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Abstract

An incumbent firm and a buyer agree on a price-quantity schedule before the
buyer negotiates with a rival firm. The rival’s efficiency and the share of the buyer’s
demand he can address are unknown when the schedule is chosen. Incomplete in-
formation yields inefficient exclusion. We link the slope and the curvature of the
optimal tariff to the distribution of the uncertainty, and investigate whether foreclo-
sure is complete or partial. When the buyer’s disposal costs are finite, she might buy
more than needed with the sole purpose of qualifying for rebates, which limits the
extent of inefficient exclusion. Conditional tariffs make it possible for the incumbent
to overcome the opportunism problem and to exclude very efficient competitors.

1 Introduction

Nonlinear pricing, a ubiquitous business conduct, keeps attracting the attention of com-
petition agencies.1 Antitrust enforcers are concerned that quantitative rebates granted
by firms with strong market power might discourage buyers from switching part of their
requirements towards efficient competitors (for fear of losing the rebates). As a result,
efficient competitors might be driven out of the market or marginalized, and, in any case,
prevented from selling the efficient quantity.

The nonlinear pricing literature has investigated second-order price discrimination
under monopoly and oligopoly, see Wilson (1993). The monopolist’s pricing problem
was first studied when consumers differ through a single unobserved characteristic (e.g.
Mussa and Rosen (1978) and Maskin and Riley (1984), then extended in multidimensional
∗CREST (LEI).
†CREST (LEI). corresponding author: 15, bd Gabriel Péri 92245 Malakoff cedex, France. lau-

rent.linnemer@ensae.fr.
1Among recent antitrust cases, Virgin/British Airways (Commission Decision 2000/74/EC of 14 July

1999), and in the U.S. Virgin v. British Airways, 69 F. Supp. 2d 571, 581, 582 (S.D.N.Y. 1999) as well
as 257 F.3d 256 (2nd Cir. 2001), Concord Boat (United States Court of Appeals for the 8th Circuit - 207
F.3d 1039, 8th Cir. 2000), Michelin II (Commission decision of 20 June 2001 COMP/E-2/36.041/PO),
Lepage’s/3M (324 F.3d 141, 2003), Prokent-Tomra (COMP/E-1/38.113, 2006), and Intel (COMP/C-3
/37.990, 2009).
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settings (Armstrong (1996), Rochet and Choné (1998) and Armstrong (1999)). Nonlinear
pricing under oligopoly is studied in Armstrong and Vickers (2001), Martimort and Stole
(2009), and Armstrong and Vickers (2010). The literature on competitive price discrim-
ination has mainly explored simultaneous competition and often focused on symmetric
equilibria.

In contrast, the present article considers a dominant firm in a market where a smaller
firm is present and may challenge its position, at least to a certain extent. We adopt
the basic incumbency setting with three players: an incumbent, a strategic competitor
(or a competitive fringe), and a buyer.2 We assume that the dominant firm and a large
buyer agree on a price-quantity schedule prior to any negotiation with the competitor. As
observed by Aghion and Bolton (1987) p.389, in the context of exclusive contracts, “when
a buyer and a seller sign a contract, they have a monopoly power over the entrant. They
can jointly determine what fee the entrant must pay in order to trade with the buyer.”
This insight applies under both complete and incomplete information. Nonlinear pricing
by a dominant firm under complete information is now well understood.3

Our focus is on incomplete information.4 We consider two dimensions of uncertainty.
First, as in Aghion and Bolton (1987), the rival’s cost –or more generally, the surplus he
creates with the buyer– is unknown to the buyer and the incumbent when they agree on
a price schedule.

Second, we assume that only a fraction of the buyer’s requirements can be supplied by
the competitor. As noticed by competition authorities, it is often unrealistic to assume
that a buyer can shift all of her requirements within a relevant time period from the
dominant supplier to a competitor. This can be due to demand-side or supply-side
considerations. It may be the case that competitors are capacity constrained and cannot
serve all of the demand of large customers. It may also be the case that the incumbent’s
product is a “must-stock” for retailers because only a fraction of final consumers are
ready to experiment with competing products (regardless of their price). In both cases,
within a relevant time horizon, the rival firm can address only a fraction of the buyer’s
demand, which constitutes the maximum scale of entry. This fraction constitutes the
second characteristic of the rival that is unknown to the buyer-incumbent pair: ex ante,
the size of the “captive market”, and consequently that of the “contestable market,” are
uncertain.

The last important ingredient of our framework is the existence of disposal costs.
2Such a framework has been used to model incumbency and/or dominance at least since Spence

(1977, 1979) and Dixit (1979, 1980).
3Marx and Shaffer (1999) look at two-part tariffs with a focus on below-cost pricing; Marx and Shaffer

(2004) study how equilibrium is affected when certain classes of tariffs are forbidden; Marx and Shaffer
(2007) focus on the order of negotiation (Is it better for the buyer to negotiate first with the incumbent
or with the entrant?); Marx and Shaffer (2010) explain how bargaining powers affect profits and when
break-up fees are used.

4Incomplete information differs from asymmetric information. For instance, in Majumdar and Shaffer
(2009), a dominant firm resorts to nonlinear pricing to screen a buyer who is informed about the size
of demand and who also sells a good provided by a competitive fringe –a situation with asymmetric
information.
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We allow the buyer to purchase more than her requirements and assume that she can
dispose of excess units at some cost. This gives rise to a problem of buyer opportunism.
The buyer and the incumbent agree on a price-quantity schedule that places competitive
pressure on the rival and forces him to sell at a low price. We show that this “rent-
shifting” strategy involves marginal prices below marginal costs, and may even involve
negative marginal prices. A negative marginal price allows the buyer to extract rents
from the rival, but also gives her an ex post incentive to buy more than she needs from
the incumbent. While this opportunistic behavior is anticipated ex ante, it constrains
the choice of the price schedule by the buyer-incumbent pair. The seriousness of the
opportunism problem depends on the magnitude of disposal costs: buyer opportunism is
maximal under free disposal and does not exist when disposal costs are infinite.

The contribution of our analysis is threefold. First, on the methodological side, we
solve a multidimensional screening problem where the number of instruments is smaller
than the dimension of unobserved heterogeneity, and we do so for general distributions
of heterogeneity. Second, and more importantly, the generality of the analysis allows
us to assess the robustness of the Aghion and Bolton framework and to reveal new
properties, such as the curvature of optimal price schedules and the presence of partial
foreclosure. Third, we explain how conditioning the tariff on the quantity purchased from
the competing supplier (when feasible) makes it possible to eliminate buyer opportunism,
and thus achieve the same outcome as if disposal costs were infinite. We now explain
each of these contributions in more detail.

First, we contribute to the nonlinear pricing literature. In our framework, the com-
petitor’s type has two components: the surplus he creates with the buyer and the max-
imum scale of entry. However, to screen out the competitor’s types, the incumbent has
only one instrument, namely a price-quantity schedule. This configuration, which gener-
ates extensive bunching, has received little attention.5 Here, the structure of the model
makes it possible to characterize the set of implementable allocations, and to construct
the solution with few restrictive assumptions on the distribution of the uncertainty. As
explained below, the equilibrium pattern of the bunching regions reflects the barriers to
entry and expansion created by the optimal tariff.

Second we link the curvature of optimal price schedules and the form of inefficient
exclusion (partial versus full foreclosure) to two structural parameters of the model: the
rival’s bargaining power and the elasticity of entry. The former parameter is zero in
the case of a competitive fringe and is, in general, positive in the case of a strategic
competitor. The latter parameter expresses how entry at a given scale is sensitive to the
competitive pressure exerted by the incumbent. It is a key statistic summarizing the two-
dimensional distribution of the rival’s characteristics. Our findings can be summarized
as follows.

When the size of the contestable demand is known to the buyer and the incumbent
5A notable exception is Laffont, Maskin, and Rochet (1987) who solve an example with uniform

distributions.
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(only the rival surplus is unknown), the pricing problem involves a standard tradeoff
between rent extraction and efficiency, and is a mere reformulation of the Aghion-Bolton
analysis. Some efficient competitors are foreclosed, and the extent of inefficient exclusion
increases with the rival’s bargaining power vis-à-vis the buyer, and decreases with the
elasticity of entry. The optimal schedule is a two-part tariff and inefficient exclusion arises
in the form of full foreclosure only; no partial foreclosure is observed. These results readily
extend under two-dimensional uncertainty, provided that the two unknown parameters
are statistically independent or, equivalently, that the elasticity of entry remains constant
with the size of the contestable market. We next turn to cases where the elasticity of
entry varies with the size of the contestable market.

When the elasticity of entry increases with the size of the contestable share of the
demand, the optimal policy of the buyer-incumbent pair is to reduce the competitive
pressure exerted on the competitor as the scale of entry increases, which cannot be
achieved with two-part tariffs. Optimal tariffs are shown to be concave for high quantities.
Here again, inefficient exclusion arises, in the form of full foreclosure only. Solving the
efficiency-rent tradeoff à la Aghion-Bolton separately for any given level of the contestable
demand (i.e. solving the “relaxed problem”) yields the optimal tariff.

When the elasticity of entry decreases in, or is non monotonic with, the contestable
demand, the solution to the relaxed problem is not incentive-compatible, as a rival with
a large contestable demand would mimic a smaller rival at the relaxed allocation. The
incentive compatibility constraints translate into convex parts of the tariff, and into par-
tial foreclosure at the optimum. Some efficient competitors sell a positive quantity but
are prevented from achieving the maximum scale of entry and serving all of the con-
testable share of demand. When the elasticity of entry first decreases then increases, as
the maximum scale of entry rises, the buyer and the incumbent want to be soft with com-
petitors with small and large contestable markets, and to be aggressive with competitors
with intermediate contestable markets. This tension generates highly nonlinear tariffs
that induce competitors with very different types to choose the same quantity, as is the
case with so-called “retroactive rebates” challenged by European competition agencies in
recent cases.

Finally, we contribute to the literature on market-share rebates.6 Specifically, we
allow the buyer and the incumbent to condition the price schedule on the number of units
purchased from the rival, and we show that this instrument allows them to overcome
the buyer opportunism problem. When the price-quantity schedule depends only on
the number of units purchased from the incumbent, the presence of finite disposal cost
prevents the exclusion of very efficient competitors, because excluding them would require
negative marginal prices and the incumbent must account for ex post buyer opportunism.
In contrast, conditional tariffs make it possible to exert competitive pressure on the rival

6Inderst and Shaffer (2010) assume complete information and study a setting with a dominant firm,
a competitive fringe and two retailers. They show that market-share rebates are used by the dominant
firm to dampen (intra- and inter-brand) competition. Calzolari and Denicolo (2009) address the issue
in a duopoly setting (simultaneous game, symmetric firms).
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without resorting to negative marginal prices, i.e. without subsidizing units sold by the
incumbent. Competitive pressure can instead come from the implicit price of marginal
units sold by the competitor. Thus, conditional rebates, when feasible, make it possible
for the buyer and the incumbent to exclude very efficient competitors as under infinite
disposal costs.

The article is organized as follows. For ease of exposition, we assume first that
disposal costs are infinite, thus abstracting away from the issue of buyer opportunism.
Section 2 introduces the model. Section 3 explains how the negotiation between the
buyer and the rival, which takes place under complete information, is affected by the
incumbent’s price schedule. Section 4 focuses on the negotiation between the buyer and
the incumbent, which takes place under incomplete information. It introduces the notion
of virtual surplus and of elasticity of entry, and presents the construction of the optimal
price schedule. This section also relates the shape of the optimal price schedule to the
primitives of the model. Section 5 explains the buyer opportunism problem under finite
disposal costs and shows how a market-share tariff could overcome it. In Section 6 we
discuss policy implications of our findings.

2 The model

A buyer, B, may purchase from an incumbent, dominant firm, I, and from a smaller
competitor, E.7 The firms are asymmetric in two ways: the incumbent is first to negotiate
with the buyer; the incumbent can serve all the demand while the competitor can serve
only a fraction of it. We call this fraction the “contestable” part of the demand.

