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Abstract

We consider the issue of measuring segregation in a population of small units,

such as small �rms or classrooms. Segregation is de�ned as an inequality index on the

(random) probability that an individual of a given unit belongs to the minority group.

Because this probability is measured with error by a proportion, standard estimators

are inconsistent. Moreover, the corrections considered previously in the literature

are valid only under restrictive conditions. We model this problem as a binomial

mixture and show that under this testable assumption, only the �rst moments of

the underlying probability are identi�ed. As a result, segregation indices are only

partially identi�ed in general. Under conditions satis�ed by standard segregation

indices, we show that the sharp bounds of the identi�cation region can be easily

obtained by an optimization over a low dimensional space. We also develop inference

on these bounds, by providing con�dence intervals on the true parameter and the

identi�cation interval and considering tests of the binomial mixture model. Finally,

we apply our framework to measure the segregation of immigrants in small French

�rms.
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1 Introduction

Being able to measure the degree of segregation of a population across units is a crucial step

to understand a phenomenon and design adequate policies. In several cases, however, the

very nature of the phenomenon under study makes it di�cult to proceed to measurement.

In particular, when the units contain few individuals, the usual segregation indices prove

to be poor estimates of the actual level of segregation, an issue known as the small-unit

bias. Social scientists and economists studying workplace segregation or school segregation

experience it as an everyday issue, as an important proportion of �rms have less than ten

employees and classrooms are around 20 pupils.1

When the number of individuals per unit is small, the observed proportion of a minority

group in the unit becomes a poor estimate of the true unobserved probability that a given

individual belongs to the minority group. Intuitively, if the unit is divided by two, the index

computed using these proportions is going to be higher, not because a higher segregation

takes place, but because of the noise induced on the measurement of the proportions.

As Cortese et al. (1976) made it clear, naive segregation indices measure, in this case,

the distance to evenness, when observed proportions are all equal across groups, while

one would rather be interested in the distance to randomness, which corresponds to the

situation where the true unobserved probability is constant.

Several works propose solutions to deal with this issue. The most common way is to

provide corrected versions of the indices, in an attempt to extract the signal from the

noise. Winship (1977) has been the �rst to propose a corrected Duncan index. Carrington

& Troske (1997) developed his idea and have also proposed an adjusted index, close to

Winship's. Allen et al. (2009) proposed a correction based on bootstrap. Finally, Rathelot

(2011) develops an estimator which is consistent under a parametric condition on the

underlying distribution. He also shows that his index and the one proposed by Allen et

al. perform better than other solutions for many standard distributions on the underlying

probability. However, none of these approaches is consistent for any distribution on this

probability.

In this paper, we �rst reconsider the problem from an identi�cation viewpoint. In line with

the literature, we suppose that the observed number of people belonging to the minority

1Measuring workplace segregation at the level of the �rm has been recently featured in Carrington

& Troske (1995), Carrington & Troske (1998a), Carrington & Troske (1998b), Bayard et al. (1999) or

Hellerstein & Neumark (2008). Likewise, there are recent attempts to measure segregation at the level of

the schools or the classrooms; see Allen et al. (2009) or Söderström & Uusitalo (2010).
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group in a given unit follows, conditional on the unobserved probability, a binomial dis-

tribution. On the other hand, we remain completely agnostic on the distribution of the

unobserved probability. The binomial assumption, which we show is testable, allows us to

identify the �rst K moments of the distribution of the unobserved probability, where K

denotes the size of the units. Because most of the existing segregation indices depend on

the whole distribution of this probability, not only on its �rst moments, these indices are

only partially identi�ed in general. Bounds can be obtained by minimizing or maximizing

these indices over distributions whose �rst moments match those identi�ed in the data.

This problem is though a di�cult one, as the space of corresponding distributions is of

in�nite dimension in general.

Another contribution of this paper is to prove that under a mild convexity condition sat-

is�ed by most segregation indices, the upper bound can be obtained by maximizing over

discrete distributions with at most K + 1 points of support only. The lower bound follows

similarly if the unknown parameter is linear in the distribution, a condition satis�ed for

instance by the popular Duncan and Theil indices. Interestingly, this result is related to

the one of Chernozhukov et al. (2009) in the rather di�erent framework of nonlinear panel

data. In such models, bounds on marginal e�ects can be obtained by maximizing some

functionals over the distribution of the �xed e�ect. Similarly to us, they show that it

su�ces actually to restrict oneself to discrete distributions with a low number of support

points.

We also develop inference on these bounds, using a two-step procedure. In the �rst step,

we estimate the vector of moments by GMM under the constraint that it belongs to the set

of moments of distributions on [0, 1]. The estimator takes a closed and very simple form

whenever the constraint is slack. Otherwise, we use a characterization of the projection

on this set to transform this problem into an optimization under only linear equality

and inequality constraints. In the second step, the bounds are estimated by optimizing

over �nite-dimensional distributions whose �rst moments match the �rst-step estimator.

Interestingly, the lower and upper bounds coincide when the constraint on the vector of

moment is binding, and no optimization is needed in this case. The estimated bounds are

asymptotically normal, with easy to compute asymptotic variances, leading to a simple

con�dence interval which is asymptotically valid for the true parameter. We also propose

a conservative con�dence interval on the true identi�cation interval. Finally, we develop

tests on the binomial mixture model, based on the distance between the unconstrained

estimated vector of moment and the constrained one.

Monte Carlo simulations indicate that our method works well for �nite samples. They also
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show that even for modest unit sizes (K = 8, typically), the constraint on the vector of

moment is binding most of the times for sample sizes as large as 10, 000, leading in most

cases to an estimated identi�cation interval reduced to a single point. More generally,

the length of the con�dence intervals mostly stems from sampling variation, not partial

identi�cation for typical unit and sample sizes.

Finally, we apply our framework to measure the segregation of immigrants in small French

�rms, conditional on plant size. The �rst interesting result is that our method proves

to work well is this context: when the plant size is larger than 2 or 3, the identi�cation

region is already informative. Over the whole curve, Non-European workers seem to be

more segregated than European (foreign) workers, even though the di�erence between the

Theil indices across groups never exceeds 10 points. Contrary to what is suggested by the

naive or Allen et al. (2009) estimator, we cannot reject at standard levels that there is

no relationship between plant size and segregation. Besidesy, the methods introduced by

Carrington & Troske (1997), Allen et al. (2009) and Rathelot (2011) provide estimates that

are always outside the identi�cation region for plant sizes larger than 4, and even often

outside the corresponding con�dence intervals.

The paper is organized as follows. Section two presents the binomial mixture model and

studies partial identi�cation of parameters of interest in this model. Section three develops

inference on the bounds and a test of the binomial assumption. Monte Carlo simulations

are drawn in Section four, and the application to segregation in the workplace is displayed

in the last section. All proofs are deferred to the appendix.

2 Identi�cation

2.1 The binomial mixture model

The population is assumed to be split into two groups, a group of interest and the rest of

the population, and to be distributed across units. Units may represent geographical areas,

classrooms, or, as in our application, �rms. For simplicity, we consider the size of the units

to be constant and equal to K. Equivalently, our analysis can be seen as conditional on K.

Now assume that there exists a random variable p taking values in [0, 1] that represents the

probability for any individual belonging to a given unit to be a member of the population

of interest. We focus on the measure of segregation of the population of interest across

units, which may be de�ned by a real parameter θ = g(Fp), g being a functional de�ned

on the set D of distribution functions on [0, 1] and Fp being the distribution function of
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p. We also suppose hereafter that g is continuous with respect to the metric induced by

the supremum norm. Standard segregation indices include the Gini, the dissimilarity (or

Duncan) and the Theil indices but our identi�cation results below will be more general.

The main problem in the inference on θ is that p is not directly observed. We only observe

the size of the unit, K, and the number of individuals in that unit that belong to the group

of interest, X (we consider hereafter the case where we only observe K and a subsample of

size nK < K of individuals in the unit). We posit that individuals are selected into units

independently from each others in terms of their membership of the group of interest.

