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Abstract

In this article we consider the estimation of the joint distribution of the random coefficients and error
term in the nonparametric random coefficients binary choice model. In this model from economics, each
agent has to choose between two mutually exclusive alternatives based on the observation of attributes of
the two alternatives and of the agents, the random coefficients account for unobserved heterogeneity of
preferences. Because of the scale invariance of the model, we want to estimate the density of a random
vector of Euclidean norm 1. If the regressors and coefficients are independent, the choice probability
conditional on a vector of d − 1 regressors is an integral of the joint density on half a hyper-sphere
determined by the regressors. Estimation of the joint density is an ill-posed inverse problem where the
operator that has to be inverted in the so-called hemispherical transform. We derive lower bounds on the
minimax risk under Lp losses and smoothness expressed in terms of Besov spaces on the sphere Sd−1. We
then consider a needlet thresholded estimator with data-driven thresholds and obtain adaptivity for Lp

losses and Besov ellipsoids under assumptions on the random design.

Key Words: Discrete choice models, random coefficients, inverse problems, minimax rate optimality, adap-
tation, needlets, data-driven thresholding.
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1 Introduction
Discrete choice models are important models in economics for the choice of agents between a number of
exhaustive and mutually exclusive alternatives. They have applications in many areas ranging from empirical
industrial organizations, labor economics, health economics, planning of public transportation, evaluation
of public policies, etc. For a review, the interested reader can refer to the Nobel lectures of D. Mc Fadden
[24]. We consider here a binary choice model where individuals only have two options. In a random utility
framework, an agent chooses the alternative that yields the higher utility. Assume that the utility for
each alternative is linear in regressors which are observed by the statistician. The regressors are typically
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attributes of the alternative faced by the individuals, e.g. the cost or time to commute from home to one’s
office for each of the two transport alternatives. Because this linear structure is an ideal situation and
because the statistician is missing some factors, the utilities are written as the linear combination of the
regressors plus some random error term. When the utility difference is positive the agent chooses the first
alternative, otherwise he chooses the second. The Logit, Probit or Mixed-Logit models are particular models
of this type. We consider the case where the coefficients of the regressors are random. This accounts for
heterogeneity or taste variation: each individual is allowed to have his own set of coefficients (the preferences
or tastes). Like in [8, 13], we consider a nonparametric treatment of the joint distribution of the error term
and vector of random coefficients.

Nonparametric treatment of unobserved heterogeneity is very important in economics, references include
[2, 4, 7, 8, 11, 12, 13]. It allows to be extremely flexible about the joint distribution of the preferences (as
well as the error term). [7] considers treatment effects models with random coefficients in the case where
the allocation to treatment corresponds to a decision mechanism formulated in the form of model (1) below.
Random coefficients models can be viewed as mixture models. They also have a Bayesian interpretation,
see for example [10] for a model similar to (1) on the sphere. Nonparametric estimation of the density of
the vector of random coefficients corresponds to nonparametric estimation of a prior in the empirical Bayes
setting.

In the nonparametric random coefficients binary choice model we assume that we have n i.i.d. observa-
tions (xi, yi) of (X,Y ) where X is a random vector of Euclidean norm 1 in Rd and Y is a discrete random
variable and Y and X are related through a non observed random vector β of norm 1 by

Y = 21〈X,β〉>0 − 1 =
{

1 if X and β are in the same hemisphere
−1 otherwise.

(1)

In (1), 〈·, ?〉 is the scalar product in Rd. We make the assumption that X and β are independent. This
assumption corresponds to the exogeneity of the regressors. It could be relaxed using instrumental variables
(see [8]). −1 and 1 are labels for the two choices. They correspond to the sign of 〈X,β〉. X and β are
assumed to be of norm 1 because only the sign of 〈X,β〉 matters in the choice mechanism. The regressors
in the latent variable model are thus assumed to be properly rescaled. Model (1) allows for arbitrary
dependence between the random unobservables. In this model, X corresponds to a vector of regressors
where, in an original scale, the first component is 1 and the remaining components are the regressors in
the binary choice model. The 1 stands because in applications we always include a constant in the latent
variable model for the binary choice model. The first element of β in this formulation absorbs the usual error
term as well as the constant in standard binary choice models with non-random coefficients. We assume
that X and β have densities fX and fβ with respect to the spherical measure σ on the unit sphere Sd−1 of
the Euclidean space Rd. Because in the original scale the first component of X is 1, the support of X is
included in H+ = {x ∈ Sd−1 : < x, (1, 0, . . . , 0) >≥ 0}. We assume, for simplicity, through out this paper,
that the support of X satisfies supp fX = H+. In [8], the case of regressors with limited support, including
dummy variables is also studied but identification requires that these variables, as well as one continuously
distributed regressor, are not multiplied by random coefficients.

The estimation of the density of the random coefficient can be viewed as a linear ill-posed inverse problem.
We can write for x ∈ H+,

E[Y |X = x] =
∫
b∈Sd−1

sign (〈x, b〉) fβ(b)dσ(b) (2)
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where sign denotes the sign. As recalled in [27], if ϕ is homogeneous of degree −d , i.e. there exists a
function f on Sd−1 such that ϕ(x) = |x|−df (x/|x|), where | · | is the euclidean norm, then

2
π

Im
∫
Rd
ϕ(x)ei〈x,y〉dy =

∫
b∈Sd−1

sign
(〈

x

|x|
, b

〉)
f(b)dσ(b). (3)

We can rewrite this in terms of another operator from integral geometry:

P(Y = 1|X = x) = E[Y |X = x] + 1
2 =

∫
b∈Sd−1

1〈x,b〉>0fβ(b)dσ(b) , H (fβ) (x). (4)

The operator H is called the hemispherical transform. H is a special case of the Pompeiu operator (see, e.g.,
[30]). The operator H arises when one wants to reconstruct a star-shaped body from its half-volumes (see
[5]). Inversion of this operator was studied in [5, 27], it can be achieved in the spherical harmonic basis (also
called the Fourier Laplace basis as the extension of the Fourier basis on S1 and the Laplace basis in S2),
using polynomials in the Laplace-Beltrami operator for certain dimensions and using a continuous wavelet
transform. [27], and in a certain extent [9], also discuss some of its properties. It is an operator which
is diagonal in the spherical harmonic basis and which eigenvalues are known explicitly. The estimation
problem is a deconvolution problem on the sphere where the left hand side is not a density but a regression
function with random design. Deconvolution on the sphere has been studied by various authors among
which [10, 16, 21]. Because of the indicator function, this is a type of boxcar deconvolution. Boxcar
deconvolution has been studied in specific cases in [14, 20]. There are two important difficulties regarding
identification: (1) because of the intercept in the latent variable model, the left hand side of (4) is not a
function defined on the whole sphere, (2) H is not injective (this can easily be seen from (3) where ϕ cannot
be identified from only the imaginary part of its Fourier transform, even less when X has limited support).
Proper restrictions are imposed to identify fβ. Treatment of the random design (possibly inhomogeneous)
with unknown distribution appearing in the regression function that has to be inverted is an important
difficulty. Regression with random design is a difficult problem, see for example [18, 23] for the case of
wavelet thresholding estimation using warped wavelet for a regression model on an interval, or [6] in the
case of inhomogeneous designs. [8] propose an estimator using smoothed projections on the finite dimensional
spaces spanned by the first vectors of the spherical harmonics basis. It is straightforward to compute in
every dimension d (the specific tools are recalled in Section 2.1). Convergence rates for the Lp-losses for
p ∈ [1,∞] and CLT are obtained in [8]. They depend on the degree of smoothing of the operator which is
ν = d/2 in the Sobolev spaces based on L2, the smoothness of the unknown function, the smoothness of
fX as well as its degeneracy (when it takes small values or is 0, in particular when x is approaching the
boundary of H+). The treatment of the random design is a major difficulty that we deal with in this paper.

The goal of this paper is to provide an estimator of fβ which is adaptive in the unknown smoothness of
the function. Needlets are localized frames built on the spherical harmonic basis, they were introduced in
[26]. They were successfully used in statistics to provide adaptive estimation procedures in [1, 17, 19]. As
they are built on the spherical harmonic basis, they are very well suited for deconvolution on the sphere, this
was used in [21]. Unlike these articles, and in the spirit of [3], we propose a method with a more accurate
data-driven thresholding method.
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2 Preliminaries
We use the notation x∧ y and x∨ y for respectively the minimum and the maximum between x and y. We
write x . y when there exists c such that x ≤ cy and x & y when there exists c such that x ≥ cy. We also
write x ' y when x . y and x & y.

2.1 Harmonic analysis on the sphere

We denote by Lp(Sd−1) the space of real valued p integrable functions with respect to the spherical measure
σ, we denote the Lp-norm by ‖ · ‖p. L2(Sd−1) is a Hilbert space with the classical L2 scalar product.
Every function in L2(Sd) can be decomposed in the following way:

f = f+ + f−

where

f+(b) = (f(b) + f(−b))/2

and

f−(b) = (f(b)− f(−b))/2

f+ (resp. f−) is the even (resp. odd) part of the function f (taking L2 limits of functions which are well
defined pointwise). We can write the orthogonal sum

L2(Sd) = L2
odd(Sd)

⊕
L2

even(Sd).

It can be further decomposed as the orthogonal sum

L2(Sd−1) =
⊕
k∈N

Hk,d

where Hk,d are the eigenspaces of the Laplace-Beltrami operator on the sphere, corresponding to the eigen-
values ζk,d , k(k + d− 2). The spaces Hk,d are of dimension

L(k, d) , (2k + d− 2)(k + d− 2)!
k!(d− 2)!(k + d− 2) .

Each such finite dimensional space is generated by an orthonormal basis of spherical harmonics of degree
k that we denote by (hk,l)

L(k,d)
l=1 . L2

odd(Sd) (resp. L2
even(Sd)), is the orthogonal sum of the Hk,d for k odd

(resp. even). The space H0,d of spherical harmonics of degree 0 is the one dimensional space spanned by 1.
The projector Lk,d onto Hk,d is a kernel operator with kernel

Lk,d(x, y) =
L(k,d)∑
l=1

hk,l(x)hk,l(y) (5)
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having the simple expression

Lk,d(x, y) = [Lk,d(< x, y >), [Lk,d(t) ,
L(k, d)Cµ(d)

k (t)
|Sd−1|Cµ(d)

k (1)
(Addition Formula) (6)

where Cµk are the Gegenbauer polynomials and µ(d) = (d− 2)/2. The Gegenbauer polynomials are defined
for µ > −1/2 and are orthogonal with respect to the weight function (1− t2)µ−1/2dt on [−1, 1]. Cµ0 (t) = 1
and Cµ1 (t) = 2µt for µ 6= 0 while C0

1 (t) = 2t. They satisfy the recursion relation

(k + 2)Cµk+2(t) = 2(µ+ k + 1)tCµk+1(t)− (2µ+ k)Cµk (t). (7)

It is classical (and follows easily from (5)) that the squared L2-norm with respect to either one of the
argument of the kernel is a constant:

∀x ∈ Sd−1, ‖Lk,d(x, ·)‖22 =
L(k,d)∑
l=1
|hk,l(x)|2 = L(k, d)

|Sd−1|
. (8)

Recall that |Sd−1| = 2πd/2/Γ(d/2). The condensed harmonic expansion of a function f in L2(Sd) is the
expansion f =

∑∞
k=0 Lk,df .

In [8], smoothed projection operators are used, they have good approximation properties in all Lp(Sd−1)
spaces and are uniformly bounded from Lp to Lp (the L1− norm of the kernel is uniformly bounded). They
are obtained using a proper damping of the high frequencies. One such operator is the delayed means ([8]
also considers the Riesz means). It is obtained via a C∞ and decreasing function a on R+ supported on
[0, 2], such that ∀t ∈ [0, 2], 0 ≤ a(t) ≤ 1 and ∀t ∈ [0, 1], a(t) = 1. The delayed means are defined through
the kernels

Ka,J(x, y) ,
∞∑
k=0

a

(
k

2J
)
Lk,d(x, y). (9)

These kernels have nearly exponential localization properties (see Theorem 2.2 in [26]). They are building
blocks for the construction of needlets in [26].

2.2 Needlets and Besov spaces

Define b such that
∀t ∈ R+, b2(t) = a (t)− a(2t).

It is nonzero only when 1/2 ≤ t ≤ 2 and satisfies ∀t ∈ [1/2, 1], b2(t) + b2(2t) = 1 and thus

∀t ≥ 1,
∞∑
j=0

b2
(
t

2j
)

= 1.