Figure 1: Timing of the game

The timing, sketched in Figure 1, reflects the incumbency advantage of the dominant
firm. It is a four stage game which unfolds as follows. First, the buyer and the incumbent
negotiate a price-quantity schedule. Formally, if the buyer eventually purchases qI units
from the incumbent, she will pay T (qI). In Section 5, we solve the game when the
buyer and the incumbent can condition the tariff on the quantity, qE , supplied from
the competitor, i.e. they use a tariff of the form T (qE , qI). The characteristics of the
incumbent’s good are common knowledge: its constant marginal cost of production is cI
and the buyer’s gross benefit per unit is vI . Next, the buyer and the competitor observe
the characteristics of the new product: its marginal cost of production cE , the size of sE
of the contestable demand and the gross (per unit) benefit, vE , for the buyer. Then, the

7We sometimes refer to the rival firm as the “entrant”, even though the game under study does not
involve a genuine entry decision.
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buyer and the competitor, both knowing the terms of the agreement between the buyer
and the incumbent, agree on a price and a quantity.8 This negotiation takes place under
complete information and is assumed to be efficient. Finally, the buyer purchases from
the incumbent.

We study how nonlinear prices affect the buyer’s incentives to split her purchases
between the dominant supplier and the smaller competitor. To this aim, we set aside the
standard motives for nonlinear pricing, based on uncertainty or asymmetric information
on the buyer’s demand. Accordingly, we assume that the buyer’s demand is known ex
ante. Moreover, we assume, for simplicity, that the buyer’s demand is bounded, and we
normalize her requirements to one.

The assumption that the rival firm can address at most a fraction, sE , of the buyer’s
demand embodies two interpretations: a supply-side variant in which the competitor has
capacity sE and a demand-side variant where the buyer does not value units of good E in
excess of sE . In both cases, the buyer never purchases more than sE from the competitor:
qE ≤ sE .

Given vE and vI the buyer’s gross benefit per unit of goods E and I, and the quantities
qE ≤ sE and qI purchased respectively from the competitor and the incumbent, the
buyer’s gross profit is:

V (qE , qI) =

{
vEqE + vIqI , if qE + qI ≤ 1

−∞ otherwise.
(1)

The above specification assumes infinitely large disposal costs: failing to consume all
of the purchased units is infinitely costly. It follows that all the purchased units are
indeed consumed and that the buyer does not purchase more than her requirements.
This assumption is maintained in Section 3 and 4, and relaxed in Section 5, where finite
disposal costs are introduced.

We note ωE = vE−cE ≥ 0 the unit surplus generated by good E, and ωI = vI−cI > 0

the unitary surplus of good I. At the time of agreeing on the price schedule, the size of
the contestable demand, sE , and the surplus per unit of good E, ωE , are uncertain. We
denote by [sE , s̄E ] and by [ωE , ω̄E ] the supports of the random variables sE and ωE .

Assumption 1. The rival may be more or less efficient than the incumbent: ωE < ωI <

ω̄E.

The cumulative distribution function of sE , denoted by G, is assumed to admit a
positive and continuous density function g on [sE , s̄E ]. The distribution of ωE conditional
on sE is denoted by F (.|sE) and is assumed to admit a positive and continuous density
function f(.|sE) on [ωE , ω̄E ].

8We assume that the buyer and the incumbent cannot renegotiate their agreement once uncertainty
is resolved. Otherwise they would agree on a tariff under complete information and appropriate all the
surplus (see the end of this section). The contribution of the current paper is, on the contrary, to study
the form of the price schedule negotiated under incomplete information.
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Efficiency benchmark. The total surplus is W (qE , qI) = ωEqE + ωIqI if qE + qI ≤ 1

and −∞ otherwise. The first best allocation maximizes W under the constraint qE ≤
sE . Efficiency requires qE + qI = 1, because W increases with both quantities as long
qE + qI ≤ 1. Hence, at the the first best, the quantity purchased from the competitor
satisfies

ωI + max
qE≤sE

(ωE − ωI)qE , (2)

and hence is given by

q∗E(sE , ωE) =

{
sE if ωE ≥ ωI

0 otherwise.
(3)

Entry, if efficient, should occur at maximum scale. Hence the maximal value of total
surplus is ωEsE + ωI(1− sE) when ωE ≥ ωI , and ωI when ωI ≥ ωE .

Second best. The negotiation between the buyer and the competitor, studied in Sec-
tion 3, takes place under complete information and is assumed to be efficient. The buyer
and the competitor maximize their joint surplus, which they share according to their
outside options and relative bargaining power. Ex ante, the buyer and the incumbent
design the price schedule to maximize their expected joint surplus, equal to the total
surplus minus the profit left to the competitor, denoted by ΠE :

EΠBI = E {W (qE , qI)−ΠE} . (4)

The sharing of the expected joint surplus between the buyer and the incumbent, and
hence the respective bargaining power of each party, play no role in the following analysis.

Complete information. Suppose the competitor is efficient and the buyer and the
incumbent know the surplus per unit of good E, ωE > ωI . Then they agree on a two-part
tariff with slope slightly above vI −ωE , thus offering a surplus slightly below ωE for each
unit of good I. As units of good E create a slightly higher surplus and the negotiation
between the buyer and the competitor is efficient, the buyer purchases all contestable
units from the competitor. The incumbent sells the remaining units: the allocation is
socially efficient. To sell units to the buyer, the competitor must match the incumbent’s
offer, and thus is left with negligible profit. The buyer and the incumbent therefore
appropriate the entire surplus, ωEsE + ωI(1− sE).

As the slope vI − ωE does not depend on sE , the above analysis holds when the
buyer and the incumbent do not know the size of the contestable market.9 The complete
information environment is studied with more general demand functions in Marx and
Shaffer (1999) and Marx and Shaffer (2004).

9The fixed part of the tariff determines the sharing of the surplus between the buyer and the incum-
bent. When sE in unknown, the same is true for the expected surplus, ωEE(sE) + ωI [1− E(sE)].
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3 Negotiation between the buyer and the competitor

In subsection 3.1, we describe the negotiation between the buyer and the competitor,
which takes place under complete information: the parties maximize their joint surplus,
knowing the incumbent’s price-quantity schedule T , and share this surplus according
to their relative bargaining power and outside options. In subsection 3.2, we provide a
number of examples showing how the quantity purchased from the competitor depends
on the shape of the tariff. Finally, in Subsection 3.3, we formally characterize the set of
all implementable allocations.

3.1 Maximization of the joint surplus

After having purchased qE units from the competitor, the buyer chooses qI to solve

UB(qE) = max
qI

V (qE , qI)− T (qI). (5)

Anticipating the above decision regarding qI , the buyer and the competitor choose qE to
maximize their joint surplus

SBE(cE , sE , vE) = max
qE≤sE

UB(qE)− cEqE , (6)

The price schedule T (.) is key in the definition of this surplus as UB(qE) depends on T (.).
The buyer and the competitor share SBE according to their respective bargaining power
and outside options. The competitor’s outside option is normalized to zero. As to the
buyer, she may source exclusively from the incumbent, so her outside option is UB(0).
It follows that the surplus created by the relationship between B and E is given by

∆SBE(cE , sE , vE) = SBE(cE , sE , vE)− UB(0).

Denoting by β ∈ (0, 1) the competitor’s bargaining power vis-à-vis the buyer, the com-
petitor gets ΠE and the buyer gets ΠB given by

ΠE = 0 + β ∆SBE

ΠB = UB(0) + (1− β) ∆SBE .

If β = 0, the competitor has no bargaining power and may be seen as a competitive
fringe from which the buyer can purchase any quantity at price cE . On the contrary,
the case β = 1 happens when the competitor has all the bargaining power vis-à-vis the
buyer.

Now we observe that the quantity purchased from the incumbent, solution to (5), is
ex post efficient, i.e. maximizes the joint surplus of the buyer-incumbent pair given qE .
In other words, the total quantity purchased by the buyer exactly meets her demand:
qE + qI = 1. On the one hand, the buyer does not purchase more than her total
requirements, because disposal costs are assumed to be infinite; hence the solution to
problem (5) satisfies qI ≤ 1− qE for all qE . On the other hand, buying less than 1− qE
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from the incumbent would destroy surplus as vI > cI . Lemma A.1 in appendix formally
shows that the buyer and the incumbent, when choosing the tariff T , have both the
ability and the incentive to make sure that, for any qE , the buyer will purchase at least
1−qE from the incumbent after having purchased qE from the competitor. We may thus
conclude that qE + qI = 1 at the second-best optimum.

Replacing qI with 1 − qE in (5) and noting that the joint surplus of the buyer and
the competitor depends on cE and vE only through ωE , we can write

SBE(sE , ωE) = vI + max
qE≤sE

(ωE − vI)qE − T (1− qE).

As the buyer’s outside option is UB(0) = vI − T (1), the surplus from the trade between
the buyer and the competitor is

∆SBE(sE , ωE) = max
qE≤sE

(ωE − vI)qE − T (1− qE) + T (1). (7)

For any sE , the function ∆SE(sE , .) is the upper bound of a family of affine functions of
ωE , and hence is convex in ωE . It follows that ∆SE(sE , ωE) is differentiable with respect
to ωE , except possibly at countably many points. By the envelope theorem, its derivative
with respect to ωE is qE(sE , ωE), solution to (7).10 Hence, the function qE(sE , ωE) is
nondecreasing in ωE . We have:

∆SBE(sE , ωE) =

∫ ωE

ωE

qE(sE , x) dx. (8)

Moreover, it follows from (7) and (8) that qE and ∆SBE are nondecreasing in sE . The
buyer purchases more units from the competitor as the surplus per competitor’s unit,
ωE , and the size of the contestable demand, sE , rise.

3.2 Examples: Concave, linear, convex tariffs

The problem of the buyer-competitor pair’s is not necessarily concave. Specifically, the
objective in (7) is convex (concave) if and only if T is concave (convex). In any case, the
price schedule is relevant only in the interval [1− s̄E , 1], because the competitor cannot
sell more than s̄E . This section provides three illustrative examples.

We consider first the case where the tariff T is concave on the relevant range, [1−s̄E , 1],
and hence the objective in (7) is globally convex. The maximum is reached either at
qE = 0 or at qE = sE . The buyer purchases qE = sE from the competitor if and only if

(ωE − vI)sE − T (1− sE) + T (1) ≥ 0

10For any sE , the set of solutions to problem (7) is included in the subgradient of the convex function
∆SBE(sE , .). At points where ∆SBE(sE , .) is differentiable, the subgradient consists of a single point,
namely the derivative of ∆SBE with respect to ωE : the solution of (7) is unique. At points where
∆SBE(sE , .) has a convex kink, the subgradient is an interval, see Rockafellar (1997).
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or ωE − vI ≥ pe(sE), where pe(sE) is the average price of the last sE units sold by the
incumbent:

pe(sE) =
T (1)− T (1− sE)

sE
. (9)

Supplying all contestable units from the competitor (qE = sE) is efficient for the buyer-
competitor’s pair if and only if the joint surplus thus created, ωEsE , exceeds the net
surplus foregone by not purchasing the corresponding units from the incumbent, (vI −
pe(sE))sE . Geometrically, the effective price pe(qE) is the slope of the chord that connects
the points (1, T (1)) and (1− qE , T (1− qE)), see the left panel of Figure 2.

Figure 2: The buyer and the competitor choose qE under a concave tariff

The right panel of Figure 2 represents the curve with equation ωE = vI − pe(sE) in
the (sE , ωE)-plan. This curve is decreasing by concavity of the tariff. Below the curve
(shaded area), the competitor is inactive, qE = 0. Above the curve, the buyer supplies
all contestable units from the competitor, qE = sE , and hence the quantity isolines, i.e.
the sets of types for which the quantity is constant, are vertical.

The above analysis holds in particular when the tariff is affine or, equivalently, when
the incumbent’s effective price pe(qE) is constant. This case is represented on Figure 3.
Setting the effective price at pe amounts to offering the surplus vI−pe per unit of good I.
To serve the buyer, the competitor has to match this offer. Hence, competitors with ωE

above (below) vI − pe serve all of the contestable demand (are inactive). The efficient
quantity, q∗E , obtains when p

e is constant and equal to cI .

When the price schedule T is strictly convex, the program (7) is concave and has a
unique solution, which may or may not be interior. For ωE higher than vI − T ′(1− sE),
the solution of (7) is qE = sE : the competitor serves all of the contestable demand.
For ωE lower than vI − T ′(1), the solution is qE = 0: the competitor is inactive. For
ωE between these two values, the solution is interior, and is given by the first-order

10



Figure 3: The buyer and the competitor choose qE under a linear tariff

condition ωE − vI + T ′(1 − sE) = 0: the competitor is active, but serves less than the
contestable demand. The right panel of Figure 4 represents in the (sE , ωE)-plan the
curve with equation ωE = vI − T ′(1− sE), which is increasing by convexity of the tariff.
The quantity isolines are “L”-shaped, with the vertical part above the curve and the
horizontal part below.