In this case, X follows, conditional on p, a binomial distribution B(K, p). Because p is

random and unobserved, this model is called a binomial mixture (see, e.g., Lord, 1969,

Wood, 1999). Note that the independence condition may not hold. The presence of an

immigrant in a �rm may, for instance, increase the probability that another immigrant is

employed in this �rm. However, in the absence of detailed data on the selection process

into units, this seems to us to be the most transparent assumption. It is also assumed by

Carrington & Troske (1997), Allen et al. (2009) or Rathelot (2011), among others. Finally,

as we shall see below, this assumption is testable.

Intuitively, since the distribution ofX is de�ned byK probabilities, namely P = (P1, ..., PK)′

(where Pi = Pr(X = i)), we expect it to convey information on K + 1 parameters on Fp.

Actually, because PK = E(pK) and

PK−k =

(
K

k

)
E
[
pK−k (1− p)k

]
=

(
K

k

){
E(pK−k) +

k∑
j=1

(
k

j

)
(−1)jE(pK−k+j)

}
, (2.1)

an immediate backward induction shows that all moments of p of order up to K are

identi�ed. However, theseK moments do not correspond in general to a unique distribution

of p. This is the reason why θ is only partially identi�ed in general.

We may not observe all individuals in the unit. A common situation is indeed that nK <

K individuals only are sampled from the unit. In this case, X denotes the number of

individuals belonging to the group of interest in this subsample. As previously, X follows,

conditional on p (and nK if it is random), a binomial distribution B(nK , p). Hence, the

result above applies by replacing K by nK . The main di�erence in this case is that, if nK is

random, it is plausible to assume it to be independent of p conditional on K, whereas the

assumption that p is independent of K is stronger in general. Under this condition, it is

easy to see that the nK �rst moments of p are identi�ed, where nK denotes the maximum

of the support of nK . For the sake of clarity, we continue to suppose that all individuals in
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the units are sampled, so that nK = K, although the results below apply directly to the

case where nK < K.

The binomial model allows us to recover the vector m0 = (m01, ...,m0K)′ of the K �rst raw

moments of p. Such a vector should satisfy some restrictions, such as variance positivity

(m02 ≥ m2
01). These restrictions may not hold if the model is not binomial, making it

testable. For instance, supposing that K = 2, the vector P = (0.6, 0.3)′ should correspond

to the vector of raw moments m0 = (0.6, 0.3)′ according to the binomial model. But

0.3 − 0.62 < 0, which violates the restriction that a variance is positive. In other words,

this vector P invalidates the binomial mixture model.

More generally, the issue of whether a given vector belongs to the setM of �rstK moments

of a probability distribution on [0, 1] is known as the truncated Hausdor� problem. Several

necessary and su�cient conditions have been established for this problem (see, e.g., Krein

& Nudel'man, 1977, Curto & Fialkow, 1991). Proposition 2.1, which is proved for instance

by Krein & Nudel'man (1977, Theorem III.2.4), provides one that is rather simple to

compute. We let afterwards L denote the integer part of K/2, and, for a given vector

µ = (µ1, ..., µK)′, Aµ, Bµ, Cµ denote the square matrices of size L + 1, L + 1 and L

respectively, with typical (i, j) term equal to µi+j−2, µi+j−1 and µi+j−1 − µi+j respectively
(where we let µ0 = 1).

Proposition 2.1 When K is odd (resp. even), µ ∈ M if and only if Aµ − Bµ and Bµ

(resp. Aµ and Cµ) are positive.

2.2 Bounds on segregation indices

Let Pm0 = {F ∈ D :
∫
xkdF (x) = m0k for all k = 1...K} denote the set of distributions on

[0, 1] that match the identi�ed moments of p. The lower and upper bounds θ0 and θ0 of

the identi�ed set of θ0 satisfy

θ0 = inf
F∈Pm0

g(F ), θ0 = sup
F∈Pm0

g(F ). (2.2)

For any ε > 0, let F ε (resp. F ε) be such that g(F ε) < θ0+ε (resp. g(F ε) > θ0−ε). Then, by
the intermediate value theorem applied to the continuous function t 7→ g(tF ε + (1− t)F ε),

the interval [θ0 + ε; θ0 − ε] is included in the identi�ed set of θ0. Because ε was arbitrary,

this identi�ed set is thus the whole interval [θ0, θ0].

Computing the bounds with (2.2) is not convenient as it involves �nding an in�mum and

a supremum of a function over an in�nite dimensional set. The idea we develop here is to
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restrict oneself to distributions with �nite supports by considering

θk0 = inf
F∈Pkm0

g(F ), θ
k

0 = sup
F∈Pkm0

g(F ),

where Pkm0
denotes the subset of Pm0 with at most k points of support. Of course, because

the optimization set is smaller, we only obtain inner bounds in general, i.e. θk0 ≥ θ0

and θ
k

0 ≤ θ0. However, Theorem 2.2 below establishes three useful results on these inner

bounds.

Theorem 2.2 1. limk→∞ θ
k
0 = θ0 and limk→∞ θ

k

0 = θ0;

2. If g is convex, θ
K+1

0 = θ0;

3. If g is linear, θK+1
0 = θ0 and θ

K+1

0 = θ0.

Part 1 shows that the inner bounds tend to the true bounds when k → ∞. Intuitively,

this stems from the continuity of g and the fact that discrete distributions are dense in D.
However, this is not as straightforward as it might seem, because discrete distributions in

Pm0 may have not been dense in Pm0 .
2 Part 3 is actually a corollary of Part 2, when applied

to g and −g. The intuition of Part 2 can be explained as follows. First, using Part 1, we

can reach the supremum θ0, up to an arbitrary small constant, by computing the maximum

of g(F ) over Pk0m0
, for k0 large enough. Second, by the convexity of g, Minkowski's and

Carathéodory's theorems (see, e.g., Hiriart-Urruty & Lemaréchal, 2001, Theorems 2.3.4

and 1.3.6 respectively), we show that the maximum over this set is reached by at least one

extremal element of Pk0m0
. Using Carathéodory's theorem once more, we �nally prove that

the extremal elements of Pk0m0
actually have at most K + 1 points of support. Note that

PK+1
m0

can be seen as a subset of [0, 1]2(K+1), as any F ∈ PK+1
m0

is de�ned by its support

points and associated probabilities. This makes the maximization rather straightforward

in practice.

Theorem 2.2 is fortunate because the functionals involved in standard segregation in-

dices are either linear or convex. Because E(p) is identi�ed, The Duncan index E|p −
E(p)|/(2E(p)(1−E(p))), for instance, is a known function of gD(F ) =

∫
|x−E(p)|dF (x),

which is linear in F . Similarly, the Theil index 1−E(p ln(p)/[E(p) ln(E(p))] involves only

the linear functional gT (F ) =
∫
x ln(x)dF (x). Finally, the Gini coe�cient (1 − E(p) −∫

F 2
p (x)dx)/E(p) is a known function of gG(F ) =

∫
F 2(x)dx, which is a convex functional.

2Technically, and letting A denote the closure of any set A, we only have, for any sets A and B,

A ∩B ⊂ A ∩ B. Thus, even if ∪∞k=1Dk = D, where Dk denotes the set of distributions with at most

k support points, we only have ∪∞k=1Pk
m0

= (∪∞k=1Dk) ∩ Pm0 ⊂ ∪∞k=1Dk ∩ Pm0 = Pm0 , and the other

inclusion is not trivial.
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2.3 Comparison with other approaches

Broadly speaking, other approaches have ignored so far the issue of partial identi�cation

that we have shown to arise here. Rather, they focus on the estimation of parameters

that are identi�ed, but di�erent from θ0 in general. The �rst and perhaps most natural

possibility is to ignore the randomness due to the small size of the unit, and make as

if X = Kp. This amounts to estimating the parameter θ̃ = g(FX
K

). However, if g is

monotonous with respect to the second-order dominance, as is the case of most inequality

indices (including the three considered above), this parameter is always greater than θ0.

Proposition 2.3 Suppose that g is decreasing with respect to the second-order dominance.

Then θ̃ ≥ θ0. Moreover, the inequality is strict if g is strictly decreasing3 and the support

of p is not reduced to {0, 1}.