We assume as well that for some positive c, b(t) > c if t ∈ [3/5, 5/3]. The needlets are the functions

ψj,ξ(x) , ω(j, ξ)
∞∑
k=0

b

(
k

2j−1

)
Lk,d(ξ, x) if j ∈ N, ξ ∈ Ξj (10)

5



ψ0,ξ(x) , L0,d(ξ, x), (11)

where for all j ∈ N, ξ ∈ Ξj and
(
ω(j, ξ)2)

ξ∈Ξj are respectively the nodes and positive weights of a quadrature
formula on the sphere that integrates exactly all functions in

⊕2j+1
k=0 H

k,d, and satisfy, for some positive CΞ,
∀j ∈ N, 1

CΞ
2j(d−1) ≤ |Ξj | ≤ CΞ2j(d−1), ∀j ∈ N, ∀ξ ∈ Ξj , 1

CΞ
2−j(d−1)/2 ≤ ω(j, ξ) ≤ CΞ2−j(d−1)/2 where |Ξj |

denotes the cardinal of the set Ξj . The quadrature formula is given in Corollary 2.9 of [26]. Note that for
j = 0, ψ0,ξ(x) is constant and one takes Ξ0 as a singleton. Note that the Addition Formula is a very useful
tool because the needlets, unlike the spherical harmonics, have a simple expression in every dimension. The
Lp-norms of the needlets satisfy, for constants cp and Cp uniform in j and ξ,

cp2j(d−1)(1/2−1/p) ≤ ‖ψj,ξ‖p ≤ Cp2j(d−1)(1/2−1/p), (12)

this is a consequence of the following localization property around the nodes of the quadrature formula

∀η ∈ Sd−1,∀ξ ∈ Ξj , |ψj,ξ(η)| ≤ C ′k
2j(d−1)/2

(1 + 2j arccos(〈ξ, η〉))k
. (13)

If f ∈ Lp(Sd−1) for p ∈ [1,∞], then

f =
∞∑
j=0

∑
ξ∈Ξj
〈f, ψj,ξ〉ψj,ξ

in Lp(Sd−1). The needlets form a tight frame:

‖f‖22 =
∞∑
j=0

∑
ξ∈Ξj
|〈f, ψj,ξ〉|2 .

In the sequel, we denote by ‖ · ‖`p the `p-norm of a vector. The following lemma from [1] is useful in the
analysis.

Lemma 1 (i) For every p ∈ (0,∞], there exists a positive constant C ′′p such that∥∥∥∥∥∥
∑
ξ∈Ξj

βξψj,ξ

∥∥∥∥∥∥
p

≤ C ′′p2j(d−1)(1/2−1/p)
∥∥∥(βξ)ξ∈Ξj

∥∥∥
`p
. (14)

(ii) There exist a constant cA and subsets Aj ⊂ Ξj with |Aj | ≥ cA2j(d−1) such that for every p ∈ (0,∞],
there exists a positive constant c′′I,A such that∥∥∥∥∥∥

∑
ξ∈Aj

βξψj,ξ

∥∥∥∥∥∥
p

≥ c′′I,A2j(d−1)(1/2−1/p)
∥∥∥(βξ)ξ∈Ξj

∥∥∥
`p
. (15)

(iii) For every p ∈ [1,∞], there exists a positive constant C ′′′p such that∑
ξ∈Ξj
|〈f, ψj,ξ〉|p

1/p

2j(d−1)(1/2−1/p) ≤ C ′′′p ‖f‖p. (16)
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[26] discuss three formulations of the Besov spaces Bs
p,q on the sphere. The Besov spaces will be our

scales of smoothness for the adaptive estimation. One characterization is in terms of the approximation
error. If s > 0, p ∈ [1,∞] and q ∈ (0,∞], f belongs to Bs

p,q if and only if f is in Lp(Sd−1) and

‖f‖ABsp,q = ‖f‖p +
∥∥∥∥(2jsE2j (f)p

)
j∈N

∥∥∥∥
`q
<∞

where
Em(f)p = inf

P∈
⊕m

k=0H
k,d
‖f − P‖p .

Whatever the function a in the definition of the smoothed projection operators, the above norm is equivalent
to the following sequence space norm

‖f‖Bsp,q =
∥∥∥∥(2j(s+(d−1)(1/2−1/p))

∥∥∥(〈f, ψj,ξ〉)ξ∈Ξj

∥∥∥
`p

)
j∈N

∥∥∥∥
`q
.

We denote by Bs
p,q(M) the ball of radius M for the above norm in Bs

p,q. From the proof of the continuous
embeddings in [1] we can get easily:

Lemma 2 (i) If p ≤ r ≤ ∞, Bs
r,q(M) ⊂ Bs

I,q(C
1/p−1/r
Ξ M)

(ii) If s > (d− 1)(1/r − 1/p) and r ≤ p ≤ ∞, Bs
r,q(M) ⊂ Bs−(d−1)(1/r−1/p)

p,q (M).

(iii) If f ∈ Bs
r,q(M) and

(
(βj,ξ)ξ∈Ξj

)
j∈N

are its needlet coefficients, then

∀z ≥ 1,
∑
ξ∈Ξj
|βj,ξ|z ≤ C

1−(z∧r)/r
Ξ Dz

j 2−jz(s+(d−1)(1/2−1/(z∧r))) (17)

where ∀j ∈ N, Dj ≥ 0, (Dj)j∈N ∈ `q and ‖(Dj)j∈N‖`q ≤M .

Note that ‖Dj‖q ≤ M implies that ∀j ∈ N, Dj ≤ M . Recall as well that, when f belongs to Bs
I,q with

s > (d− 1)/p, then f is continuous and bounded.

2.3 The hemispherical transform

The hemispherical transform is a mapping from L2(Sd−1) to L2(Sd−1) which maps a function f to a function
which, evaluated at x ∈ Sd−1, is the integral of the original function on the hemisphere {y ∈ Sd : 〈x, y〉 > 0}.
It is a special case of the Pompeiu operator and is strongly related to the spherical Radon transform. Several
inversion formulas as well as properties of this mapping are given in [27]. These inversion formulas include
polynomials in the spherical Laplacian (for certain dimensions) and a continuous wavelet transform, the
known inversion formula in the spherical harmonic basis is recalled. We make use of this latter because the
needlet frame is very well suited to this decomposition.

A consequence of the Funck-Hecke theorem (see, e.g., [9]), is thatH is a diagonal operator in the spherical
harmonic basis (hk,l)l=1,...,L(k,d), k∈N with the same eigenvalue on the spaces Hk,d. We thus only index them
by the degree of the harmonics.
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Proposition 3 H is a self-adjoint operator on L2(Sd−1) with null space

ker H =
∞⊕
p=1

H2p,d =
{
f ∈ L2

even(Sd−1) :
∫
Sd−1

f(x)dσ(x) = 0
}
.

Its nonzero eigenvalues (λk,d)k∈N (k indices the degree of the harmonics) are

λ0,d = 2
|Sd−1|

,

λ1,d = |S
d−2|

d− 1 ,

∀p ∈ N, λ2p+1,d = (−1)p|Sd−2|1 · 3 · · · (2p− 1)
(d− 1)(d+ 1) · · · (d+ 2p− 1) .

Note that ∀p ∈ N \ {0}, λ2p,d = 0. It is easy to check (see, e.g., [27]) that H is continuous from L2
odd(Sd−1)

to Hd/2
odd and that its inverse is continuous from Hd/2

odd to L2
odd(Sd−1), where Hd/2

odd is the restriction to odd
functions of the Sobolev space Hd/2. Hs is defined, for arbitrary s, by

Hs =

f ∈ L2(Sd−1) : (−∆)s/2f ,
∑
k∈N

ζ
s/2
k,d Lk,df ∈ L2(Sd−1)


equipped with the norm

‖f‖2,s = ‖f‖2 +
∥∥∥(−∆)s/2 f

∥∥∥
2
.

The inverse of a function R in Hd/2
odd is

H−1 (R) =
∑
k odd

1
λk,d

Lk,d (R)

=
∑
k odd

1
λk,d

L(k,d)∑
l=1
〈R, hk,l〉hk,l

 , (18)

we use a parenthesis to stress that the last equality is not practical if we work in arbitrary dimensions but
can nevertheless be used in proofs. Let us also recall the following Bernstein type inequality from [8].

Proposition 4

∀d ≥ 2, ∀p ∈ [1,∞], ∃B(d, p) > 0 : ∀P ∈
K⊕
k=0
k odd

Hk,d, ‖H−1P‖p ≤ B(d, p)Kd/2‖P‖p. (19)

Throughout the paper, we denote by ν = d/2 the degree of ill-posedness of the inverse problem. It is the
same degree of ill-posedness as that of the Radon transform in Rd which appears in tomography and in [12]
for the estimation of the vector of random coefficients in the linear regression problem.
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2.4 Identification of fβ

Let us review the main arguments for the identification of fβ that are taken from [8]. Imposing, as we do,
that β belongs to Sd−1 is not sufficient. First, the left hand side of (4) is only defined on the support of
fX . Through out the article we make the following assumption. [8] present cases where it could be relaxed
when we do not assume that all coefficients are random.

Assumption 5 suppfX = H+ and E[Y |X = x] is well defined pointwise on suppfX .

First note that, because fβ is a density,

H(fβ) = H(f−β ) + 1
2 . (20)

We can now introduce the function R such that

R(x) =
{

E[Y |X = x] when x ∈ H+

−E[Y |X = −x] when − x ∈ H+ . (21)

It is the unique extension of the regression function which is compatible with (1) and (20). We can now
write

R

2 = H(f−β ).

Thus, (1) implies implicitly, if fβ belongs to L2(Sd−1), that R ∈ Hd/2
odd(Sd−1) and is thus continuous on

the whole sphere. Also, from properties of Section 2.3, there exists a unique f−β in L2
odd(Sd−1) such that

R = 2H(f−β ). The function f−β can be retrieved via the inversion formula (18). We need yet another
assumption to identify fβ, this is due to the non invertibility of H in the whole Hd/2(Sd−1) space.

Assumption 6 fβ is defined pointwise and has a support included in some hemisphere.

Assumption 6 appears in both [8, 13]. In many applications this is a plausible assumption. It is the case for
example if one coefficient has a sign or if some coefficients are non random. For example, if one regressor
is the price difference, then the price coefficient is negative in the binary choice model. Indeed, when the
price difference increases there is substitution from the good labeled 1 to good labeled -1 and the choice
probability for good 1 decreases.

Using Assumption 6, we can recover uniquely fβ via

fβ = 2f−β 1f−
β
>0.

Note that we do not need to know which hemisphere contains suppfβ. Given an estimator f̂−β of f−β , we
shall always use 2f̂−β 1

f̂−
β
>0

as an estimator of fβ. The first stage of the proof of Proposition 4.2 in [8] tells

us how to relate the loss in the estimation of fβ with that of the estimation of f−β .

9



2.5 Random design

For the purpose of estimation, we also exploit the following relation which is valid for any g in L2(Sd−1).

〈R, g〉 = 〈R, g−〉 (because R is odd)

= 2
∫
H+

R(x)g−(x)
fX(x) fX(x)dσ(x)

= 2EX

[
R(X)g−(X)
fX(X)

]

= 2EX

[
EY (Y |X)g−(X)

fX(X)

]

= 2E(X,Y )

[
Y g−(X)
fX(X)

]

The expectation could be approximated by 2
n

∑n
i=1

Yig
−(Xi)

f̂X(Xi)
where f̂X is an estimator of the unknown fX ,

possibly trimmed to avoid the division by quantities close to zero.
Like in [8], we rely on a plug-in estimator of fX . Many such estimators exists and we would like to

mention one particular estimator which is the needlet thresholding estimator of the density of [1].

3 Lower Bound
The following theorem gives lower bounds on the minimax risk.

Theorem 7 Assume that fX ∈ L∞(H+).

(i) When p ≥ 1, z ≥ 1, q ≥ 1 (with the restriction q ≤ r is s = p
(
ν + d−1

2

) (
1
r −

1
p

)
) and s ≥

p
(
ν + d−1

2

) (
1
r −

1
p

)
(the parameters are in the dense zone),

inf
f̂β

sup
fβ∈Bsr,q(M)

E
∥∥∥f̂β − fβ∥∥∥z

p
&

 1√
n‖fX‖L∞(H+)

 sz
s+ν+(d−1)/2

. (22)

(ii) When p ≥ 1, z ≥ 1, q ≥ 1 and d−1
r < s < p

(
ν + d−1

2

) (
1
r −

1
p

)
(the parameters are in the sparse zone),

inf
f̂β

sup
fβ∈Bsr,q(M)

E
∥∥∥f̂β − fβ∥∥∥z

p
&


√√√√ log

(
n‖fX‖L∞(H+)

)
n‖fX‖L∞(H+)


(

s−(d−1)(1/r−1/p)
s+ν−(d−1)(1/r−1/2)

)
z

(23)

The proof of this result is given in Section 4. As discussed in Section 4.3 of [8], the classical assumption
that fX is bounded from below is very restrictive for the model at hand. In the d = 2 case, it would imply
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that, in the original scale, X has tails larger than the Cauchy tails. It is therefore important for applications
to allow for densities which are unbounded from below. We make the dependence on ‖fX‖L∞(H+) explicit.
However this does not give that the estimation problem is more difficult when fX can take values arbitrary
close to 0, it does not even take into account that fX is a density as the larger ‖fX‖L∞(H+) the greater the
lower bound. We therefore expect these lower bounds to properly characterize the difficulty of the estimation
problem when fX is bounded from below but to be too optimistic otherwise.

[6] introduces, in the case of the estimation of the regression function and inhomogeneous designs, risks
where the rate is a function and can vary with the points in the support of the density of the design. There
are no extensions to inverse problems up to our knowledge.

It will also appear in Section 4 that even if fX were known but unbounded from below, good rates require
trimming of the density fX for design points where the density is low. Not knowing fX might degrade the
optimal rates in one step procedures. This is discussed in Section 5.

4 A needlet thresholded estimator when fX is known and bounded from
below

4.1 Smoothed projections and needlet estimators

In this section we present an ideal benchmark estimator. We assume that the density of the design is known
and bounded from below. In practice it is unknown and in most cases unbounded from below (see the
discussion in Section 3).
Using the identity of Section 2.5 with g(·) = Lk,d(·, x) for fixed x, we estimate Lk,dR(x) by

L̂k,dR
I
(x) = 2

n

n∑
i=1

yiL
−
k,d(xi, x)
fX(xi)

where L−k,d(xi, x) = 0 if k is even and L−k,d(xi, x) = Lk,d(xi, x) if k is odd. The subscript I stands for the ideal

estimator where the density of the random design is known. Because Hk,d is a vector space, L̂k,dR
I
∈ Hk,d.

