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JOINT ECONOMETRIC MODELING OF SPOT
ELECTRICITY PRICES, FORWARDS AND OPTIONS

Alain MONFORT∗, Olivier FÉRON∗∗

Abstract

We propose a joint modeling of spot electricity prices , forwards prices and other deriva-

tive prices, using recent developments in discrete time asset pricing methods based on

the notions of stochastic discount factor and of Compound Autoregressive (or affine)

stochastic processes.We show that this approach provides quasi explicit formulae for for-

ward and option prices , while allowing for a large flexilbility in the modeling of dynamics

,spikes and seasonality , both in the historical and the risk neutral worlds. We also pro-

pose a variety of inference techniques involving inversion methods, the Kalman filter and

the Kitagawa-Hamilton filter. Finally , examples using simulations of spot and forward

prices illustrate the large potentialities of our modeling.

Keywords: Electricity derivative pricing , spikes, Car processes, stochastic discount

factor, Kitagawa-Hamilton filter.

1. INTRODUCTION

There exists a growing literature dealing with statistical models of the time series

of spot electricity prices. Two important features of these models are seasonal patterns

and spikes, namely upwards jumps shortly followed by a downward move. Some of these

papers start from continuous time specification [see e;g. Deng (2000), Weron, Bierbrauer

and Truck (2004), Geman and Roncoroni (2006)], others directly use a discrete time

approach. In the latter set of studies the spikes are often captured by switching regime
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models driven by a hidden Markov chain similar to the ones proposed by Hamilton (1989).

In these approaches the Markov chain may be homogenous [see Huisman and Mahieu

(2003), De Jong (2005)] or time-varying [see Mount, Ning and Cai (2006)]. A survey

paper is proposed by Bunn and Karakatsahi (2003). Another strand of literature studies

the forward prices. In this field a seminal paper is the one by Lucia and Schwartz (2002),

who use a basic mean reverting continuous time model with a deterministic component

and a simple way to transpose this model in the risk neutral world. This paper has been

followed by several papers using more advanced continuous time stochastic processes [see

e.g. Henth, Kallsen and Meyer -Brandis (2005), Benth and Koekebakker (2005)].

However these two strands of literature are disconnected and the aim of this paper

is to propose a global approach of the dynamics of spot electricity prices, forward prices

and options which is able to model at the same time the dynamics of the spot prices and

the pricing of derivatives.

This approach rests on four pillars. The first pillar is a probabilistic breakthrough:

the affine or Compound Autoregressive (Car) processes [see Darolles, Jasiak and Gourier-

oux (2008)]. The second pillar is a mathematical tool: the Laplace transform, which is

particularly well adapted to the Car class. The third pillar is the recent development

of the econometrics of asset pricing in discrete time based on the notion of stochastic

discount factor [see Gourieroux and Monfort (2006), and Bertholon, Pegoraro and Mon-

fort (2006)]. The fourth pillar is the statistical approach of nonlinear state space models

based on the Kitagawa-Hamilton’s algorithm. In particular we will use several important

results. First the regime switching models can be incorporated in the Car class. Second,

the family of exponential affine SDF provides a tractable and flexible bridge between the

historical world and the risk neutral world, and allows to reach a Car risk neutral dynam-

ics even if the historical dynamics is not Car. Third, in a Car risk neutral framework,

there exist explicit or quasi explicit formulas for the multihorizon Laplace transforms

and the truncated multihorizon Laplace transforms, which allow for tractable pricing of

forwards, futures and options.

The paper is organized as follows. In section 2 we describe the information in the
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economy and its historical dynamics. Section 3 introduces the notion of stochastic dis-

count factor, its specification, and the implied risk neutral (RN) dynamics. In section 4

we present the general notions of Laplace transforms, of Car dynamics and we apply these

notions to our framework with a special attention to the bridge between the historical

and the RN dynamics and to the historical and RN seasonal patterns. Section 5 deals

with pricing of forwards and options (on spot or forwards) which, in our approach, is

quasi explicit and we stress the importance of the choice of internal consistency (IC) con-

ditions and, in particular, that, given the non storability of electricity , IC conditions on

the spot price must not be imposed. Inference methods are proposed in section 6, when

estimated forward curves are available for all maturities and dates and we distinguish the

case where there are quantitative latent variables, in addition to the qualitative latent

variables capturing spikes, and the case where there are no quantitative latent variables;

in the former case a simple two step procedure is proposed and in the latter two versions

of the inversion method are considered. Section 7 studies the inference problem when

estimated forward curves are not available but only prices of various forward contracts

of different maturities and different delivery periods, and, in this context a sequential

approach based on the Kitagawa-Hamilton filter and the extended Kalman filter is pro-

posed. Section 8 proposes various extensions to the case of multiple lags, to the use

of spot price returns (instead of prices) and to the introduction of non additive impact

of the exogenous variables. Finally in section 9, an illustration on simulated spot and

forward electricity prices assesses the effectiveness of affine models. Several appendices

gather the proofs.

2. HISTORICAL DYNAMICS

2.1. Information

We consider a discrete time economy in which the new information of the agents at

date t, (t = 1, 2, . . . , T ), is partitioned into three sets of variables.