Previous approaches have soon recognized this small-unit bias. The most commonly used

method to correct for it is the one introduced by Carrington & Troske (1997), which is

based on earlier works by Winship (1977) and Cortese et al. (1978). Suppose here, and

without loss of generality if g is bounded, that g ranges from 0 to 1, the corrected index

θCT of Carrington & Troske (1997) is de�ned by

θCT =
θ̃ − θ∗

1− θ∗
,

where θ∗ = g(FX∗
K

) (where X∗ ∼ B(E(p), K)) is the naive parameter that would be

obtained if all units had the same probability, that is if segregation was zero. The index

θCT can be seen as an a�ne correction that is valid in the two polar cases where there is no

segregation (because θCT = θ̃ = θ0 = 0 in this case) or if segregation is maximal (because

then θCT = θ0 = 1). However, in general θCT does not lie inside the interval [θ0, θ0], as

Figure 1 below shows.

Allen et al. (2009) propose a bootstrap correction of the segregation index. Their idea is

that we can obtain a good approximation of the discrepancy between θ̃ = g(FX
K

) and θ0

by bootstrap, and then correct for this discrepancy. Namely, they propose to approximate

this discrepancy by
˜̃
θ− θ̃, where ˜̃θ = g(FX∗∗

K
) and X∗∗|X ∼ B(K, X

K
). The corrected index

is then:

θABW = 2θ̃ − ˜̃θ (= θ̃ + θ̃ − ˜̃θ).
3Here we say that g is strictly decreasing with respect to the second-order dominance if, whenever∫
u(x)dF (x) >

∫
u(x)dG(x) for all strictly concave u, we have g(F ) > g(G).
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The idea behind this parameter is that, if X
K

was distributed as p, then we would have

θ̃−θ0 =
˜̃
θ− θ̃. Formally, one can show that in some circumstances, θABW reduces the order

of the bias of θ̃. Suppose that g(F ) =
∫
γ(x)dF , where γ is twice continuously di�erentiable

and γ(E(p)) = 0. Such restrictions are satis�ed for the Theil index, for instance. Then,

by a second order Taylor expansion and using decompositions of variances, we get

θ0 '
γ′′(E(p))

2
V (p)

θ̃ ' γ′′(E(p))

2
V

(
X

K

)
=
γ′′(E(p))

2

[
V (p) +

E(p(1− p))
K

]
˜̃
θ ' γ′′(E(p))

2
V

(
X∗∗

K

)
=
γ′′(E(p))

2

[
V (p) +

E(p(1− p))
K

(
2− 1

K

)]
.

This suggests that the leading term in θ̃−θ0, when considering thatK →∞, is γ′′(E(p))E(p(1−
p))/K. This term disappears in θABW − θ0, so that we expect the bias to be of smaller

order (namely 1/K3/2 or 1/K2). In the simulations run by Rathelot (2011), it seems that

θABW performs better when the true level of segregation is high.

Finally, Rathelot (2011) introduces another correction based on the parametric assumption

that the distribution of p is a mixture of two beta distributions. Once the �ve parameters

have been obtained, the segregation indices may easily be deduced. On the other hand,

these indices do not lie inside the identi�cation interval whenever the �rst moments of p

do not correspond to those of a mixture of beta distributions. Yet, this correction seems

to work rather well in practice even in the case of misspeci�cation.

Figure 1 presents a comparison, for the Theil and Duncan index, between the sharp bounds,

the naive approach and the corrections proposed by Carrington & Troske (1997), Allen et al.

(2009) and Rathelot (2011) when the true data generating process on p is

fp(p) ∝ 40p− 83p2 + 46p3 − 3p4 + p5. (2.3)

A �rst striking point is that the length of the identi�cation region shrinks very quickly with

K for the Theil index (less so for the Duncan index). As expected, the naive approach

is well above the upper bound of the identi�cation region. In the case of the Theil, the

corrected index proposed by Allen et al. (2009) never lies inside the identi�cation interval,

while that of Carrington & Troske (1997) (resp. of Rathelot, 2011) is outside for K ≥ 3

(resp. for K ≥ 5). The correction proposed by Allen et al. (2009) works better for the

Duncan index, being close to the upper bound of the identi�cation interval for most K.

On this index, the corrected index of Carrington & Troske (1997), on the other hand, is

quite far below the lower bound of this interval, especially for K ≥ 4. With this particular

data generating process, the parametric method of Rathelot, 2011 lies within the bound

8



for all K ≤ 10. Overall, the approach taken by Rathelot (2011) leads to reasonable

corrections when K ≤ 4, but the parametric misspeci�cation leads to larger bias after. On

the contrary, the corrections of Carrington & Troske (1997) and Allen et al. (2009) tend

to the true parameter as K becomes large. The convergence is faster for the latter, which

is not surprising given its aforementioned properties.

Figure 1: Comparison between the sharp bounds, the naive approach

and previous corrections for the Theil and Duncan indices.
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Note: the true distribution of p is fp(p) ∝ 40p− 83p2 + 46p3 − 3p4 + p5.

3 Estimation

3.1 Estimation of moments

In this section, we suppose to have in hand an i.i.d. sample (X1, ..., Xn) for n units. As

previously, we also suppose for simplicity that K1 = ... = Kn = K. If K is random,

this framework still applies to the subsamples of units sharing the same size. We �rst

address the estimation of the moment vector m0 = (E(p1), ..., E(pK)). Equations (2.1)

may be written as moment conditions E [h(X,m0)] = 0, with h = (h1, ..., hK)′ and, for any
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m = (m1, ...,mK),

hk(X,m) = 1{X = k} −
K∑
j=1

(
K

j

)(
j

k

)
(−1)j−kmj.

Thus, a �rst possibility is to estimate m0 by unconstrained GMM. m0 is just identi�ed by

the K equations in this case, and the GMM estimator m̃ simply satis�es

m̃ = Q−1P̂ ,

where Q is the K ×K matrix of typical element
(
K
j

)(
j
i

)
(−1)j−i, P̂ = (P̂1, ..., P̂K)′, with

P̂k =
1

n

n∑
i=1

1{Xi = k}.

By the central limit theorem, we directly get

√
n (m̃−m0)

d−→ N (0, Σ) , (3.1)

where Σ = Q−1RQ−1′ and R is the K ×K matrix of typical element Pi(1{i = j} − Pj).

When K is random, the previous estimator is obtained using only units of same size. It

is possible to improve its accuracy by supposing that p is independent of K.4 In this

case indeed, the vector of moments m0 = (m01, ...,m0K) (with K the maximum of K) is

overidenti�ed by Q̃m0 = P̃ , where P̃ (resp. Q̃) stacks together vectors PK = (Pr(X =

1|K), ...,Pr(X = K|K)) (resp. matrices QK of typical element
(
K
j

)(
j
i

)
(−1)j−i) for di�erent

K, and estimate it by minimum distance (see, e.g., Wooldridge, 2002).5 The subsequent

analysis can be conducted similarly, with K replaced by K and the variance of m̃ modi�ed

suitably.

The simplicity of m̃ makes this estimator attractive. However, it su�ers from the important

drawback of not necessarily belonging to M, even if it will in general with probability

approaching one as n grows to in�nity.6 This is all the more problematic for estimating

bounds on θ0 that Pm̃ is empty in this case. To overcome this issue, we consider afterwards

the constrained GMM estimator m̂W de�ned by

m̂W = arg min
m∈M

(P̂ −Qm)′W (P̂ −Qm),

where W is a de�nite positive matrix. m̂W is well de�ned as the unique projection onto

the closed convex setM. In the absence of ambiguity, we simply let m̂ = m̂W hereafter.

4Besides, we can test for a weak version of independence between p andK by testing whether subvectors

of moments are equal accross di�erent unit sizes.
5It is also posible to rewrite the estimating equations as moments, to �t within the GMM framework.
6The only exception is when m0 lies on the boundary ofM.
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When m̃ ∈ M, which occurs with probability approaching one when m0 is in the interior
◦
M of M, we have m̂ = m̃. As a result, the asymptotic properties of m̂W are the same

as those of m̃ when m0 ∈
◦
M, for any de�nite positive matrix W .7 The advantage of the

constrained estimator is that Pm̂ is never empty. Proposition 3.1 makes this point even

more precise.