A smoothed projection estimator with kernel (9) and smoothing window a (in the ideal case where fX is
known) can be written as

f̂−β
I,a,J

= 1
2
∑
k odd

a
(
k

2J
)

λk,d
L̂k,dR

I
(x).

We can also estimate f−β using the needlet frame with the same smoothing window a. The needlet coefficients
are equal to

βaj,ξ = 〈f−β , ψj,ξ〉

= ω(j, ξ)
∑
k odd

b

(
k

2j−1

)
〈f−β , Lk,d(ξ, ·)〉

= ω(j, ξ)
∑
k odd

b
(

k
2j−1

)
2λk,d

〈Lk,dR,Lk,d(ξ, ·)〉

11



= ω(j, ξ)
∑
k odd

b
(

k
2j−1

)
2λk,d

Lk,dR(ξ)

= ω(j, ξ)
∑

2j−2<k<2j
k odd

b
(

k
2j−1

)
2λk,d

Lk,dR(ξ)

= 〈f−β
I,a,J

, ψj,ξ〉 ∀j ≤ J, (collecting back the terms using that a
(
k
2j
)

= 1 for k = 0, . . . , 2j)

where f−β
I,a,J is the expected value of f̂−β

I,a,J
(the spherical convolution Ka ? f

−
β ). The needlet coefficients

can be estimated by

β̂I,aj,ξ = ω(j, ξ)
∑
k odd

b
(

k
2j−1

)
2λk,d

L̂k,dR
I
(ξ) = 〈f̂−β

I,a,J
, ψj,ξ〉 ∀j < J.

Moreover

β̂I,aj,ξ ψj,ξ(x) = ω(j, ξ)2

 ∑
k odd

b
(

k
2j−1

)
2λk,d

L̂k,dR
I
(ξ)

(∑
k

b

(
k

2j−1

)
Lk,d(ξ, x)

)
,

which belongs to
⊕2j+1
k=0 H

k,d, thus, from the quadrature formula,

∑
ξ∈Ξj

β̂I,aj,ξ ψj,ξ = 1
2
∑
k odd

b2
(

k
2j−1

)
λk,d

L̂k,dR
I
,

and
J∑
j=0

∑
ξ∈Ξj

β̂I,aj,ξ ψj,ξ =
J∑
j=1

∑
ξ∈Ξj

β̂I,aj,ξ ψj,ξ (f̂−β
I,a,J

is odd and thus of integral 0 on the sphere)

= 1
2

2J−1−1∑
k=1
k odd

1
λk,d

L̂k,dR
I

+ 1
2

2J−1∑
k=2J−1+1
k odd

b2
(

k
2J−1

)
λk,d

L̂k,dR
I

(for t ∈ [1/2, 1], b2(t) + b2(2t) = 1)

= 1
2

2J−1−1∑
k=1
k odd

1
λk,d

L̂k,dR
I

+ 1
2

2J−1∑
k=2J−1+1
k odd

a
(

k
2J−1

)
λk,d

L̂k,dR
I

(b2(t) = a (t)− a(2t))

= f̂−β
I,a,J−1

The smoothed projection and needlet estimators coincide. They are biased and the bias corresponds to the
approximation error.

4.2 A data driven thresholding scheme

The unbiased estimators of the needlet coefficients

β̂I,aj,ξ = 1
n

n∑
i=1

ω(j, ξ) Yi
fX(Xi)

∑
k odd

b
(

k
2j−1

)
λk,d

Lk,d(Xi, ξ)
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,
1
n

n∑
i=1

GIj,ξ(Xi, Yi).

are used to define the needlet thresholded estimator

f̂−β
I,a,ρ

=
J∑
j=0

∑
ξ∈Ξj

ρTj,ξ,γ (β̂I,aj,ξ )ψj,ξ

where ρTj,ξ,γ is a suitable level and local dependent thresholding function depending on some γ ≥ 1. In the
subsequent analysis, we consider the hard thresholding function

ρTj,ξ,γ (x) = 1|x|>Tj,ξ,γ .

The highest resolution level J that should be used to obtain a needlet estimator of section 4.1 that achieves
the minimax rate of convergence depends on a prior knowledge of the smoothness of the unknown density
of the random coefficient. Hard-thresholding is a nonlinear estimation method where we allow for a larger
highest resolution level J , independent of the smoothness of the unknown function, but where thresholding
allows to perform a bias/variance trade-off at the level of the coefficients in the high-dimensional space. As
we will see this yields an adaptive procedure. We define the empirical variance estimator

σ̂Ij,ξ =

√√√√ 1
n(n− 1)

n∑
i=2

i−1∑
k=1

(
GIj,ξ(Yi, Xi)−GIj,ξ(Yk, Xk)

)2

and the data driven thresholds

Tj,ξ,γ , T
I
j,ξ,γ = 2

√
2γtnσ̂Ij,ξ + 28

3 M
I
j,ξ

γ logn
n− 1

where M I
j,ξ is some upper bound on the sup-norm over of {±1} × H+ of GIj,ξ(x, y) − E

[
GIj,ξ(Xi, Yi)

]
=

GIj,ξ(x, y)− βaj,ξ (remark that M I
j,ξ can be chosen equal to 2‖GIj,ξ‖∞) and we use the short hand notation

tn =

√
logn
n

.

Using (12) and Proposition 4, we get the following upper bound which is uniform in ξ

2‖GIj,ξ‖∞ ≤ 2
∥∥∥H−1

(
ψ−j,ξ

)∥∥∥
∞

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

≤ 2C∞B(d,∞)2j(ν+(d−1)/2)
∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

,M I
j . (24)

It depends on some prior knowledge of
∥∥∥ 1
fX

∥∥∥
L∞(H+)

. The higher order term in the definition of Tj,ξ,γ which

involves M I
j,ξ allows to control the fluctuations of this estimated threshold.

The estimator of fβ that we consider is

f̂β
I,a,ρ

= 2f̂−β
I,a,ρ

1
f̂−
β

I,a,ρ

>0

where ρ is the above hard thresholding function with the data driven threshold.
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4.3 Two general inequalities

We shall use below the constants c1,z and c2,z defined by∫
R+
zτ z−1e−βτdτ ≤ c1,zβ

−z (25)∫
R+
zτ z−1e−ατ

2
dτ ≤ c2,zα

−z/2. (26)

Theorem 8 For all τ > 1, γ > 1, z > 1,

T s,++
j,ξ,γ ≥ 3

√
2γtnσIj,ξ + 26M I

j,ξ

γ logn
n− 1 , T

s,+
j,ξ,γ ,

the two following inequalities hold:
when p =∞,

1
2z−1E

[∥∥∥∥f̂βI,a,ρ − fβ∥∥∥∥z
∞

]
≤
∥∥∥f−β I,a,J − f−β ∥∥∥z∞

+ (J + 1)z−1C ′′z∞

an,∞,z,J
J∑
j=0

2j(d−1)z/2
(

sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,++
j,ξ,γ

+ E
[

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T s,++
j,ξ,γ

])

+ 4
nγ
CΞ

J∑
j=0

2j(d−1)(z/2+1) sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z
+
(
CΞ4
nγ

)1−1/τ
(

1√
n

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
2Jz(ν+(d−1)/2)

)z
2J(d−1)(1−1/τ)bn,∞,z,J,τ

}

where

an,∞,z,J = 1 +
( 2√

γ logn

)z (
2 +

(
log

(
CΞ2J(d−1)c2,z

))z/2)
+
( 4
γ logn

)z (
2 +

(
log

(
CΞ2J(d−1)c1,z

))z)

bn,∞,z,J,τ =

(
2
√

2C2B(d, 2)
)z (

21/τ +
(
log

(
CΞ2J(d−1)c2,zτ

))z/2)
1− 2−(zν+(d−1)(z/2+1−1/τ))

+
(8C∞B(d,∞)/3)z

(
21/τ +

(
log

(
CΞ2J(d−1)c1,z

))z)
1− 2−(zν+(d−1)(z+1−1/τ))

(
2J(d−1)

n

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

)z/2
;

while when p ∈ [1,∞),

1
2z−1E

[∥∥∥∥f̂βI,a,ρ − fβ∥∥∥∥z
p

]
≤
∥∥∥f−β I,a,J − f−β ∥∥∥zp

+ (J + 1)z−1C ′′zp C
z/(p∧z)−1
Ξ

an,p,z,J
J∑
j=0

2j(d−1)(z/2−z/(p∨z)) ∑
ξ∈Ξj

(∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,++
j,ξ,γ

+ E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T s,++
j,ξ,γ

)
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+ 4
nγ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z)) ∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z
+ 22−1/τ

nγ(1− 1
τ

)
CΞ

(
1√
n

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
2J(ν+(d−1)/2)

)z
2J(d−1)(1−z/(p∨z))bn,p,z,J,τ

}
.

where

an,p,z,J = 1 + 2

 √2c1/z
2,z√

γ logn

z +

 2c1/z
1,z

γ logn

z
bn,p,z,J,τ =

(
2c1/(zτ)

2,zτ C2B(d, 2)
)z

1− 2−(zν+(d−1)(z/2+1−z/(p∨z))) +

(
4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
1− 2−(zν+(d−1)(z+1−z/(p∨z)))

(
2J(d−1)

n

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

)z/2
.

The inequalities of Theorem 8 provide some theoretical guaranty valid without any assumptions on the
function fβ. When J is well chosen depending on n and under some minimal regularity assumption on fβ
(see for instance Theorem 9), the only two meaningful terms are the approximation term

∥∥∥f−β I,a,J − f−β ∥∥∥zp and
the term involving

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,++
j,ξ,γ

and
∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa

j,ξ

∣∣>T s,++
j,ξ,γ

. This second term can be interpreted
in term of oracle inequality, where the oracle estimates βaj,ξ if and only if the error made by estimating this
coefficient is smaller than the one made by discarding it. Indeed, such an oracle strategy would lead (when
p <∞) to a quantity of the form∣∣∣βaj,ξ∣∣∣z 1∣∣βa

j,ξ

∣∣≤(E[∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣z])1/z + E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>(E[∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣z])1/z .
Proving that such an oracle inequality holds would require to lower bound

(
E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z])1/z

. In the

inequalities of Theorem 8 the ideal quantity
(
E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z])1/z

is replaced by T s,++
j,ξ,γ , we call this term a

quasi-oracle term. The remaining terms can be made as small as we wish by taking γ large enough. Upper
bounds of these types, uniform on Besov ellipsoids, yield an approximation error which can be expressed in
terms of the regularity of the Besov class and is uniformly small for J large enough and allows to treat the
bias/variance trade-off in the quasi-oracle term uniformly over the ellipsoid.

Data driven thresholds are known to perform much better than thresholds involving deterministic upper
bounds on the variance of the coefficients in finite samples. The inequalities of the Theorem 8 show that
they work at least as well as a deterministic one using the unknown variance of each coefficient.

4.4 Adaptive estimation over Besov ellipsoids

The general inequalities of the previous section can be used to derive minimax results. We condider here
some Besov ellipsoids and obtain

Theorem 9 Take J such that 2J(ν+(d−1)/2)
∥∥∥ 1
fX

∥∥∥1/2

L∞(H+)
≤ t−1

n . If M > 0, r ≥ 1, s > (d − 1)/r and q ≥ 1
we have
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(i) For any z > 1, there exists a constant c̃∞ = c̃∞(s, r, γ) such that if γ > z/2 + 1,

sup
f−
β
∈Bsr,q(M)

E
∥∥∥∥f̂βI,a,ρ − fβ∥∥∥∥z

∞
≤ c̃∞(logn)z−1M r

(∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

tn

)µs,∞z
(27)

where
µs,∞ = s− (d− 1)/r

s+ ν − (d− 1)(1/r − 1/2) .

(ii) For p ∈ [1,∞), q ≥ 1 (with the restriction q ≤ r is s = p
(
ν + d−1

2

) (
1
r −

1
p

)
), there exists some

constant c̃p = c̃p(s, r, p, γ) such that if γ > p/2,

sup
f−
β
∈Bsr,q(M)

E
∥∥∥∥f̂βI,a,ρ − fβ∥∥∥∥p

p
≤ c̃p(logn)p−1M$

(∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

tn

)µp
(28)

where µ = µd with
µd = s

s+ ν + (d− 1)/2
and $ = $d = r in the dense zone

s ≥ p
(
ν + d− 1

2

)(1
r
− 1
p

)
and µ = µs with

µs = s− (d− 1)(1/r − 1/p)
s+ ν − (d− 1)(1/r − 1/2)

and $ = $s is arbitrary such that $ > pν+(d−1)(1/2−1/(p∨z))
s+ν−(d−1)(1/r−1/2) in the sparse zone

d− 1
r

< s < p

(
ν + d− 1

2

)(1
r
− 1
p

)
.

The constant µs,∞ corresponds to the limit of µs as p goes to infinity. It should be noted that these upper
bounds blow-up when fX is unbounded from below. We will see in the next section that trimming allows
to avoid this problem, at the expense of a more complicated control of the expected loss.

5 The case where the density of the design is unknown and possibly
unbounded from below

In this section, we consider a modified estimator to handle the case where the density of the design is
unknown and possibly unbounded from below. We show a modified version of Theorem 9 in that case.
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5.1 Plug-in strategy

We assume now that one has a preliminary estimator f̂X of fX , based on a different sample. Expectations
are taken conditional on that first sample. The estimator can be trimmed by a proper constant t to allow
for designs with density approaching zero. This is particularly useful in the neighborhood of the boundary
of H+, in order to avoid too stringent assumptions on the distribution of the design.