Figure 4: The buyer and the competitor choose qE under a convex tariff
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3.3 Implementable quantity functions

The buyer and the competitor negotiate under complete information and choose a quan-
tity qE that depends on the competitor’s characteristics, (sE , ωE). A quantity function
qE(sE , ωE) from [sE , s̄E ] × [ωE , ω̄E ] to [0, 1] is implementable if and only if there exists
a tariff T such that qE is solution to (7) for all (sE , ωE).

In this section, we show that any implementable quantity function qE(sE , ωE) may
be represented by a boundary line in the (sE , ωE)-plan such that qE = sE above the
boundary and qE does not depend on sE below the boundary. Such boundary lines have
equations of the form ωE = Ψ(sE), where Ψ is called a boundary function. We demon-
strate below the existence of a one-to-one map between quantity functions qE(sE , ωE)

and boundary functions Ψ(sE). To solve the two-dimensional problem, it turns out to be
convenient to work with boundary functions rather than directly with quantity functions.

As qE is nondecreasing in ωE , there exists, for any sE > 0, a threshold Ψ(sE) such
that the buyer supplies all contestable units from the competitor, qE(sE , ωE) = sE , if and
only if ωE > Ψ(sE). We define the boundary function Ψ(sE) associated to the quantity
function qE(sE , ωE) by

Ψ(sE) = inf{x ∈ [ωE , ω̄E ] | qE(x, sE) = sE},

with the convention Ψ(sE) = ω̄E when the above set is empty. Because the quantity
function qE(sE , ωE) is nondecreasing in sE and constant below the boundary, we have:

qE(sE , ωE) =

{
min{ x ≤ sE | Ψ(y) ≥ ωE for all y ∈ [x, sE ]} if Ψ(sE) > ωE ,

sE if Ψ(sE) ≤ ωE .
(10)

For type A (resp. B) on Figure 5, we have Ψ(sE) < ωE (resp. Ψ(sE) > ωE) and the
solution of the problem (7) is unique and equal to s2

E . In contrast, type C is indifferent
between s2

E and s3
E and, by convention, is assumed to choose s3

E . In other words, when (7)
has multiple solutions, equation (10) selects the highest.

The quantity qE is continuous (discontinuous) when crossing increasing (decreasing)
parts of the boundary ωE = Ψ(sE). Alternatively put, the constraint qE ≤ sE in
problem (7) is binding (slack) on decreasing (nondecreasing) parts of the boundary. In
Appendix B.1, we explain how to recover the price schedule T from the boundary function
Ψ, thus proving the sufficient part, and thus prove next result.

Lemma 1. A quantity function qE(., .) is implementable if and only if there exists a
boundary function Ψ(.) defined on [0, 1] such that (10) holds.

Bunching areas and foreclosure (partial versus complete) The bunching sets,
i.e. the sets on which the quantity qE(sE , ωE) is constant, can be one- or two-dimensional.
As shown on Figure 5, one-dimensional bunching sets can be of two types: (i) vertical
lines above points on the boundary line where that line decreases; (ii) “L”-shaped unions
of vertical lines above and horizontal lines at the right of points where the boundary
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Figure 5: Implementable quantity function (isolines)

line increases. There always exists a two-dimensional bunching area, namely the region
where the quantity is zero. Other two-dimensional bunching sets exist in regions where
the boundary line increases and has a vertical part, see e.g. Figures 13a and 13b.

Increasing parts of the boundary function thus translate into horizontal bunching
segments or two-dimensional bunching areas, and hence into partial foreclosure: 0 <

qE(sE , ωE) < sE for some types located below the boundary. In such regions, the con-
straint qE ≤ sE is slack: increasing sE does not allow the competitor to enter at a larger
scale and qE does not depend on sE .

Shape of the boundary line and curvature of the tariff As formally stated in
Lemma B.1, flat parts of the boundary line correspond to linear parts of the tariff (see
Figure 3) and increasing parts of the boundary line correspond to convex parts of the
tariff (see Figure 4). In both cases, the constraint qE ≤ sE in the buyer-competitor pair’s
problem (7) is not binding.

In contrast, the curvature of the tariff may change along decreasing parts of the
boundary: the tariff is concave near local maxima of the boundary line and convex near
local minima, see equation (B.3) in appendix and Figures 8a, 8b, 9a, and 9b. Local
maxima of the boundary line thus correspond to inflection points of the tariff. An
example is the point A3 on Figures 12a and 12b.
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Finally, it is worthwhile noticing that upward and downward discontinuities in the
boundary line have different interpretations in terms of price schedule. Upward discon-
tinuities of the boundary line correspond to convex kinks in the tariff, see Figures 13a
and 13b. Downward discontinuities of the boundary correspond to upward discontinuities
of the tariff, see Figures 14a and 14b.

4 Designing the price schedule

The buyer and the incumbent design the price schedule so as to maximize their joint
surplus, given by (4). Using qI = 1 − qE and replacing ΠE with the value derived in
Section 3.1, we can rewrite their common objective as

EΠBI = ωI + E {(ωE − ωI)qE − β∆SBE} . (11)

To solve the buyer-incumbent pair’s problem, we rely on the duality, exposed in
Section 3, between the incumbent’s price schedule, T , and the quantity purchased from
the entrant, qE . We look for the quantity function qE , then we recover the price-quantity
schedule T from this function.11

Section 4.1 expresses the problem in terms of the quantity purchased from the in-
cumbent, qE , introducing the notion of virtual surplus. The maximization of the virtual
surplus, ignoring incentive compatibility, gives rises to a relaxed problem. Section 4.2
examines situations where the solution of the relaxed problem is implementable. Sec-
tion 4.3 solves the complete problem in the general case. Sections 4.4 and 4.5 show
that the optimal price-quantity schedule can have convex parts and hence that efficient
competitors may be partially foreclosed in equilibrium.

4.1 Virtual surplus and elasticity of entry

Expanding (11), we write the joint expected surplus of the buyer-incumbent pair as:

EΠBI = ωI +

∫
sE

∫ ω̄E

ωE

{(ωE − ωI)qE − β∆SBE} dF (ωE |sE) dG(sE).

Using (8) and integrating the rent term β∆SBEf by parts with respect to ωE , for each
sE , yields

EΠBI = ωI +

∫
sE

∫ ω̄E

ωE

S v(qE ; sE , ωE) dF (ωE |sE) dG(sE), (12)

where, following Jullien (2000), we have defined the “virtual surplus” S v as

S v(qE , sE , ωE) =

[
ωE − ωI − β

1− F (ωE |sE)

f(ωE |sE)

]
qE . (13)

11In fact, the tariff will be determined only up to an additive constant, which reflects the sharing of
the expected surplus between the buyer and the incumbent.
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The virtual surplus is the total surplus W (qE , 1 − qE) adjusted for the informational
rents βqE (1− F (ωE |sE)) /f(ωE |sE) induced by the self-selection constraints. The vir-
tual surplus depends linearly on the quantity qE .

As observed in Section 3.2, setting a constant effective price pe amounts to offering
the surplus vI − pe per unit of good I. Entrants with ωE above (below) this value serve
all of the contestable demand (are inactive). The fraction of active entrants, for a given
size of the contestable demand, sE , is thus 1 − F (vI − pe|sE). Decreasing the effective
price, i.e. increasing the offered surplus, places more competitive pressure on the entrant,
and hence reduces the fraction of active entrants. This leads us to define the elasticity
of entry by

ε(ωE |sE) =
ωEf(ωE |sE)

1− F (ωE |sE)
. (14)

Hereafter, the bracketed term in (13) is called “virtual surplus per unit” and is denoted
by sv(sE , ωE). The virtual surplus per unit is negative for inefficient rivals (ωE < ωI),
hence in particular, by Assumption 1, for ωE = ωE . It is positive for ωE = ω̄E , when ω̄E

is finite. It can be rewritten as

sv(sE , ωE) = ωE [1− β/ε(ωE |sE)]− ωI .

Throughout the paper, we maintain the following assumption.

Assumption 2. For any given size of the contestable demand sE, the elasticity of entry,
ε(ωE |sE), is nondecreasing in ωE. Moreover, if ω̄E = ∞, the upper bound of ε(ωE |sE)

as ωE rises is greater than one, for all sE.

Under Assumption 2, the virtual surplus per unit, sv, is nondecreasing in ωE provided
that it is positive. Assumption 2 holds in particular when the hazard rate f/(1 − F ) is
nondecreasing in ωE , a usual assumption in the nonlinear pricing literature. It is also true
in the limit case where the elasticity does not depend on ωE ; this happens when ωE , con-
ditionally on sE , follows a Pareto distribution, given by 1−F (ωE |sE) = (ωE/ωE)−ε(sE);
the elasticity of entry is then constant in ωE and equal to ε(sE). Hereafter, we denote
by ε(sE) and ε̄(sE) the minimum and maximum of ε(ωE |sE) for a given value of sE , and
by ε and ε̄ the global minimum and maximum of ε(ωE |sE).

The variations of the elasticity of entry with sE are related to the statistical link
between the random variables sE and ωE . The relationship is stated in Lemma 2, proved
in Appendix C.

Lemma 2. The elasticity of entry, ε(ωE |sE), does not depend on sE if and only if the
random variables sE and ωE are independent.

If the elasticity of entry increases (decreases) with sE, then ωE first-order stochasti-
cally decreases (increases) with sE.

The buyer and the incumbent maximize the expected virtual surplus, given by (12),
over all implementable quantity function qE . To solve this problem, we first ignore the
implementability conditions derived in Section 3.3 and maximize (12) over all quantity
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functions. This is what we call the “relaxed problem”. We denote by qr
E its solution. If

qr
E is implementable, then it is the solution of the complete problem.

Proposition 1. The solution of the relaxed problem is given by

qr
E(sE , ωE) =

{
0 if ωE ≤ ω̂E(sE)

sE otherwise,

where ω̂E(sE) ∈ (ωI , ω̄E) is the unique solution to

ω̂E(sE)− ωI

ω̂E(sE)
=

β

ε(ω̂E(sE)|sE)
. (15)

The efficiency-rent tradeoff leads to more inefficient exclusion as the rival’s bargaining
power, β, rises and the elasticity of entry, ε, falls.

Proof. By linearity, the solution to the relaxed problem is sE (zero) when the virtual
surplus per unit, sv, is positive (negative). The equation sv = 0 is equivalent to (15). We
already know that the virtual surplus per unit is negative for ωE = ωI and positive for
ωE = ω̄E , when ω̄E <∞. If ω̄E =∞, the second-part of Assumption (2) guarantees that
sv is positive for high values of ωE . Hence the existence of a solution to equation (15)
lying between ωI and ω̄E . The left-hand side of (15) increases in ω̂E , and the right-hand
side is nonincreasing in ω̂E by the first part of Assumption 2, which yields uniqueness.

The threshold ω̂E(sE) summarizes the tradeoff between efficiency and rent extraction
at a given level of sE . Equation (15) shows an analogy with the textbook monopoly
pricing formula. The buyer-incumbent pair indeed has a monopoly power over entry,
or more precisely over the quantity produced by the smaller rival. The buyer and the
incumbent jointly act like a monopoly towards the rival, setting ω̂E to extract rent at the
cost of reducing the probability of entry. When the threshold ω̂E is higher, the efficiency-
rent tradeoff pushes towards less entry. The higher ε, the more reactive the entrant: the
buyer and the incumbent cannot easily extract rents and cannot place strong competitive
pressure on the entrant, hence a lower ω̂E , and more entry.

The buyer has two tools to extract surplus from the entrant. First, her bargaining
power 1−β. Second, the tariff negotiated with the incumbent which determine both the
size of the surplus created by the entry and the outside option of the buyer. They are very
different in nature. First, the former is exogenous and the latter is endogenous. Second,
whereas β does not directly impact the efficiency (if entry creates a positive surplus its
sharing is irrelevant), the price schedule can deter efficient entry. Equation (15) shows
that they are related. The larger the bargaining power of the buyer (i.e. the lower
β) and the lower the threshold ω̂E(sE); the efficiency-rent tradeoff pushes towards more
entry. In the limit case where the buyer has all the bargaining power vis-à-vis the entrant
(β = 0), there is no tradeoff, and hence no inefficient exclusion: ω̂E(sE) coincides with
the efficient threshold ωI . On the contrary, the lower the bargaining power of the buyer
and the higher ω̂E(sE); the efficiency-rent tradeoff pushes towards less entry.
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Figure 6: ERT line (dashed). Here, the the relaxed solution is not implementable.