Proposition 3.1 Pkm̂ 6= ∅ for all k ≥ L+1 (where L is the integer part of K/2). Moreover,

when m̂ 6= m̃, Pkm̂ is reduced to a single distribution with at most L + 1 points of support,

for all k ≥ L+ 1.

The �rst part of the proposition ensures that provided that k ≥ L + 1, we can always

compute the bounds θ̂
k

= supF∈Pk
m̂
g(F ) or θ̂k = infF∈Pk

m̂
g(F ) that will be our estimators

of θ
k

0 and θk0. The second part of Proposition 3.1, which is based on Wood (1999)'s work

on the geometric properties of the binomial mixture problem, shows that when m̂ 6= m̃,

these estimated bounds are actually equal, so that the estimated identi�cation interval is

reduced to a singleton.

To compute m̂ in practice, we proceed in two steps. First we check whether m̃ ∈ M,

using Proposition 2.1 above. If this is the case, we have of course m̂ = m̃. If not, we

might use the same proposition to obtain m̂, but this is computationally di�cult, as it

involves a nonlinear optimization with nonlinear inequality constraints. We rather rely

on Proposition 3.1, which implies that there is a unique distribution, with at most L + 1

support points, that corresponds to m̂. Such a distribution can be described by an ordered

vector x∗ = (x∗1, ..., x
∗
L+1)′ ∈ SL+1 = {(x1, ..., xL+1) : 0 ≤ x1 < ... < xL+1 ≤ 1} and a vector

of corresponding probabilities y∗ = (y∗1, ..., y
∗
L+1)′ ∈ TL+1 = {(y1, ..., yL+1) ∈ [0, 1]L+1 :∑L+1

k=1 yk = 1}. For all x ∈ SL+1, let

B(x) =


x1 . . . xL+1

...

xK1 . . . xKL+1

 ,

so that the vector of moment of (x, y) ∈ SL+1 × TL+1, is B(x)y. Thus, by de�nition of m̂

and Proposition 3.1, (x∗, y∗) can be obtained by

(x∗, y∗) = arg min
(x,y)∈SL+1×TL+1

(P̂ −QB(x)y)′W (P̂ −QB(x)y), (3.2)

7Hence, the choice of W has no impact on the asymptotic distribution of m̂W unless m0 is at the

boundary ofM. On the other hand, this choice matters in the test of the model, see Subsection 2.3 below.
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and m̂ = B(x∗)y∗.8 As a result, the computation of m̂W involves an optimization over

a quite low dimensional space (2(L + 1)) under linear equality and inequality constraints

only.9 It turns out to be quick to compute in practice.

3.2 Estimation of the bounds on θ0

We now turn to estimation of the bounds θ0, for any k ≥ 1. We �rst study estimators of

θ
k

0 and θ
k
0. This will allow us to yield asymptotically exact con�dence intervals on θ0 when

g is linear because, by Theorem 2.2, θ
K+1

0 = θ0 and θ
K+1
0 = θ0.

Any F ∈ Pkm is de�ned by its support points x = (x1, ..., xk) ∈ Sk and associated probabil-

ities y = (y1, ..., yk)
′ ∈ Tk. For a given vector of moments m, the moment constraints write

A(x)y = (1,m′)′, where A(x) is the matrix

A(x) =


1 . . . 1

x1 . . . xk
...

xK1 . . . xKk

 .

When F ∈ Pkm, we may rewrite g as a function of x, m and y, which we denote qk(x, y,m).10

The bounds on θ then satisfy

θ
k
(m) = max

(x,y)∈Sk×[0,1]k
qk(x, y,m) s. t. A(x)y = (1,m′)′, (3.3)

θk(m) = min
(x,y)∈Sk×[0,1]k

qk(x, y,m) s. t. A(x)y = (1,m′)′. (3.4)

We simply de�ne our estimator of θ
k

0 = θ
k
(m0) and θk0 by

θ̂k = θ
k
(m̂), θ̂k = θk(m̂).

As mentioned before, when m̂ 6= m̃, there is a unique distribution in Pkm which rationalizes

the vector m̂. In this case, using the same notations as previously, we have θ̂k = θ̂k =

qk(x∗, y∗, m̂), and no optimization is needed.

Our asymptotic result is based on the following regularity conditions.

8When the distribution that rationalizes m̂ has less than L+1 support points, Program (3.2) does not

admit a unique solution because we can set some components of y to zero and move freely the corresponding

components of x. In this case any solution can be chosen, since it leads to the same m̂ anyway.
9In practice, we cannot use the strict inequalities in SL+1 in our optimization. We approximate this

set by {(x1, ..., xL+1) : 0 ≤ x1 ≤ x2 − ε... < xL+1 − Lε ≤ 1− Lε}, for a small enough constant ε > 0.
10g may depend directly on m and not only through x and y. For instance the Theil index may be

written as 1− y′(x ln(x))/(m1 ln(m1)) (where, for any x ∈ Rk, x ln(x) is de�ned componentwise).
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Assumption 3.1 The global maximum (x0, y0) corresponding to (3.3) for m = m0 is such

that qk is C2 in a neighborhood of (x0, y0,m0), the subgradient of binding constraints taken

at (x0, y0) is full rank and for all u 6= 0 such that ∂
∂(x,y)

[A(x)y]|(x0,y0) .u = 0, we have

u′Hu < 0, H being the Hessian of the Lagrangian corresponding to Program (3.3), taken

at (x0, y0). The same holds for the global minimum (x0, y0
)) corresponding to (3.4).

Assumption (3.1) ensures, by the smooth maximum theorem (see Carter, 2001), that θ
k

and θk are C1 in a neighborhood of m0. Moreover, by the envelope theorem, the derivatives

of θ
k
and θk take a simple form. Then, by the delta method and asymptotic normality of m̂,

(θ
k
, θk) is also asymptotically normal, and its asymptotic variance has a simple expression,

which can be consistently estimated. In the following, we let Σ̂ = Q−1R̂Q−1, R̂ being the

matrix whose (i, j) element equals P̂i(1{i = j} − P̂j).

Theorem 3.2 Suppose that m0 ∈
◦
M and Assumption 3.1 holds. Then

√
n

(
θ̂k − θk0
θ̂k − θk0

)
d−→ N (0, JkΣJ

′
k)

with

Jk =

(
∂θ
k

∂m
(m0)

∂θk

∂m
(m0)

)
=

(
∂qk

∂m
(x0, y0,m0)− λk0 ′

∂qk

∂m
(x0, y0

,m0)− λk0 ′

)
,

and λ
k

0 and λk0 are the vector of Lagrange multiplier corresponding to the �rst order condi-

tions of (3.3) and (3.4). Moreover, letting Ĵk =

(
∂θ
k

∂m
(m̂)

∂θk

∂m
(m̂)

)
, we have

ĴkΣ̂Ĵk
P−→ JkΣJ

′
k.

Theorem 3.2 can be applied for instance to the Theil or Gini index, for which it is easy to

see that the regularity conditions on qk hold. On the other hand, the smoothness condition

is not satis�ed for the lower bound of the Duncan index. Indeed, m01 belongs in general

to the support of x0, making qk not C2 in the neighborhood of (x0,m0). However, we can

still prove that θ(.) is C1. The idea is that for any value of m near m0, m will be one of

the support points of the distribution that solves (3.4). We may thus rewrite (3.4) with

one dimension less on x. Moreover, qk is C2 in the neighborhood of the new solution, and

we can then apply the smooth maximum theorem.

When g is linear, we can combine Theorem 3.2 with Theorem 2.2 to yield asymptotically

exact con�dence intervals on θ0. We let zα denote the quantile of order α of a standard

normal variable and de�ne

CI11−α =

[
θ̂
K+1
− zα

∂θK+1

∂m′
(m̂)Σ̂

∂θK+1

∂m
(m̂), θ̂

K+1

+ zα
∂θ

K+1

∂m′
(m̂)Σ̂

∂θ
K+1

∂m
(m̂)

]
, (3.5)
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Corollary 3.3 Suppose that g is linear, m0 ∈
◦
M, θ0 < θ0 and Assumption 3.1 holds.

Then

inf
θ0∈[θ0,θ0]

lim
n→∞

Pr(θ0 ∈ CI11−α) = 1− α.