The first set is the set of endogenous variables. It will contain 1 logSt, St being the

spot electricity price at t. Another endogenous variable will be a qualitative variable

1We could also choose to include the return log
St

St−1
see section 8.2.
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zt, valued in (e1, . . . , eJ) the columns of the identity matrix of size J ; this variable will,

in particular, drive stochastic drifts, stochastic volatilities and spikes (see section 8.4

for an extended use of zt). Finally the set of endogenous variables will also contain a

m-vector Yt of variables which interact with (logSt, zt); technically this means that Yt

will cause (logSt, zt) and will be caused by (logSt, zt), see appendix 1. At this stage

we need not make any assumption about the observability of these variables by the

econometrician, however we typically will assume that logSt is observable, whereas zt

is not (see section 8.4 for an extension) and Yt will contain observable (or constructed)

variables, like forward prices at given residual maturities, or latent variables, the role of

which being to make more flexible the dynamics of the variables of interest. The second

set of variables, denoted by wet , is the set of exogenous variables, that is to say a set

of variables which may cause (logSt, z′t, Y
′
t )′ but are not caused by (logSt, zt, Y ′t )′. In

this set we could find variables like temperature or demand. The third set of variables,

denoted by wit, is the set of independent variables, in the sense that the process wit

is independent of the process (logSt, z′t, Y
′
t , w

e′

t )′. Such variables will include the short

interest rate or, more generally, interest rate curves.

The whole information of the agents at t, will be denoted by

(logSt, Yt, zt, wet , w
i
t), where we use, for instance, the notation zt = (z′1, . . . , z

′
t)
′.

2.2. Specification of the historical dynamics

We decompose logSt into a function of time and of the exogenous vector wet , denoted

by νst , and the difference st = logSt − νst . The first component νst captures the seasonal

effects and, possibly, the effect of exogenous variables like temperature. Similarly we

write yt = Yt−νyt , where νyt is a vector function of wet , and we specify the joint dynamics

of wt = (z′t, st, y
′
t)
′ as a switching regime VAR(1). More precisely we assume that :


st+1 = µ′zt+1 + ϕ1(st − µ′zt) + ϕ′2yt + εst+1

yt+1 = ψ0 + ψ1(st − µ′zt) + ψ′2yt + εyt+1

(1)

where

 εst+1

εyt+1

 = Σ1/2(zt+1, zt)εt+1 (2)
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εt+1 being a standard Gaussian white noise process of size (m+ 1), Σ1/2(zt+1, zt) a sym-

metric positive definite matrix function of zt+1, zt and where the conditional distribution

of zt+1 given wet+1, zt, st, yt, depends on zt (and not on zt−1, zt−2, . . .) and, possibly, of

st and wet+1. We also introduce the notation :

πijt = P (zt+1 = ej/zt = ei, st, w
e
t+1) (3)

Note that if zt+1 = ej , µ′zt+1 is equal to µj , the jth component of µ. The dynamics of

the exogenous and independent processes wet and wit are not specified, we just denote by

fe(wet+1/w
e
t ) the conditional probability density function (p.d.f.) of wet+1 given wet and

f i(wit+1/w
i
t) the conditional p.d.f. of wit+1 given wit. Let us now discuss more precisely

the dynamics defined by equations (1) (2) (3).

First the joint conditional p.d.f. of wet+1, zt+1, st+1, yt+1 given wet , zt, st, yt is factor-

ized as (taking zt+1 = ej and zt = ei) :

fe(wet+1/w
e
t )πijtn[st+1, yt+1;mijt,Σ(ej , ei)] (4)

where n[st+1, yt+1;mijt,Σ(ej , ei)] is the p.d.f of the normal multivariate distribution with

variance-covariance matrix Σ(ej , ei) and mean :

mijt =


µj + ϕ1(st − µi) + ϕ′2yt

ψ0 + ψ1(st − µi) + ψ′2yt


Note that since st+1 = logSt+1 − νst+1, yt+1 = Yt+1 − νyt+1 where νst+1 and νyt+1 are

functions of wet+1, the exogenous variables wet+1 and wet appear in the last term of (4),

when st+1 and yt+1 are replaced by their expressions above.

Second, if we use the notation s∗t = st − µ′zt we see that st = µ′zt + s∗t , where the

dynamics of the pair (s∗t , yt) is given by :
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s∗t+1 = ϕ1s

∗
1 + ϕ′2yt + εst+1

yt+1 = ψ0 + ψ1s
∗
t + ψ′2yt + εyt+1

(5)

In particular, zt does not cause (s∗t , yt). Therefore if µ′zt takes a large value, because

zt is in a”spike state” at date t, obviously st = µ′zt + s∗t also takes a large value but,

if the probability to stay in a spike state is small, zt+1 is likely to be in a ”non spike

state” and therefore the value of st+1 = µ′zt+1 + s∗t+1 is likely to decrease immediately.

This would has not been the case if the first equation of (1) would have been st+1 =

µ′zt+1 +ϕ1st+ϕ2yt+ εst+1 because, in this case, the large value of st would have heavily

impacted st+1 excepted if ϕ1 is small, i.e. if the mean reversion is very large. In other

words, in our specification there is no need to introduce an additional state in order to

impose a fast return to a ”normal” situation after a spike, like in Huisman and Mahieu

(2003), for instance. Moreover, in our specification, it is possible to have successive

upward jumps and this possibility is amplified if the probability to stay in a ”spike

state” i is an increasing function of st, for instance of the form
1

1 + exp(ai + bist)
where

bi is negative.

