defined from the L&P Distribution.

0 V aR(t, h,α) Wt −Wt+h

Probability 1 − α

The CreditVaR V aR(t, h, α) is the quantile at level 1 − α of the conditional distribution

of Wt − Wt+h given date t information (L&P distribution). The shaded area corresponds

to a probability of 1− α.
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Figure 6.3: VaR distortion measure.

0 1
0

1

u

H
α
(u

)

α

The distortion measure for the VaR at level α is the point mass measure with cdf Hα(u) =

1lu≥α.
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Figure 6.4: Distortion measure for the TailVaR.

0 1
0

1

u

H
α
(u

)

α

The distortion measure for the TailVaR at level α is the uniform distribution on [0, α] with

cdf Hα(u) = min{u/α, 1}.
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Figure 6.5: CSA and GA VaR in the static single risk factor model.

0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1

0.05

0.1

0.15

0.2

0.25

α

Q
n
(α

)

The Figure displays the CSA approximation (solid line) and the GA approximations for the

portfolio VaR in a static single risk factor model, as functions of the confidence level α. The

GA approximations are for portfolio sizes n = 25 (dotted line), n = 100 (dashed-dotted

line) and n = 1000 (dashed line). Stars, crosses and diamonds correspond to quantiles

computed with Monte-Carlo simulation based on 500, 000 replications of the portfolio loss,

for portfolio sizes n = 25, n = 100 and n = 1000, respectively. The unconditional default

probability is PD = 0.01 and the asset correlation is ρ = 0.12.
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Figure 6.6: CSA VaR and GA in the static single risk factor model as func-

tions of asset correlation.
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The left panel displays the CSA VaR, and the right panel displays the GA, as functions

of asset correlation ρ, for different values of the unconditional default probability, that are

PD = 0.005, 0.01, 0.05 and 0.20, in the static single risk factor model for default. The

portfolio size is n = 1000 and the confidence level is 1 − α = 0.99.
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Figure 6.7: CSA VaR and GA in the static single risk factor model as func-

tions of default probability.
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The left panel displays the CSA VaR, and the right panel displays the GA, as functions

of the probability of default PD, for different values of the asset correlation, that are

ρ = 0.05, 0.12, 0.24 and 0.50, in the static single risk factor model for default. The

portfolio size is n = 1000 and the confidence level is 1 − α = 0.99.
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Figure 6.8: CSA and GA VaR as a function of the cross-sectional factor

approximation.
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The left Panel displays the CSA VaR (dashed line), the GA VaR for n = 100 (solid line)

and the GA VaR for n = 1000 (dotted line) as functions of the cross-sectional factor

approximation f̂n,t. The middle and right Panels display the GA component for risk, and

the GA component for filtering, respectively. The information set is such that nt/n = PD

and f̂n,t−1 = μ. The confidence level is 1−α = 0.995. The structural parameters are such

that ELGD = 0.45, PD = 5%, ρ = 0.12 and γ = 0.5. In particular, the unconditional

factor mean is μ = 3.05 (see Table 1).
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Figure 6.9: Time series of simulated default frequencies, portfolio losses,

systematic factors and cross-sectional approximations of the factor.
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The upper and middle Panels display a simulated time series of default frequencies and

percentage portfolio losses, respectively. The lower Panel displays the corresponding time

series of factor values (circles) and cross-sectional factor approximations (squares). The

portfolio size is n = 100. The structural parameters are such that ELGD = 0.45, PD =

5%, ρ = 0.12 and γ = 0.5. In particular, the unconditional factor mean is μ = 3.05 (see

Table 1).
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Figure 6.10: Time series of simulated CSA VaR, GA VaR, and GA risk and

filtering components.

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

t

Time series of CSA VaR and GA VaR

0 10 20 30 40 50 60 70 80 90 100
1.1

1.2

1.3

1.4

1.5

1.6

t

Time series of GArisk(α)

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

t

Time series of GAfilt(α)

The upper Panel displays a simulated time series of CSA VaR (dashed line) and GA VaR

(solid line) for portfolio size n = 100 and confidence level 1 − α = 0.995. The middle and

lower Panels display the corresponding time series of GA risk and filtering components.

The structural parameters are such that ELGD = 0.45, PD = 5%, ρ = 0.12 and γ = 0.5

(see Table 1).



6.7. APPENDIX: INTERPRETATION OF THE BAHADUR’S EXPANSION221

R E F E R E N C E S

Acerbi, C., and D., Tasche (2002): “On the Coherency of Expected Short-

fall”, Journal of Banking and Finance, 26, 1487-1503.

Bahadur, R. (1966): ”A Note on Quantiles in Large Samples”, Annals of

Mathematical Statistics, 37, 577-580.

Basel Committee on Banking Supervision (1995): ”An Internal Model

Based Approach to Market Risk Capital Requirements”, Bank of Internati-

ional Settlements, April, 1995.

Basel Committee on Banking Supervision (2001): ”The New Basel Cap-

ital Accord”, Consultative Document of the Bank for International Settle-

ments, April 2001, Part 2: Pillar 1.

Basel Committee on Banking Supervision (2003): ”The New Basel Cap-

ital Accord”, Consultative Document of the Bank for International Settle-

ments, April 2003, Part 3: The Second Pillar.

Gagliardini, P., and C., Gourieroux (2010): “Granularity Adjustment for

Risk Measures: Systematic and Unsystematic Risks”, CREST DP.

Gagliardini, P., Gourieroux, C., and A., Monfort (2010): “Microinforma-

tion, Nonlinear Filtering and Granularity”, forthcoming in Journal of Finan-

cial Econometrics.

Geske, R. (1977): “The Valuation of Corporate Liabilities as Compound

Options”, Journal of Financial and Quantitative Analysis, 12, 541-552.

Gordy, M. (2003): ”A Risk-Factor Model Foundation for Ratings Based

Bank Capital Rules”, Journal of Financial Intermediation, 12, 199-232.

Gordy, M. (2004): ”Granularity Adjustment in Portfolio Credit Risk Mea-

surement”, in Risk Measures for the 21st Century, Giorgio Szego ed., Wiley.

Gouriéroux, C. (2010): ”Risk Measures: Statistical Estimation”, Ency-

clopedia of Quantitative Finance, R. Cont Ed., Wiley.



222 CHAPTER 6. GRANULARITY FOR RISK MEASURES

Gouriéroux, C., Laurent, J.-P., and O., Scaillet (2000): ”Sensitivity Anal-

ysis of Value-at-Risk”, Journal of Empirical Finance, 7, 225-245.

Koenker, R. (2005): Quantile Regression, Cambridge University Press.