Using a simple plug-in rule, fX can be replaced in the previous estimators by f̂X yielding the estimated
harmonic projection of the extended regression function

L̂k,dR
P

(x) = 2
n

n∑
i=1

yiL
−
k,d(xi, x)
f̂X(xi)

of expectation

Lk,dR
P (x) = 2E(X,Y )

[
Y L−k,d(X,x)
f̂X(X)

]
=
〈
R

(
fX

f̂X

)+

, L−k,d(·, x)
〉

where
(
fX/f̂X

)+
is the even extension to the whole sphere of fX/f̂X (initially defined on H+). This gives

rise to the following linear estimator

f̂−β
P,a,J

= 1
2
∑
k odd

a
(
k

2J
)

λk,d
L̂k,dR

P

whose mean is

f−β
P,a,J = 1

2
∑
k odd

a
(
k

2J
)

λk,d
Lk,dR

P .

The plug-in estimators of the needlet coefficients are

β̂P,aj,ξ = 1
2ω(j, ξ)

∑
k odd

b
(

k
2j−1

)
λk,d

L̂k,dR
P

(ξ)

= 〈f̂−β
P,a,J

, ψj,ξ〉 ∀j ≤ J

which yields the thresholded estimator

f̂−β
P,a,ρ

=
J∑
j=0

∑
ξ∈Ξj

ρTj,ξ,γ (β̂P,aj,ξ )ψj,ξ.

In this section we consider the data driven thresholds

Tj,ξ,γ , T
P
j,ξ,γ = 2

√
2γtnσ̂Pj,ξ + 28

3 M
P
j,ξ

γ logn
n− 1
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where

σ̂Pj,ξ =

√√√√ 1
n(n− 1)

n∑
i=2

i−1∑
k=1

(
GPj,ξ(Yi, Xi)−GPj,ξ(Yk, Xk)

)2
(29)

GPj,ξ(Yi, Xi) = ω(j, ξ) Yi

f̂X(Xi)

∑
k odd

b
(

k
2j−1

)
λk,d

Lk,d(Xi, ξ) (30)

and MP
j,ξ is some upper bound on the sup-norm over of {±1} × H+ of GPj,ξ(x, y) − E

[
GPj,ξ(Xi, Yi)

]
=

GPj,ξ(x, y) − βP,aj,ξ , where the expectation is conditional on the sample used to estimate f̂X , and βP,aj,ξ the
expectation of β̂P,aj,ξ , again conditional on the sample used to estimate f̂X ,

βP,aj,ξ = 1
2ω(j, ξ)

∑
k odd

b
(

k
2j−1

)
λk,d

Lk,dR
P (ξ).

The following uniform upper bound could be used

MP
j,ξ ≤ 2C∞B(d,∞)2j(ν+(d−1)/2)

∥∥∥∥∥ 1
f̂X

∥∥∥∥∥
L∞(H+)

,MP
j . (31)

5.2 Upper bounds

Below we denote, for π ≥ 1, by

MP,a,J,r,π = M + 2Cr,π2J(s+ν+(d−1)(1/π−1/r)+)
∥∥∥∥∥fXf̂X − 1

∥∥∥∥∥
Lπ(H+)

where Cr,π = 2C ′′′p CprojB(d, p)|Sd−1|(1/r−1/π)+ and Cproj is the constant of the Lp continuity of the smoothed
projections (wee Lemma 2.4 (c) of [26]). The expectations in the theorem below are conditional on the
sample that is used to estimate f̂X .

Theorem 10 Take J such that 2J(ν+(d−1)/2)
∥∥∥∥ 1
f̂X

∥∥∥∥
L∞(H+)

≤ t−1
n . If M > 0, r ≥ 1, s > (d− 1)/r and q ≥ 1

we have

(i) For any z > 1, there exists a constant c̃∞ = c̃∞(s, r) such that γ > z/2 + 1,

sup
f−
β
∈Bsr,q(M)

E
∥∥∥∥f̂βP,a,ρ − fβ∥∥∥∥z

∞
≤ 3z−1 inf

π≥1

c̃∞(logn)z−1
(
MP,a,J,r,π

)r∥∥∥∥∥ 1
f̂X

∥∥∥∥∥
L∞(H+)

tn

µs,∞z

+2−Js
(
C ′′′∞

)−1
(
MP,a,J,r,π −M

)}
(32)

where
µs,∞ = s− (d− 1)/r

s+ ν − (d− 1)(1/r − 1/2) .
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(ii) For p ∈ [1,∞), q ≥ 1 (with the restriction q ≤ r is s = p
(
ν + d−1

2

) (
1
r −

1
p

)
), there exists some

constant c̃p = c̃p(s, r, p) such that if γ > p/2,

sup
f−
β
∈Bsr,q(M)

E
∥∥∥∥f̂βP,a,ρ − fβ∥∥∥∥p

p
≤ 3p−1 inf

π≥1

c̃p(logn)p−1
(
MP,a,J,r,π

)$∥∥∥∥∥ 1
f̂X

∥∥∥∥∥
L∞(H+)

tn

µp

+2−Js
(
C ′′′p

)−1 (
MP,a,J,r,π −M

)}
(33)

where µ = µd with
µd = s

s+ ν + (d− 1)/2
and $ = r in the dense zone

s ≥ p
(
ν + d− 1

2

)(1
r
− 1
p

)
and µ = µs with

µs = s− (d− 1)(1/r − 1/p)
s+ ν − (d− 1)(1/r − 1/2)

and $ is arbitrary such that $ > pν+(d−1)(1/2−1/(p∨z))
s+ν−(d−1)(1/r−1/2) in the sparse zone

d− 1
r

< s < p

(
ν + d− 1

2

)(1
r
− 1
p

)
.

Two quantities appear in the upper bound that account for the design and the estimation of the density
of the design:

∥∥∥∥ 1
f̂X

∥∥∥∥
L∞(H+)

and
(
MP,a,J,r,π

)r
. Since in most design distributions of interest in the original

scale Rd−1, the corresponding density on the sphere fX is bounded from below, it is useful to work with
estimators f̂X which are trimmed estimators of an original estimator f̂X

t
= max(f̂X , t) for a properly chosen

t. For such trimmed preliminary estimators we obtain
∥∥∥∥ 1
f̂X

t

∥∥∥∥
L∞(H+)

= t−1.

Now, the quantity
∥∥∥∥ fX
f̂X

t − 1
∥∥∥∥

Lπ(H+)
appears in the term MP,a,J,r,π. It is possible to use the upper bound

∥∥∥∥∥ fXf̂Xt − 1
∥∥∥∥∥

Lπ(H+)

≤ t−1
∥∥∥f̂X − fX∥∥∥Lπ(H+)

.

For a trimmed estimator, this yields, for example,∥∥∥∥∥ fXf̂Xt − 1
∥∥∥∥∥

Lπ(H+)

≤ σ
(
0 < f̂X < t

)1/π
+ t−1

∥∥∥fX1
f̂X<t

∥∥∥
Lπ(H+)

+ t−1
∥∥∥f̂X − fX∥∥∥Lπ(H+)

≤
(
1 + t−1‖fX‖L∞(H+)

)
σ
(
0 < f̂X < t

)1/π
+ t−1

∥∥∥f̂X − fX∥∥∥Lπ(H+)
.
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Moreover, for u > 1,

σ
(
0 < f̂X < t

)
≤ σ (0 < fX < ut) + σ

(
fX − f̂X > (u− 1)t

)
.

Note that on the one hand π = 1 is good for σ
(
0 < f̂X < t

)1/π
to be as small as possible, but a multiplicative

factor 2J(d−1)(1−1/p) is paid. On the other hand choosing π = p implies a multiplicative factor equal to 1.
Thus, based on the upper bound, the best choice for π and t depends on the smoothness of f̂X and the
sample size of the first sample, as well as the function u 7→ σ(0 < fX < u).

6 Proof of Theorem 7
Let us prove two lower bounds. They yield the lower bounds in the dense and sparse zone. We conclude by
checking for which value of the parameters one rate is larger than the other one.

6.1 Proof of the lower bound in the dense zone

Consider a set of measures (Pm)Mm=0 indexed by a finite family of densities (fm)Mm=0 which are the distribu-
tions of an n i.i.d. sample of (Y,X) when fβ = fm and for a given fX . The tower property of the conditional
expectation yield that the Kullback-Leibler divergence between two measures Pm and P0 is given by

K(Pm, P0) = nEfX
[
H(fm)(X) log

(H(fm)(X)
H(f0)(X)

)
+ (1−H(fm)(X)) log

(1−H(fm)(X)
1−H(f0)(X)

)]
.

It is easy to check that

K(Pm, P0) ≤ nEfX
[
H(fm)(X)

(H(fm)(X)−H(f0)(X)
H(f0)(X)

)
+ (1−H(fm)(X))

(H(f0)(X)−H(fm)(X)
1−H(f0)(X)

)]
= nEfX

[
H(fm − f0)(X)2

H(f0)(X) + H(fm − f0)(X)2

1−H(f0)(X)

]

= nEfX

[
H(fm − f0)(X)2

H(f0)(X) (1−H(f0)(X))

]
.

The general reduction scheme together with the Corollary 2.6 of the Fano lemma from [28] yield:

Lemma 11 If, for α ∈ (0, 1), some positive integerM

(i) fm ∈ Bs
r,q(M) for m = 1, . . . ,M,

(ii) ∀m 6= l, ‖fm − fl‖p ≥ 2h > 0,

(iii) 1
M+1

∑M
m=1K(Pm, P0) ≤ α logM

then
∀z ≥ 1, inf

f̂β

sup
fβ∈Bsr,q(M)

E
∥∥∥f̂β − fβ∥∥∥z

p
≥ h−z

( log(M+ 1)− log 2
logM − α

)
.
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We take the indices m that correspond to vectors of 0 and 1 of size |Aj |. We consider the family

fm = 1
|Sd−1|

+ γ
∑
ξ∈Aj

mξψj,ξ

where γ is small enough to guarantee the positivity of fm for all m and the fact that for one of them, f0,
corresponding to a vector m0, ∀x ∈ H+,

∣∣∣H(f−0 )(x)
∣∣∣ ≤ cb for some cb ∈ (0, 1

2). Because H(f0) = 1
2 +H(f−0 ),

the last condition implies that H(f0)(x) (1−H(f0)(x)) ≥ (1
2 − cb)

2 > 0. This yields a family Aj of functions
of cardinality 2bcA2j(d−1)c. The Varshamov-Guilbert bound (see, e.g., [28]) yields that there exists a subset
A′j ⊂ Aj such that ∀(m1,m2) ∈

(
{0, 1}A

′
j

)2
,
∑
ξ∈A′j

|m1,ξ −m2,ξ| > cA
8 2j(d−1). We denote the corresponding

family of functions
fm = 1

|Sd−1|
+ γ

∑
ξ∈A′j

mξψj,ξ

by A′j , it is of cardinalityM≥ 2bcA2j(d−1)c/8. When p =∞, we work with the whole family Aj .
|γ| ≤ 2−j(s+(d−1)/2)M implies that ∀fm ∈ Aj , fm ∈ Bs

r,q(M). Take |γ| & 2−j(s−(d−1)/2) as well. Indeed,
when r <∞,

|γ|2j(s+(d−1)(1/2−1/r))
∥∥∥(mξ)ξ∈Aj

∥∥∥
`r
≤ |γ|2j(s+(d−1)/2) ≤M.

It is straightforward to check that the same condition is also sufficient when r =∞.
Lemma 1 (ii) yields that for p ∈ [1,∞), m1 and m2 in {0, 1}A

′
j ,

‖fm1 − fm2‖p ≥ |γ|c
′′
p,A2j(d−1)(1/2−1/p)

(
cA
8 2j(d−1)

)1/p
= c′′p,A

(
cA
8

)1/p
M2−js , 2h

while for p =∞, m1 and m2 in {0, 1}Aj ,

‖fm1 − fm2‖∞ ≥ |γ|c
′′
p,A2j(d−1)(1/2−1/p)

(
cA
8 2j(d−1)

)1/p
= c′′∞,AM2−js , 2hA.

For m0 and every m in {0, 1}A
′
j , we get

K(Pm, P0) ≤
(1

2 − cb
)−2
‖fX‖∞n ‖H(fm − f0)‖22

≤
(1

2 − cb
)−2
‖fX‖∞n2−2(j−2)ν ‖fm − f0‖22 (from (10), writing the squared L2-norm

as the sum of the squared L2-norm on the spaces Hk,d for k = 2j−2 + 1, . . . , 2j − 1)

≤
(
C ′′2
)2 (1

2 − cb
)−2
‖fX‖L∞(H+)n2−2(j−2)νγ2

∥∥∥∥(mξ −m0,ξ)ξ∈A′j

∥∥∥∥2

`2
(Lemma 1 (i))

≤
(
C ′′2
)2 (1

2 − cb
)−2
‖fX‖L∞(H+)n2−2(j−2)νγ2

∥∥∥∥(mξ −m0,ξ)ξ∈A′j

∥∥∥∥
`1

≤
(
C ′′2
)2 (1

2 − cb
)−2

24ν‖fX‖L∞(H+)C
2
Ξn2j(d−1−2ν)γ2
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≤
(
C ′′2
)2 (1

2 − cb
)−2

24ν‖fX‖L∞(H+)C
2
Ξn2−2j(s+ν)

In the p =∞ case we replace A′j by Aj above. CΞ is an upper bound and we can replace by the constants
for Aj and A′j . Condition (iii) of Lemma 11 is satisfied once

n‖fX‖L∞(H+)2−2j(s+ν+(d−1)/2) ≤
αcA(log 2)

(
1
2 − cb

)2

24ν+3C2
Ξ

.