Third, since the conditional variance-covariance matrix of (st+1, yt+1), given (wet+1, zt+1, st, yt),

namely Σ(zt+1, zt), depends on zt+1, zt our specification is also able to capture stochastic

volatility features.

Finally, in equation (1) we have introduced only one lag, mainly for sake of notational

simplicity, but an extension to multiple lags is straightforward (see section 8.1).

3. RISK NEUTRAL DYNAMICS

3.1. Stochastic discount factor

It is known [see Bertholon, Monfort, Pegoraro (2008)] that, under standard assump-

tions including absence of arbitrage opportunity, the price at t of a payoff g(wT , weT )

(also denoted by gT ) at T > t is given by :

p̃t = Et

(
M̃t,t+1 . . . M̃T−1,T gT

)
(6)
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where the M̃τ,τ+1 are positive random variables functions of the information Iτ+1 at

τ + 1, and Et is the historical conditional expectation given the information It at time

t, here It = (wt,wet , w
i
t). In particular, taking T = t+ 1, and gT = 1, we get :

EtM̃t,t+1 = exp(−rt+1) (7)

where rt+1 is the (geometric) short interest rate between t and t+ 1 (known at t).

3.2. Risk neutral conditional densities

The risk neutral (RN) dynamics of (wt, wet , w
i
t) is defined by the RN conditional

densities :

fQ(wt, wet , w
i
t/wt−1, w

e
t−1, w

i
t−1) =

f(wt, wet , w
i
t/wt−1, w

e
t−1, w

i
t−1)M̃t−1,t exp(rt)

and formula (6) can be written equivalently :

p̃t = EQt [exp(−rt+1 − . . .− rT )gT ] (8)

3.3. Our specifications

If we do not want to specify the dynamics of the exogenous variables wet , we can

work conditionally to a future scenario of these variables (see section 8.4 for another

approach).

It is shown in appendix 1 that given the exogeneity of wet , the price at t of a payoff

g(wT , weT ) conditional to a future scenario for the exogenous variables can be written :

pt = Et

[
Mt,t+1 . . .MT−1,T g(wT , weT )

]
(9)

where Mt,t+1 is a stochastic discount factor, function of (wt+1, w
e
t+1) and satisfying :

Mt,t+1 = exp(−rt+1)M∗t,t+1(wt+1, w
e
t+1)

with :
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Et

(
M∗t,t+1/wt, w

e
t+1

)
= 1 (10)

In (9) and (10) the values of the exogenous variables are considered as non random

and Et is the conditional expectation operator given wt.

Given the independence of rt, equation (9) can also be written :

pt = B(t, T − t)Et
[
M∗t,t+1 . . .M

∗
T−1,T gT (wT , weT )

]
where B(t, T − t) is the price at t of a zero-coupon bond of residual maturity T − t, or

equivalently :

pt = B(t, T − t)EQt [gT (wT , weT )] (11)

where the Q dynamics is defined by the conditional p.d.f.

fQ(wt/wt−1, w
e
t ) = f(wt/wt−1, w

e
t )M

∗
t−1,t

= f(wt/wt−1, w
e
t )Mt−1,t exp(rt)

Here we choose a stochastic discount factor of the following type :

Mt,t+1 = exp(−rt+1 + Γ′t+1εt+1 −
1
2

Γ′t+1Γt+1 + δ′t+1zt+1) (12)

or, equivalently,

M∗t,t+1 = exp(Γ′t+1εt+1 −
1
2

Γ′t+1Γt+1 + δ′t+1zt+1) (13)

where using the notation xt = (st, y′t)
′ the ”prices of risk”, Γt+1 and δt+1 are of the form :

Γt+1 = Γ(zt+1, zt, xt, w
e
t+1)

δt+1 = δ(zt, st, wet+1)

and where we impose the identification constraints :

J∑
j=1

πij,t exp[δj(ei, st, wet+1)] = 1 (14)
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with πijt = P (zt+1 = ej/zt = ei, st, w
e
t+1).

Given that εt+1 is a standard gaussian white noise, and using (14), we see that M∗t,t+1

satisfies condition (10).

Specification (12) (or (13)) shows that we are pricing the (standardized) innovations

εt+1 of xt+1 through Γt+1 and the regimes zt+1 through δt+1; moreover, since Γt+1

depends on zt+1, the pricing of εt+1 may depend on the regimes. In the next sections we

will show how to specify Γt+1 and δt+1 in order to get tractable derivative pricing.

4. LAPLACE TRANSFORMS AND CAR

DYNAMICS

4.1. Definition of a Car process
Definition 1 : A process wt is Compound Autoregressive of order 1 [Car (1)], or affine,

if the conditional Laplace transform of wt+1 given wt, ϕt(u) = Et exp(u′wt+1), where u

is a vector with real components, has the form :

ϕt(u) = exp[a′(u)wt + b(u)] (15)

In other words, the log-Laplace transform ψt(u) = a′(u)wt + b(u) is affine in wt.