Martin, R., and T., Wilde (2003): ”Unsystematic Credit Risk”, Risk

Magazine, 15, 123-128.

Merton, R. (1974): ”On the Pricing of Corporate Debt: The Risk Struc-

ture of Interest Rates”, Journal of Finance, 29, 449-470.

Pykhtin, M., and A., Dev (2002): ”Analytical Approach to Credit Risk

Modelling”, Risk, 15, 26-32.

Tasche, D. (2000): ”Conditional Expectation as Quantile Derivative”, DP

Bundesbank.

Vasicek, O. (1991): ”Limiting Loan Loss Probability Distribution”, DP

KMV Corporation.

Wang, S. (1996): ”Premium Calculation by Transforming the Layer Pre-

mium Density”, ASTIN Bulletin, 26, 71-92.

Wang, S. (2000): ”A Class of Distortion Operators for Pricing Financial

and Insurance Risks”, Journal of Risk and Insurance, 67, 15-36.

Wilde, T. (2001): ”Probing Granularity”, Risk, 14, 103-106.



Chapter 7

A. Review on Econometrics

A.1 Simulation

A.2 Efficiency Bounds

A.3 Panel Models

A.4 Singular Value Decomposition and Principal Component Anal-

ysis

A.5 Linear Prediction and Kalman Filter

A.6 The Newton-Raphson Algorithm

223



224 CHAPTER 7. A. REVIEW ON ECONOMETRICS

A.1 Simulation

Simulations are artificial data randomly drawn by the econometrician. Sim-

ulation based approaches are used to compute numerically complicated inte-

grals (Monte-Carlo integration) and in particular derivative prices, to derive

the finite sample properties of an estimator (e.g. bootstrap), or even to define

new estimation methods (simulation based method of moments and indirect

inference).

A.1.1 The principle

All simulation techniques are based on the following lemma:

Lemma A.1: Let X be a one-dimensional random variable with continuous

distribution and a strictly increasing cumulative distribution function (cdf)

F . Then the variable U = F (X) follows a uniform distribution on [0, 1].

Proof: Indeed, we have:

P [U ≤ u] = P [F (X) ≤ u]

= P [X ≤ F−1(u)] (since a continuous increasing

function is invertible)

= F [F−1(u)] = u,

which is the cdf of the uniform distribution on [0, 1].

QED

The lemma above implies the following corollary:

Corollary A.2: Let X be a continuous variable with increasing cdf and Φ

the cdf of the standard normal distribution, then the variable ε = Φ−1[F (X)]

is standard normal.
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The previous results can be directly used for simulating an artificial in-

dependent sample from distribution F , by using a software to produce i.i.d

standard normal observations (rndn software), or i.i.d uniform observations

(rndu software). The approach is for instance the following:

i) Draw at random S artificial data ε1, . . . , εS from the standard normal by

the software rndn.

ii) Then compute the simulated values X1, . . . , XS by Xs = F−1[Φ(εs)].

This approach is easily extended to multivariate random variables. As an

illustration, let us consider a bivariate vector (X, Y ) with known distribution.

This distribution is characterized by the marginal distribution of X with cdf

FX(x) and the conditional distribution of Y given X = x, with conditional

cdf FY |X(y|x).

The simulation approach is the following:

i) Draw at random two independent samples of size S from the standard

normal by software rndn. These samples are εs, ηs, for s = 1, . . . , S.

ii) The simulated values X1, . . . , XS are computed as:

Xs = F−1
X [Φ(εs)], s = 1, . . . , S.

iii) Then the simulated values Y1, . . . , YS are deduced by:

Ys = F−1
Y |X [Φ(ηs)|Xs], s = 1, . . . , S.

where F−1
Y |X(.|x) is the inverse of the conditional cdf with respect to argument

y.

The simulation scheme is completely fixed by the analyst, who has to

choose the form of the distribution, but also the number of replications.

A.1.2 Monte-Carlo integration
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Integrals, or equivalently expectations, can be computed by simulation.

Let us consider an expectation:

E0(Y ) =

∫
yp0(y)dy, (A.1.1)

where p0 is a known probability density function. Then, we can draw S

independent observations Y1, . . . , YS from distribution p0. By the Law of

Large Numbers, the sample mean of these simulated values ȲS =
1

S

S∑
s=1

Ys

is a consistent approximation of the true unknown expectation as S → ∞,

that is, ȲS � E0(Y ) for large S.

This approach can be extended to improve the accuracy of the approxi-

mation. Let us introduce another given p.d.f. q0(y), called the importance

function. Then, we have:

E0(Y ) =

∫
y
p0(y)

q0(y)
q0(y)dy. (A.1.2)

An approximation of the expectation can be derived as follows :

i) Draw at random S observations Y ∗
1 , . . . , Y

∗
S from the distribution q0.

ii) Then approximate the expectation by :

1

S

S∑
s=1

[Y ∗
s p0(Y

∗
s )/q0(Y

∗
s )].

This approximation is very accurate when q0(y) is almost proportional to

yp0(y).

A.1.3 Bootstrap

We can now explain how to derive the properties of an estimator for a

large, but finite number of observations. As an illustration, let us consider a

parametric dynamic model:
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yt = a(yt−1, εt, θ), t = 1, . . . , T,

where εt are iid standard Gaussian variables and a is a known function. Let us

denote θ̂T = θ̂(y1, . . . , yT ) a consistent estimator of parameter θ. Estimator

θ̂T is a good approximation of θ, which can be used to simulate several

artificial paths for Y . More precisely, we can:

i) Draw a sequence of size T from the standard normal distribution. This

sequence is denoted by εs
1, . . . , ε

s
T .

ii) Deduce the simulated path by recursion:

ys
t = a(ys

t−1, ε
s
t , θ̂T ), t = 1, . . . , T (with ys

0 = y0).

iii) Compute the simulated estimate from this path, as :

θ̂s
T = θ̂(ys

1, . . . , y
s
T ).

iv) Replicate the approach for s = 1, . . . , S.

v) Then, for large S, the sample distribution of (θ̂1
T , . . . , θ̂

S
T ) is a good ap-

proximation of the unknown distribution of the estimator.

Further reading

Caflish, R. (1998): ”Monte-Carlo and Quasi Monte-Carlo Methods”, Acta

Numerica, Vol 7, Cambridge University Press, p1-49.

Efron, B., and R., Tibshirani (1994): ”An Introduction to the Bootstrap”,

Chapman & Hall.
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A.2 Efficiency Bounds

The accuracy of an estimator θ̂ of a (multidimensional) parameter θ depends

on its bias, that is, the difference between the expectation of θ̂ and the true

parameter value, and on its variance-covariance matrix.