As noted by Imbens & Manski (2004), such intervals do not provide a correct asymptotic

level uniformly over all possible distributions because, intuitively, its asymptotic level is

only 1− 2α when θ0 = θ0. Yet, we cannot apply Imbens & Manski's improved con�dence

interval here because asymptotic normality fails to hold uniformly. Indeed, m̂ is not asymp-

totically normal in general when m0 lies on the boundary ofM. It is however possible to

de�ne another con�dence interval which is valid under less restrictive conditions. For that

purpose, let I1−α denote a con�dence region on m0 with asymptotic level 1−α. A natural

one is

I1−α = {m ∈M : ‖m− m̃‖ ≤ χ2
K(1− α)},

where ‖x‖ = x′Σ̂−1x and χ2
K(1−α) is the 1−α quantile of a χ2

K distribution. Then de�ne

CI21−α =

[
inf

m∈I1−α
θK+1(m), sup

m∈I1−α
θ
K+1

(m)

]
. (3.6)

Proposition 3.4 Suppose that g is linear. Then

lim
n→∞

Pr([θ0, θ0] ⊂ CI21−α) ≥ 1− α.

The validity of CI21−α is obtained under very mild assumptions. In particular, no regularity

condition is required on qk. Even if these conditions hold, another advantage of CI21−α is

that it does not require to estimate ∂θ
K+1

/∂m′(m0), contrary to CI11−α. This is especially

convenient when m̂ lies on the boundary ofM (i.e., when m̃ 6∈ M), because in this case,

∂θ
K+1

/∂m′(m̂) may not exist.11 As shown in the Monte Carlo simulations presented in the

next section, this happens very often for typical sample sizes when K ≥ 8. The drawback

of these con�dence intervals is that they are conservative in general, even though the

simulations suggest that they may actually be still very informative.

The previous con�dence intervals may also be used for testing issues. In our application

below, we are interested in particular by the equality of the index over a range of K. Given

K1 . . . Kv, consider the null hypothesis, consisting of the equality of v terms:

θ0(K1) = θ0(K2) = · · · = θ0(Kv),

11Indeed, if m̂ lies on the boundary of M, θ
K+1

(m̂ + cδ) may not exist for some directions δ, for any

c ∈ R.
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where θ0(K) is the true parameter corresponding to units of size K. We base our tests on

the intersection of the con�dence intervals for these parameters. Let θ0 denote θ0(K), K =

K1, ..., Kv, under the null and let CI(1−α)1/v(K) denote an asymptotically conservative

con�dence region at the level (1−α)1/v for θ0(K), we get under the null, by independence

of the con�dence intervals between the di�erent subsamples,

Pr
(
∩vk=1CI(1−α)1/v(Kk) 6= ∅

)
= Pr

(
∃θ : θ ∈ ∩vk=1CI(1−α)1/v(Kk)

)
≥ Pr

(
θ0 ∈ ∩vk=1CI(1−α)1/v(Kk)

)
≥

v∏
k=1

Pr
(
θ0 ∈ CI(1−α)1/v(Kk)

)
,

so that the probability that the intersection is non-empty is asymptotically greater than

1− α under the null. It is also easy to see that this test is consistent against alternatives

where ∩vk=1

[
θ0(Kk), θ0(Kk)

]
= ∅.

Finally, in the case of nonlinear functionals, we may also use CI11−α or CI21−α, with a

k 6= K + 1. A di�erence, however, is that the asymptotic level of such con�dence intervals

is lower than α. This is because θ
k

0 < θ0 and θk0 > θ0 in general. A solution would be to

make k tend to in�nity with n at a su�cient rate, so that θ0− θ
k

0 would become negligible

with respect to the variance of θ̂k. This issue is left for future research.

3.3 Test of the binomial mixture model

As mentioned previously, the binomial model is testable. In this subsection, we develop a

simple test of this hypothesis that, as shown before, is equivalent to m0 ∈M. The idea is

to approximate the distance between m0 andM by the one between m̃ andM. This leads

to a consistent test because m̃ estimates consistently m0 in both the null and alternative

hypothesis. Formally, we have

√
n (m̃−m0)

d−→ N (0, Σ) .

Thus n ‖m̃−m0‖ → χ2
K . Besides, under the null hypothesis that m0 ∈ M, ‖m̃−m0‖ ≥∥∥m̃− m̂R̂−1

∥∥ by de�nition of m̂R̂−1 . Thus, letting Sn = n
∥∥m̃− m̂R̂−1

∥∥, we have, under the
null hypothesis,

sup
m0∈M

lim sup
n→∞

Pr
(
Sn > χ2

K(1− α)
)
≤ α.

Besides, by the triangular inequality,∥∥m̃− m̂R̂−1

∥∥ ≥ ∥∥m0 − m̂R̂−1

∥∥− ‖m0 − m̃‖ .
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Under the alternative, the �rst term on the right-hand side converges by the continuous

mapping theorem to a strictly positive number, which is the distance between m0 andM.

Thus, Sn →∞ under the alternative, and the test is consistent.

An issue with this test is that it is conservative in general. To improve its level, a possibility

may be to rely on bootstrap, using the following procedure:

1. Estimate m̃ and m̂R̂−1 . Compute Sn and P̂2 = Qm̂R̂−1 .

2. Compute the distribution of S∗n that we obtain when P = (Pr(X = 1), ...,Pr(X = K))

is equal to P̂2. For that purpose, we can simulate iid samples of size n of X∗i satisfying

Pr(X∗i = k) = P̂2k, k ∈ {1, ..., K} and Pr(X∗i = 0) = 1−
∑K

k=1 P̂2k.

3. Compare Sn with the (1− α)th quantile of S∗n.

The idea of this procedure is to compute the distribution of Sn under the null (because

m̂R̂−1 ∈M) and if the true vector P is equal to P̂2. Because P̂2 converges to P under the

null, the bootstrap test will have asymptotically the nominal level if the distribution of Sn

is continuous with respect to P . Even if we do not address this issue here, our simulations

below are encouraging, the true level being close to the nominal one. We thus also rely on

this test in our application in Section 5.

4 Monte Carlo simulations

This section presents the results of Monte Carlo simulations designed to assess the perfor-

mance of the method presented in this paper in order to solve small-unit biases.

We �rst study whether the constraint that m0 belongs toM is binding in practice when es-

timating m0. The data generating process is de�ned by (2.3), and we estimate Pr(m̃ ∈M)

for di�erent sample and unit sizes. Figure 2 presents the results for n ∈ {50, 200, 1 000, 10 000}
and K ∈ {2, ..., 12}. For any n, the probability grows quite quickly to one with K. This

re�ects the aforementioned fact that the setM shrinks very quickly with K. For instance,

with 200 units, the estimated probability (with 1,000 simulations) is one as soon as K is

equal to 7. When the sample contains more units, the probability is systematically lower

because the estimation precision increases, but for K ≥ 10, this probability remains very

close to 1 for samples as large as 10,000. This implies that for K ≥ 10, we should expect

to generally get a point estimate of the identi�cation region of θ0, even though this true
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identi�cation region is not reduced to a singleton.12 An interpretation of this is that the

length of the true identi�cation interval for such values of K and n is far below the length

due to estimation. Our ignorance on the true parameter mostly stems from �nite sampling

rather than partial identi�cation issues.

Figure 2: Probability that the estimated moments m̃ /∈M.

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

unit size

P
r(m

~
∉

M
)

n=50
n=200
n=1000
n=10000

Note: each dot corresponds to 1,000 simulations drawn with the distribution de�ned in (2.3).

Tables 1 and 2 display the properties of [θ̂, θ̂] and the con�dence intervals CI11−α and CI21−α

for di�erent n and K, for the Theil index and still for the data generating process de�ned

12This result is in line with the Monte Carlo simulations of Wood (1999), who focuses on the distribution

of p and estimates it with either a projection method or maximum likelihood. As here, his estimator is

unique when m̃ 6∈ M. He shows that this holds generally for moderate to large K, even if n is large.
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by (2.3). For this distribution, θ0 ' 0.1654. CR(θ0) is the coverage rate of the true

parameter by the con�dence intervals, while CR([θ0, θ0]) is the coverage rate of the whole

identi�cation interval. We do not present CI11−α for K ≥ 6 as very often for such values of

K, m̃ 6∈ M. As explained above, this causes trouble in the computation of this con�dence

interval. Overall, the estimator of the identi�cation interval is quite precise even for small

samples. In our setting, we only observe a signi�cant bias on θ0, which however does not

lead to a low coverage of the con�dence intervals. Consistent with Figures 1 and 2, we see

that even for n = 10, 000, standard errors are far larger than the length of the identi�cation

region for K ≥ 9. This means that for K ≥ 9, uncertainty mostly stems from estimation,

not from partial identi�cation.