This kind of process has many interesting properties [see Darolles, Jasiak, Gourieroux

(2006)]. A property which is particularly important is the following :
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Proposition 1 : If wt is Car(1), the multihorizon conditional Laplace transforms, for a

given α = (α′1, . . . , α
′
H)′ where the α′is are vectors with real or complex components,

Lt,h(α) = Et exp[α′H−h+1wt+1 + . . .+ α′Hwt+h]

t = 1, . . . , T, h = 1, . . . ,H, are exponential affine functions of wt :

Lt,h(α) = exp(c′hwt + dh) (16)

where the sequences ch and dh are defined by : c0 = 0, d0 = 0, and, for h = 1, . . . ,H :


ch = a(αH−h+1 + ch−1)

dh = b(αH−h+1 + ch−1) + dh−1

(17)

a and b being the functions defined in (15).

Proof : see appendix 2

The previous proposition allows a straighforward computation of many multihorizon

Laplace transforms, in particular Et exp(α′0wt+h), h = 1, . . . ,H (take α1 = α2 = . . . =

αH−1 = 0, αH = α0) and Et exp(α′0wt+s+ . . .+α′0wt+h), h = 1, . . . ,H (take αi = α0,∀i).

Another crucial property [see Duffie, Pan and Singleton (2000)], is the one allowing the

computation of a truncated Laplace Transform. Let us introduce the notation w̃t+1,h =

(w′t+1, . . . , w
′
t+h)′ and let us consider the truncated conditional real Laplace transform :

ϕ̃t(u, v, γ) = Et exp(u′w̃t+1,h)1l(v′w̃t+1,h<γ)

where u, v are vectors with real components. We have the following property :
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Proposition 2 : Considering the untruncated complex conditional Laplace transform

ϕt(λ) = Et exp(λ′w̃t+1,h), where λ = u + iv is a vector with complex components, we

have

ϕ̃t(u, v, γ) =
ϕt(u)

2
− 1
π

∫ ∞
0

Im[ϕt(u+; ivx) exp(−iγx)]
x

dx (18)

where Im means imaginary part.

This property is important for the computation of options because truncated real

Laplace transforms naturally occur in these computations, and, since the computation of

the untruncated complex Laplace is easy (see property 1) in the Car(1) case, property 2

says that the additional computational burden is just a univariate integral. Note that for

the computation of option prices what matters is the risk neutral dynamics, therefore the

computation of such prices will be easy if the RN dynamics is Car(1), but not necessarily

the historical dynamics.

Also note that the definition and the properties of a Car(1) process are easily gener-

alized to Car(p) (see section 8)

4.2. Historical conditional Laplace transform of wt+1

Using the notation xt+1 = (st+1, y
′
t+1)′, system (1) can be written

xt+1 = µ(zt+1, zt) + Φxt + Σ1/2(zt+1, zt)εt+1 (19)

with µ(zt+1, zt) =


µ′zt+1 − ϕ1µ

′zt

ψ0 − ψ1µ
′zt



Φ =


ϕ1 ϕ′2

ψ1 ψ′2
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Proposition 3 : The historical conditional Laplace transform of

wt+1 = (z′t+1, x
′
t+1)′ is :

ϕt(u) = Et exp(u′zt+1 + v′xt+1)

= exp[(A1t, . . . , AJt)zt + v′Φxt]

where Ait = log


J∑
j=1

πijt exp[u′ej + v′µ(ej , ei) +
1
2
v′Σ(ej , ei)v]


Proof : see appendix 3.

It is important to note that ϕt(u, v) is not in general exponential affine in wt and,

therefore, wt is not Car(1), since Ait depends on wt through πijt. However wt is Car(1),

if πijt does not depend on st, i.e. if zt is an homogenous Markov chain.

4.3. Risk Neutral conditional Laplace transform of wt+1.

The Risk Neutral conditional Laplace transform of wt+1 is given by :

ϕQt (u, v) = EQt exp(u′zt+1 + v′xt+1)

= EtM
∗
t,t+1 exp(u′zt+1 + v′xt+1)

where M∗t,t+1 is given by (13) and (14).

Proposition 4 : The Risk Neutral conditional Laplace transform of wt+1 is given by :

ϕQt (u, v) = exp[(Ā1t, . . . , ĀJt)zt + v′Φxt]

with Āit = log


J∑
j=1

πijt exp[v′Σ1/2(ej ; ei)Γ(ej , ei, xt, wet+1)

+
1
2
v′Σ(ej , ei)v + δj(ei, st, wet+1) + u′ej + v′µ(ej , ei)

}
Proof : See appendix 4.
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So, in general, the RN dynamics of wt+1 is also non Car(1).

4.4. RN seasonality and RN Car dynamics

We would like to allow for a RN seasonality, and possibly, an influence of exogenous

variables which are different from those appearing in the historical world. So we introduce

the notations :

s̃t = logSt − ν̃st

ỹt = Yt − ν̃yt

and x̃t =

 s̃t

ỹt

 = xt + νt − ν̃t, with ν̃t =

 ν̃st

ν̃yt

 , νt =

 νst

νyt


Moreover, we would like the RN dynamics of w̃t = (z′t, x̃

′
t)
′ to be Car(1) in order to

have tractable prices for various derivatives. More precisely we would like to have the

following RN dynamics :

x̃t+1 = µ∗(zt+1, zt) + Φ∗x̃t + Σ1/2(zt+1, zt)ε∗t+1 (20)

withµ∗(zt+1, zt) =

 µ∗
′
zt+1 − ϕ∗1µ∗

′
zt

ψ∗0 − ψ∗1µ∗
′
zt



Φ∗ =


ϕ∗1 ϕ

∗′
2

ψ∗1 ψ
∗′
2



where ε∗t is a standard Gaussian white noise under Q, and zt is an homogenous Markov

chain under Q, with transition probabilities π∗ij .