For a consistent estimator, the bias is asymptotically equal to zero and its

accuracy is entirely captured by its asymptotic variance-covariance matrix. It

is often possible to find a lower bound for the asymptotic variance-covariance

matrix of the consistent estimators of θ. This bound, when it exists, is called

an (asymptotic) efficiency bound.

Then, a consistent estimator, whose variance-covariance matrix coincides

asymptotically with the efficiency bound, is preferable to any other consistent

estimator. It is called an (asymptotically) efficient estimator.

A.2.1 Parametric model parametrized by θ

Let us first consider a parametric model with likelihood function ln(y; θ),

where y denotes the vector of observations and n their number. An efficiency

bound is given by:

B(θ) = [I(θ)]−1, (A.2.1)

where the information matrix I(θ) can be approximated by:

I(θ) � Eθ

[
−∂

2 log ln(y; θ)

∂θ∂θ′

]
, (A.2.2)

and Eθ denotes the expectation computed with the value θ of the parameter.

In this framework B(θ) is called the parametric efficiency bound.

Under standard regularity conditions, the maximum likelihood estimator:

θ̂ = arg max
θ

log ln(y; θ)

has an (asymptotic) variance-covariance matrix equal to the (asymptotic) ef-

ficiency bound. Thus, the maximum likelihood estimator is (asymptotically)

parametrically efficient.
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A.2.2 Parametric model partly parametrized by θ

Let us now consider a parametric model including also nuisance parame-

ters β, say. The likelihood function is ln(y; θ, β), and the parametric efficiency

bound for the whole parameter (θ′, β ′)′ is:

B(θ, β) = [I(θ, β)]−1, (A.2.3)

where

I(θ, β) � Eθ,β

⎡
⎢⎢⎢⎢⎢⎣−

∂2 log ln(y; θ, β)

∂

(
θ

β

)
∂

(
θ

β

)′

⎤
⎥⎥⎥⎥⎥⎦ . (A.2.4)

This information matrix can be decomposed into blocks as:

I(θ, β) =

⎛
⎜⎝ Iθθ Iθβ

Iβθ Iββ

⎞
⎟⎠ , say,

where:

Iθθ = Eθ,β

[
−∂

2 log ln(Y ; θ, β)

∂θ∂θ′

]
,

Iθβ = Eθ,β

[
−∂

2 log ln(Y ; θ, β)

∂θ∂β ′

]
= I ′β,θ,

Iββ = Eθ,β

[
−∂

2 log ln(Y ; θ, β)

∂β∂β ′

]
.

By block inversion, we deduce the North-West block of the efficiency

bound, which provides the parametric efficiency bound for θ in presence of a

nuisance parameter β. It is given by:

Bθθ(θ, β) = [Iθθ − Iθβ(Iββ)−1Iβθ]
−1. (A.2.5)

A.2.3 Semi-parametric efficiency bound
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Let us now consider a semi-parametric model, in which the likelihood

function is parametrized by a parameter of interest θ and by a functional nui-

sance parameter g ∈ G. While the parameter of interest is a standard (finite-

dimensional) vector, the nuisance parameter can be an infinite-dimensional

object, e.g. the unknown density function of the error in a regression model.

This semi-parametric model nests all parametric models in which function g

has been parametrized g = gβ, say. The parametric efficiency bound for such

a nested parametric model Bθθ(gβ) can be computed by equation (A.2.5), and

depends on the chosen parametrization of function g. The semi-parametric

efficiency bound is defined as the maximal (i.e. the least favorable) bound

corresponding to all admissible nested parametric models:

Bθθ(θ, g) = max
gβ

Bθθ(gβ). (A.2.6)

A consistent estimator is semi-parametrically efficient, if its variance-

covariance matrix is asymptotically equal to the semi-parametric efficiency

bound. An example of semi-parametrically efficient estimator is the Ordi-

nary Least Squares (OLS) estimator in a linear regression model under the

standard regularity assumptions on the errors.

Further reading

Chamberlain, G. (1992): ”Efficiency Bounds for Semiparametric Regres-

sions”, Econometrica, 60, 567-596.

Cramer, H. (1946): ”Mathematical Methods of Statistics”, Princeton

Univ. Press.

Rao, R. (1945): ”Information and the Accuracy Attainable in the Es-

timation of Statistical Parameters”, Bulletin of the Calcutta Mathematical

Society, 37, 81-89.
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A.3 Panel Models

Panel models are explanatory models for panel data, that are observations

yi,t, i = 1, . . . , n, t = 1, . . . , T doubly indexed by individual and time. The

basic Gaussian linear model for panel data is:

yi,t = α + x′i,tb+ wi,t, i = 1, . . . , n, t = 1, . . . , T, (A.3.1)

where xi,t are the observations of the explanatory variables and ωi,t are in-

dependent, Gaussian error terms with common distribution N(0, σ2
ω).

The basic model (A.3.1) is usually extended to highlight possible individ-

ual, or time effects. These effects can be assumed either fixed, or random.

A.3.1 Panel model with fixed effects

The introduction of fixed effects leads to the model:

yi,t = α + βi + γt + x′itb+ ωit, i = 1, . . . , n, t = 1, . . . , T, (A.3.2)

where βi andγt are additional parameters satisfying the constraints:

β· =

n∑
i=1

βi = 0, γ· =

T∑
t=1

γt = 0,

to avoid collinearity problems. Parameters βi (resp. γt) are the fixed indi-

vidual effects (resp. time effects). Model (A.3.2) is a special case of linear

model and the parameters α, βi, for i = 1, . . . , n, and γt, for t = 1, . . . , T ,

can be estimated by Ordinary Least Squares (OLS). However, the OLS es-

timators do not feature standard asymptotic properties. The reason is that

the total number of parameters equal to n+T − 1 is not fixed, but increases

with the number of observations, that is, with n and T . This is the so-called

incidental parameter problem.

The OLS estimators have closed form expressions, which are easily inter-

preted for a fixed effect model without explanatory variable x, that is,

yi,t = α + βi + γt + ωi,t, (A.3.3)
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with ωi,t ∼ IIN(0, σ2
ω). Let us define the following sample means:

¯̄y =
1

nT

n∑
i=1

T∑
t=1

yi,t, ȳi· =
1

T

T∑
t=1

yi,t, ȳ·t =
1

n

n∑
i=1

yi,t. (A.3.4)

The OLS estimators of the parameters are:

α̂ = ¯̄y, β̂i = ȳi· − ¯̄y, γ̂t = ȳ·t − ¯̄y, (A.3.5)

whereas the residuals are given by:

ω̂i,t = yi,t − ȳi· − ȳ·t + ¯̄y. (A.3.6)

Hence, the estimate of the constant is the full sample average of the observa-

tions across individual and time, while the estimates of the individual (resp.

time) effects are the differences between the time (resp. individual) averages

and the full sample average.