The larger h or h∞ above is obtained for the smaller j in the above condition thus 2j ' (n‖fX‖∞)1/2(s+ν+(d−1)/2).
Lemma 11 now yields for every p ∈ [1,∞] and z ≥ 1,

∀z ≥ 1, inf
f̂β

sup
fβ∈Bsr,q(M)

E
∥∥∥f̂β − fβ∥∥∥z

p
&

 1√
n‖fX‖L∞(H+)

 sz
s+ν+(d−1)/2

.

6.2 Proof of the lower bound in the sparse zone

Consider now the hypotheses
fξ = 1

|Sd−1|
+ γψj,ξ

where ξ belongs to Aj and |γ| . 2−j(d−1)/2 to ensure the functions are positive. The constant is adjusted so
that for one of the fξ that we denote f0, ∀x ∈ H+,

∣∣∣H(f−0 )(x)
∣∣∣ ≤ cb with cb ∈ (0, 1

2).
We denote by Pξ the distributions of an n i.i.d. sample of (Y,X) when fβ = fξ and for a given fX . HereM
is the cardinality of Aj thusM ' 2j(d−1). Like in [29], we make use of the following lemma from [22]. We
denote by Λ(Pξ, P0) the likelihood ratio. Recall that K(Pξ, P0) = EPξ [Λ(Pξ, P0)].

Lemma 12 If, for π0 > 0 and some positive integerM

(i) fm ∈ Bs
r,q(M) for m = 1, . . . ,M,

(ii) ∀m 6= l, ‖fm − fl‖p ≥ 2h > 0,

(iii) ∀m = 1, . . . ,M, Λ(f0, fm) = exp(zmn − vmn ), where zmn are random variables and vmn constants such
that P(zmn > 0) ≥ π0 and exp

(
supm=1,...,M vmn

)
≤M,

then
∀z ≥ 1, inf

f̂β

sup
fβ∈Bsr,q(M)

E
∥∥∥f̂β − fβ∥∥∥z

p
≥ h−zπ0

2 .

(i) is satisfied when |γ| ≤ M2−j(s−(d−1)(1/r−1/2). This is more restrictive than the condition to ensure
positivity because we assume that s ≥ (d − 1)/r. Thus, now we take |γ| . 2−j(s−(d−1)(1/r−1/2). h in (ii) is
obtained as follows, if ξ and ξ′ belong to Ai,

‖fξ − fξ′‖p = |γ|‖ψj,ξ − ψj,ξ′‖p

22



≥ |γ|c′′p,A2j(d−1)(1/2−1/p)

& 2−j(s−(d−1)(1/r−1/p)).

PPξ (log (Λ(P0, Pξ)) ≥ −j(d− 1) log 2) ≥ 1− PPξ (|log (Λ(P0, Pξ))| ≥ j(d− 1) log 2)

≥ 1−
EPξ [|log (Λ(P0, Pξ))|]

j(d− 1) log 2 .

Thus, condition (iii) is satisfied when

EPξ [|log (Λ(P0, Pξ))|] ≤ αj(d− 1) log 2

for α ∈ (0, 1). The same computations as in the beginning of Section 4.1 yield that we need to impose
n2−2jνγ2 . j, thus

‖fX‖L∞(H+)n2−2j(s+ν−(d−1)(1/r−1/2)) . j.

We can check that it is possible to take

2j '

 n‖fX‖L∞(H+)

log
(
n‖fX‖L∞(H+)

)
 1

2(s+ν−(d−1)(1/r−1/2))

which yields the desired rate.

7 Proof of Theorem 8

7.1 A preliminary decomposition

We know from [8] that for all p in [1,∞]∥∥∥∥f̂βI,a,ρ − fβ∥∥∥∥
p
≤ 2

∥∥∥∥f̂−β I,a,ρ − f−β ∥∥∥∥
p
.

We also use that for z ∈ [1,∞),∥∥∥∥f̂−β I,a,ρ − f−β ∥∥∥∥z
p
≤ 2z−1

(∥∥∥∥f̂−β I,a,ρ − f−β I,a,J∥∥∥∥z
p

+
∥∥∥f−β I,a,J − f−β ∥∥∥zp

)
. (34)

The second term is the approximation error. Let us focus on the first term which corresponds to the error
in the high dimensional space.

Lemma 1 (i) yields

∥∥∥∥f̂−β I,a,ρ − f−β I,a,J∥∥∥∥z
p
≤ (J + 1)z−1

J∑
j=0

∥∥∥∥∥∥
∑
ξ∈Ξj

(
ρTj,ξ,γ

(
β̂I,aj,ξ

)
− βaj,ξ

)
ψj,ξ

∥∥∥∥∥∥
z

p

≤ (J + 1)z−1
J∑
j=0

C ′′zp 2j(d−1)z(1/2−1/p)
∥∥∥ρTj,ξ,γ (β̂I,aj,ξ )− βaj,ξ∥∥∥zp .
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When p =∞, we thus have∥∥∥∥f̂−β I,a,ρ − f−β I,a,J∥∥∥∥z
p
≤ (J + 1)z−1

J∑
j=0

C ′′z∞ 2j(d−1)z/2 sup
ξ∈Ξj

∣∣∣ρTj,ξ,γ (β̂I,aj,ξ )− βaj,ξ∣∣∣z
while for p <∞, we obtain∥∥∥∥f̂−β I,a,ρ − f−β I,a,J∥∥∥∥z

p
≤ (J + 1)z−1C ′′zp C

z/(p∧z)−1
Ξ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z)) ∑
ξ∈Ξj

∣∣∣ρTj,ξ,γ (β̂I,aj,ξ )− βaj,ξ∣∣∣z
the last inequality is obtained using the fact that when p ≥ z,∑

ξ∈Ξj
|bξ|p

z/p ≤ ∑
ξ∈Ξj
|bξ|z

while by the Hölder inequality when p ≤ z,∑
ξ∈Ξj
|bξ|p

z/p ≤ Cz/p−1
Ξ

∑
ξ∈Ξj
|bξ|z .

Note that for the case p <∞ the inequality is sharp if and only if z = p.

7.2 Coefficientwise analysis

For the simplicity of the notations we will sometimes drop the dependence on γ in the sets of indices.
We first focus on

δj,ξ,z ,
∣∣∣ρTj,ξ,γ (β̂I,aj,ξ )− βaj,ξ∣∣∣z .

By construction,

δj,ξ,z =
∣∣∣βaj,ξ∣∣∣z 1∣∣β̂I,a

j,ξ

∣∣≤Tj,ξ,γ +
∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣β̂I,a

j,ξ

∣∣>Tj,ξ,γ
= max

(∣∣∣βaj,ξ∣∣∣z 1∣∣β̂I,a
j,ξ

∣∣≤Tj,ξ,γ , ∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣β̂I,a
j,ξ

∣∣>Tj,ξ,γ
)

We introduce two “phantom” random thresholds T bj,ξ,γ = Tj,ξ,γ −∆j,ξ,γ and T sj,ξ,γ = Tj,ξ,γ + ∆j,ξ,γ for some
∆j,ξ,γ to be defined later. They are used to define “big” and “small” original needlet coefficients. We will
also use T b,−j,ξ,γ , T

s,+
j,ξ,γ and ∆+

j,ξ,γ that are respectively, with high probability, deterministic lower bound, upper
bound and upper bound of the previous quantities. This yields

δj,ξ,z = max
( ∣∣∣βaj,ξ∣∣∣z max

(
1∣∣β̂I,a

j,ξ

∣∣≤Tj,ξ,γ1∣∣βa
j,ξ

∣∣≤T s
j,ξ,γ

,1∣∣β̂I,a
j,ξ

∣∣≤Tj,ξ,γ1∣∣βa
j,ξ

∣∣>T s
j,ξ,γ

)
,∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z max

(
1∣∣β̂I,a

j,ξ

∣∣>Tj,ξ,γ1∣∣βa
j,ξ

∣∣≤T b
j,ξ,γ

,1∣∣β̂I,a
j,ξ

∣∣>Tj,ξ,γ1∣∣βa
j,ξ

∣∣>T b
j,ξ,γ

))
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≤ max
( ∣∣∣βaj,ξ∣∣∣z max

(
1∣∣βa

j,ξ

∣∣≤T s
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
,∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z max

(
1∣∣β̂I,a

j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ
,1∣∣βa

j,ξ

∣∣>T b
j,ξ,γ

))
≤ max

( ∣∣∣βaj,ξ∣∣∣z max
(

1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ

,1
T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
,∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z max

(
1∣∣β̂I,a

j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ
,1∣∣βa

j,ξ

∣∣>T b,−
j,ξ,γ

,1
T b,−
j,ξ,γ

>T b
j,ξ,γ

))
and sorting them according to the number of random terms

δj,ξ,z ≤ max
( ∣∣∣βaj,ξ∣∣∣z 1∣∣βa

j,ξ

∣∣≤T s,+
j,ξ,γ

,
∣∣∣βaj,ξ∣∣∣z max

(
1
T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
,∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa

j,ξ

∣∣>T b,−
j,ξ,γ

,
∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z max

(
1∣∣β̂I,a

j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ
,1

T b,−
j,ξ,γ

>T b
j,ξ,γ

))

7.3 Scalewise analysis

Defining Mj,z as

Mj,z = sup
ξ∈Ξj

∣∣∣ρTj,ξ,γ (β̂I,aj,ξ )− βaj,ξ∣∣∣z = sup
ξ∈Ξj

δj,ξ,z

and Sj,z as

Sj,z =
∑
ξ∈Ξj

∣∣∣ρTj,ξ,γ (β̂I,aj,ξ )− βaj,ξ∣∣∣z =
∑
ξ∈Ξj

δj,ξ,z

we obtain

Mj,z ≤ max
(

sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ

, sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z max
(

1
T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
,

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

, sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z max
(

1
T b,−
j,ξ,γ

>T b
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

))
, max(MS0

j,z ,M
S1
j,z ,M

B1
j,z ,M

B2
j,z ) ≤MS0

j,z +MS1
j,z +MB1

j,z +MB2
j,z

Sj,z ≤
∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ

+
∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z max
(

1
T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)

+
∑
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

+
∑
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z max
(

1
T b,−
j,ξ,γ

>T b
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)
, SS0

j,z + SS1
j,z + SB1

j,z + SB2
j,z .

We can bound the expectations of each term as follows

E
[
MS0
j,z

]
= sup

ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ
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E
[
MS1
j,z

]
≤ sup

ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z E
[

sup
ξ∈Ξj

max
(

1
T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)]
≤ sup

ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z (P{∃ξ ∈ Ξj , T s,+j,ξ,γ < T sj,ξ,γ

}
+ P

{
∃ξ ∈ Ξj ,

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

})
E
[
MB1
j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

]

Using the Hölder inequality with τ > 1 to be specified later

E
[
MB2
j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣zτ
]1/τ

E
[

sup
ξ∈Ξj

max
(

1
T b,−
j,ξ,γ

>T b
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)]1−1/τ

≤ E
[

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣zτ
]1/τ (

P
{
∃ξ ∈ Ξj , T b,−j,ξ,γ > T bj,ξ,γ

}
+ P

{
∃ξ ∈ Ξj ,

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

})1−1/τ

E
[
SS0
j,z

]
=
∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ

E
[
SS1
j,z

]
=
∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z E [max
(

1
T s,+
j,ξ,γ

<T s
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)]
=
∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z (P{T s,+j,ξ,γ < T sj,ξ,γ

}
+ P

{∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

})
E
[
SB1
j,z

]
=
∑
ξ∈Ξj

E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T b,−
j,ξ,γ

≤
∑
ξ∈Ξj

E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T b,−
j,ξ,γ

E
[
SB2
j,z

]
=
∑
ξ∈Ξj

E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z max

(
1
T b,−
j,ξ,γ

>T b
j,ξ,γ

,1∣∣β̂I,a
j,ξ
−βa

j,ξ

∣∣>∆j,ξ,γ

)]

using the Hölder inequality with τ > 1 to be specified later

≤
∑
ξ∈Ξj

(
E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣zτ ])1/τ (

P
{
T b,−j,ξ,γ > T bj,ξ,γ

}
+ P

{∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

})1−1/τ
.

The following concentration inequalities allow to control the stochastic terms appearing in those bounds.

7.4 Concentration inequalities

7.4.1 Bernstein inequality and the
∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z terms

We denote by (
σIj,ξ

)2
= E

[(
GIj,ξ(Xi, Yi)− βaj,ξ

)2
]

the variance of GIj,ξ(Xi, Yi), if σIj,ξ > 0.