Equivalently, we would like to have the system :
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s̃t+1 = µ∗

′

zt+1 + ϕ∗1(s̃t − µ∗
′

zt) + ϕ∗
′

2 ỹt + εs∗t+1

ỹt+1 = ψ∗0 + ψ∗1(s̃t − µ∗
′

zt) + ψ∗
′

2 yt + εy∗t+1

with

 εs∗t+1

εy∗t+1

 = Σ1/2(zt+1, zt)ε∗t+1 (21)

where ε∗t is a standard Gaussian white noise under Q, and zt is an homogenous Markov

chain under Q, with transition probabilities π∗ij .

It turns out that from any historical dynamics defined by (1) and πijt, we can reach

any RN dynamics defined by (20) and π∗ij , with a s.d.f. of the form (12), provided that

Γt+1 and δt+1 are well chosen.

Proposition 5 : If the historical dynamics is defined by system (1) and πijt, we obtain

the RN dynamics defined by (20) and π∗ij if we choose a s.d.f. of the form (12) with :

δj(ei, st, wet+1) = log
π∗ij
πijt

Γ(ej , ei, xt, wet+1) = Σ−1/2(ej , ei)[(Φ∗ − Φ)xt

+ Φ∗(νt − ν̃t) + µ∗(ej , ei)− µ(ej , ei)]

Proof : see appendix 5.

It is worth noting that the δ′js of the previous proposition automatically satisfy iden-

tification constraints (14).

In this context, we can easily compute the RN conditional Laplace transform of

w̃t+1 = (z′t+1, x̃t+1)′.
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Proposition 6 : Under the condition of proposition 5, the RN conditional Laplace

transform of w̃t+1 = (z′t+1, x̃
′
t+1)′ is

ϕ̃Q(u, v) = EQt exp(u′zt+1 + v′x̃t+1)

= exp[(A∗1 . . . A
∗
J)zt + v′Φ∗x̃t]

with : A∗i = log


J∑
j=1

π∗ij exp[u′ej + v′µ∗(ej , ei) +
1
2
v′Σ(ej , ei)v

 (22)

So this conditional Laplace transform is of the form exp[a′(u, v)w̃t + b(u, v)] given in

definition 1, with

a′(u, v) = (A∗1 . . . , A
∗
J , v
′Φ∗) and b(u, v) = 0.

5. PRICING

5.1. Forward prices

The forward price at t and of residual maturity h, denoted by F (t, h), is such that

the payoff St+h − F (t, h) delivered at t+ h has a price equal to zero at t, and therefore

according to formula (11) :

0 = B(t, h)EQt [St+h − F (t, h)]

and,

F (t, h) = EQt [St+h] (23)

This formula is based on formula (11) which in turn uses the independence between

the short rate rt and the other variables of the system (under the historical and the RN

dynamics); therefore it is natural to obtain the identity between F (t, h) and the general

formula of a future price, which is a well-known result in this context.

Using the formula :
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St+h = exp[log(St+h)]

= exp(ν̃st+h + s̃t+h)

we get :

F (t, h) = exp(ν̃st+h)EQt [exp(s̃t+h)] (24)

Moreover s̃t is the J + 1th component of w̃t which is Car(1) under Q, so we have to

compute EQt exp(e′J+1w̃t+h) where eJ+1 is the vector selecting the J + 1th component.

Using Proposition 1 and formula (24) we get the following result.

Proposition 7 : The forward price at time and of residual maturity h, h = 1, . . . ,H, is

F (t, h) = exp(ν̃st+h) + c′hw̃t)

where ch is obtained recursively from

c1 = a(eJ+1)

ch = a(ch−1), h = 2, . . . ,H.

where a is function defined in proposition 6, or equivalently,

logF (t, h) = ν̃st+h + cshs̃t + cyh
′
ỹt + czh

′zt

where c′h has been partitioned into c′h = (czh
′, csh, c

y
h
′)

Proof : It is a direct consequence of proposition 6 and proposition 1 with αH =

eJ+1, αh = 0, h = 1, . . . ,H − 1.

Therefore logF (t, h) is the sum of four components. The first component ν̃st+h con-

tains the risk neutral deterministic part of logSt+h in particular the risk neutral seasonal

component of logSt+h. The second component cshs̃t measures the impact of logSt purged

from its RN exogenous part. The third part is similar but for the factor Yt. The last

part czh
′zt is a constant depending on the regime. If we now introduce the historical

decomposition of logSt and Yt namely logSt = νst + st, Yt = νyt + yt, the decomposition

of logF (t, h) become the following :
16



Corollary 1

logF (t, h) = ν̃st+h + csh(νst − ν̃st ) + cyh
′(νyt − ν̃

y
t )

+ cshst + cyh
′
yt + czh

′zt

Proof : It is a direct consequence of the identities s̃t = νst − ν̃st + st, ỹt = νyt − ν̃
y
t + yt.