A.3.2 Panel model with random effects

In this extension, the individual and time effects are assumed stochastic.

The model becomes:

yi,t = α + x′i,tb+ ui + vt + ωi,t, i = 1, . . . , n, t = 1, . . . , T, (A.3.7)

where ui, vt, ωi,t are independent Gaussian variables, independent of the ex-

planatory variables, with distributions:

ui ∼ N(0, σ2
u), vt ∼ N(0, σ2

v), ωi,t ∼ N(0, σ2
ω),

respectively.

In this extension, the number of parameters is fixed, which solves the

incidental parameter problem. However, this linear model has a non scalar

variance-covariance matrix function of the three parameters σ2
u, σ

2
v , σ

2
ω. Ex-

cept in very special cases (see Chapter 2), the maximum likelihood estimators

of the parameter do not admit closed form expressions. Moreover, they have
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nonstandard asymptotic properties, which depend on the assumed asymp-

totics, either n → ∞ and T fixed, or n fixed and T → ∞, or n → ∞ and

T → ∞.

A.3.3 Panel model with both fixed and random effects

It is not possible to introduce in a panel model a fixed and a random

effect of a same type, since the fixed effect will systematically capture the

random effect. Thus, there exist only four possibilities for a panel model

with both individual and time effects as seen in the table below.

Table A.1: Panel models with both individual and time effects

time effect

individual effect fixed random

fixed X X

random X X

A.3.4 Fixed or random effects

There exist testing procedures for choosing between fixed and random

effects in panel models. However, it is often preferable to base this choice

according to the problem of interest. This choice is well illustrated by ap-

plications to credit. Let us assume that yit is a quantitative measure of

individual risk. The models with fixed individual effect,

yit = α+ βi + xitb+ wit,

are used in a first step to make a segmentation of the set of contracts into

rather homogenous segments. This segmentation is done as follows: first,

estimate the individual fixed effects β̂i, i = 1, . . . , n. Second, define the

segments from these values β̂i by an appropriate discretization. Segment k,

with k = 1, . . . , K, includes the individuals i such that ak−1 < β̂i ≤ ak, where

ak, k = 0, . . . , K, is a given set of thresholds.
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In the current Basel regulation, such a segmentation has to be defined

before analyzing more precisely the risks within and between segments. This

second step of the risk analysis has to account for the possible dependencies

between two individuals risks at a same time, or the successive risks of a

same individual at two different times. This is done by introducing in each

segment a random time effect (resp. a random individual effect), since by

definition fixed effects are deterministic and thus non risky.

Further reading

Arellano, M., and B., Honore (2001): ”Panel Data Models : Some Recent

Developments”, Handbook of Econometrics, ed. J., Heckman and E. Leamer,

Chap 53, p 3231-3296.

Baltagi, B. (1995): ”Econometric Analysis of Panel Data”, Wiley.

A.4 Singular Value Decomposition and Princi-

pal Component Analysis

Principal Component Analysis (PCA) is based on the analysis of eigen-

values and eigenvectors of well-chosen symmetric matrices. We first recall

basic decompositions of matrices in linear algebra.

A.4.1 Singular Value Decomposition (SVD)

i) Spectral decomposition of a symmetric matrix

Any symmetric matrix Ω of dimension (n, n) can be diagonalized. This

matrix admits real eigenvalues λi, i = 1, . . . , n, and real eigenvectors ui,

i = 1, . . . , n. These eigenvectors form an orthonormal basis. They can always

be chosen such that 〈ui, uj〉 = u′iuj = 0, if i �= j, and ‖ui‖2 = u′iui = 1, ∀i.
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Let us denote by Q the matrix whose columns are these eigenvectors. The

orthonormality restrictions imply Q−1 = Q′ and the matrix Ω can be written

as:

Ω = QΛQ′, (A.4.1)

where Λ is the diagonal matrix with the eigenvalues of Ω as diagonal elements.

Equivalently, the equality (A.4.1) can be written as:

Ω =

n∑
i=1

λiuiu
′
i, (A.4.2)

which gives the spectral decomposition of matrix Ω.

ii) SVD of a rectangular matrix

Let us now consider a rectangular matrix X with dimension (n, T ). Typ-

ically, X can be a matrix of observations doubly indexed by individual and

time. This matrix can be used to construct two symmetric matrices by con-

sidering the squared matrices XX ′ and X ′X. These matrices are symmetric

positive semi-definite with respective sizes (n, n) and (T, T ).

Then, we can consider their spectral decompositions:

XX ′ =

n∑
i=1

λiuiu
′
i, λi ≥ 0, (A.4.3)

X ′X =
T∑

t=1

μtvtv
′
t, μt ≥ 0. (A.4.4)

The following lemma explains that these spectral decompositions can be

chosen strongly linked.

Lemma A.3: Let us denote K = min(n, T )

i) We can order the eigenvalues such that λk = μk, k = 1, . . . , K, the re-

maining eigenvalues being equal to zero.
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ii) The two orthonormal basis can be chosen such that:

〈vk, uk〉 = 1, k = 1, . . . , K, 〈vk, uj〉 = 0, ∀k �= j = 1, . . .K.

iii) Matrix X can be decomposed as:

X =
K∑

k=1

√
λkukv

′
k.

Thus, we have the following decompositions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X = UΛ1/2V ′,

XX ′ = UΛU ′,

X ′X = V ΛV ′,

(A.4.5)

where Λ is the diagonal matrix with elements λk, k = 1, . . . , K, U (resp. V )

is the matrix with columns uk, k = 1, . . . , K (resp. vk, k = 1, . . . , K) and

Λ1/2V = X ′U .

The above decomposition of matrix X is the singular value decompo-

sition of X; the vectors uk (resp. vk) are its left singular vectors (resp.

right singular vectors), and λ
1/2
k the singular values.

A.4.2 Principal Component Analysis

When the eigenvalues λk = μk, k = 1, . . . , K, are different, these eigen-

values can be ranked in decreasing order: λ1 > λ2 . . . > λK . The Principal

Component Analysis (PCA) proposes interpretations of these eigenvalues and

of the associated eigenvectors.