Hereafter, we call the curve with equation ωE = ω̂E(sE) in the (sE , ωE)-plan the ERT
line.12 As shown on Figure 6, the solution to the relaxed problem is zero below this line
and sE above. In the represented case, the quantity function qr

E is not implementable,
because implementable functions are nondecreasing in sE and qr

E decreases from sE to
zero when crossing increasing parts as the ERT line. For example, the type represented
at point B, who sells qr

E = 0 and earns zero rent, would have an incentive to mimic
type A, who sells all of the contestable demand and earns a positive rent. The relaxed
quantity function, shown on Figure 6, is not consistent with the pattern of implementable
quantity allocations, represented on Figure 5.

4.2 Nondecreasing elasticity of entry

In this section we assume that the elasticity of entry does not decrease with the size of
the contestable demand, sE . We consider first the case where ε(ωE |sE) does not depend
on sE , i.e. sE and ωE are independent. Then we examine the case where ε(ωE |sE)

increases with sE , i.e. ωE first-order stochastically decreases with sE . In both cases, the
solution of the relaxed problem is incentive compatible and is therefore the solution of
the buyer-incumbent pair’s problem.

Proposition 2. When the elasticity of entry, ε(ωE |sE), does not depend on sE, the
second best can be achieved through a two-part tariff with slope: vI− ω̂E. The equilibrium
features inefficient exclusion. Partial foreclosure is not present.

Proof. The ERT threshold given by (15) does not depend on sE , because the elasticity ε
does not. The solution of the relaxed problem, given by Proposition 1, is implementable
with a constant boundary function Ψ(sE) = ω̂E , see Figure 7a.

12The acronym ERT stands for Efficiency Rent Tradeoff.
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The second best tariff is obtained as follows. From (8), the gain from trade between
the buyer and the entrant is given by ∆SBE(sE , ωE) = (ωE − ω̂E)sE for ωE > ω̂E . By
definition of ∆SBE , we have: ∆SBE(sE , ωE) = (ωE − vI)sE + T SB(1) − T SB(1 − sE),
hence

T SB(1)− T SB(1− sE) = (vI − ω̂E)sE .

The effective price, defined by (9), is constant and equal to vI − ω̂E . The second best
allocation is achieved by a two-part tariff, see Figure 7b.

To make sure that the competitor serves all of the contestable demand if ωE ≥ ω̂E

and is inactive otherwise, the buyer and the incumbent set the effective price at vI − ω̂E .
The smaller the elasticity of entry, ε, the larger the ERT threshold, ω̂E , the smaller the
slope of the two-part tariff, the stronger the competitive pressure put on the entrant.
The slope of the optimal price schedule is negative whenever vI is lower than ω̂E . In
such a case, the buyer would be better off purchasing more than 1 − sE units from the
incumbent. Yet the buyer cannot take advantage of the negative marginal price offered
by the incumbent because doing so would leave her with unconsumed units and disposal
costs are assumed to be infinite (see Section 5 for finite disposal costs).

Figure 7a: Second best with ε(ωE |sE)

constant in sE
Figure 7b: Optimal price schedule

(case vI > ω̂E)

As pictured in Figure 7a, the tradeoff between efficiency and rent extraction results in
some efficient entrants being fully foreclosed in equilibrium. Inefficient foreclosure arises
due to incomplete information as in Aghion and Bolton (1987). The fraction of efficient
types that are inactive increases with the entrant’s bargaining power vis-à-vis the buyer
as ω̂E increases with β.

From now on, we consider cases where the elasticity of entry is not constant with
sE and show that two-part tariffs are no longer optimal. We start with the case where
the elasticity increases with sE : larger competitors, i.e. competitors with a larger con-
testable demand, are more sensitive to competitive pressure. Under this circumstance,
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the efficiency-rent tradeoff leads the buyer and the incumbent to place less competitive
pressure on larger competitors.

Proposition 3. When the elasticity of entry ε(ωE |sE) increases with sE, the effective
price, pe(qE), increases with qE. The price schedule is concave in a neighborhood of
qI = 1. It is globally concave if ω̂E is concave or moderately convex in sE. The equilibrium
features inefficient exclusion. Partial foreclosure is not present.

Figure 8a: Second best with ε(ωE |sE)

increasing in sE
Figure 8b: Optimal price schedule

(case sE = 0 and vI >

ω̂E(0))

Figure 9a: Second best with ε(ωE |sE)

increasing in sE
Figure 9b: Optimal price schedule

(case sE = 0 and vI <

ω̂E(0))

19



Proof. When ε(ωE |sE) increases with sE , the ERT threshold, ω̂E , given by (15), de-
creases with sE , and the solution of the relaxed problem is implementable. Its associated
boundary function has equation Ψ(sE) = ω̂E(sE), see Figure 8a.

By the same reasoning as in Section 4.2, the surplus gain from the trade between the
buyer end the entrant, ∆SBE(sE , ωE), equals (ω − ω̂E(sE))sE above the ERT line and
zero below, and the second best tariff is given by

T (1)− T (1− sE) = (vI − ω̂E(sE))sE .

In other words, the effective price pe(sE) is set at vI − ω̂E(sE), and is thus increasing
in sE . To prove that T is concave in a neighborhood of qI = 1, we compute T (qI) =

T (1) + (vI − ω̂E(1− qI))(qI − 1), then T ′(qI) = (vI − ω̂E(1− qI)) + ω̂′E(1− qI)(qI − 1)

and T ′′(qI) = 2ω̂′E(1 − qI) − ω̂′′E(1 − qI)(qI − 1). The term ω̂′E , which is negative for
any qI , tends to make the tariff concave. Assuming that ω̂′′E(0) is not infinite, we get
T ′′(1) = 2ω̂′E(0) < 0, hence the concavity at the top.

As shown on Figures 8a and 9a, the entrant is either inactive (qE = 0) or serves
all the contestable demand (qE = sE). For a given ωE the jump from zero to sE can
never occur if ωE is not large enough. The jump occurs when sE is large enough for
intermediate values of ωE . Finally, if ωE is large enough, qE = sE for any sE . On the
other hand, for a given sE , qE = 0 if ωE is small (below ω̂E(sE)) while qE = sE when
ωE is large (above ω̂E(sE)).

Some efficient entrants are foreclosed. As the elasticity of entry increases with sE ,
the ERT results in a lower ω̂E as sE increases. Consequently, the optimal effective price
pe(qE) = vI − ω̂E(qE) increases with qE : the larger the contestable market-share, the
lower the competitive pressure. If vI ≥ ω̂E(sE), the effective price is positive for any
quantity, as shown on Figures 8a and 8b. If vI < ω̂E(sE), the effective price is negative
for small values of qE , as represented on Figures 9a and 9b.

4.3 The general case

We now consider the complete problem, which consists in maximizing the expected virtual
surplus ∫∫

sv(sE , ωE)qE(sE , ωE) dF (ωE |sE) dG(sE)

over all implementable quantity functions qE . As explained at the end of Section 4.1,
solving the problem separately for each sE generally yields non implementable quantity
functions, see Figure 10a. Our strategy consists in solving the problem separately for
each ωE and checking that the obtained quantity function is implementable.

In Appendix D, we consider the problem of maximizing∫
sE

sv(sE , ωE)qE(sE , ωE) dF (ωE |sE) dG(sE)

for each ωE . This leads to construct, for each ωE , horizontal segments where the quantity
qE is constant. Let [AB] be such a segment, see Figure 10b. We show in the appendix
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that the virtual surplus must be positive at A and zero at B at the optimum. In other
words, the point B belongs to the ERT line. In fact, we show that B must belong to a
decreasing part of the ERT line. We also show that the expected virtual surplus on the
segment [AB] is zero

E( sv | [AB] ) = 0. (16)

The analysis presented in Appendix D shows that the quantity function obtained by
the above method is implementable if and only if the left extremities of the constructed
intervals (e.g. the point A on Figure 10b) are nondecreasing in ωE . In Appendix D.4,
we provide sufficient conditions for this monotonicity condition to hold.

Proposition 4. Assume that one of the sufficient conditions stated in Appendix D.4
holds. Then the complete problem can be solved separately for each ωE. The optimal
boundary line Ψ lies above the ERT line, Ψ ≥ ω̂E, and can be constructed from the
following properties:

1. Ψ(1) = ω̂E(1);

2. Its non-increasing parts coincide with the ERT line;

3. Its increasing parts are defined by equation (16).

Figure 10a: The relaxed solution lo-
cally decreases with sE .

Figure 10b: ERT line ω̂E(sE) (dashed). Op-
timal boundary ωSB

E (solid)

The sufficient conditions mentioned in Proposition 4 are fairly mild. A first sufficient
condition is f being nondecreasing in ωE . A second set of sufficient conditions is the
hazard rate f/(1 − F ) being nondecreasing in ωE and the range of the entry elasticity
being not too wide (condition (D.3)). A third set of sufficient conditions consists of
the elasticity of entry being nondecreasing in ωE , as stated in Assumption 2,13 and of

13Assumption 2 is weaker than f or f/(1− F ) being nondecreasing in ωE .
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another condition on the range of ε, (D.4), more restrictive than (D.3). Technically, the
conditions (D.3) and (D.4) involve the rival’s bargaining power, β, and the minimum
and maximum values of ε in the whole distribution of types, ε and ε̄. Even the stronger
condition (D.4) is not very restrictive, in the sense that it allows for a wide range [ε, ε̄].
For instance, if the rival’s bargaining power, β, equals one, the elasticity of entry may
vary freely between ε = 1.2 and ε̄ = 3.98, or between ε = 5 and ε̄ = 26.64. If β equals
.75, then the elasticity of entry may vary freely between ε = 1.2 and ε̄ = 5.99, or between
ε = 5 and ε̄ = 33.59.

To construct the optimal boundary Ψ under the sufficient conditions of Appendix D.4,
we proceed as follows. We first draw the ERT line ωE = ω̂E(sE). We start with sE = 1

and then consider lower and lower values of sE . For sE = 1, we know that Ψ(1) = ω̂E(1).
If the ERT line decreases at sE = 1, the boundary coincides with the ERT line, as long
as it remains decreasing. When the ERT line starts increasing (possibly at sE = 1),
we know that there is horizontal bunching. Equation (16) provides a unique value for
Ψ(sE). If the candidate boundary hits the ERT line at some value of sE , it must be on
a decreasing part of that line and, from that value on, the optimal boundary coincides
with the ERT line (as long as ω̂E remains decreasing).

When the monotonicity constraints on the left extremities of horizontal bunching
intervals is violated (hence the sufficient conditions do not hold), the increasing parts of
the optimal boundary line have vertical portions, generating two-dimensional bunching
areas. An example of such an area is the shaded region, D, represented on Figure 15b.

Whether or not the monotonicity constraints are binding, the above construction
shows that the optimal boundary is located below the maximal value of ω̂E(sE), hence
below ω̄E (see Proposition 1). For high values of ωE , lying between the maximum of
ω̂E(sE) and ω̄E , the second-best quantity is efficient: qE(sE , ωE) = sE = q∗E(sE) for all
sE . There is no distortion at the top of the distribution of ωE .

4.4 Decreasing elasticity of entry

We now turn to the case where the elasticity of entry is decreasing with sE : larger
competitors, i.e. competitors with a larger contestable demand, are less sensitive to
competitive pressure. Under this circumstance, the efficiency-rent tradeoff leads the
buyer and the incumbent to place more competitive pressure on larger competitors.
Larger competitors, however, can mimic smaller ones by producing less, implying that
the optimal quantity function derived from the tradeoff is not implementable.

Proposition 5. Assume that ε(ωE |sE) decreases with sE and the assumptions of Propo-
sition 4 hold. Then the optimal tariff is convex. The equilibrium outcome exhibits ineffi-
cient exclusion, in the form of both full and partial foreclosure.