Therefore the historical exogenous part of logF (t, h), is :

m(t, h) = ν̃st+h + csh(νst − ν̃st ) + cyh
′(νyt − ν̃

y
t ) (25)

In particular, if the various exogenous parts only capture seasonality, the historical

seasonally adjusted values of F (t, h) are :

f(t, h) = exp[logF (t, h)−m(t, h)]

= exp(cshst + cyh
′
yt + czh

′zt) (26)

If we assume that the seasonal patterns are identical in the historical and the RN

world [see Lucia and Scharwtz (2000)] i.e. ν̃st = νst , ν̃
y
t = νyt , we get m(t, h) = ν1,t+h,

that is the seasonal part of logF (t, h) is the same as the one of logSt+h, and, therefore

this seasonal part only depends on the delivery date t+ h and not on the present date t.

5.2. Internal Consistency (IC) conditions

We have seen that the price at t of a payoff gT delivered at T > t is given, in our

framework, by (see equation (11)) :

pt = B(t, T − t)EQt [gT (wT , weT )]

The theoretical price pt given by the model is therefore a function of (wt, weT ) and of

the parameters θ of the model. In some cases this function pt(wt, weT , θ) is also completely

known by the econometrician and given by p0
t (wt, w

e
T ), say. In this case the model must

satisfy the IC conditions implied by :

17



pt(wt, weT , θ) = p0
t (wt, w

e
T ) ∀wt, weT , θ

For instance, if some components of Yt are equal to logF (t, hi), for some hi, we have

for each hi, the identity :

0 = EQt (St+hi
− exp(Yit))

where Yit is the component of Yt equal to logF (t, hi), which implies, using corollary 1

and formula (23) :

Yit = m(t, hi) + cshi
st + cyhi

′
yt + czhi

′zt

= νyi

t + yit

which implies :

czhi
= 0

cshi
= 0

cyhi
= ei (the vector selecting yit in yt)

m(t, hi) = νyi

t

Since m(t, hi) = ν̃st+hi
+ νyi

t − ν̃
yi

t , the last condition is ν̃st+hi
= ν̃yi

t

If we are working directly with seasonally adjusted variables yit = log f(t, hi), we may

assume the equality :

yit = cshi
st + cyhi

′
yt + czhi

′zt

and therefore only impose the IC conditions cshi
= 0, cyhi

= ei, c
z
hi

= 0.

Note that if electricity was a tradable and storable asset, we should impose the con-

straint :

St = exp (−rt+1)EQt St+1

which would imply :

St = B(t, T − t)EQt ST

18



and F (t, T − t) =
St

B(t, T − t)

However, since electricity is not storable we do not impose this condition.

5.3. Pricing options on spot or forward prices

The price at t of an option written on the spot price, with residual maturity h and

stike K, is :

CS(t,K, h) = B(t, t+ h)EQt (St+h −K)+

= B(t, t+ h)EQt [exp(ν̃st+h + s̃t+h)−K]+

= B(t, t+ h) exp(ν̃st+h)EQt [exp(s̃t+h)−K exp(−ν̃st+h)]+

= B(t, t+ h) exp(ν̃st+h){EQt [exp(s̃t+h)1l(s̃t+h>logK−ν̃s
t+h)}

− K exp(−ν̃st+h)Q(s̃t+h > logK − ν̃st+h)}

So we have the following result :

Proposition 8 : The price of an option on St+h is

CS(t,K, h) = B(t, t+ h)[exp(ν̃st+h)ϕ̃Qt (1,−1, γ(t, h,K))−Kϕ̃Qt (0,−1, γ(t, h,K))

where :

ϕ̃Qt (u, v, γ) = EQt [exp(us̃t+h)1l(vs̃t+h<γ)]

and γ(t, h,K) = − logK + ν̃st+h

The truncated conditional Laplace transform ϕ̃Qt (u, v, γ) can be computed from the

conditional complex Laplace transform ϕt(λ) = EQt exp(λs̃t+h) using proposition 2, and

ϕt(λ) can be computed using proposition 6.

Similarly the price at t of an option written on the forward price

F (t+ h, k) and strike K is :

CF (t, k, h,K) = B(t, t+ h)EQt [F (t+ h, k)−K]+
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and using proposition 7 :

CF (t, k, h,K) = B(t, t+ h)EQt [exp(ν̃st+h+k + c′kw̃t+h)−K]+

= B(t, t+ h) exp(ν̃st+h+k)EQt [exp(c′kw̃t+h)−K exp(−ν̃st+h+k)]+

= B(t, t+ h) exp(ν̃st+h+k){EQt [exp(c′kw̃t+h)1l(c′kw̃t+h>logK−ν̃s
t+h+k)]}

− K exp(−ν̃st+h+k)1l(c′kw̃t+h>logK−ν̃s
t+h+k)

Therefore we have a similar result :

Proposition 9 : The price of an option written on F (t+ h, k) is :

CF (t, k, h,K) = B(t, t+ h) [exp(ν̃st+h+k)ϕ̃Qt (ck,−ck, γ(t, h, k,K))...

...−Kϕ̃Qt (0,−ck, γ(t, h, k,K)]

where :

ϕ̃Qt (u, v, γ) = EQt [exp(u′w̃t+h)1l(v′w̃t+h<γ)]

γ(t, h, k,K) = − logK + ν̃st+h+k

Again CF (t, k, h,K) can be computed using propositions 2 and 6.