To understand the PCA interpretation, let us consider the constrained

optimisation problem: ⎧⎪⎪⎨
⎪⎪⎩

max
a∈Rn

a′XX ′a

s.t. a′a = 1,

(A.4.6)
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and introduce a Lagrange multiplier ν. The corresponding Lagrangean func-

tion a′XX ′a − 2ν(a′a − 1) can be optimized with respect to vector a. The

first-order condition is:

XX ′a∗ − νa∗ = 0 ⇔ XX ′a∗ = νa∗,

and the optimal value of the objective function in (A.4.6) is:

a∗
′
XX ′a∗ = a∗

′
(νa∗) = ν. (A.4.7)

Equation (A.4.7) means that the solution a∗ is an eigenvector of matrix

XX ′, whereas the associated eigenvalue ν, equal to the value of the objective

function, has to be maximized. Thus, the Lagrange multiplier is equal to

the largest eigenvalue ν∗ = λ1 = μ1, and the solution of the optimization

problem (A.4.6) is the normalized eigenvector u1. By using the orthogonality

between the eigenvectors u1, u2, ..., uK, such optimization can be performed

in a recursive way as described in the following property:

Property A.4:

i) Eigenvector u1 is solution of the optimization problem:

max
a
a′XX ′a, s.t. a′a = 1,

whereas λ1 is the associated value of the objective function.

ii) Eigenvector u2 is solution of the optimization problem:

max
a
a′XX ′a, s.t. a′a = 1, and a′u1 = 0,

whereas λ2 is the associated value of the objective functions, and so on.

The property above is usually applied to a square matrix XX ′ inter-

pretable as a variance-covariance matrix. Let us consider panel data yit,

i = 1, . . . , n, t = 1, . . . , T , and let X be the (n, T ) matrix with elements xi,t =

yit − ȳi·. Then, the matrix
1

T
XX ′ is simply the sample variance-covariance
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matrix of variables yi with observations yi1, . . . , yiT . The associated eigenvec-

tors u1, u2 . . . , called principal components, provide the directions, which

are the most variable, the second most variable... For instance, if yit = rit has

the interpretation of an asset return, u1 = (u11, . . . , u1n)′ can be interpreted

as a portfolio allocation corresponding to the most risky portfolio allocations

(under the constraint a′a = 1). The demeaned values of the return of this

portfolio are equal to

n∑
i=1

u1i(yit − ȳi·), t = 1, . . . , T. Since
√
λ1v1 = X ′u1,

these portfolio returns are equal to the components of the first eigenvector

of X ′X scaled by
√
λ1.

Further reading

Gantmacher, F. (1959): ”Theory of Matrices”, Vol 1 and 2, American

Mathematical Society Chelsea Publishing, Providence.

Jolliffe, I. (2002): ”Principal Component Analysis”, 2nd ed, Springer,

New-York.

Pearson, K. (1901): ”On Lines and Planes of Closest Fit to Systems of

Points in Space”, Philosophical Magazine, 2, 559-572.

A.5 Prediction and Kalman Filter

A.5.1 Linear Prediction

Let us consider two random vectors X and Y with dimensions K and n,

respectively, with means E(X) = mX , E(Y ) = mY , variances V (X) = ΣXX ,

V (Y ) = ΣY Y , and cross-covariances Cov(X, Y ) = ΣXY , Cov(Y,X) = ΣY X .

The mean vectors mX , mY have dimensions (K, 1) and (n, 1), respectively.



239

Matrix ΣXX (resp. ΣY Y ) is the variance-covariance matrix of X with dimen-

sion (K,K) [resp. of Y with dimension (n, n)]. The cross-covariances are

such that ΣXY = Σ′
Y X has dimension (K,n).

The linear prediction of vector Y based on X is a vector Ŷ = ÂX + b̂

such that:

(Â, b̂) = arg min
A,b

E
[‖Y −AX − b‖2

]
.

Thus, each component Ŷi provides the best linear approximation of Yi

based on X1, . . . , XK with possibly an intercept. The expression of the linear

prediction and of the prediction error are given below.

Property A.5: i) Let us assume ΣXX invertible. The best linear prediction

of Y based on X is:

Ŷ = mY + ΣY X(ΣXX)−1(X −mX).

ii) The prediction error û = Y − Ŷ is zero-mean: E(û) = 0, with a variance-

covariance matrix:

V (û) = ΣY Y − ΣY XΣ−1
XXΣXY .

When X, Y are jointly Gaussian, the linear prediction Ŷ coincides with

the conditional expectation of Y given X, denoted E(Y |X), and the residual

variance V (û) with the conditional variance-covariance matrix V (Y |X).

A.5.2 Kalman Filter

The standard Gaussian linear state space model assumes:

State equation: Ft = ΦFt−1 + ηt

Measurement equation: yt = BFt + εt,
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where yt (resp. Ft) has dimension n (resp. K), the errors ηt, εt are indepen-

dent Gaussian white noises ηt ∼ N(0,Ωη), εt ∼ N(0,Ωε). The matrices Φ,

B, Ωε, Ωη are assumed given.

The Kalman filter is a set of algorithms to compute recursively (lin-

ear) predictions of Ft and yt, and their accuracy. These linear predictions

can be either of the type E(Ft|yt, . . . , y0), E(yt|yt−1, . . . , y0), or of the type

E(Ft|yT , . . . , y0). When factor Ft is approximated by current and lagged ob-

served values, the algorithm is called a filter. When the information includes

also future values, it is called a smoother.

The filter and smoother algorithms have been derived by Kalman, using

previous results by Thiele and Swerling. They are based on a recursive use

of the linear prediction formula in Property A.5. Let us denote:

F̂t|t = E(Ft|yt), where yt = (yt, yt−1, . . .),

F̂t|t−1 = E(Ft|yt−1),

Σt|t = V (Ft|yt), Σt|t−1 = V (Ft|yt−1).

The filter involves the following recursions:

Prediction:

Predicted factor: F̂t|t−1 = ΦF̂t−1|t−1,

Accuracy of the predicted factor: Σt|t−1 = ΦΣt−1|t−1Φ
′ + Ωη.

Updating:

Measurement residual: ût|t = yt − BF̂t|t−1,

Residual variance: Ht|t = BΣt|t−1B
′ + Ωε,

Kalman gain: Kt|t = Σt|t−1B
′(Ht|t)−1,
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Updated predicted factor: F̂t|t = F̂t|t−1 +Kt|tût,t,

Updated accuracy of the predicted factor: Σt|t = (Id−Kt|tB)Σt|t−1.

Further reading

Harvey, A. (1989): ”Forecasting, Structural Time Series Models and the

Kalman Filter”, Cambridge University Press.

Kalman, R. (1960): ”A New Approach to Linear Filtering and Prediction,

Problems”, Journal of Basic Engineering, 82, 35-45.

Lauritzen, S. (2002): ”Thiele: Pioneer in Statistics”, Oxford University

Press.