Proof. When ε(ωE |sE) decreases with sE , the ERT line ω̂E is monotonically increasing
and cannot be the optimal boundary line, as this would violate incentive compatibility.
Hence the presence of horizontal pooling segments. As explained in Section 4.3, the
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expected virtual surplus on these horizontal segments must be zero, which yields a can-
didate boundary line. Under the sufficient assumptions of Appendix D.4, the candidate
line is nondecreasing and hence determines the optimal quantity function, see the solid
line labeled ωSB

E on Figure 11a.

The light shaded area on the figure represents the set of types for which the competitor
is partially foreclosed. For all sE ∈ [sE , s̄E ], ωE = ωSB

E (sE) and s′E > sE , the solution of
the buyer-competitor problem (7) is interior for (s′E , ωE), and the solution, qE = sE , is
given by the first-order condition T ′(1− sE) = vI − ωSB

E (sE) or

T ′(qI) = vI − ωSB
E (1− qI),

which increases in qI as ωSB
E is increasing. We conclude that the price-quantity schedule

T is convex.

Figure 11a: ERT line (dashed), opti-
mal boundary line (solid)
with ε(ωE |sE) decreasing
in sE .

Figure 11b: Optimal price schedule
with ε(ωE |sE) decreasing
in sE (sE = 0 and vI >

ω̂E(1)).

As depicted in Figure 11a, when the entrant’s type lies in the light shaded triangle
below the boundary line and above the horizontal line ωSB

E (0), the entrant produces a
quantity strictly lower than sE ; entry is partially foreclosed. Here, the price schedule
plays the role of a barrier to expansion. Some efficient competitor types are active but
prevented to serve all the contestable demand

A small market share of the competitor, therefore, reflect either a small contestable
demand or a large one with partial foreclosure: this is the case when E is sufficiently
efficient to enter but not enough to break the ωSB

E line and sell at full capacity. These
situations are qualitatively very different. In the first one, the competitor is frustrated
because he had to abandon a fraction of his surplus to the buyer. However, depending on
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the interpretation of sE , either he cannot produce more or the buyer is not interesting in
buying more from the entrant. In the second case (partial foreclosure), the competitor is
similarly deprived of some surplus, but in addition he is also frustrated because he cannot
sell all the units that the buyer would like to acquire in the absence of price schedule T .

The optimal price-quantity schedule represented on Figure 11b is increasing because
the picture is drawn under the assumption that vI is larger than ωSB

E (sE) for all sE . If,
however, ωSB

E becomes larger than vI for sE large enough, then the slope of T is negative
for the small qI (as qI = 1− sE).

4.5 Non monotonic elasticity of entry

We now turn to a case where the elasticity of entry is non monotonic with the size of the
contestable demand, sE . We assume that the elasticity of entry is first decreasing then
increasing as the size of the contestable demand rises: competitors with intermediate
size are less sensitive to competitive pressure than competitors with small or large size.
Under this circumstance, the efficiency-rent tradeoff induces the buyer and the incumbent
to place strong competitive pressure on competitors with intermediate size and less on
small or large competitors. In other words, the ERT line has an inverted U-shape, see
the dashed line on Figure 12a.

Figure 12a: ERT line (dashed), opti-
mal boundary line (solid)
with ε(ωE |sE) U-shaped
in sE

Figure 12b: Optimal price schedule
with ε(ωE |sE) U-shaped
in sE
(sE = 0 and s̄E = 1)

We rely on Figures 12a and 12b to explain the shape of the optimal price schedule in
this instance. The picture is drawn under the assumption that ω̂E(0) < vI < max ω̂E .

Between A1 and A3, the optimal boundary line, ωSB
E , is increasing. As already seen

in Section 4.4, the quantity negotiated between the buyer and the entrant is given by
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the first-order condition: T ′(1 − sE) = vI − ωSB
E (sE); the price-quantity schedule T is

convex in this region. In particular, at point A2, we have vI = ωSB
E (sE) and T ′ = 0.

Between A3 and A5, we recover T by using the bunching condition: in the grey area qE
is constant along horizontal lines. For example, if the entrant is at A4 the buyer-entrant
pair is indifferent between buying s1

E or s2
E :

(ωE − vI)s1
E − T (1− s1

E) = (ωE(s2
E)− vI)s2

E − T (1− s2
E).

As T (1− s1
E) is known, one can infer T (1− s2

E). Rewriting the above expression yields

T (1− s2
E) = T (1− s1

E) + (ωE(s2
E)− vI)(s2

E − s1
E)

At these particular points A2 and A4, we have ωE = vI , and hence T (1−s1
E) = T (1−s2

E),
as shown on Figure 12b. It is readily confirmed that T ′′ = 0 at A3, i.e. T has an
inflexion point. After A5, the same indifference condition applies but s1

E = 0. Therefore
T (1 − s2

E) = T (1) + (ωE(s2
E) − vI)s2

E . Thus, an inverted U-shape ωSB
E is associated to

a price schedule which is convex at the end (small values of sE), concave in the middle
and either concave or convex for the small values of qI .

In addition to characterizing the shape of T , Figures 12a and 12b are also helpful to
show what happens when ωSB

E is first below then above and finally below vI as sE rises.
Under this circumstance, the shape of the price-quantity schedule T is reminiscent to that
of “retroactive rebates”. (Such rebates are granted for all units once a quantity threshold
is reached. They induce downwards discontinuities in price-quantity schedules.) The
buyer has a strong incentive to buy up to A2 as T is decreasing. In this section, however,
disposal costs are infinite by assumption, so the buyer cannot purchase more than her
requirements.14 We now turn to the case where the buyer can get rid of unconsumed
units at a finite cost and might thus opportunistically buy more than her requirements.

5 Disposal costs, buyer opportunism, and conditional tariffs

We have assumed so far that the buyer incurs an infinite cost if she does not consume
all of the purchased units. Yet in practice the buyer may have the ability to get rid of
unnecessary items at some cost. The magnitude of disposal costs may vary substantially
across industries, as disposing of computer chips, tyres for trucks, or heavy pieces of
machineries15 is likely to entail different costs. Disposal costs also depend on the existence
of a second-hand market and on the seller’s ability to monitor the buyer’s behavior.16 In
Section 5.1, we extend the previous analysis to the case of finite disposal costs, taking into
account possible buyer opportunism. In Section 5.2, we show how conditionnal tariffs
make it possible to overcome the opportunism problem.

14We have assumed that the distribution of types is continuous, so each point of the tariff, even in
regions where it is decreasing, is chosen by a competitor. If instead the size of the contestable demand
took only a finite number of values, a true retroactive rebate could be optimal.

15These products are involved in some of the antitrust cases mentioned in footnote 1.
16Disposal costs can also be seen as costs to avoid the monitoring of the incumbent.
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5.1 Finite disposal costs and buyer opportunism

We denote by γ the exogenous cost incurred by the buyer if she fails to consume some
of the purchased units. We distinguish units that are purchased, qE and qI from units
that are consumed, xE and xI . As previously, the buyer’s consumption is bounded, and
normalized to one: xE + xI ≤ 1. Having purchased quantities qE ≤ sE and qI from the
rival and the incumbent, the buyer chooses consumption levels so as to maximize

V (qE , qI) = max
(xE ,xI)∈X

vExE + vIxI − γ(qE − xE)− γ(qI − xI), (17)

where the set X is defined by the constraints xE ≤ qE , xI ≤ qI , and xE + xI ≤ 1: the
buyer cannot consume more than she has purchased nor more than her total requirement.
In appendix E.1, we extend Lemma A.1 to the case of finite disposal costs, showing that
the buyer’s total purchases are not lower than her total demand in equilibrium.

The buyer, however, could purchase more than her requirement, as disposal costs are
now assumed to be finite, with the sole purpose of benefiting from a rebate offered by
the incumbent. We call such a behavior opportunistic. The expression of V given in
(17) shows that marginal prices below −γ create buyer opportunism. Indeed, suppose
that the buyer already purchased qE from the competitor and that T ′(1 − qE) < −γ.
Then she would purchase more than 1− qE from the incumbent to benefit from a lower
total price while consuming only xI = 1− qE . These excess purchases are costly for the
incumbent because of production costs.

We first establish an optimality result that holds irrespective of the informational
structure, i.e. whether or not the buyer and the incumbent know the competitor’s char-
acteristics when signing the contract. The proof can be found in Appendix E.2.

Proposition 6. The buyer and the incumbent are better off using a tariff with slope
greater than or equal to −γ. There is no buyer opportunism in equilibrium: the buyer
does not buy more than her total requirements, qE + qI ≤ 1.

Combining the extended version of Lemma A.1 with Proposition 6 shows that the
buyer purchases the exact quantity necessary to meet her requirements: qE +qI = 1, and
consumes all purchased units: xE = qE , xI = qI . Hence, the buyer actually incurs no
disposal costs. It follows that the expressions (7) and (11), respectively for the surplus
created by the trade between the buyer and the competitor, ∆SBE , and the expected
profit of the buyer-incumbent pair, EΠBI , still hold.

It follows that the maximal expected profit of the buyer-incumbent pair is obtained
by solving the same problem as above, under the extra constraint that T ′(qI) ≥ −γ.
Consequently, and regardless of the informational structure, the optimal expected profit
of the buyer-incumbent pair is nondecreasing in the magnitude of the disposal costs, γ.

Throughout this section, we say that the rival firm is super-efficient if ωE ≥ vI +

γ. It follows from Proposition 6 and from the buyer-competitor problem (7) that, in
equilibrium, whatever the informational structure, a super-efficient competitor serves all
the contestable demand: qE(sE , ωE) = sE for all ωE > vI + γ. Indeed, for such a
competitor, the function (ωE − vI)qE − T (1− qE) is nondecreasing on (0, sE).
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Proposition 6 prompts us to extend the notion of implementability to the case with
finite disposal costs. We say that a quantity function is implementable if it can be
obtained as solution to (7), where T is a tariff satisfying T ′ ≥ −γ for all q. Lemma 1
must be adapted as follows.

Lemma 3. A quantity function qE(., .) is implementable if and only if there exists a
boundary function Ψ(.) defined on [0, 1], with Ψ ≤ vI + γ, such that (10) holds.

The new condition on the boundary line, Ψ(sE) ≤ vI+γ, expresses that super-efficient
competitors serve all of the contestable demand: qE(sE , ωE) = sE for all ωE ≥ vI + γ

and all sE . The sufficient part of the lemma is proved in Appendix E.3. It follows
from Lemma 3 that the only change due to the presence of finite disposal costs concerns
super-efficient competitors. To explain this point in more detail, we slightly change the
notations, denoting by qE(sE , ωE ; γ) the optimal quantity function and by Ψ(sE ; γ) the
optimal boundary function when the magnitude of the disposal costs is given by the
parameter γ.

Proposition 7. Under the assumptions of Proposition 4, the optimal quantity function
is given by

qE(sE , ωE ; γ) =

{
qE(sE , ωE ;∞) if ωE < vI + γ

sE if ωE ≥ vI + γ.

The existence of finite disposal costs matters if and only if the efficiency-rent tradeoff
induces the exclusion of some super-efficient competitors, i.e. if and only if ω̂E(sE) >

vI + γ for some values of sE.

Proof. We solve the problem separately for each ωE . For ωE ≥ vI + γ, we must have
qE = sE : super-efficient competitors serve all of the contestable demand. For ωE < vI+γ,
we use the same method as under γ =∞, which, under the assumptions of Proposition 4,
yields an implementable quantity functions. The above construction amounts to trun-
cating the optimal boundary function as follows:

Ψ(sE ; γ) = min(Ψ(sE ;∞), vI + γ).

If there are no super-efficient competitors, ω̄E ≤ vI + γ, the optimal quantity function is
the same as under γ = ∞. This is also true when the efficiency-rent tradeoff leads any
super-efficient competitor to serve all of the contestable demand, i.e. ω̂E(sE) ≤ vI + γ

for all sE . Indeed, we know from Section 4.3 that Ψ(sE ;∞) ≤ maxsE ω̂E(sE), implying
that Ψ(sE ;∞) ≤ vI + γ, and hence Ψ(sE ; γ) = Ψ(sE ;∞).