Table 1: Performance of the estimator of [θ0, θ0] and coverage rates of

CI21−α.

CI21−α

K [θ0, θ0] n [E(θ0)
(σ(θ0))

, E(θ0)
(σ(θ0))

] Length CR(θ0) CR([θ0, θ0])

3 [0.154; 0.212] 100 [0.162
(0.06)

; 0.204
(0.077)

] 0.400 1 0.995

1,000 [0.155
(0.016)

; 0.212
(0.023)

] 0.180 1 1

10,000 [0.155
(0.006)

; 0.213
(0.009)

] 0.098 1 0.985

6 [0.164; 0.170] 100 [0.162
(0.047)

; 0.162
(0.047)

] 0.273 1 1

1,000 [0.169
(0.013)

; 0.170
(0.014)

] 0.098 1 1

10,000 [0.165
(0.004)

; 0.169
(0.005)

] 0.037 1 0.995

9 [0.165; 0.166] 100 [0.166
(0.038)

; 0.166
(0.038)

] 0.234 1 1

1,000 [0.165
(0.013)

; 0.165
(0.013)

] 0.081 1 1

10,000 [0.166
(0.004)

; 0.166
(0.004)

] 0.028 1 1

12 [0.165; 0.166] 100 [0.162
(0.032)

; 0.162
(0.032)

] 0.221 1 1

1,000 [0.166
(0.011)

; 0.166
(0.011)

] 0.076 1 1

10,000 [0.165
(0.004)

; 0.165
(0.004)

] 0.025 1 1

Note: for each distribution, simulations are based on 200 draws of samples. The true

distribution of p is fp(p) ∝ 40p− 83p2 + 46p3 − 3p4 + p5, leading to θ0 ' 0.1654.

As expected, the con�dence interval CI21−α is conservative when looking at the coverage rate
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of either the true parameter or the true identi�cation interval. Less expectedly, we observe

a similar pattern for CI11−α for small sample sizes. Not surprisingly, CI11−α is smaller on

average than CI21−α. But the di�erence between the two is not that large. Because CI21−α

can be computed whether m0 ∈ M or not, this suggests to use this con�dence interval in

practice.

Table 2: Comparison between CI11−α and CI21−α for K = 3.

CI11−α CI21−α

n Length CR(θ0) CR([θ0, θ0]) Length CR(θ0) CR([θ0, θ0])

100 0.312 0.985 0.975 0.400 1 0.995

1,000 0.131 0.995 0.975 0.180 1 1

10,000 0.081 1 0.84 0.098 1 0.985

Note: for each distribution, simulations are based on 200 draws of samples. The true

distribution of p is fp(p) ∝ 40p− 83p2 + 46p3 − 3p4 + p5, leading to θ0 ' 0.1654.

Finally, Table 3 displays some elements about the performance of the conservative and

the bootstrap test of the binomial model proposed in the previous section. We use a data

generating process such that m0 is at the boundary ofM, namely a discrete distribution

for p with values 0.25, 0.5 and 0.75 and corresponding probabilities 0.4, 0.2 and 0.4. As

expected, the conservative test exhibits levels which are quite below the nominal one. On

the contrary, the bootstrap test seems to perform well here, with true levels close to the

nominal one in general.
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Table 3: Tests of the binomial model: true levels of the conservative and

bootstrap test (for a nominal level of 5%).

K n conservative bootstrap

6 100 0 0,05

1,000 0 0,045

10,000 0 0,035

9 100 0,01 0,055

1,000 0 0,04

10,000 0 0,055

12 100 0,02 0,035

1,000 0,005 0,065

10,000 0 0,06

15 100 0,01 0,035

1,000 0,01 0,055

10,000 0,01 0,09

Note: For each distribution, simulations are

based on 200 draws of samples. The true dis-

tribution of p takes values 0.25, 0.5 and 0.75

with probability 0.4, 0.2 and 0.4 respectively.

5 An application to workplace segregation by nationality across

French establishments

Understanding why and how employers make their hiring decisions and employees apply

for jobs implies to be able to measure workplace segregation. For example, the issue of

segregation is also related to employment and wage di�erentials across groups, either on sex

or ethnic grounds. Early works focused on gender or race segregation across occupations or

industries, see, e.g., Fields & Wol� (1991). Groshen (1991) is the �rst contribution to use

the information available at the scale of establishments. Carrington & Troske (1995) use the

1983 CPS to compute Duncan indices for gender segregation across establishments, with

a focus on small �rms. Another strand of literature, which aims at linking skill dispersion

with wage distribution, requires the computation of segregation indices. Kremer & Maskin

(1996) and Kramarz et al. (1996) analyze, in the US and the French cases, how skill
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dispersion, measured with segregation indices, accounts for changes in the wage structure.

Iranzo et al. (2008) investigate a similar issue in the case of Italy and �nd that most of

overall skill dispersion is within, not between, �rms.

However, few of these works acknowledge the issue of small-unit bias and them attempt to

correct the indices.13 Carrington & Troske (1997) present new results on black/white segre-

gation introducing a method to correct for small-bias unit. Hellerstein & Neumark (2008)

use the 1990 Decennial Employer-Employee Database to measure workplace segregation by

education, language and ethnicity. They compute adjusted indices using Carrington and

Troske's method.

In this section, we aim to compute a Theil index to measure the segregation between

French and foreigners across French businesses. Do all establishments have the same share

of foreigners or, on the contrary, do some �rms specialize in hiring foreign workers while the

other ones avoid those? As a large share of workers are employed in small establishments,

not taking into account the small unit bias would certainly lead to upward-biased estimates

of segregation levels. We use the method introduced in this paper to compute either point

or set estimate of the Theil index. 95% con�dence intervals were computed using CI1

whenever m̃ ∈M and CI2 otherwise. As a matter of comparison, we also display the naive

estimate and the ones proposed by Carrington & Troske (1997), Allen et al. (2009) and

Rathelot (2011).

We use the Déclaration Annuelles de Données Sociales (DADS) for year 2007, the French

matched employer-employee database, which is exhaustive on the private sector (1.8 million

establishments). We restrict ourselves to the 1.65 million establishments with less than 25

employees. Two minority groups are considered successively: individuals born outside

France with the citizenship of a country belonging to the European Union, and individuals

born outside France with the citizenship of a country which does not belong to the European

Union. The �rst group will be called Europeans to simplify, and the other will be called

non-Europeans. In France, the most important groups of migrants come from Southern

Europe and North Africa (Insee, 2005). More speci�cally, in 1999, migrants from Italy,

Portugal and Spain amounted to 30% of all migrants. They also represent 66% of the

European migrants: our European sample is thus likely to be dominated by Southern

Europeans. Migrants from Algeria, Morocco and Tunisia amount to another 30% of all

migrants while 10% come from other African countries and 13% from Asia. Therefore,

Africa represent more than 70% of non-European immigrant origins.

13Kremer & Maskin (1996) and Kramarz et al. (1996) interpret their segregation measure as a R-squared

and suggest that using adjusted R-squared might be a way to deal with small-unit issues.
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Table 4: Test of the binomial mixture model for K ≥ 8.