26



Lemma 13 For any cσ and cM positive

E


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

cσσIj,ξ + cMM I
j,ξ

z ≤ 2

c2,z

 2√
n

1

cσ + cM
MI
j,ξ

σI
j,ξ


z

+ c1,z

 4
3n

1

cσ
σI
j,ξ

MI
j,ξ

+ cM


z (35)

Proof. The Bernstein inequality yields

P
{∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ ≥ u} ≤ 2e

− nu2

2
((

σI
j,ξ

)2
+MI

j,ξ
u/3
)

setting u = τ(cσσIj,ξ + cMM
I
j,ξ yields

P
{∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ ≥ τ(cσσIj,ξ + cMM

I
j,ξ)
}
≤ 2e

−
nτ2(cσσIj,ξ+cMMI

j,ξ
)2

2
((

σI
j,ξ

)2
+MI

j,ξ
τ(cσσIj,ξ+cMMI

j,ξ
)/3
)

≤ 2

e−
τ2n(cσσIj,ξ+cMMI

j,ξ
)2

4
(
σI
j,ξ

)2
+ e
−
τ3n(cσσIj,ξ+cMMI

j,ξ
)

4MI
j,ξ



≤ 2

e− 1
4n

(
cσ+cM

MI
j,ξ

σI
j,ξ

)2

τ2

+ e
− 3

4n

(
cσ

σI
j,ξ

MI
j,ξ

+cM

)
τ

 .
We use now

E [|X|z] =
∫
R+
zuz−1P{|X| > u}du

and the upper bounds (25) and (26) to derive

E


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

cσσIj,ξ + cMM I
j,ξ

z ≤ ∫
R+
zτ z−1P


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

cσσIj,ξ + cMM I
j,ξ

≥ τ

 dτ
≤
∫
R+
zτ z−12

e− 1
4n

(
cσ+cM

MI
j,ξ

σI
j,ξ

)2

τ2

+ e
− 3

4n

(
cσ

σI
j,ξ

MI
j,ξ

+cM

)
τ

 dτ
this yields (35) �

Taking cσ = 1 and cM = 0 yields

E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z] ≤ 2

((
2c1/z

2,z
σIj,ξ√
n

)z
+
(

4
3c

1/z
1,z

M I
j,ξ

n

)z)
(36)
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while taking cσ = c′σ
√

logn/n and cM = c′M logn/(n− 1) we obtain

E




∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣
c′σ
√

lognσ
I
j,ξ√
n

+ c′M lognM
I
j,ξ

n−1


z ≤ 2

c2,z

2 1

c′σ
√

logn+ c′M

√
n logn
n−1

MI
j,ξ

σI
j,ξ


z

+c1,z

4
3

1

c′σ
√
n
√

logn σI
j,ξ

MI
j,ξ

+ c′M logn n
n−1


z

≤ 2
(
c2,z

(
2 1
c′σ
√

logn

)z
+ c1,z

(
4
3

1
c′M logn

)z)
(37)

The following lemma is useful for the p =∞ case.

Lemma 14 For any Ξ′j ⊂ Ξj,

E

 sup
ξ∈Ξ′j


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

cσσIj,ξ + cMM I
j,ξ

z ≤
2
√

2√
n

1

cσ + cM infξ∈Ξ′j
MI
j,ξ

σI
j,ξ


z (

2 +
(
log

(
c2,z

∣∣∣Ξ′j∣∣∣))z/2)

+

 8
3n

1

cσ infξ∈Ξ′j
σI
j,ξ

MI
j,ξ

+ cM


z (

2 +
(
log

(
c1,z

∣∣∣Ξ′j∣∣∣))z) (38)

Proof. A uniform union bound yields

P

 sup
ξ∈Ξ′j

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣
cσσIj,ξ + cMM I

j,ξ

≥ τ

 ≤ min

1,
∣∣∣Ξ′j∣∣∣ 2

e− 1
4n

(
cσ+cM infξ∈Ξ′

j

MI
j,ξ

σI
j,ξ

)2

τ2

+ e
− 3

4n

(
cσ infξ∈Ξ′

j

σI
j,ξ

MI
j,ξ

+cM

)
τ




≤ min

1,
∣∣∣Ξ′j∣∣∣ 2e− 1

4n

(
cσ+cM infξ∈Ξ′

j

MI
j,ξ

σI
j,ξ

)2

τ2



+ min

1,
∣∣∣Ξ′j∣∣∣ 2e− 3

4n

(
cσ infξ∈Ξ′

j

σI
j,ξ

MI
j,ξ

+cM

)
τ

 .
We thus derive, for any τ1 and τ2 positive,

E

 sup
ξ∈Ξ′j


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

cσσIj,ξ + cMM I
j,ξ

z ≤ ∫
R+
zτ z−1 min

1,
∣∣∣Ξ′j∣∣∣ 2e− 1

4n

(
cσ+cM infξ∈Ξ′

j

MI
j,ξ

σI
j,ξ

)2

τ2

 dτ
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+
∫
R+
zτ z−1 min

1,
∣∣∣Ξ′j∣∣∣ 2e− 3

4n

(
cσ infξ∈Ξ′

j

σI
j,ξ

MI
j,ξ

+cM

)
τ

 dτ

≤ τ z2 +
∫
τ≥τ2

zτ z−1
∣∣∣Ξ′j∣∣∣ 2e− 1

4n

(
cσ+cM infξ∈Ξ′

j

MI
j,ξ

σI
j,ξ

)2

τ2

dτ

+ τ z1 +
∫
τ≥τ1

zτ z−1
∣∣∣Ξ′j∣∣∣ 2e− 3

4n

(
cσ infξ∈Ξ′

j

σI
j,ξ

MI
j,ξ

+cM

)
τ

dτ.

Let

τ1 = 8
3n

log
(
c1,z

∣∣∣Ξ′j∣∣∣)
cσ infξ∈Ξ′j

σI
j,ξ

MI
j,ξ

+ cM

and τ2 = 2
√

2√
n

√
log

(
c2,z

∣∣∣Ξ′j∣∣∣)
cσ + cM infξ∈Ξ′j

MI
j,ξ

σI
j,ξ

,

by construction

∀τ ≥ τ1,
∣∣∣Ξ′j∣∣∣ 2e− 3

4n

(
cσ infξ∈Ξ′

j

σI
j,ξ

MI
j,ξ

+cM

)
τ

≤ 2
c1,z

e
− 3

8n

(
cσ infξ∈Ξ′

j

σI
j,ξ

MI
j,ξ

+cM

)
τ

∀τ ≥ τ2,
∣∣∣Ξ′j∣∣∣ 2e− 1

4n

(
cσ+cM infξ∈Ξ′

j

MI
j,ξ

σI
j,ξ

)2

τ2

≤ 2
c2,z

e
− 1

8n

(
cσ+cM infξ∈Ξ′

j

MI
j,ξ

σI
j,ξ

)2

τ2

This implies

E

 sup
ξ∈Ξ′j


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

cσσIj,ξ + cMM I
j,ξ

z ≤
2
√

2√
n

√
log

(
c2,z

∣∣∣Ξ′j∣∣∣)
cσ + cM infξ∈Ξ′j

MI
j,ξ

σI
j,ξ


z

+ 2

2
√

2√
n

1

cσ + cM infξ∈Ξ′j
MI
j,ξ

σI
j,ξ


z

+

 8
3n

log
(
c1,z

∣∣∣Ξ′j∣∣∣)
cσ infξ∈Ξ′j

σI
j,ξ

MI
j,ξ

+ cM


z

+ 2

 8
3n

1

cσ infξ∈Ξ′j
σI
j,ξ

MI
j,ξ

+ cM


z

which allows to conclude �

If cσ = 1 and cM = 0 (38) reduces to

E

 sup
ξ∈Ξ′j


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

σIj,ξ

z ≤ (2
√

2√
n

)z (
2 +

(
log

(
c2,z

∣∣∣Ξ′j∣∣∣))z/2)

+

 8
3n sup

ξ∈Ξ′j

M I
j,ξ

σIj,ξ

z (2 +
(
log

(
c1,z

∣∣∣Ξ′j∣∣∣))z)
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Note that one could have used the uniform bounds M I
j (see (24)) and

σIj,ξ ≤ C2B(d, 2)
∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
2jν , σIj (39)

instead of M I
j,ξ and σIj,ξ and obtain

E

 sup
ξ∈Ξ′j

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z
 ≤ (2

√
2√
n
σIj

)z (
2 +

(
log

(
c2,z

∣∣∣Ξ′j∣∣∣))z/2)+
( 8

3nM
I
j

)z (
2 +

(
log

(
c1,z

∣∣∣Ξ′j∣∣∣))z) (40)

Along the same lines, with cσ = c′σtn and cM = c′M logn/(n− 1), we obtain

E

 sup
ξ∈Ξ′j


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

c′σ
√

lognσ
I
j,ξ√
n

+ c′M lognM
I
j,ξ

n−1


z

≤

 2
√

2

c′σ
√

logn+ c′M logn/
√
n− 1 infξ∈Ξ′j

MI
j,ξ

σI
j,ξ


z (

2 +
(
log

(
c2,z

∣∣∣Ξ′j∣∣∣) c1,z
)z/2)

+

 8/3

c′σ
√
n logn infξ∈Ξ′j

σI
j,ξ

MI
j,ξ

+ c′M logn


z (

2 +
(
log

(
c1,z

∣∣∣Ξ′j∣∣∣))z)

≤
(

2
√

2
c′σ
√

logn

)z (
2 +

(
log

(
c2,z

∣∣∣Ξ′j∣∣∣))z/2)+
(

8
3c′M logn

)z (
2 +

(
log

(
c1,z

∣∣∣Ξ′j∣∣∣))z) (41)

recall that when Ξ′j = Ξj ,
∣∣∣Ξ′j∣∣∣ ≤ CΞ2j(d−1).

7.4.2 Empirical Bernstein and the probabilities

We define

∆j,ξ,γ =
√

2γtnσ̂Ij,ξ + 14
3 M

I
j,ξ

γ logn
n− 1

Tj,ξ,γ = 2∆j,ξ,γ , T bj,ξ,γ = ∆j,ξ,γ , T sj,ξ,γ = 3∆j,ξ,γ

∆+
j,ξ,γ =

√
2γtnσIj,ξ + 26

3 M
I
j,ξ

γ logn
n− 1

∆−j,ξ,γ =
√

2γtnσIj,ξ + 2
3M

I
j,ξ

γ logn
n− 1

T b,−j,ξ,γ = ∆−j,ξ,γ and T s,+j,ξ,γ = 3∆+
j,ξ,γ .
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Lemma 15 The following upper bounds hold

P
{
T b,−j,ξ,γ > T bj,ξ,γ

}
≤ 1
nγ

P
{
T s,+j,ξ,γ < T sj,ξ,γ

}
≤ 1
nγ

P
{∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

}
≤ 3
nγ
,

P
{
∃ξ ∈ Ξj : T s,+j,ξ,γ < T sj,ξ,γ

}
≤
∑
ξ∈ξj

P
{
T s,+j,ξ,γ < T sj,ξ,γ

}
≤ CΞ2j(d−1) 1

nγ

P
{
∃ξ ∈ Ξj : T b,−j,ξ,γ > T bj,ξ,γ

}
≤
∑
ξ∈ξj

P
{
T b,−j,ξ,γ > T bj,ξ,γ

}
≤ CΞ2j(d−1) 1

nγ

P
{
∃ξ ∈ Ξj :

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

}
≤
∑
ξ∈ξj

P
{∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ > ∆j,ξ,γ

}
≤ CΞ2j(d−1) 3

nγ
.

Proof. Using the results of [25] we get

P
{
σIj,ξ > σ̂Ij,ξ + 2

√
2u

M I
j,ξ√

n− 1

}
≤ e−u

P
{
σIj,ξ < σ̂Ij,ξ − 2

√
2u

M I
j,ξ√

n− 1

}
≤ e−u

P
{∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣ > √2uσ̂j,ξ√

n
+ 14

3 M
I
j,ξ

u

n− 1

}
≤ 3e−u

which yield the first inequalities. The second set of inequalities are obtained using a union bound �

7.5 The p =∞ case

7.5.1 Error in the high dimensional space

E [Mj,z] ≤ E
[
MS0
j,z

]
+ E

[
MS1
j,z

]
+ E

[
MB1
j,z

]
+ E

[
MB2
j,z

]
with

E
[
MS0
j,z

]
= sup

ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ

E
[
MS1
j,z

]
≤ CΞ2j(d−1) 4

nγ
sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z
E
[
MB1
j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

]
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E
[
MB2
j,z

]
≤
(
CΞ2j(d−1) 4

nγ

)1−1/τ
((

2
√

2√
n
σIj

)z (
21/τ +

(√
log (|Ξj | c1,zτ )

)z)
+
( 8

3nM
I
j

)z (
21/τ + (log (|Ξj | c1,zτ ))z

))
where we have used (a+ b)1/τ ≤ a1/τ + b1/τ for τ ≥ 1.