A.6 The Newton-Raphson Algorithm

i) The basic algorithm

This is the best known method to find numerically the solutions of a non-

linear system of equations. The modern presentation of the algorithm is due

to T. Simpson (1740), based on earlier works by the Persian mathematician

Sharaf al-Din al-Tusi (1135-1213), I. Newton (1669) and J. Raphson (1690).

Let us consider a differentiable function g from IRP to IRP : θ → g(θ), say,

and denote
∂g

∂θ′
(θ) its gradient, with elements the different partial derivatives.

The idea of the algorithm is to replace the initial nonlinear system:

g(θ) = 0, (A.6.1)

by its linear expansion (first-order Taylor approximation) around some value

θ0:

g(θ0) +
∂g

∂θ′
(θ0)(θ − θ0) = 0, (A.6.2)
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whose solution has an explicit form:

θ = θ0 −
[
∂g

∂θ′
(θ0)

]−1

g(θ0). (A.6.3)

The solution in (A.6.3) is well-defined if matrix
∂g

∂θ′
(θ0) is non-singular, that

is, function g is one-to-one locally around θ0.

The Newton-Raphson algorithm applies this approach iteratively, along

the following steps:

Step 1: Choose a starting value θ(0).

Step 2: Then apply recursively formula (A.6.3):

θ(p+1) = θ(p) −
[
∂g

∂θ′
(θ(p))

]
g(θ(p)).

Step 3: Stop when numerical convergence is reached.

ii) Application to maximum likelihood

In the standard cases, the maximum likelihood estimate is solution of the

first-order conditions:
∂ log l(y; θ̂)

∂θ
= 0, (A.6.4)

where l is the joint likelihood function of observations y, vector θ is the

parameter, and θ̂ its maximum likelihood estimate.

Then, the recursive equation of the Newton-Raphson algorithm becomes:

θ(p+1) = θ(p) +

(
−∂

2 log l(y; θ(p))

∂θ∂θ′

)−1
∂ log l(y; θ(p))

∂θ
. (A.6.5)

When the numerical convergence is reached, we get a solution θ̂ of the like-

lihood equations, which may be the ML estimate. If it is the case, the

quantity: [
−∂

2 log l(y; θ̂)

∂θ∂θ′

]−1
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involved in the recursive equation provides the estimated variance-covariance

matrix of the maximum likelihood estimator.

The choice of the starting value can accelerate significantly the algorithm.

In particular, we have following the result:

Property A.6: Let us consider a consistent estimator θ̃ of parameter θ.

Then

θ̃(1) = θ̃ +

[
−∂

2 log l(y; θ̃)

∂θ∂θ′

]−1
∂ log l(y, θ̃)

∂θ

is convergent and asymptotically efficient.

Therefore, with this choice, a single iteration is enough.

Further reading

Ypma, T. (1995): ”Historical Development of the Newton-Raphson Method”,

SIAM Review, 37, 531-551.
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B.1 Portfolio Management

B.1.1 Portfolio characteristics

We consider n risky assets and one riskfree asset. Their unitary prices

at date t are pi,t, i = 1, . . . , n and 1, respectively, and their values at t + 1

are pi,t(1 + ri,t+1), i = 1, . . . , n, and 1 + rf,t, respectively, where ri,t+1 is the

return on asset i, and rf,t the riskfree return.

A portfolio allocation defines the quantity of each asset included in the

portfolio. These quantities are denoted ai,t, i = 1, . . . , n, and a0,t at date t,

where a0,t is the quantity in riskfree asset. The portfolio value at date t is :

Wt(ãt) =
n∑

i=1

ai,tpi,t + a0,t = a′tpt + a0,t, (B.1.1)

with at = (a1,t, . . . , an,t)
′, ãt = (a′t, a0,t)

′, pt = (p1,t, . . . , pn,t)
′.

Its value at date t+ 1 is :

Wt+1(ãt) =
n∑

i=1

ai,tpi,t(1 + ri,t+1) + a0,t(1 + rft)

= Wt(ãt)(1 + rf,t) +

n∑
i=1

ai,tpi,tr
∗
i,t+1, (B.1.2)

where r∗i,t+1 = ri,t+1 − rf,t denotes the excess return. At date t, the al-

location, the current prices and the riskfree rate are known, but the excess

returns are unknown. Let us denote yi,t+1 = pi,tr
∗
i,t+1, i = 1, . . . , n the excess

gains in the different risky assets. These excess gains are random at date t,

with mean and variance given by:

μt = Et(yt+1),Σt = Vt(yt+1), (B.1.3)

where Et, Vt denote the expectation and variance-covariance matrix given the

information available at date t.
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The first and second-order conditional moments of the future portfolio

value are:

Et[Wt+1(ãt)] = Wt(ãt)(1 + rf,t) + a′tμt, (B.1.4)

Vt[Wt+1(ãt)] = a′tΣtat, (B.1.5)

by using equation (B.1.2).

B.1.2 Mean-Variance portfolio management

In the mean-variance approach, the allocation is chosen to maximise a

criterion taking into account the expected gain and the risk, under a budget

constraint. More precisely, the optimization problem is:⎧⎪⎪⎨
⎪⎪⎩

maxãEt[Wt+1(ãt)] − A

2
Vt[Wt+1(ãt)]

s.t. Wt(ãt) = W0,t,

(B.1.6)

where A > 0 is a measure of absolute risk aversion. The criterion is increasing

in the expected portfolio value, decreasing in its variance, which creates a

trade off between expected gain and risk.

The budget constraint and equations (B.1.4)-(B.1.5) can be used to de-

duce an unconstrained optimization problem in the allocation at in risky

assets:

max
at

a′tμt − A

2
a′tΣtat. (B.1.7)

The first-order condition of problem (B.1.7) is:

μt − AΣtat = 0. (B.1.8)

This provides the optimal allocation:

a∗t =
1

A
Σ−1

t μt, (B.1.9)
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called the mean-variance efficient allocation. The quantity invested in

riskfree asset is then deduced from the budget constraint. We have:

a∗0,t = W0,t − a∗
′

t pt = W0,t − 1

A
μ′

tΣ
−1
t pt. (B.1.10)

B.1.3 The Sharpe performance

At the optimum, the criterion becomes :

W0,t(1 + rf,t) + a∗
′

t μt − A

2
a∗

′
t Σta

∗
t = W0,t(1 + rf,t) +

1

2A
μ′

tΣ
−1
t μt.