Size P-value of the bootstrap test
K Non-European European

8 1 0.77
9 0.12 0.79
10 0.27 0.75
11 0.34 0.98
12 0.44 0.26
13 0.03 0.01
14 0.54 0.37
15 0 0.78
16 0.19 0.91
17 0.22 0.17
18 0.6 0.33
19 0.43 0.6
20 0.97 0.37
21 0.48 0
22 0.91 0.06
23 0.07 0.44
24 0.26 0.55
25 0.95 0.24

Before presenting our results, we �rst check that the binomial mixture model is not rejected

in these data. For K = 2...7, we obtain that m̃ ∈ M in both samples, so the test is

automatically accepted. For K ≥ 8, on the other hand, m̃ 6∈ M. Of course, one should

not conclude that the binomial mixture model should be discarded. The Monte Carlo

simulations presented in the previous section emphasize that Pr(m̃ 6∈ M) is very large for

K ≥ 9 even when this model is true and n is as large as 10, 000 (in our application, n

lies between 9,000 and 36,700 for K ≥ 8). We perform the bootstrap test detailed above

for K ≥ 8 (see Table 4). Actually, our test leads to a rejection of the binomial mixture

model at the 5% level for only K = 13 and K = 15 on Non-Europeans, and for K = 13

and K = 21 for Europeans. We see this as an evidence that the binomial mixture model

is reasonable here.

Figure 3 displays the estimates of workplace segregation, using the Theil index, across

French establishments for non-Europeans and Europeans. In line with Figure 1, we observe

that the sharp bounds become very informative for K ≥ 5. The estimated identi�cation

region reduces to a singleton for K ≥ 8, as expected since for these values m̃ 6∈ M. As in

Figure 1, we also observe that the naive estimator, Carrington and Troske's correction and
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Allen et al. estimator lie outside our con�dence intervals for most values of K and for both

samples. Only the method proposed by Rathelot (2011) seems to perform well in practice,

suggesting that the mixture of two beta distributions is a reasonable approximation for the

distribution of p here.

Figure 3: Theil indices for Non-Europeans and Europeans, by �rm size.
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The estimated identi�cation regions displayed in Figure 3 show that the segregation level

for the non-European sample is 5 to 10 points higher than for the European sample.

Interestingly, this pattern does not appear when using either the naive or the Allen et al.

estimate. This shows that the bias of such estimators may be sensitive not only to K,

but also to the underlying distribution. As a result, using such estimators for comparing

segregation between di�erent groups may be misleading.

A striking di�erence between the naive and Allen et al. estimates, on the one hand, and

the identi�cation region we estimate, on the other hand, is that segregation seems to be

strongly negatively correlated with K in the �rst case, very less so in the second case. That

the former decrease with K is not surprising, given that their bias directly depends on it

(proportional to 1/K for the naive estimator, 1/K3/2 or 1/K2 for Allen et al. estimator).

But there may still exist a true negative dependence of the segregation level on �rm sizes.

Small �rms may rely more heavily on social networks in their hiring process, for instance,

resulting in a higher segregation between �rms (people from minority tending to hire other

people from the same minority, and conversely).14 To test for this, we consider the null

14Pistaferri (1999) shows that, in Italy, smaller �rms tended to use more often informal hiring channels.
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hypothesis

θ0(5) = θ0(10) = θ0(15) = θ0(20) = θ0(25),

where θ0(K) is the true parameter corresponding to �rms of size K. For both minority

populations, we cannot reject the null hypothesis at the level of 10%. Thus, contrary to

what is suggested by the naive and Allen et al. estimates, we cannot reject the hypothesis

that segregation levels do not depend on �rm sizes.

6 Conclusion

In this paper, we investigate what can be learned on the feature of a random variable p

when only an imperfect measure of it, distributed according to a binomial variable B(K, p),

is available. We show that in general this leads to partial identi�cation of these features.

We then develop inference on the bounds, as well as a test of the binomial model.

Starting there, an interesting avenue of research would be to study the dependence of

segregation indices on unit characteristics (such as sectors or geographical areas for �rms).

We also believe that our method and results have potential interest beyond the precise

application considered here. The idea of approximating all distributions by discrete ones

only to compute bounds, also pushed forwards by Chernozhukov et al. (2009) in the case of

�xed e�ect nonlinear panel models, is important in practice. We fully justi�ed it here for

linear functionals only, so it seems desirable to develop a general methodology that would

also include nonlinear functionals.

Additionally, Dustmann et al. (2010) for Germany or Aslund & Skans (2010) for Sweden show that �rms

are more likely to hire minority workers from a particular group if the existing share of workers from that

group employed in the �rm is higher. In a similar vein, Giuliano et al. (2009) shows, for the US, that

manager race a�ects the racial composition of new hires.
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7 Appendix: proofs

Proof of Theorem 2.2

We show below Part 1 and Part 2. Part 3 follows by applying Part 2 to g and −g.

1. Approximation by discrete distributions.

We �rst prove that ∪∞k=1Pkm0
is dense in Pm0 . Fix F ∈ Pm0 and ε > 0, and let us prove

that there exists G ∈ ∪∞k=1Pkm0
such that ||G− F ||∞ = supx∈[0,1] |G(x)− F (x)| < ε. If F is

discrete then this is obvious. Otherwise, suppose �rst that F has no jump larger than ε.

Then there exists a0 = 0 < a1 < ... < aJ < aJ+1 = 1 such that F (aj+1) − F (aj) < ε. For

all j = 0, ..., J , let

Fj(x) = 1{x > aj+1}+
F (x)− F (aj)

F (aj+1)− F (aj)
1{x ∈ [aj, aj+1]},

and let mj =
(∫

xdFj(x), ...,
∫
xKdFj(x)

)′
. There exists (see, e.g., Curto & Fialkow, 1991,

Theorems 4.1 and 4.3) a discrete distribution with support [aj, aj+1] such that its c.d.f. Gj

satis�es (∫
xdGj(x), ...,

∫
xKdGj(x)

)′
= mj.

Then let G =
∑J

j=0(F (aj+1) − F (aj))Gj. By construction, G ∈ ∪∞k=1Pkm0
. Moreover, for

any x ∈ [aj, aj+1), G(x) = (F (aj+1) − F (aj))Gj(x) and F (x) = (F (aj+1) − F (aj))Fj(x).

Thus,

|G(x)− F (x)| = (F (aj+1)− F (aj))|Gj(x)− Fj(x)| < ε.

As a result, ||G−F ||∞ < ε. Now, F may admit jumps larger than ε. Let (x1, ..., xl) (resp.

(y1, ..., yl)) denote the corresponding points (resp. probabilities). De�ne the function F̃ by

F̃ (x) =
F (x)−

∑l
j=1 yj1{x ≥ xj}

1−
∑l

j=1 yj
.

Because F is not discrete,
∑l

j=1 yj < 1 so that F̃ is well de�ned. Besides, by con-

struction F̃ has no jump larger than ε. As a result, there exists G̃ ∈ ∪∞k=1Pkm̃0
, where

m̃0 =
(∫

xdF̃ (x), ...,
∫
xKdF̃ (x)

)′
such that ||G̃− F̃ ||∞ < ε. Let

G(x) =

(
1−

l∑
j=1

yj

)
G̃(x) +

l∑
j=1

yj1{x ≥ xj}.

Then G ∈ ∪∞k=1Pkm0
and ||G − F ||∞ < ε. Consequently, we have shown that ∪∞k=1Pkm0

is

dense in Pm0 .
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Now, let ε > 0 and Fε ∈ Pm0 be such that θ0 ≤ g(Fε) + ε. By continuity of g, there exists

δ such that ||F − Fε|| < δ implies that |g(F ) − g(Fε)| < ε. By what precedes, there also

exists k0 and Fk0,ε ∈ Pk0m0
such that ||Fk0,ε−Fε|| < δ. As a result, θ0 ≤ g(Fk0,ε)+2ε. Hence,

for all k ≥ k0, θ
k ≤ θ0 ≤ θ

k
+ 2ε since Pk0m0

⊂ Pkm0
. This proves Part 1 of the theorem.

2. θ0 = θ
K+1

for g convex.

We prove Part 2 in three steps.

a. For all k, the supremum of g on Pkm0
is reached on an extremal element of this set.

First, because Pkm0
is closed and bounded and belongs to a �nite dimensional space, it is

compact. Then by continuity of g(.),

θ
k

= max
F∈Pkm0

g(F ).