This yields

E
[∥∥∥∥f̂−β I,a,ρ − f−β I,a,J∥∥∥∥z

∞

]
(J + 1)z−1C ′′z∞

≤
J∑
j=0

2j(d−1)z/2
(

sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ

+ E
[

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

])

+ 4
nγ
CΞ

J∑
j=0

2j(d−1)(z/2+1) sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z
+
(
CΞ

4
nγ

)1−1/τ J∑
j=0

2j(d−1)(z/2+1−1/τ)

×
((

2
√

2√
n
σIj

)z (
21/τ +

(√
log (|Ξj | c1,zτ )

)z)
+
( 8

3nM
I
j

)z (
21/τ + (log (|Ξj | c1,zτ ))z

))
, O′∞,z +R′1,∞,z +R′2,∞,z

7.5.2 The R′1,∞,z and R′2,∞,z terms

The R′1,∞,z is exactly the term appearing in Theorem 8 and thus we only need to bound R′2,∞,z.
As in the p <∞ case, one can plug the uniform bounds on σIj,ξ andM I

j,ξ as well as the bounds |Ξj | ≤ |ΞJ |
to obtain

R′2,∞,z ≤
(
CΞ

4
nγ

)1−1/τ J∑
j=0

2j(d−1)(z/2+1−1/τ)

×
((

2
√

2√
n
C2B(d, 2)2jν

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)

)z (
21/τ + (log (c2,zτ |ΞJ |))z/2

)
+
(

8
3nC∞B(d,∞)2j(ν+(d−1)/2)

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

)z (
21/τ + (log (c1,zτ |ΞJ |))z

))

≤
(
CΞ

4
nγ

)1−1/τ
(2
√

2√
n
C2B(d, 2)

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)

)z (
21/τ + (log (|ΞJ | c2,zτ ))z/2

) J∑
j=0

2j(νz+(d−1)(z/2+1−1/τ))

+
(

8
3nC∞B(d,∞)

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

)z (
21/τ + (log (|ΞJ | c1,zτ ))z

) J∑
j=0

2j(νz+(d−1)(z+1−1/τ))


≤
(
CΞ

4
nγ

)1−1/τ
[(

2
√

2√
n
C2B(d, 2)

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)

)z (
21/τ + (log (c2,zτ |ΞJ |))z/2

) 2J(νz+(d−1)(z/2+1−1/τ))

1− 2−(νz+(d−1)(z/2+1−1/τ))
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+
(

8
3nC∞B(d,∞)

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

)z (
21/τ + (log (c1,zτ |ΞJ |))z

) 2J(νz+(d−1)(z+1−1/τ))

1− 2−(νz+(d−1)(z+1−1/τ))

]

7.5.3 The O′∞,z term

Denote by

O′z,j = sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ

+ E
[

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

]

Because T s,++
j,ξ,γ ≥ T

s,+
j,ξ,γ , we get

E
[

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

]
= E

[
sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T s,++
j,ξ,γ

]

+ E
[

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1
T s,++
j,ξ,γ

≥
∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

]

≤ E
[

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T s,++
j,ξ,γ

]

+ E

 sup
ξ∈Ξj


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

T b,−j,ξ,γ
1
T s,++
j,ξ,γ

≥
∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

z sup
ξ∈Ξj

{∣∣∣βaj,ξ∣∣∣z 1
T s,++
j,ξ,γ

≥
∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

}
,

thus

O′z,j ≤

1 + E

 sup
ξ∈Ξj


∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣

T b,−j,ξ,γ

z sup
ξ∈Ξj

{∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,++
j,ξ,γ

}
+ E

[
sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T s,++
j,ξ,γ

]
.

Using now (41) with c′σ =
√

2γ and c′M = 2
3γ, we get as |Ξj | ≤ CΞ2j(d−1) gives the upper bound in Theorem

8.
Remark that using (41) with Ξ′j = Ξj is rough since the sup could be taken on the much smaller subset

Ξ′j =
{
ξ ∈ Ξj : T s,++

j,ξ,γ ≥
∣∣∣βaj,ξ∣∣∣ > T b,−j,ξ,γ

}
.

7.6 The p <∞ case

7.6.1 Error in the high dimensional space

We obtain

E [Sj,z] = E
[
SS0
j,z

]
+ E

[
SS1
j,z

]
+ E

[
SB1
j,z

]
+ E

[
SB2
j,z

]
.

with

E
[
SS0
j,z

]
=
∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ
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E
[
SS1
j,z

]
≤ 4
nγ

∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z
E
[
SB1
j,z

]
≤
∑
ξ∈Ξj

E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T b,−
j,ξ,γ

E
[
SB2
j,z

]
≤ 41−1/τ

nγ(1−1/τ)

∑
ξ∈Ξj

21/τ
((

2c1/(zτ)
2,zτ

σIj,ξ√
n

)z
+
(

4
3c

1/(zτ)
1,zτ

M I
j,ξ

n

)z)

where we have used (a+ b)1/τ ≤
(
a1/τ + b1/τ

)
. This yields

E
[∥∥∥∥f̂−β I,a,ρ − f−β I,a,J∥∥∥∥z

p

]
(J + 1)z−1C ′′zp C

z/(p∧z)−1
Ξ

≤
J∑
j=0

2j(d−1)z(1/2−1/(p∨z))E [Sj,z]

≤
J∑
j=0

2j(d−1)z(1/2−1/(p∨z)) ∑
ξ∈Ξj

(∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,+
j,ξ,γ

+ E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T b,−
j,ξ,γ

)

+ 4
nγ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z)) ∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z

+ 22−1/τ

nγ(1−1/τ)

J∑
j=0

2j(d−1)z(1/2−1/(p∨z)) ∑
ξ∈Ξj

((
2c1/(zτ)

2,zτ
σIj,ξ√
n

)z
+
(

4
3c

1/(zτ)
1,zτ

M I
j,ξ

n

)z)

, Op,z +R1,p,z +R2,p,z.

7.6.2 The R1,p,z and R2,p,z terms

The R1,p,z term appears as is in Theorem 8.
To bound the term R2,p,z, we rely on the uniform bounds M I

j in (24) and σIj in (39). We obtain

∑
ξ∈Ξj

21/τ
((

2c1/(zτ)
2,zτ

σIj√
n

)z
+
(

4
3c

1/(zτ)
1,zτ

M I
j

n

)z)

≤
∑
ξ∈Ξj

21/τ
(

2c1/(zτ)
2,zτ C2B(d, 2)2jν

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)

1√
n

)z

+
∑
ξ∈Ξj

21/τ
(

4
3c

1/(zτ)
1,zτ C∞B(d,∞)2j(ν+(d−1)/2)

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

1
n

)z

≤ CΞ21/τ
(
2c1/(zτ)

2,zτ C2B(d, 2)
)z ∥∥∥∥ 1

fX

∥∥∥∥z/2
L∞(H+)

1
nz/2

2j((d−1)+zν)

+ CΞ21/τ
(4

3c
1/(zτ)
1,zτ C∞B(d,∞)

)z ∥∥∥∥ 1
fX

∥∥∥∥z
L∞(H+)

1
nz

2j((d−1)+z(ν+(d−1)/2))
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thus
J∑
j=0

2j(d−1)z(1/2−1/(p∨z)) ∑
ξ∈Ξj

21/τ
((

2c1/(zτ)
2,zτ

σIj√
n

)z
+
(

4
3c

1/(zτ)
1,zτ

M I
j

n

)z)

≤
J∑
j=0

2j(d−1)z(1/2−1/(p∨z))CΞ21/τ
(
2c1/(zτ)

2,zτ C2B(d, 2)
)z ∥∥∥∥ 1

fX

∥∥∥∥z/2
L∞(H+)

1
nz/2

2j((d−1)+zν)

+
J∑
j=0

2j(d−1)z(1/2−1/(p∨z))CΞ21/τ
(4

3c
1/(zτ)
1,zτ C∞B(d,∞)

)z ∥∥∥∥ 1
fX

∥∥∥∥z
L∞(H+)

1
nz

2j((d−1)+z(ν+(d−1)/2))

≤ CΞ21/τ
(
2c1/(zτ)

2,zτ C2B(d, 2)
)z ∥∥∥∥ 1

fX

∥∥∥∥z/2
L∞(H+)

1
nz/2

J∑
j=0

2jz(ν+(d−1)/z+(d−1)(1/2−1/(p∨z)))

+ CΞ21/τ
(4

3c
1/(zτ)
1,zτ C∞B(d,∞)

)z ∥∥∥∥ 1
fX

∥∥∥∥z
L∞(H+)

1
nz

J∑
j=0

2jz(ν+(d−1)/z+(d−1)(1−1/(p∨z))

≤
CΞ21/τ

(
2c1/(zτ)

2,zτ C2B(d, 2)
)z

1− 2−z(ν+(d−1)/z+(d−1)(1/2−1/(p∨z)))

∥∥∥∥ 1
fX

∥∥∥∥z/2
L∞(H+)

1
nz/2

2Jz(ν+(d−1)/z+(d−1)(1/2−1/(p∨z)))

+
CΞ21/τ

(
4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
1− 2−z(ν+(d−1)/z+(d−1)(1−1/(p∨z))

∥∥∥∥ 1
fX

∥∥∥∥z
L∞(H+)

1
nz

2Jz(ν+(d−1)/z+(d−1)(1−1/(p∨z)) (as ν = d/2).

7.6.3 The Op,z term

Denote by

Oz,j,ξ =
∣∣∣βaj,ξ∣∣∣z 1∣∣βa

j,ξ

∣∣≤T s,+
j,ξ,γ

+ E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T b,−
j,ξ,γ

Because T s,++
j,ξ,γ ≥ T

s,+
j,ξ,γ , we get

E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T b,−
j,ξ,γ

= E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T s,++
j,ξ,γ

+ E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1

T s,++
j,ξ,γ

≥
∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

≤ E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T s,++
j,ξ,γ

+
E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z](

T b,−j,ξ,γ

)z ∣∣∣βaj,ξ∣∣∣z 1
T s,++
j,ξ,γ

≥
∣∣βa
j,ξ

∣∣>T b,−
j,ξ,γ

,

Oz,j,ξ ≤

1 +
E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z](

T b,−j,ξ,γ

)z
 ∣∣∣βaj,ξ∣∣∣z 1∣∣βa

j,ξ

∣∣≤T s,++
j,ξ,γ

+ E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T s,++
j,ξ,γ

.

Now using the results of Section 7.4.1 with T b,−j,ξ,γ =
√

2γtnσIj,ξ + 2
3γ

logn
n−1M

I
j,ξ

sup
j,ξ

E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z](

T b,−j,ξ,γ

)z ≤ sup
j,ξ

2
(
c2,z

(
2 1√

2γ
√

logn

)z
+ c1,z

(4
3

1
2/3γ logn

)z)
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≤ 2

 √2c1/z
2,z√

γ logn

z +

 2c1/z
1,z

γ logn

z
thus

Op,z ≤

1 + 2

 √2c1/z
2,z√

γ logn

z +

 2c1/z
1,z

γ logn

z J∑
j=0

2j(d−1)z(1/2−1/(p∨z))

∑
ξ∈Ξj

(∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,++
j,ξ,γ

+ E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z]1∣∣βa

j,ξ

∣∣>T s,++
j,ξ,γ

)
.

8 Proof of Theorem 9
The proof of this result requires to upper bound the approximation error, the R1,p,z and Op,z terms in the
upper bound of Theorem 8 when z = p using the prior knowledge that the unknown f−β belongs to the
ellipsoid Bs

r,q(M).

8.1 The p ∈ [1,∞) case
8.1.1 The approximation error

∥∥∥f−β I,a,J − f−β ∥∥∥p =

∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
p

From Lemma 1 (i) and the definition of the Besov spaces as a sequence space,

2Js
∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
p

≤ C ′′p
∑
j>J

2j(s+(d−1)(1/2−1/p))
∥∥∥∥(βaj,ξ)ξ∈Ξj

∥∥∥∥
`p
≤
∥∥∥f−β ∥∥∥BsI,q

which yields that∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
p

≤ C ′′p2−Js
∥∥∥f−β ∥∥∥BsI,q ≤

{
MC

1/p−1/r
Ξ if r ≥ p

M2−J(s−(d−1)(1/r−1/p)) if r ≤ p
.

It is enough to consider the worst case where r ≤ p and to check that s−(d−1)(1/r−1/p)
ν+(d−1)/2 ≥ µ in the two zones.

On the first zone s ≥
(
ν + d−1

2

) (p
r − 1

)
thus s+ ν + d−1

2 ≥
(
ν + d−1

2

)
p
r which yields s

s+ν+ d−1
2
≤ s

(ν+ d−1
2 ) pr

.

Because s > (d − 1)/r and p ≥ r, s − d−1
r + d−1

p −
sr
p = (d − 1)

(
sr
d−1 − 1

) (
1
r −

1
p

)
≥ 0, which yields

s− (d− 1)(1/r − 1/p) ≥ sr
p and gives the result.

On the second zone, it is straightforward, because s > (d− 1)/r, that s−(d−1)(1/r−1/p)
ν+(d−1)/2 ≥ s−(d−1)(1/r−1/p)

s+ν−(d−1)(1/r−1/2) .
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8.1.2 The R1,p,p and R2,p,p terms

Using Lemma 2 (iii) we obtain that

R1,p,p ≤
4
nγ

(J + 1)p−1MpC ′′pp C
1−(p∧r)/r
Ξ

J∑
j=0

2−jp(s+(d−1)(1/p−1/(p∧r)))

where the exponent is non positive because s > (d− 1)/r, thus

R1,p,p ≤
4
nγ

(J + 1)p−1MpC ′′pp C
1−(p∧r)/r
Ξ

1
1− 2−p(s+(d−1)(1/p−1/(p∧r))) .

With γ > p/2, R1,p,p is of lower order than tpn.
We also have

R2,p,p ≤
22−1/τ

nγ(1−1/τ)CΞbn,p,p,J,τ .

With the aforementioned choice of J , 1√
n

2J(ν+(d−1)/2)
∥∥∥ 1
fX

∥∥∥1/2

L∞(H+)
≤ 1 and 2J(d−1)

n

∥∥∥ 1
fX

∥∥∥
L∞(H+)

≤ 1 (it even
decays to 0). Together these yield that bn,p,p,J,τ is of the order of a constant.
This term is also of lower order than tpn for τ large enough such that γ(1− 1/τ) > p/2.