It depends on the stochastic properties of risky excess returns by means of

the quantity :

St = μ′
tΣ

−1
t μt, (B.1.11)

called Sharpe performance of the set of risky assets. This quantity is equal

to :

St =
[Et(W

∗
t+1) −W0,t(1 + rf,t)]

2

Vt(W ∗
t+1)

, (B.1.12)

where W ∗
t+1 is the future value of the efficient portfolio. Thus, S

1/2
t provides

a measure of the maximal risk adjusted expected gain for a portfolio based

on these n risky assets and riskfree asset.

Further reading

Lintner, J. (1965): ”The Valuation of Risky Assets and the Selection

of Risky Investments in Stock Portfolio and Capital Budgets”, Review of

Economic and Statistics, 47, 13-37.

Markowitz, H. (1952): ”Portfolio Selection”, The Journal of Finance, 7,

77-91.
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B.2 Arbitrage

B.2.1 How to normalize prices ?

Let us first discuss alternative ways to normalize prices. For expository

purpose, we consider the case of three goods with respective prices p1, p2, p3.

The decisions of the agents, that can be either consumers, firms or investors,

depend on these prices up to a positive multiplicative factor. Thus, it is

interesting to introduce a normalization to avoid this price multiplicity.

i) The most frequent normalization consists in choosing one of the good,

good number 1, say, as a numeraire. Thus, the initial set of prices is replaced

by 1, p2/p1, p3/p1. In economic reality, the money is generally used as the

numeraire.

ii) However, this normalization is not the most appropriate in Finance,

since it introduces an asymmetry between goods. Another possible normal-

ization replaces the initial prices by:

q1 =
p1

p1 + p2 + p3
, q2 =

p2

p1 + p2 + p3
, q3 =

p3

p1 + p2 + p3
. (B.2.1)

This corresponds to the choice of the basket including one unit of each

good as the numeraire. An advantage of the normalisation above is a possible

interpretation of the new prices q1, q2, q3 as a probability distribution, since

ql ≥ 0, ∀l, and
3∑

l=1

ql = 1.

This normalisation can also be applied to contingent assets. Let us con-

sider an uncertain future with three states of nature w1, w2, w3. An Arrow-

Debreu security (or digital option) is an asset providing 1 money unit,

if state w is realized, 0 money unit, otherwise. There exists in our example

three Arrow-Debreu securities, with prices denoted by p1, p2, p3, respectively.

The basket including one unit of each Arrow-Debreu security provides one

money unit with certainty. This is the zero-coupon bond, whose price is
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B =
1

1 + rf

, with rf the riskfree interest rate. Thus, the prices of Arrow-

Debreu securities can be normalized such that pj = Bqj , j = 1, 2, 3, where

B is the price of the zero-coupon bond and qj the elementary risk-neutral

probability.

B.2.2 Absence of Arbitrage Opportunity (AAO)

The Absence of Arbitrage Opportunity assumes the impossibility

to get a certain strictly positive future portfolio value for an initial nonpos-

itive investment. It is also called assumption of no arbitrage, or of no

free lunch. The AAO condition is automatically satisfied in an equilibrium

model. Indeed, if a certain positive future value can be obtained from zero

investment say, the investor will increase infinitely its investment size (the

so-called leverage effect) implying an infinite demand of some assets, not

compatible with the existence of an equilibrium.

There exist static and dynamic AAO condition. In the static case, the

portfolio is crystallized at its initial allocation. In the dynamic case, the

portfolio can be regularly updated without introducing or withdrawing cash

at each updating (self-financing condition).

B.2.3 Pricing under dynamic AAO assumption

The no arbitrage condition implies strong restrictions between the asset

prices. More precisely, let us consider a discrete time framework and assume

an information It available to the investor when updating its portfolio at date

t. Then the property below is providing a pricing formula.

Property B.1: Let us consider a financial asset paying cash flows gt+h at

time t+ h, where gt+h depends on information It+h. Then, the price of this

asset at time t can be written as:

P (t, g) =

∞∑
h=0

Et[Mt,t+hgt+h], (B.2.2)
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where Mt,t+h = Mt,t+1Mt+1,t+2 . . .Mt+h−1,t+h, with Mt,t+1 ≥ 0 depending on

information It.

The random variable Mt,t+1 is called the short term stochastic dis-

count factor (sdf) and Mt,t+h the sdf for term h. Thus, all asset prices are

defined whenever the sequence of short term sdf is given. In general, the

observed asset prices are not enough to characterize the underlying sdf. This

is the incompleteness characteristic of the financial market.

The pricing formula (B.2.2) can be written in an alternative way.

i) Let us first consider a zero-coupon bond with time-to-maturity h. This

bond provides a certain cash-flow equal to one at time t+h. Its price is equal

to:

B(t, h) = Et(Mt,t+h).

In particular B(t, 1) = Et(Mt,t+1) ≡ exp[−r(t, 1)], where r(t, 1) is the con-

tinuously compounded riskfree short term rate.

Then, we get:

Et(Mt,t+hgt+h)

= Et

{
exp[−r(t, 1) . . .− r(t+ h− 1, 1)]

Mt,t+1

Et(Mt,t+1)
. . .

Mt+h−1,t+h

Et+h−1(Mt+h−1,t+h)
gt+h

}

= EQ
t {exp[−r(t, 1) . . . r(t+ h− 1, 1)]gt+h} ,

where the risk-neutral probability Q admits (for time-to-maturity h) the

density
Mt,t+1

Et(Mt,t+1)
. . .

Mt+h−1,t+h

Et(Mt,+h−,t+h)
with respect to the initial probability

distribution, called historical distribution, or physical distribution.

Corollary B.2: Under the (dynamic) AAO condition, the asset price can

be written as:

P (t, g) = EQ
t {exp[−r(t, 1) . . .− r(t+ h− 1, 1)]gt+h} ,
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where r(t, 1) is the short term riskfree rate and Q a risk-neutral distribution.

The expression above corresponds to the second normalization discussed

in Section B.2.1. The risk-neutral probability Q simply defines the normal-

ized prices of appropriate Arrow-Debreu securities and is not unique in an

incomplete market.

Further reading

Chamberlain, G., and M., Rothschild (1983): ”Arbitrage, Factor Struc-

ture and Mean-Variance Analysis in Large Asset Markets”, Econometrica,

52, 1281-1304.

Hansen, L., and S., Richard (1987): ”The Role of Conditioning Informa-

tion in Deducing Testable Restrictions Implied by Dynamic Asset Pricing

Models”, Econometrica, 55, 587-613.

Harrison, M., and D., Kreps (1979): ”Martingales and Arbitrage in Mul-

tiperiod Securities Markets”, Journal of Economic Theory, 20, 381-408.

Ross, S. (1976): ”The Arbitrage Theory of Capital Asset Pricing”, Jour-

nal of Economic Theory, 13, 341-360.