6. INFERENCE BASED ON ESTIMATED FORWARD CURVES

In this section we assume that at date t = 1, . . . , T seasonally adjusted forward prices

f(t, h), h ∈ H have been estimated. In this context we consider first a model without

quantitative latent variable and then a model with quantitative latent variables.

6.1. A model without latent quantitative variables

We consider the historical dynamics given by equations (27), (28),(29) :

 st+1 = µ′zt+1 + ϕ1(st − µ′zt) + ϕ′2yt + εst+1

yt+1 = ψ0 + ψ1(st − µ′zt) + ψ′2yt + εyt+1

(27)

where :

 εst+1

εyt+1

 = Σ1/2(zt+1, zt)εt+1, εt ∼ IIN(0, I) (28)
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and zt is valued in {e1, . . . , eJ} with

πijt = P (zt+1 = ej/zt = ei, st, w
e
t+1) (29)

We assume that yt is a vector of m estimated seasonally adjusted log-forward prices

log f(t, h), h ∈ H0.

We denote by θ the vector of parameters appearing in (27), (28), (29). This vector

θ can be estimated by the Maximum Likelihood method using the Kitagawa-Hamilton

algorithm (see Hamilton (1989)), since the only latent variable is zt. If we assume,

moreover, that Σ1/2(zt+1, zt) is block-diagonal of the form

 σ(zt+1, zt) 0

0 Σ1/2
y

, we

can first estimate the parameters appearing in the first equation of (27), in σ(zt+1, zt)

and the π′ijts, by the ML method only based on the first equation of (27). Then we can

estimate, in a second step, the parameters in the second set of equations of (27) and

Σy, by Ordinary Least Squares (OLS) once zt has been replaced by its smoothed value,

based on the Kim (1994) smoothing algorithm, and on the estimations of the first step.

Note that if yt does note cause (st, zt), that is if ϕ2 = 0, the first step estimation only

necessitates the estimation of the joint dynamics of (st, zt), only based on the observations

of st.

Let us now consider the estimation of the parameters, denoted by θ∗, appearing in

the RN dynamics characterized by system (21) and the transition probabilities π∗ij . This

vector θ∗ will be estimated from the observations of the log-forward prices not used in

the estimation of θ, log f(t, h), h ∈ H − H0, and from the theoretical values of these

log-forward prices given by (26) :

log f(t, h) = cshst + cyh
′
yt + czh

′zt

More precisely, taking θ at its estimated value and the z′ts at their smoothed values

ẑt we minimize with respect to θ∗ :

T∑
t=1

∑
h∈H−H0

[log f(t, h)− cshst − c
y
h
′
yt − czh

′ẑt]2 (30)
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under the IC constraints :

czh = 0, csh = 0, cyh = eh for h ∈ H0

and eh being the vector selecting the component of yt equal to log f(t, h).

For instance if m = 2, that is if yt contains two seasonally adjusted log-forward prices,

and if J = 2, the number of components of

θ∗ = [µ∗
′
, ϕ∗1, ϕ

∗′
2 , ψ

∗′
0 , ψ

∗′
1 , (vecψ

∗
2)′, π∗ij ]

is 15 (taking into account the constraints on the π∗ij) and the number of IC constraints

is 10, so there are 5 degrees of freedom in the minimization.

Not that, in principle, it would be also possible to use raw data logSt and logF (t, h)

instead of seasonally adjusted data. In the first step we could estimate at the same time

θ and the parameters appearing in νst and νyt by replacing in system (27) st by logSt−νst
and yt by Yt − νyt , Yt being the vector of components logF (t, h), h ∈ H0.

Then it would be possible to estimate θ∗ and the parameters appearing in ν̃st and ν̃yt

by replacing the objective function of the minimization (30)by :

T∑
t=1

∑
h∈H−H0

[
logF (t, h)− ν̃st+h − csh(νst − ν̃st )− cyh

′(νyt − ν̃
y
t )− cshst − c

y
h
′
yt − czh

′zt

]2
(31)

in which θ, νst , ν
y
t , zt are replaced by their estimations, and where we take into account

the same IC as before and the additional constraints ν̃st+hi
= ν̃yi

t , where hi ∈ H0 and ν̃yi

t

is the corresponding component of ν̃yt .

For instance if the deterministic components ν̃st , ν̃
yi

t are constants depending on the

month corresponding to date t, this means that the RN deterministic component of

F (t, hi), must be identical to that of logSt+hi
.