8.1.3 The Op,p term

First note that an,p,p,J = 1 + o(1).
We take T s,++

j,ξ,γ uniform in ξ:

T s,++
j,ξ,γ = 3

√
2γtnC2B(d, 2)2jν

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
+ 52C∞B(d,∞)2j(ν+(d−1)/2)

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

γ logn
n− 1

≤ 2jν√γtn
∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)

(
3
√

2C2B(d, 2) + 52C∞B(d,∞)
n
√
γ

n− 1

)
(because of the upper bound on J)

≤ 2jν√γtn
∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)

(
3
√

2C2B(d, 2) + 104C∞B(d,∞)
)

(for n ≥ 2)

, T s,++
j,γ

as well as the following consequence of (36)

E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣p] ≤ 2

((
2c1/p

2,p
σIj√
n

)p
+
(

4
3c

1/p
1,p

M I
j

n

)p)

≤ 2
(

2c1/p
2,p C2B(d, 2)2jν

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)

1√
n

)p

+ 2
(

8
3c

1/p
1,p C∞B(d,∞)2j(ν+(d−1)/2)

∥∥∥∥ 1
fX

∥∥∥∥
L∞(H+)

1
n

)p
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≤ 2jpν 1
np/2

∥∥∥∥ 1
fX

∥∥∥∥p/2
L∞(H+)

2p+1
(
c

1/p
2,p C2B(d, 2) + 4

3c
1/p
1,p C∞B(d,∞)

)p

≤

(
T s,++
j,γ

)p
(γ logn)p/2

2

2
c

1/p
2,p C2B(d, 2) + 4

3c
1/p
1,p C∞B(d,∞)

3
√

2C2B(d, 2) + 104C∞B(d,∞)
(√
γ
)
p

≤

(
T s,++
j,γ

)p
(γ logn)p/2

2

√2
3 c

1/p
2,p +

c
1/p
1,p

78√γ

p

Let

Cγ = 3
√

2C2B(d, 2) + 104C∞B(d,∞)√γ

Cσ,p = 21/p

√2
3 c

1/p
2,p +

c
1/p
1,p

78√γ

 .
Now, for any 0 < z < p,∑

ξ∈Ξj

(∣∣∣βaj,ξ∣∣∣p 1∣∣βa
j,ξ

∣∣≤T s,++
j,γ

+ E
[∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣p]1∣∣βa

j,ξ

∣∣>T s,++
j,γ

)

≤
∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣p 1∣∣βa
j,ξ

∣∣≤T s,++
j,γ

+

(
T s,++
j,γ

)p
(γ logn)p/2

Cpσ,p1∣∣βa
j,ξ

∣∣>T s,++
j,ξ,γ


≤
(

1 +
Cpσ,p

(γ logn)p/2

)(
T s,++
j,γ

)p−z ∑
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z

≤
(

1 +
Cpσ,p

(γ logn)p/2

)(√
γtn

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
Cγ

)p−z
2jν(p−z) ∑

ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z .
We then need to sum over j and will take two different values for z, one that we denote z1 for j ≤ j0 and one
that we denote z2 for j0 < j ≤ J . z1, z2, j0 will be specified later, depending on the value of the parameters
r, q, s and p such that we are in the dense or sparse zone. Up to a multiplying constant, we thus need to
control

A+B =
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)p−z1 j0∑
j=0

2j[ν(p−z1)+(d−1)(p/2−1)] ∑
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣z1

+
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)p−z2 J∑
j=j0+1

2j[ν(p−z2)+(d−1)(p/2−1)] ∑
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣z2
where we choose adequately z1, z2 and j0 in the two zones. Because of Lemma 2 (i) we only consider p ≥ r.
Let us first consider the dense zone. We define

r̃ = p(ν + (d− 1)/2)
s+ ν + (d− 1)/2 .
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In the dense zone, r̃ ≤ r, p > r̃ and
s =

(
ν + d− 1

2

)(
p

r̃
− 1

)
. (42)

With z2 = r, we get

B ≤
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r J∑
j=j0+1

2j[ν(p−r)+(d−1)(p/2−1)] ∑
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣r .
Lemma 2 (iii) gives that ∑

ξ∈Ξj
|βj,ξ|r ≤ Dr

j2−jr(s+(d−1)(1/2−1/r))

where ∀j ∈ N, Dj ≥ 0, (Dj)j∈N ∈ `q. Note that

s+ (d− 1)
(1

2 −
1
r

)
= (d− 1)p

2r̃ − d− 1
r

+ ν

(
p

r̃
− 1

)
, (43)

thus

B ≤
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r J∑
j=j0+1

2jp(1− r
r̃ )(ν+ d−1

2 )Dr
j

.M r

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r
2j0p(1− r

r̃ )(ν+ d−1
2 )

for q ≥ 1 if r > r̃ and for q ≤ r if r = r̃ (i.e. s = p
(
ν + d−1

2

) (
1
r −

1
p

)
). Taking 2j0

p
r̃ (ν+ d−1

2 ) '(∥∥∥ 1
fX

∥∥∥1/2

L∞(H+)
tn

)−1
we get

B .M r

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r̃
which is the rate that we expect in that zone.
As for A, we take z1 = r < r̃ ≤ r, this yields, using Lemma 2 (iii),

A ≤
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r j0∑
j=0

2j[ν(p−r)+(d−1)(p/2−1)] ∑
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣r

.M r

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r j0∑
j=0

2j[ν(p−r)+(d−1)(p/2−1)−r(s+(d−1)(1/2−1/r))]

.M r

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r j0∑
j=0

2jp(ν+(d−1)/2)(1−r/r̃) (using (42))

.M r

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r
2j0p(ν+(d−1)/2)(1−r/r̃)
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.M r

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r̃
(from the definition of j0).

Let us now consider the sparse zone. We define by

r̃ = p
ν + (d− 1)(1/2− 1/p)

s+ ν − (d− 1)(1/r − 1/2)

in a such a way that

p− r̃ = p
s− (d− 1)(1/r − 1/p)

s+ ν − (d− 1)(1/r − 1/2)

r̃ − r = (p− r)((d− 1)/2 + ν)− rs
s+ ν − (d− 1)(1/r − 1/2) > 0

and
s+ (d− 1)

(1
2 −

1
r

)
= (d− 1)p

2r̃ − d− 1
r̃

+ ν

(
p

r̃
− 1

)
. (44)

Take z1 = r.

A ≤
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r j0∑
j=0

2j[ν(p−r)+(d−1)(p/2−1)] ∑
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣r

≤
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r j0∑
j=0

2j[(ν+(d−1)/2−(d−1)/p) p
r̃

(r̃−r)]Dr
j (using (44))

.

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r
2j0[(ν+(d−1)/2−(d−1)/p) p

r̃
(r̃−r)]M r,

the last inequality holds because ν + (d − 1)/2 − (d − 1)/p > 0, indeed because we are in the sparse
zone ν + (d − 1)/2 ≥ s/(p/r − 1) = sr/(p − r) ≥ 2/(p − r) ≥ (d − 1)/p. Taking 2j0(ν+(d−1)(1/2−1/p)) p

r̃ '(∥∥∥ 1
fX

∥∥∥1/2

L∞(H+)
tn

)−1
yields the upper bound of the order of

M r

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r̃
for A.
For B we take z2 = r > r̃ > r,

B ≤
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r J∑
j=j0+1

2j[ν(p−r)+(d−1)(p/2−1)] ∑
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣r

.

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r J∑
j=j0+1

2j(ν+(d−1)(1/2−1/p))p(r−r)/r̃Dr
j (using (44))
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.

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r
2j0(ν+(d−1)(1/2−1/p))p(r−r)/r̃M r

.

(∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)
tn

)p−r̃
M r.

8.2 The p =∞ case

We simply consider the case where r = q =∞ and deduce the general case using Lemma 2 (ii).

8.2.1 The approximation error

As f belongs to Bs
∞,∞(M),∥∥∥∥∥∥

∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
∞

≤
∑
j>J

∥∥∥∥∥∥
∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
∞

≤MC∞
∑
j>J

2j(d−1)/22−j(s+(d−1)/2)

≤MC∞2−Js.

From the choice of J and the fact that
∥∥∥ 1
fX

∥∥∥
L∞(H+)

≥ 1 (because supp fX = H+) we get

∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βaj,ξψj,ξ

∥∥∥∥∥∥
∞

≤ ts/(ν+(d−1)/2)
n ,

this term is negligible because s
ν+(d−1)/2 ≥

s
sν+(d−1)/2 .

8.2.2 The R′1,∞,z and R′2,∞,z terms

Using the definition of the Besov norm, we obtain that

R′1,∞,z ≤
4
nγ

(J + 1)z−1M zC ′′z∞CΞ

J∑
j=0

2−jzs2j(d−1)

thus
R′1,∞,z ≤

4
nγ

2J(d−1)(J + 1)z−1M zC ′′z∞CΞ.

With γ > z/2 + 1, which is satisfied when 2(γ − 1)(1− 1/τ) > z, R1,∞,z is of lower order than tzn.
Due to the choice of J the bracket term in the expression of R′2,∞,z in Theorem 8 is less than 1, as well

the second term in the expression of bn,∞,z,J,τ is of smaller order than the first term. The order of bn,∞,z,J,τ
is (logn)z/2. Thus

R′2,∞,z .
(
n−γ2J(d−1)

)1−1/τ
(logn)z/2

This term is also of lower order than tzn when τ is such that 2(γ − 1)(1− 1/τ) > z.
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8.2.3 The O′∞,z term

Note that here an,∞,z,J is of the order of a constant. We shall proceed like for the Op,p term in Section 8.1.3.
Using (40) we obtain that up to another constant (previously of the order of 1 + o(1)),

sup
ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣≤T s,++
j,ξ,γ

+ E
[

sup
ξ∈Ξj

∣∣∣β̂I,aj,ξ − βaj,ξ∣∣∣z 1∣∣βa
j,ξ

∣∣>T s,++
j,ξ,γ

]
.

(
√
γtn

∥∥∥∥ 1
fX

∥∥∥∥1/2

L∞(H+)

)z−z
2jν(z−z) sup

ξ∈Ξj

∣∣∣βaj,ξ∣∣∣z
for arbitrary z ∈ [0, z]. We thus need to upper bound

A+B =
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)z−z1 j0∑
j=0

2j[ν(z−z1)+(d−1)z/2] sup
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣z1
+
(∥∥∥∥ 1

fX

∥∥∥∥1/2

L∞(H+)
tn

)z−z2 J∑
j=j0+1

2j[ν(z−z2)+(d−1)z/2] sup
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣z2
for some well chosen 0 ≤ j0 ≤ J , z1 and z2. Because f belongs to Bs

∞,∞(M), for all z ≥ 1,

sup
ξ∈Ξj

∣∣∣βI,aj,ξ ∣∣∣z ≤M z2−j(s+(d−1)/2)z.

The result follows using this upper bound in A and B and computing A + B with z1 = 0, j0 such that
2j0 ' t−1/(s+ν+(d−1)/2)

n and z2 = z.

9 Proof of Theorem 10
The proof consists in a slight modification of the proof of Theorem 9 using the decomposition∥∥∥∥f̂−β P,a,ρ − f−β ∥∥∥∥z

p
≤ 3z−1

(∥∥∥∥f̂−β P,a,ρ − f−β P,a,J∥∥∥∥z
p

+
∥∥∥f−β P,a,J − f−β I,a,J∥∥∥zp +

∥∥∥f−β I,a,J − f−β ∥∥∥zp
)
,

and the two following lemmas.

Lemma 16

∀π ≥ 1, ‖f−β
P,a,J − f−β

I,a,J‖p ≤ 2CprojB(d, p)|Sd−1|(1/p−1/π)+2J(ν+(d−1)(1/π−1/p)+)
∥∥∥∥∥fXf̂X − 1

∥∥∥∥∥
Lπ(H+)

(45)

where a+ , max(a, 0).

Proof.

‖f−β
P,a,J − f−β

I,a,J‖p =
∥∥∥H−1

(
RP,a,J −RI,a,J

)∥∥∥
p

≤ B(d, p)2Jν
∥∥∥RP,a,J −RI,a,J∥∥∥

p
(Proposition 4)
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≤ 2CprojB(d, p)|Sd−1|(1/p−1/π)+2J(ν+(d−1)(1/π−1/p)+)
∥∥∥∥∥R
(
fX

f̂X
− 1

)∥∥∥∥∥
Lπ(H+)

Conclusion follows from the Lp continuity of the smoothed projections (Lemma 2.4 (c)) and the Nikolski
inequality (Proposition 2.5) of [26], the Hölder inequality and since RP,a,J and RI,a,J are odd �
The constant Cproj could be taken independent of p, it is enough to take the uniform upper bound on the
L1 norm of the smoothed projection kernels with respect to one of its argument according to the Young
inequality (see [15]).

The following lemma is used in the analysis to relate the smoothness of the true function with that of
the function with a plugged-in preliminary estimator of the density of the design.

Lemma 17 If f−β ∈ Bs
r,q(M) then, for any π ≥ 1, f−β

P,a,J ∈ Bs
r,q(MP,a,J,r,π).

A maximal resolution J should be imposed to obtain an additive term of the order of a constant, it depends
on the quality of the estimation of fX and its smallness at certain points through

∥∥∥∥fXf̂X − 1
∥∥∥∥

Lπ(H+)
.

Proof. As long as j ≤ J , 〈f−β − f
−
β
P,a,J

, ψj,ξ〉 = 〈f−β
I,a,J − f−β

P,a,J
, ψj,ξ〉, thus we get, with J = j, using

Lemma 1 (iii),∥∥∥2j(s+(d−1)(1/2−1/r))
∥∥∥βaj,ξ − βP,aj,ξ

∥∥∥
`r

∥∥∥
`q({0,...,J})

≤ C ′′′p
∥∥∥2js ∥∥∥f−β P,a,j − f−β I,a,j∥∥∥r∥∥∥`q({0,...,J})

≤ Cr,π

∥∥∥∥∥fXf̂X − 1
∥∥∥∥∥

Lπ(H+)

∥∥∥2j(s+ν+(d−1)(1/π−1/r)+)
∥∥∥
`q({0,...,J})

using Lemma 16. �
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