Conversely, suppose that ω̂E(sE) > vI + γ for some value of sE . Consider a super-
efficient competitor (sE , ωE) who would be excluded under the rent-efficiency tradeoff:
vI + γ ≤ ωE ≤ ω̂E(sE). Since the boundary line under γ = ∞ lies above the ERT
line (see Proposition 4), we have: qE(sE , ωE ;∞) < sE = qE(sE , ωE ; γ). The constraint
T ′ ≥ −γ is therefore binding.
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Disposal costs and ex post buyer opportunism prevent the buyer and the incumbent
from placing too strong a competitive pressure on the rival, thus protecting super-efficient
competitors from exclusion (but not against rent-shifting). The presence of finite disposal
costs therefore limits the extent of inefficient foreclosure. As the disposal costs are not
incurred in equilibrium, their presence enhances the welfare compared to the case γ =∞.

5.2 Conditional tariffs

In this section, we assume that the buyer and the incumbent are able to condition the
price paid for qI units to the number of units of purchased from the competitor, i.e. they
are able to enforce a tariff T (qE , qI). Applying the same reasoning as in Appendices E.1
and E.2 for each value of qE , one can show that the buyer and the incumbent are better
off using a tariff T (qE , qI) such that the marginal price of an extra unit of good I satisfies

−γ ≤ ∂T

∂qI
≤ vI ,

and consequently that the buyer purchases the quantity necessary to meet her require-
ment: qE + qI = 1.17

The left inequality, however, does no longer imply that the effective price is greater
than −γ and that super-efficient competitors serve all of the contestable demand. Indeed,
given that qE + qI = 1, the effective price of the last qI units sold by the incumbent is
now given by

pe(qI) =
T (0, 1)− T (qI , 1− qI)

qI
, (18)

instead of [T (1) − T (1 − qI)]/qI . which can be lower than −γ. Moreover, the objective
of the buyer-competitor coalition, (ωE − vI)qE − T (qE , 1− qE), may decrease in qE even
for super-efficient competitors. All this can happen if T increases with its first argument,
i.e. if the price paid for qI units increases with the number of units purchased from the
rival.

Proposition 8. Conditioning the tariff on the quantity purchased from the competitor
allows the buyer and the incumbent to earn the same profit as if disposal costs were
infinite.

Proof. The expression (7) for the surplus from the trade between the buyer and the
competitor must be replaced with

∆SBE(sE , ωE) = max
qE≤sE

(ωE − vI)qE − T (qE , 1− qE) + T (0, 1).

Lemma 1 characterizes implementable quantity functions when the price-quantity sched-
ule depends only on qI . The proof in Appendix B.1 consists in recovering T (qI) from the
the functions qE(., .) and ∆SBE(., .). The proof extends when the schedule depends also

17When T depends on qE , the tariffs T̃ and T̂ can be constructed in the same manner as in Appen-
dices E.1 and E.2. The equalities U = Ũ = Û are proved similarly.
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on qE , leading to recover T (qE , 1− qE). In other words, the whole schedule T (qE , qI) is
not identified; only its values for (qE , 1 − qE) are. This implies that the constraint on
the marginal price, ∂T/∂qI ≥ −γ, has no bite: only T (qE , 1− qE) matters, and any such
function may (for instance) be obtained from a schedule T (qE , qI) that is independent
from qI . It follows that the set of implementable quantity functions with conditional
tariffs does not depend on γ ∈ [0,+∞]. Moreover, with γ = +∞, this set is the set of
quantity functions implementable with unconditional tariffs.

When the price-quantity schedule depends only on qI , the presence of finite disposal
cost prevents the exclusion of super-efficient competitors, because the incumbent must
account for ex post buyer opportunism. Conditional tariffs make it possible for the
buyer and the incumbent to overcome the buyer opportunism problem and to exclude
super-efficient competitors.

6 Discussion

The chief concern of antitrust enforcers as regards abuses of dominant position is inef-
ficient exclusion. In its guidelines on exclusionary conducts by dominant undertakings,
the European Commission advocates the “as-efficient competitor test”, which consists in
checking that efficient rivals are not foreclosed. This test is presented as a first step in
the legal assessment: if the test is violated, the dominant firm may have the burden of
justifying its pricing policy, for instance by putting forward efficiency considerations.

We study nonlinear pricing by a dominant firm which competes with a smaller rival,
focusing on exclusionary effects. We exclude any efficiency reasons for the dominant firm
to use nonlinear pricing as well as any predation purposes. We examine the consequences
of the incumbent’s monopoly power over the rival, in the spirit of Aghion and Bolton
(1987). In our model, the common distinction in the antitrust doctrine between exploita-
tive and exclusionary abuses is blurred because it is the exploitation of the incumbency
advantage, combined with incomplete information, that yields inefficient exclusion.18

The two aspects are intertwined in the tradeoff between rent extraction and efficiency.
The exploitative part of the mechanism is sometimes called “rent-shifting”: the ex-

istence of the tariff enhances the buyer’s bargaining position vis-à-vis the entrant by
altering her outside option in the negotiation. Under incomplete information, the buyer
and the incumbent leave the door ajar: they adjust the competitive pressure placed on
the entrant to solve the efficiency-rent tradeoff, allowing very efficient rivals to enter the
market while driving some efficient rivals out (complete foreclosure) or preventing them
from selling at full capacity (partial foreclosure).19 In any case, those who enter are

18Under complete information, only exploitative abuse is involved, as the second-best allocation is
efficient (see the end of Section 2).

19In several cases, Virgin/British Airways, Michelin, and Intel (See references in footnote 1), the
defendant argued that his market share had declined during the year under scrutiny. This could happen
in our model, for a given sE , if ωE increases but remains below ωSB

E . The rival remains partially foreclosed
but less and less as ωE rises.
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forced to grant favorable conditions to attract buyers.
Our analysis places no a priori restriction on the shape of the incumbent’s tariff. De-

pending on the distribution of the uncertainty, optimal tariffs may be locally increasing
or decreasing, and locally convex, linear or concave. The competitive pressure placed on
the rival firm translates into the amount of rebates that the buyer gives up by supplying
units from the rival. Hence the importance of the incumbent’s “effective price” empha-
sized by the European Commission.20 At the second best, the effective price is always
below the incremental cost, because the buyer and the incumbent only want to shift rents
from a rival who is more efficient than the incumbent. If the Commission could enforce
its “as-efficient competitor test”, then any exploitative attempt would be eliminated and
hence there would be no exclusion of efficient rivals.

Yet enforcing the as-efficient competitor test is by no means trivial, as cost measure-
ments and contestable market shares are imprecise in nature. To our knowledge, the
Intel decision contains the first and, to date, the sole attempt to implement the test in
an antitrust case.21

Incumbents can take advantage of their position only if they can commit to the price
schedule, whether information is complete or incomplete. It is therefore crucial to check
this point in practice. In two recent cases,22 the European Commission stressed that
the dominant firm used a long period to calculate the rebates, and in both cases, the
dominant firm was able to commit to a price schedule for the whole reference period. In
the case of markets where firms interact for long periods of time, the commitment ability
may come from repeated interactions.

Finally, our analysis explains how the presence of low disposal costs limits the ability
of dominant firms to exploit their position. When some rivals are expected to be much
more efficient than incumbents, dominant firms may want to use negative marginal prices,
with the result of excluding very efficient rivals. Negative prices, however, would induce
buyers to purchase more than needed simply to cash in on the tariff.23 It follows that
low disposal costs and ex post buyer opportunism prevent the exclusion of very efficient
competitors.

To counter buyer opportunism, the incumbent has two strategies: first he could
monitor the buyer, making sure that she purchases only up to her needs. Second, the
dominant firm may want to condition his prices on quantities purchased from rivals. We
show that resorting to a conditional tariff is equivalent to imposing an infinite disposal

20When the tariff only depends on the quantity purchased from the incumbent, the effective price is
simply the average price of the last units offered by the incumbent. The computation must be adapted
when the tariff also depends on the quantity purchased from the entrant (see (18)), as buying more from
the entrant (as opposed to buying less from the incumbent) can in itself affect the effective price.

21Admittedly, the Commission run the test for a single value of q, namely q = 1 − sE , where sE was
a “realistic” value for the size of the contestable demand. This method requires the determination, ex
post, of the magnitude of the contestable demand, which proved highly contentious in Intel.

22Virgin/British Airways and Michelin. See references in footnote 1.
23The price schedule agreed upon between the incumbent and the buyer can be seen (in broad terms)

as a specific investment by the incumbent. As often with specific investment, one party can in some
state of nature take advantage of the fact that the other party is committed to this investment.
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cost on the buyer. Under such a tariff, excluding very efficient competitors is possible
even when the buyer can dispose of unconsumed units at a low cost.
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Appendix

A The buyer’s total purchases are not lower than her total
demand

This section presents an optimality result that holds irrespective of the information struc-
ture, i.e. whether the buyer and the incumbent know the entrant’s characteristics at the
time of contracting. It is in the buyer’s and incumbent’s common interest to agree on a
price schedule that induces the former to purchase at least 1− qE units from the latter,
once she has purchased qE from the entrant, for any value of qE . Hence, in equilibrium,
the buyer’s total purchases are equal to, or exceed, her total demand.24

24Lemma A.1 is stated and proved under infinite disposal costs. Appendix E.1 extends the result to
the case of finite disposal costs.
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Lemma A.1. The buyer and the incumbent are better off using a tariff with slope T ′

smaller than or equal to vI . Consequently, we may assume, with no loss of generality,
that the buyer does not buy less than its total requirements: qE + qI ≥ 1.

Proof: We start from any price schedule T . Let T̃ be defined by

T̃ (qI) = inf
q≤qI

T (q) + vI(qI − q). (A.1)

The tariff T̃ is derived from the tariff T as follows. When the incumbent offer q units at
price T (q), he also offers to sell more units than q, say qI > q, at price T (q) + vI(qI − q).
The additional units are offered at the monopoly price vI . By construction, the slope of
T̃ is lower than or equal to vI .

Let ŨB(qE) denote the buyer’s net utility after she has purchased qE units from the
entrant under the price schedule T̃

ŨB(qE) = max
qI

V (qE , qI)− T̃ (qI). (A.2)

As T̃ ≤ T , we have: ŨB ≥ UB. Suppose that, under T̃ , it is optimal for the buyer to
purchase q̃I from the incumbent if she has purchased qE from the entrant. By construction
of T̃ , there exists qI ≤ q̃I such that T̃ (q̃I) equals or is arbitrarily close to T (qI)+vI(q̃I−qI).
We have:

ŨB(qE) = V (qE , q̃I)− T̃ (q̃I) = V (qE , q̃I)− T (qI)− vI(q̃I − qI)

= V (qE , qI)− T (qI), (A.3)

which implies ŨB(qE) ≤ UB(qE), and hence ŨB(qE) = UB(qE) for all qE . As the problem
of the buyer-entrant pair depends only on the functions UB(.) and ŨB(.), they agree on
the same quantity qE and the entrant earns the same profit, β∆SBE , under T and T̃ for
all (cE , sE , vE).

We now examine the quantity purchased from the incumbent. Suppose that the
buyer, having purchased qE from the entrant, chooses to purchase qI from the incumbent
under the original price schedule T . As T̃ (qI) ≤ T (qI), the buyer may choose to purchase
the same quantity from the incumbent under the new tariff T̃ :

UB(qE) = ŨB(qE) = V (qE , qI)− T (qI) ≤ V (qE , qI)− T̃ (qI).

Yet, under the tariff T̃ , if qI < 1−qE , the buyer may as well choose to purchase 1−qE from
the incumbent. Indeed, by definition of T̃ , we have T̃ (1− qE) ≤ T (qI) + vI(1− qE − qI)

and hence

UB(qE) = ŨB(qE) = V (qE , qI)− T (qI)

≤ V (qE , qI) + vI(1− qE − qI)− T̃ (1− qE)

= V (qE , 1− qE)− T̃ (1− qE). (A.4)
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As vI > cI , the change from qI to 1− qE > qI increases the total surplus:

W (qE , 1− qE) = V (qE , 1− qE)− cEqE − cI(1− qE)

= V (qE , qI)− cEqE − cIqI + (vI − cI)(1− qE − qI) (A.5)

≥ W (qE , qI).

In sum, the change from T to T̃ does not alter the entrant’s profit and does not decrease
the total surplus. We conclude from (4) that the change does not decrease the expected
payoff of the buyer-incumbent coalition.