Let F0 ∈ arg maxF∈Pkm0
g(F ). If F0 is an extremal point, step a is proved. Otherwise, by

Minkowksi's and Caratheodory's theorems (see, e.g., Hiriart-Urruty & Lemaréchal, 2001,

Theorems 2.3.4 and 1.3.6 respectively), there exists an extremal distribution F1, λ ∈ (0, 1]

and F2 ∈ Pkm0
such that

F0 = λF1 + (1− λ)F2.

Because g is convex,

g(F0) ≤ λg(F1) + (1− λ)g(F2) ≤ λg(F1) + (1− λ)g(F0).

Thus, g(F1) ≥ g(F0) and the result follows by de�nition of F0.

b. Extremal points of Pkm0
(k > K + 1) belong to PK+1

m0
.

We shall prove that distributions with n′ points of support, with k ≥ n′ > K + 1, are

not extremal points of Pkm0
. Let F0 be such a distribution, (x1, ..., xn′) be its support

points and (y1, ..., yn′) be the associated probabilities. The vector m0 ∈ RK belongs to

the convex hull of the set A = {(x1, ..., x
K
1 )′, ..., (xn′ , ..., x

K
n′)
′}. Thus, by Carathéodory's

theorem, there exists K + 1 points in A (say, (x1, ..., xK+1)) and (q1, ..., qK+1) ∈ [0, 1]K+1

such that mk =
∑K+1

j=1 qjx
k
j for all 1 ≤ k ≤ K and

∑K+1
j=1 qj = 1. In other words, we have

de�ned a distribution function F1, with support (x1, ..., xK+1) and associated probabilities

(q1, ..., qK+1) such that F1 ∈ PK+1
m0

. Now let 0 < λ < mini=1...n′(min(yi/qi, (1 − yi)/(1 −
qi), 1/2)) (where we let qi = 0 for i > K + 1 and t/0 = +∞ for any t > 0) and de�ne, for

i = 1...n′,

ri =
yi − λqi
1− λ

.
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Then it is easy to see that ri ∈ [0, 1] for all i. Let F2 denote the distribution function

with support points (x1, ..., xn′) and associated probabilities (r1, ..., rn′). Then F2 ∈ Pkm0
.

Besides, by construction,

F0 = λF1 + (1− λ)F2.

Thus F0 is not an extremal element of Pkm0
. As a result, extremal points of Pkm0

are

distributions with at most K + 1 points of support .

c. θ0 = θ
K+1

.

To �nish the proof, let ε > 0. By Part 1, there exists k0 > K + 1 such that θ0 ≤ θ
k0
0 + ε.

By steps a and b, θ
k0
0 ≤ θ

K+1

0 . Thus, θ0 ≤ θ
K+1

0 + ε. This shows that θ0 ≤ θ
K+1

0 because ε

was arbitrary. The result follows, since the other inequality trivially holds �

Proposition 2.3

For any increasing and concave function u, by Jensen's inequality,

E

[
u

(
X

K

)]
= E

[
E

[
u

(
X

K

) ∣∣∣∣p]]
≤ E

[
u

(
E

[
X

K

∣∣∣∣p])]
≤ E[u(p)].

Hence, Fp dominates stochastically FX
K
at the second order, and by monotonicity, g(Fp) ≤

θ̃. Moreover, this is true for any distribution Fp ∈ Pm0 since such distributions rationalize

the one of X
K
. Choosing a sequence (Fn,p)n∈N in Pm0 such that limn→∞ g(Fn,p) = θ0, we

thus get θ0 ≤ θ̃. When the support of p is not reduced to {0, 1}, X
K
is not a deterministic

function of p with probability equal to one. Hence, for any strictly concave function

u, the event E
[
u
(
X
K

)
|p
]
< u

(
E
[
X
K
|p
])

holds with a positive probability. As a result,

E
[
u
(
X
K

)]
< E[u(p)], and the result follows by strict monotonicity of g �

Proposition 3.1

By de�nition, m̂ ∈ M. Thus, the �rst part follows by, for instance Theorem 4.1 and 4.3

of by Curto & Fialkow (1991). As for the second part, de�ne

BK = {(Pr(X = 0|p = u), ...,Pr(X = K|p = u))′, u ∈ [0, 1]},

and let co(BK) denote the convex hull of BK . Then observe that m̃ ∈ M if and only if

(P̂0, ..., P̂K)′ ∈ co(BK). Then Wood (1999) shows that when (P̂0, ..., P̂K)′ 6∈ co(BK), the
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projection of (P̂0, ..., P̂K)′ onto this set with respect to any Euclidian norm corresponds to

a unique distribution for p with at most L+1 points of support (see Wood, 1999, Theorem

5.1). Thus, to prove the result, it su�ces to show that Qm̂W corresponds to the projection

of (P̂0, ..., P̂K)′ onto co(BK) with respect to an appropriate norm.

We �rst de�ne this norm. Let e denote the vector of ones of size K and let 0 < c <

2/(e′QW−1Q′e). De�ne

Λ =


2c c . . . c

c
... Q′−1WQ−1

c

 .

Then Λ is positive de�nite because both Q′−1WQ−1 and its Schur complement 2c −
c2e′QW−1Q′e are positive de�nite. Moreover, letting ||.||Λ denote the norm in RK+1 in-

duced by Λ, we have, for any x = (x0, ..., xK), y = (y0, ..., yK),

||x− y||Λ = ||x−0 − y−0||Q′−1WQ−1 , (7.1)

where x−0 = (x1, ..., xK) and similarly for y−0.

Now, let us consider the projection (P̂Λ,0, ..., P̂Λ,K)′ of (P̂0, ..., P̂K) onto co(BK) with respect

to the norm induced by Λ. Using (7.1) and the de�nition of m̂W , we have

(P̂Λ,1, ..., P̂Λ,K)′ = arg min
x∈RK+1

∥∥∥(P̂0, ..., P̂K)′ − x
∥∥∥

Λ

= arg min
x∈RK

∥∥∥P̂ − x∥∥∥
Q′−1WQ−1

= arg min
x∈RK

‖Qm̃− x‖Q′−1WQ−1

= Q arg min
x∈RK

‖m̃− x‖W
= Qm̂W �

Theorem 3.2

Because m0 ∈
◦
M, Pr(m̃ ∈

◦
M)→ 1 and m̂ has the same asymptotic distribution as m̃:

√
n (m̂W −m0)

d−→ N (0, Σ) . (7.2)

Assumption 3.1 ensures that we can apply the smooth maximum theorem (see, e.g., Carter,

2001, Theorem 6.1). As a result, θ
k
and θk are C1 on a neighborhood of m0. Moreover, by

the smooth envelope theorem (see Carter, 2001, Corollary 6.1.1),

∂θ
k

∂m
(m0) =

∂qk

∂m
(x0,m0)− y′0A(x0)′λ0.
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where λ0 is the vector of Lagrange multiplier corresponding to the �rst order condition of

(3.3). The same holds for the lower bound. Then the asymptotic normality and the expres-

sion of the asymptotic variance follow by (7.2), the delta method and the Cramér-Wold

device. Finally, because θ
k
and θk are C1, ∂θ

k

∂m
(m̂) and ∂θk

∂m
(m̂) are consistent estimators

of ∂θ
k

∂m
(m0) and ∂θk

∂m
(m0). By the weak law of large numbers, Σ̂

P−→ Σ. As a result,

Ĵ ′Σ̂Ĵ
P−→ J ′ΣJ �

Corollary 3.3

By Part 3 of Theorem 2.2, θ
K+1

= θ0 and θ
K+1 = θ0. By consistency of θ̂

K+1

and θ̂
K+1

,

Pr(θ ∈ CI11−α)→ 1 for all θ ∈ (θ0, θ0). Besides, by Theorem 3.2,

lim
n→∞

Pr(θ0 ∈ CI11−α) = lim
n→∞

Pr(θ0 ∈ CI11−α) = 1− α.

The result follows �

Corollary 3.4

Remark that

m0 ∈ I1−α ⇒ θK+1(m0) ∈ θK+1(I1−α), θ
K+1

(m0) ∈ θK+1
(I1−α)

⇒ [θ0, θ0] ⊂
[

inf
m∈I1−α

θK+1(m), sup
m∈I1−α

θ
K+1

(m)

]
,

where the second implication follows by Part 3 of Theorem 2.2. The result follows by

de�nition of I1−α �
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