B.3 Risk Measures

The analysis of risky investments is based on quantities summarizing the

risk, called risk measures. They can be used for descriptive purpose, but

also for portfolio management, pricing, or definition of the required capital

in a regulatory perspective.

The variance has long been the most successful measure of risk in Finance

[see however Roy (1952)]. It is the basis of the mean-variance portfolio man-

agement [see Review B.1], and of the idea that the price of a risky asset is
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equal to its expected value plus a risk premium function of this variance.

However, the variance (or the standard deviation), as a measure of risk, has

some drawbacks. The surveys among professionals have shown that this risk

measure was not so-well understood. Moreover, it is not appropriate to cor-

rectly capture the extreme risks, or the possible skew in the risk distribution.

This has lead the regulatory authorities to choose the Value-at-Risk (VaR)

as the new measure of risk in Basel I and II for banks, as well as in Sol-

vency I and II for insurance companies. The aim of this review is to discuss

some properties of the VaR, and its extensions, that are the Distortion Risk

Measures (DRM).

Let us consider a random variable X, typically a Loss and Profit (L&P)

variable, i.e. the opposite of a portfolio value, or the total liabilities in a

balance. This variable has a distribution with a quantile function qα(X)

defined by:

P [X < qα(X)]) = α.

Such a quantile function, called VaR in the regulation, characterizes the

distribution of L&P variable X.

Definition B.1: A risk measure R(X) is a scalar function of the distribution

of X, used to measure the risk.

Of course not every function of this distribution is appropriate for measur-

ing risk. Different conditions or axioms have been introduced in the literature

to restrict the set of appropriate risk measures. We discuss below several of

them.

i) The unit of a risk measure

Unit Axiom: The risk measure has the same unit as variable X.

This condition is important, if we want to use directly the risk measure

as a level of reserve to hedge the risk, or as the cost (price) of this risk. For
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instance, the VaR and standard deviation satisfy the unit axiom, but not the

variance. This shows also the importance of defining ex-ante the currency $

or Euro, in which the risk measures are computed.

ii) Deterministic risk

Certainty Axiom: If X = c is known, then R(X) = c.

This axiom shows that the search for a measure interpretable as a level

of reserve, or as a price, has not only to account for the uncertainty of the

value, but also for its ”expected value”. This condition is satisfied by the

VaR, but not by the standard deviation.

iii) The homogeneity

Homogeneity Axiom: We have R(λX) = λR(X), ∀λ > 0.

This condition is satisfied by both the VaR and the standard deviation.

If R(X) is seen as a price, the homogeneity axiom implies that the unitary

price of an asset does not depend on the demanded quantity.

iv) Risk ordering

There exist two notions of risk ordering in the literature, both based on

expected utility.

Definition B.2: Let us consider two L&P variables X and Y . Variable X

stochastically dominates variable Y at order 1 (resp. 2) if, and only if,

E[U(−X)] ≥ E[U(−Y )],

for any increasing (resp. increasing concave) function U .

The stochastic dominance at order j, for j = 1, 2, defines a preference

ordering on the L&P variable X, or equivalently on the P&L variable −X.
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Risk ordering Axiom: We have R(X) ≤ R(Y ), if X stochastically domi-

nates Y .

This condition on the risk measure is stronger with dominance at order

2 than with dominance at order 1.

v) Comonotonic risks

Two risks X and Y are comonotonous, if they are increasing functions of

a same underlying risk Z: X = a(Z), Y = b(Z), say. Intuitively, they are

increasing functions of a common risk factor.

Axiom of comonotonic risks: R(X + Y ) = R(X) + R(Y ), if X and Y

are comonotonous.

This axiom has been introduced to define reserve levels (or prices) in a

way compatible with no arbitrage (see Review B.2). Typically, we have:

X −K = (X −K)+ + [−(X −K)−],

with (X −K)+ = max(X −K, 0) and (X −K)− = max(K − X, 0). Thus,

the payoff is decomposed into the payoff of a European call with strike K

and the payoff of a European put with the same strike. We expect to get:

R(X −K) = R[(X −K)+] +R[−(X −K)−],

to avoid a perfect arbitrage by means of reserves, whereas no arbitrage exists

on the market.

The axiom on comonotonic risks is important and implies a first charac-

terization of risk measures.

Property B.1: The risk measures satisfying the axiom of comonotonic risks,

the certainty axiom and the compatibility with first-order stochastic domi-

nance can be written as:

R(X) =

∫ 1

0

qα(X)dH(α),
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where H is the cumulative distribution function of a probability distribution

on [0, 1].

Measure H is called a Distortion Measure (DM) and R a Distortion

Risk Measure (DRM). A distortion risk measure is simply a weighted com-

bination of VaR at several quantile levels. The VaR at level α is itself a DRM

by choosing the point mass at α as distortion measure.

When the distortion measure is the uniform distribution on (α, 1), the

DRM reduces to the Expected Shortfall (ES) at level α, given by:

ESα(X) = E[X|X > qα(X)] =
1

1 − α

∫ 1

α

qu(X)du. (1.1)

Corollary B.2: A DRM is compatible with second-order stochastic domi-

nance if and only if the distortion cdf H is convex.

The Expected Shortfall satisfies this condition, but not the VaR.

vi) Subadditivity

Subadditivity Axiom: For any risks X and Y , we have:

R(X + Y ) ≤ R(X) +R(Y )

The DRMs with convex distortion measure satisfy this axiom, but not

the VaR (even if we observe V aR(X + Y ) ≤ V aR(X) + V aR(Y ) for the

portfolios risks encountered in practice).

The subadditivity condition is a source of debate among academics and

practitioners, especially when it is used as a crude tool for fixing regulatory

reserves. Let us assume that a regulator demands to each bank i = 1, . . . , n

to fix its required capital at R(Xi), where R is a subadditive risk measure

(for instance the expected shortfall at 95%). Then,

n∑
i=1

R(Xi) ≥ R(

n∑
i=1

Xi).
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At a first sight, the regulator oversizes the capital required to hedge the global

risk X =
n∑

i=1

Xi, that is, seems to follows a prudential approach. However,

with such a principle, we also have:

R(X1 +X2) ≤ R(X1) +R(X2),

which is a strong incentive for banks 1 and 2 to merge to diminuish the level

of required capital. Thus, this a priori prudential approach can have spurious

consequences.

The risk measures satisfying the certainty axiom, the homogeneity ax-

iom, the subadditivity axiom and compatible with second-order stochastic

dominance are called coherent risk measures. The coherent risk measures

can be written as:

R(X) = sup
H∈H

DRMH(X),

that is as a supremom of a set of convex DRM risk measures.

Further reading
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