B Implementation

B.1 Recovering the tariff from the boundary line

We prove here the sufficient part of Lemma 1. Starting from any boundary function
Ψ defined on [0, 1], we define the quantity function qE(sE , ωE) by equation (10), and
the profit function ∆SBE(sE , ωE) by equation (8). We observe that the functions thus
defined qE(sE , ωE) and ∆SBE(sE , ωE), are nondecreasing in both arguments, and the
latter function is convex in ωE . Next, we notice that the expression

(ωE − vI)qE(sE , ωE)−∆SBE(sE , ωE)

is constant on qE-isolines. Indeed, both qE(., ωE) and ∆SBE(., ωE) are constant on hor-
izontal isolines (located below the boundary Ψ). On vertical isolines (above the bound-
ary), ∆SBE(sE , .) is linear with slope sE , guaranteing, again, that the above expression
is constant. We may therefore define T (q), up to an additive constant, by

T (1)− T (1− q) = (vI − ωE)q + ∆SBE(sE , ωE), (B.1)

for any (sE , ωE) such that q = qE(sE , ωE). Equation (B.1) unambiguously defines T (1)−
T (1 − q) on the range of the quantity function qE(., .). This range contains zero, but
may have holes when ω̄E is finite and Ψ is above ω̄E on some intervals. Specifically, if
Ψ is above ω̄E on the interval I = [s1

E , s
2
E ], then qE does not take any value between s1

E

and s2
E . In this case, we define T by imposing that it is linear with slope vI − ω̄E on the

corresponding interval: T (1− s1
E)− T (1− q) = (vI − ω̄E)(q − s1

E) for q ∈ I.
We now prove that the buyer and the entrant, facing the above defined tariff T , agree

on the quantity qE(sE , ωE). We thus have to check that

∆SBE(sE , ωE) ≥ (ωE − vI)q′ + T (1)− T (1− q′) (B.2)

for any q′ ≤ sE . When q′ is the range of the quantity function, we can write q′ =

qE(s′E , ω
′
E) for some (s′E , ω

′
E), with q′ ≤ s′E . Observing that q′ = qE(q′, ω′E) and using

successively the monotonicity of ∆SBE in sE and its convexity in ωE , we get:

∆SBE(sE , ωE) ≥ ∆SBE(q′, ωE)

≥ ∆SBE(q′, ω′E) + (ωE − ω′E)q′,
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which, after replacing T (1) − T (1 − q′) with its value from (B.1), yields (B.2). To
check (B.2) when q′ is not in the range of the quantity function (q′ belongs to a hole
[s1

E , s
2
E ] as explained above), use (B.2) at s1

E and the linearity of the tariff between s1
E

and q′.

B.2 Shape of the boundary function and curvature of the tariff

Lemma B.1 relates the shape of the boundary function Ψ to the curvature of the price
schedule T .

Lemma B.1. The following properties hold:

1. If Ψ is increasing (resp. constant) around sE, then the tariff is strictly convex (resp.
linear) around 1− sE.

2. If Ψ decreases and is concave around sE, then the tariff is concave around 1− sE.

3. If Ψ decreases and is convex around sE and sE is close to a local minimum of Ψ,
then the tariff is convex around 1− sE.

4. If Ψ has a local maximum at sE, then the tariff has an inflection point at 1− sE.

Proof. First, suppose that Ψ is nondecreasing on a neighborhood of sE . Let s′E slightly
above sE . Then qE = sE is an interior solution of the buyer-entrant pair’s problem (7) for
s′E and ωE = Ψ(sE). It follows that the first order condition Ψ(sE)−vI +T ′(1−sE) = 0

holds, implying property 1 of the lemma. The property holds when Ψ has an upward
discontinuity at sE , in which case the tariff has a convex kink at 1 − sE . To illustrate,
Figures 13a and 13b consider the case where the boundary line is a nondecreasing step
function with two pieces.

Next, suppose that the boundary line decreases around sE . Here we assume that Ψ is
twice differentiable. We denote by [σ(sE), sE ] the set of value s′E such that qE(s′E , ωE) =

σ(sE), where ωE = Ψ(sE). The buyer-entrant surplus ∆SBE(sE , ωE) is convex and hence
continuous in ωE . It can be computed slightly below or above Ψ(sE). At (sE ,Ψ(sE)),
the buyer and the entrant are indifferent between quantities sE and σ(sE):

∆SBE(sE ,Ψ(sE)) = [Ψ(sE)− vI ]σ(sE)− T (1− σ(sE)) = [Ψ(sE)− vI ]sE − T (1− sE).

Differentiating and using the first-order condition at σ(sE) yields

T ′(1− sE) = −Ψ′(sE)[sE − σ(sE)]−Ψ(sE) + vI .

Differentiating again yields

T ′′(1− sE) = Ψ′′(sE)[sE − σ(sE)] + Ψ′(sE)[2− σ′(sE)]. (B.3)

In the above equation, the two bracketed terms are nonnegative (use σ′ ≤ 0), and the
slope Ψ′ is negative by assumption, which yields item 2 of the lemma. Around a local
minimum of Ψ, Ψ′ is small, and the first term is positive, hence property 3. Property 4
follows from items 1 and 2.
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Figure 13a: Convex kink in the
price schedule

Figure 13b: Two-step increasing
boundary line

Finally note that when Ψ has a downward discontinuity at sE , the tariff has an
upward discontinuity at 1 − sE . To illustrate, Figures 14a and 14b consider the case
where the boundary line is a nonincreasing step function with two pieces.

Figure 14a: Upward jump in the
price schedule

Figure 14b: Two-step decreasing
boundary line
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C Elasticity of entry and distribution of uncertainty

In this section, we prove Lemma 2. The elasticity of entry varies with sE in the same
way as the hazard rate h given by

h(ωE |sE) =
f(ωE |sE)

1− F (ωE |sE)
.

We have ∫ ωE

ωE

h(x|sE) dx = − ln[1− F (ωE |sE)].

If the elasticity of entry does not depend on (increases with, decreases with) sE , the
same is true for the hazard rate, and hence also for the cdf F (ωE |sE), which yields the
results.25

D Derivation of the optimal quantity function

In this section, we formally prove Proposition 4. In Section D.1, we offer a convenient
parametrization of horizontal bunching intervals. In Section D.2, we state and prove
a one-dimensional optimization result, which serves to maximize the expected virtual
surplus for a given level of ωE . In Section D.3, we rewrite the complete problem as
the maximization of the expected virtual surplus under monotonicity constraints. In
Section D.4, we show that these constraints are not binding under fairly mild conditions.
In Section D.5, we address the case where the monotonicity constraint are binding and
two-dimensional bunching occurs.

D.1 Parameterizing horizontal bunching intervals

In this section, we revisit the characterization of implementable function presented in
Section 3.3. Consider an implementable quantity function qE . For any ωE , the function
of one variable qE(., ωE) is nondecreasing on [0, 1], being either constant or equal to
the identity map: qE = sE . By convention, we call regions where it is constant “odd
intervals”, and regions where qE = sE “even intervals”.

We are thus led to consider any partition of the interval [0, 1] into “even intervals”
[s2i, s2i+1) and “odd intervals” [s2i+1, s2i+2), where (si) is a finite, increasing sequence
with first term zero and last term one.26 We associate to any such partition the function
of one variable that coincides with the identity map on even intervals, is constant on odd
intervals, and is continuous at odd extremities. We denote by K the set of the functions
thus obtained.

25The variable ωE first-order stochastically decreases (increases) with sE if and only if F (ωE |sE)

increases (decreases) with sE .
26 For notational consistency, we denote the first term of the sequence by s0 = 0 if the first interval is

even and by s1 = 0 if the first interval is odd. Similarly, we denote the last term by s2n = 1 if the last
interval is odd and by s2n+1 = 1 if the last interval is even.
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For any implementable quantity function qE , the functions of one variable, qE(., ωE),
belong to K for all ωE . Conversely, any quantity function such that qE(., ωE) belong to
K for all ωE is implementable if and only if even (odd) extremities do not increase (de-
crease) as ωE rises. Hereafter, we call the conditions on the extremities the “monotonicity
constraints”.

Even (odd) extremities constitute decreasing (increasing) parts of the boundary line.
Odd intervals, [s2i+1, s2i+2), constitute horizontal bunching segments, or, more precisely,
the horizontal portions of the L-shaped bunching regions.

D.2 A one-dimensional optimization result

In this section, we maximize a linear integral functional on the above-defined set K.

Lemma 4. Let a(.) be a continuous function on [0, 1]. Then the problem

max
r∈K

∫ 1

0
a(s)r(s) ds

admits a unique solution r∗ characterized as follows. For any interior even extremity s2i
E ,

the function a equals zero at s2i
E and is negative (positive) at the left (right) of s2i

E . For
any interior odd extremity s2i+1

E , the function a is positive at s2i+1
E and satisfies∫ s2i+2

E

s2i+1
E

a(s) ds = 0. (D.1)

If a(1) > 0, then r∗(s) = s at the top of the interval [0, 1]. If a(1) < 0, then r∗ is constant
at the top of the interval.

Proof. Letting I(r) =
∫ 1

0 a(x)r(x) dx, we have

I(r) =
∑
i

∫ x2i+1

x2i

xa(x) dx+
∑
i

x2i+1

∫ x2i+2

x2i+1

a(x) dx,

where the index i in the two sums goes from either i = 0 or i = 1 to either i = n− 1 or
i = n, in accordance with the conventions exposed in Footnote 26. Differentiating with
respect to an interior even extremity yields

∂I

∂x2i
= a(x2i).[x2i−1 − x2i].

The first-order condition therefore imposes a(x∗2i) = 0. The second-order condition for a
maximum shows that a must be negative (positive) at the left (right) of x∗2i.

Differentiating with respect to an interior odd extremity yields

∂I

∂x2i+1
=

∫ x2i+2

x2i+1

a(x) dx.

The first-order condition therefore imposes
∫ x∗2i+2

x∗2i+1
a(x) dx. The second-order condition

for a maximum imposes that a is nonnegative at x∗2i+1.
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If a(1) > 0, then it is easy to check that r∗(x) = x at the top, namely on the interval
[x∗2n, x

∗
2n+1] with x∗2n being the highest zero of the function a and x∗2n+1 = 1. If the

function a admits no zero, it is everywhere positive and hence r∗(x) = x on the whole
interval [0, 1].

If a(1) < 0, then r∗ is constant at the top, namely on the interval [x∗2n−1, x
∗
2n], with

x∗2n = 1 and
∫ 1
x∗2n−1

a(x) dx = 0. If the integral
∫ 1
y a(x) dx remains negative for all y, then

r∗ is constant and equal to zero on the whole interval [0, 1].

D.3 Solving the complete problem

The complete problem consists in maximizing the expected virtual surplus subject to the
even (odd) extremities being nonincreasing (nondecreasing). The latter conditions are
called hereafter the “monotonicity constraints”.

Applying Lemma 4 with a(sE) = sv(sE , ωE) for any given ωE , we find that the vir-
tual surplus is zero at candidate even extremities: sv(x2i(ωE), ωE) = 0 and is negative
(positive) at the left (right) of these extremities. In other words, candidate even extrem-
ities belong to decreasing parts of the ERT line. Thus, as regards even extremities, the
monotonicity constraints are never binding.

Lemma 4 also implies that the virtual surplus is positive at odd extremities. These
extremities therefore lie above the ERT line. By the first-order condition (D.1), the
expected virtual surplus is zero on horizontal bunching intervals:

E(sv|H) = 0, (D.2)

where H is a horizontal bunching interval with extremities s2i+1
E and s2i+2

E . The virtual
surplus on a bunching interval is first positive, then negative as sE rises, and its mean on
the interval is zero. The segment [AB] on Figure 10b is an example of horizontal bunching
interval (in fact the horizontal part of an “L”-shaped bunching set). Unfortunately, the
first-order condition (D.2) does not imply that candidate odd extremities x2i+1(ωE) are
nondecreasing in ωE : odd extremities might decrease with ωE in some regions, generating
two-dimensional bunching.

D.4 Sufficient conditions for nondecreasing odd extremities

We introduce three sets of conditions:

1. The conditional density f(ωE |sE) is nondecreasing in ωE ;

2. The hazard rate, f/(1− F ), is nondecreasing in ωE and β, ε and ε̄ satisfy

β ≤ 4εε̄/(∆ε)2; (D.3)

3. The elasticity of entry is nondecreasing in ωE (Assumption 2) and and β, ε and ε̄
satisfy

β ≤ ε̄

1 + (1 + ∆ε)2/4ε
. (D.4)
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We now check that the odd extremities, s2i+1
E (ωE), are nondecreasing in ωE when one of

the above set of conditions holds.
We can restrict attention to efficient rivals, ωE ≥ ωI .27 We rewrite equation (D.2) as

A(s2i+1
E , ωE) = 0 with

A(s2i+1
E , ωE) =

∫ s2i+2
E

s2i+1
E

sv(s, ωE)f(ωE |s)g(s) ds

=

∫ s2i+2
E

s2i+1
E

[(ωE − ωI)f(ωE |s)− β(1− F (ωE |s))] g(s) ds.

The function A is nonincreasing in s2i+1
E , as the virtual surplus is nonnegative at this

point:
∂A

∂s2i+1
E

(s2i+1
E , ωE) = −sv(s2i+1

E , ωE)f(ωE |s2i+1
E )g(s2i+1

E ) ≤ 0.

Differentiating with respect to ωE , we get

∂A

∂ωE
(s2i+1

E , ωE) =

∫ s2i+2
E

s2i+1
E

[
(ωE − ωI)f ′(ωE |s) + f(ωE |s) + βf(ωE |s)

]
g(s) ds,

where we denote by f ′ the derivative of f in ωE .

When f is nondecreasing in ωE , or f ′ ≥ 0, we have ∂A/∂ωE ≥ 0, and hence the odd
extremities are nondecreasing in ωE . We now examine successively the cases where the
hazard rate is nondecreasing in ωE (a weaker condition than f ′ ≥ 0) and the elasticity
of entry is nondecreasing in ωE (an even weaker condition).

D.4.1 Assuming that the hazard rate does not decrease in ωE

We now assume that the hazard rate, f/(1 − F ), is nondecreasing in ωE , which can be
expressed as f ′ ≥ −εf/ωE . Using ωE ≥ ωI , we find that

∂A

∂ωE
≥

∫ s2i+2
E

s2i+1
E

[
−(ωE − ωI)

ε

ωE
+ 1 + β

]
f(ωE |s)g(s) ds

=

∫ s2i+2
E

s2i+1
E

{
ε

[
ωI

ωE
− 1 +

β

ε

]
+ 1

}
f(ωE |s)g(s) ds.

On a horizontal intervalH, the variable ωE is constant, and only the elasticity εmay vary.
Hence, the first order condition (D.2) yields: E(1 − β/ε |H) = ωI/ωE . The right-hand
side of the above inequality is equal, up to a positive multiplicative constant, to

1− cov
(
ε, 1− β

ε

∣∣∣∣H) .
27For ωE < ωI , the virtual surplus is negative for all sE and the solution is qE = 0 for all sE .
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We now look for a sufficient condition for this expression to be nonnegative for any
distribution of ε. Noting m = E(ε|H) the expectation of ε on H, the condition can be
rewritten as

E
[
(ε−m)

(
1− β

ε

)∣∣∣∣H] ≤ 1.

The function (ε − m)(1 − β/ε) is convex in ε. We denote by [ε, ε̄] the support of the
distribution of ε. For given values of ε, ε̄ and m = E(ε|H), the expectation of this convex
function is maximal when the distribution of ε has two mass points at ε and ε̄, associated
with the respective weights ε̄−m

ε̄−ε and m−ε
ε̄−ε . We thus need to make sure that

(ε̄−m)(ε−m)

(
1− β

ε

)
+ (m− ε)(ε̄−m)

(
1− β

ε̄

)
≤ ε̄− ε,

for anym ∈ [ε, ε̄]. The left-hand side of the above inequality is maximal form = (ε+ε̄)/2.
It follows that the inequality holds for all m ∈ [ε, ε̄] if and only if the condition (D.3) is
satisfied.

D.4.2 Assuming that the elasticity of entry does not decrease in ωE

We now assume that the ε(ωE |sE) is nondecreasing in ωE , as stated in Assumption 2.
We have:

∂ε(ωE |sE)

∂ωE
(s2i+1

E , ωE) =
∂

∂ωE

[
ωEf(ωE |sE)

1− F (ωE |sE)

]
≥ 0

which can be rewritten as f ′ ≥ −(1 + ε)f/ωE . Using ωE ≥ ωI , we find that

∂A

∂ωE
≥
∫ s2i+2

E

s2i+1
E

[
ωI

ωE
− ε

(
1− β

ε
− ωI

ωE

)]
f(ωE |s)g(s) ds.

On a horizontal intervalH, the variable ωE is constant, and only the elasticity εmay vary.
Hence, the first order condition (D.2) yields: E(1 − β/ε |H) = ωI/ωE . The right-hand
side of the above inequality is equal, up to a positive multiplicative constant, to

E
(

1− β

ε

∣∣∣∣H)− cov
(
ε, 1− β

ε

∣∣∣∣H) .
We now look for a sufficient condition for this expression to be nonnegative for any
distribution of ε. Noting m = E(ε|H) the expectation of ε on H, the condition can be
rewritten as

E
[
(ε−m− 1)

(
1− β

ε

)∣∣∣∣H] ≤ 0.

The function (ε − m − 1)(1 − β/ε) is convex in ε. We denote by [ε, ε̄] the support of
the distribution of ε. For given values of ε, ε̄ and m = E(ε|H), the expectation of this
convex function is maximal when the distribution of ε has two mass points at ε and ε̄,
associated with the respective weights ε̄−m

ε̄−ε and m−ε
ε̄−ε . We thus need to make sure that

(ε̄−m)(ε−m− 1)

(
1− β

ε

)
+ (m− ε)(ε̄−m− 1)

(
1− β

ε̄

)
≤ 0, (D.5)
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for any m ∈ [ε, ε̄]. The above function is the sum of two quadratic functions of m. The
first is convex with roots ε − 1 and ε̄; the second is concave with roots ε and ε̄ − 1.
Both quadratic functions have zero derivative at m = (ε+ ε̄− 1)/2. The sum of the two
functions is concave as ε < ε̄.

When ε̄ ≤ ε+ 1, the concave quadratic function is negative on the interval [ε, ε̄], and
hence the inequality (D.5) holds on that interval. When ε̄ > ε+ 1, we need to make sure
that the maximum value of the concave quadratic function is lower than the minimum
value of the convex quadratic function. This is is the case if and only if(

1− β

ε̄

)
(∆ε− 1)2 ≤

(
1− β

ε

)
(∆ε+ 1)2.

which is equivalent to (D.4).

Figure 15a: ERT line (dashed).
Non-monotonic odd
extremities (solid line)

Figure 15b: Two-dimensional
bunching area: qE = ŝ

on D.

D.5 Two-dimensional bunching

When none of the above sufficient conditions holds, it may happen that solving the
problem separately for each ωE yields odd extremities (left extremities of horizontal
bunching segments) that are non-monotonic with ωE , as represented on Figure 15a. Such
a line does not define a boundary function Ψ(sE). This means that the monotonicity
constraints are binding and that the optimal boundary line has an increasing vertical
portion, generating a two-dimensional pooling area. An example of such an area is the
shaded region D pictured on Figure 15b, on which the quantity is constant. The value
of the constant (ŝ on the picture) is determined by the first-order condition

E(sv|D) = 0.
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This example has been constructed by assuming that (i) ωE follows a Pareto distribution
conditionally on sE , for all sE ; (ii) the elasticity of entry takes two values, ε and ε̄, with
a large difference ε̄ − ε; (iii) small rivals are very sensitive to the competitive pressure
placed by the incumbent (their elasticity is ε̄) and large rivals are much less sensitive
(their elasticity is ε). Hence the increasing ERT line with two pieces.

E Finite disposal costs

E.1 The buyer’s total purchases are not lower than her total demand

In this section, we extend Lemma A.1 to the case of finite disposal costs. Using the
definition of V , equation (17), and applying the envelope theorem, we get

∂V

∂qI
(qE , qI) = µ− γ = vI − ν,

where µ ≥ 0 and ν ≥ 0 are the respective Lagrange multipliers for the constraints xI ≤ qI
and xE + xI ≤ 1 in the buyer’s problem (17).

The proof of Lemma A.1 follows the same route as in Appendix A. The only needed
modification in the proof consists in replacing equality (A.3) with the inequality

V (qE , q̃I)− T (qI)− vI(q̃I − qI) ≤ V (qE , qI)− T (qI),

where we have used ∂V/∂qI ≤ vI . This inequality is enough to guarantee UB(qE) =

ŨB(qE) for all qE . Equations (A.4) and (A.5) continue to hold as equalities because
∂V/∂qI = vI in the region where qI is below 1− qE .

E.2 The slope of the tariff is above −γ

In this section, we prove Proposition 6. Starting from any tariff T , we define T̂ as

T̂ (qI) = inf
q≥qI

T (q) + γ(q − qI).

Starting from any quantity level q, the incumbent offers the incumbent the opportunity
to buy less units than q, qI ≤ q, in return for the payment T (q) + γ(q− qI). This option
allows the buyer to avoid disposal costs, and is relevant only if γ is finite. The slope of
the new tariff is larger than or equal to −γ.

Let Û(qE) the buyer’s net utility after she has purchased units qE units from the
entrant under the price schedule T̂ :

ÛB(qE) = max
qI

V (qE , qI)− T̂ (qI). (E.1)

As T̂ ≤ T , we have: ÛB ≥ UB. Suppose that, under T̂ , it is optimal for the buyer to
purchase q̂I from the incumbent if she has purchased qE from the entrant. By construction
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of T̂ , there exists qI ≥ q̂I such that T̂ (q̂I) equals or is arbitrarily close to T (qI)+γ(qI−q̂I).
Using the definition of V , we get:

ÛB(qE) = V (q̂I , qE)− T̂ (q̂I)

= V (q̂I , qE)− γ(qI − q̂I)− T (qI)

≤ V (qI , qE)− T (qI).

It follows that ÛB(qE) ≤ UB(qE), and hence ÛB(qE) = UB(qE). The buyer and the
entrant agree on the same quantity qE as their choice only depends on UB and ÛB,
which coincide. The entrant’s profit, β∆SBE , is the same under T and T̂ .

Suppose that the buyer has purchased qE from the entrant and let qI be the optimal
quantity purchased from the incumbent under tariff T . As T̂ (qI) ≤ T (qI), the buyer may
always choose to purchase the same quantity from the incumbent (q̂I = qI) under the
tariffs T̂ and T :

UB(qE) = ŨB(qE) = V (qE , qI)− T (qI) ≤ V (qE , qI)− T̂ (qI).

Now consider the case where qI > 1−qE . Since, by assumption, the buyer has purchased
qE from the rival, it must be the case that xE = qE , otherwise reducing qE would increase
the joint surplus of the buyer an the rival. It follows from qI > 1− qE and xE + xI ≤ 1

that xI must be smaller than qI , hence µ = 0, implying that the derivative of V with
respect to qI equals and −γ. By definition of T̂ (1− qE), we get

V (qE , qI)− V (qE , 1− qE) = −γ[qI − (1− qE)] ≤ T (qI)− T̂ (1− qE)

or
UB(qE) = Û(qE) = V (qE , qI)− T (qI) ≤ V (qE , 1− qE)− T̂ (1− qE).

It follows that the buyer may purchase q̂I = 1 − qE from the incumbent. The change
from qI to q̂I does not decrease the total surplus. On the contrary, it avoids production
and disposal costs:

V (qE , q̂I)− cEqE − CI(q̂I) ≥ V (qE , qI)− cEqE − CI(qI).

In sum, the change from T to T̂ does not alter the entrant’s profit and does not decrease
the total surplus. We conclude from (4) that the change does not decrease the expected
payoff of the buyer-incumbent coalition.

E.3 Implementability under finite disposal costs

In this section, we prove the sufficient part of lemma 3. Assume that Ψ(sE) ≤ vI +γ, and
define the quantity function by (10), the profit function ∆SBE(sE , ωE) by equation (8),
and the tariff by (B.1).

Differentiating (B.1) with respect to ωE below the boundary line, a region where qE
increases with ωE , yields

T ′(q)
∂q

∂ωE
= (vI − ωE)

∂q

∂ωE
− q + q,
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and hence T ′(q) = vI − ωE ≥ −γ. Differentiating (B.1) with respect to sE above the
boundary line, a region where qE = sE , yields

T ′(sE) = (vI − ωE) +
∂∆SBE

∂sE
≥ vI − ωE ≥ −γ,

because ∆SBE is nondecreasing in sE .
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