6.2. A model with latent quantitative variables : the inversion method

Let us assume that yt is partitioned into (y′1t, y
′
2t), where y1t is observed whereas y2t

is not, and let us denote by p1 and p2 the sizes of y1t and y2t, with p1 + p2 = p.
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Let us consider a set of seasonally adjusted log forward prices log f(t, h), h ∈ H2 ⊂ H

not appearing in y1t and such that the cardinal of H2 is m2. Denoting the vector of

components log f(t, h), h ∈ H2 by ȳ2t, we get from (26), with obvious notations :

ȳ2t = c1st + C1y1t + C2y2t + C3zt (32)

Introducing the notation x̄t = (st, y′1t, ȳ
′
2t)
′ and, as above, xt = (st, y′1t, y

′
2t)
′, we get :

x̄t =


1 0 0

0 I 0

c1 C1 C2

xt +


0

0

C3

 zt (33)

or :

x̄t = C̄xt + C̄3zt (34)

Moreover system (1) can be written, using the notations in (19) :

xt+1 = µ(zt+1, zt) + Φxt + Σ1/2(zt+1, zt)εt+1 (35)

and, therefore, using (34) we get :

C̄−1(x̄t+1 − C̄3zt+1) = µ(zt+1, zt) + ΦC̄−1(x̄t − C̄3zt) + Σ1/2(zt+1, zt)εt+1 (36)

or :

x̄t+1 = µ̄(zt+1, zt) + Φ̄x̄t + Σ̄1/2(zt+1, zt)εt+1 (37)

with :

µ̄(zt+1, zt) = C̄µ(zt+1, zt) + C̄3zt+1 − C̄ΦC̄−1C̄3zt

Φ̄ = C̄ΦC̄−1, Σ̄1/2(zt+1, zt) = C̄Σ1/2(zt+1, zt)

System (37) is similar to (35), with an important difference : x̄t is fully observable.

23



Denoting by y∗t , the set of log f(t, h) not appearing in y1t and ȳ2t, and assuming that

y∗t is observed with Gaussian errors we have :

y∗t = C∗xt + C∗3zt + ξt

ξt ∼ IIN(0, σ2) or :

y∗t = C∗C̄−1(x̄t − C̄3zt) + C∗3zt + ξt (38)

Equations (37) and (38) provide a system in which the only latent variable is zt and,

therefore, this system can be estimated by the ML method and the Kitagawa-Hamilton

algorithm, providing simultaneously estimators of the historical and RN dynamics. If y1t

contains log forward prices, IC conditions must be imposed like in the previous section.

6.3. A model with latent quantitative variable : a two step approach

The previous method may be time consuming since it involves nested recursive com-

putations implied by the computation of the theoretical forward prices on the one hand,

and by the Kitagawa-Hamilton algorithm on the other hand.

A simpler approach would be to start from equation (37), to estimate it with uncon-

strained parameters and the specification of the πijt, and to compute smoothed values of

the zt. In a second step the values of zt would be replaced by ẑt and, since the only latent

variables would be the y2t, the inversion technique would lead to an explicit formula for

the likelihood function of (37) and (38).

7. INFERENCE BASED ON OBSERVED

FORWARD PRICES

Let us assume that at each date t we observe Nt forward contracts with deliv-

ery periods (t + Hit, t + Hit + Di), i = 1, . . . , Nt. The forward price of this contract,

denoted by F̃ (t,Hit, Di) is such that the price at t of the payoffs (St+Hit − F̃ ) at

t+Hit, . . . , (St+Hit+Di−1 − F̃ ) at t+Hit +Di is equal to zero, i.e.

0 =
Hit+Di−1∑
h=Hit

B(t, h)EQt (St+h − F̃ )
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and, therefore :

F̃ (t,Hit, Di) =

Hit+Di−1∑
h=Hit

B(t, h)F (t, h)

Hit+Di−1∑
h=Hit

B(t, h)

which might be approximated by :

F̃ (t,Hit, Di) =
1
Di

Hit+Di−1∑
h=Hit

F (t, h)

From proposition 7 and corollary 1 we know that :

logF (t, h) = m(t, h) + cshst + cyh
′
yt + czh

′zt (39)

where m(t, h) = ν̃st+h + csh(νst − ν̃st ) + cyh
′(νyt − ν̃

y
t ) where νst , ν̃

s
t are the historical and RN

deterministic components of logSt, and νyt , ν̃
y
t are the corresponding components of Yt.

In this context the stochastic processes {F (t, h), t = 1, . . . , T ;h fixed} are no longer

observable and we may consider that the only observable stochastic process is St. The

other variables Yt are latent, we assume that νyt = ν̃yt = 0, and therefore, we have yt = Yt

and :

m(t, h) = ν̃st+h + csh(νst − ν̃st ) (40)

Note that, since the yt are latent, identification conditions must be imposed in the second

set of equations in (1) and (21). For instance, we can impose ψ0 = ψ∗0 = 0, ψ1 and ψ∗1

triangular and the variance-covariance matrix of εyt+1 and εy∗t+1 equal to the identity

matrix.

The forward prices F̃ (t,Hit, Di) become :

F̃ (t,Hit, Di) =
1
Di

Hit+Di−1∑
h=Hit

exp[m(t, h) + cshst + cyh
′
yt + czh

′zt] (41)

Note that, if we use the raw data logSt, instead of st = logSt − νst formula (41)

becomes :
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F̃ (t,Hit, Di) =
1
Di

Hit+Di−1∑
h=Hit

exp[m̃(t, h) + csh logSt + cyh
′
yt + czh

′zt] (42)

with :

m̃(t, h) = ν̃st+h − cshν̃st (43)

In any case log F̃ (t,Hit, Di) is no longer linear in the random variables of interest and

this new feature makes inference more complicated.

However inference is still tractable in some situations. If we assume for instance that

the latent variable yt does not appear in the first equation of system (1) (i.e. ϕ2 = 0),

and that Σ1/2(zt+1, zt) is block-diagonal, we can estimate the first equation of system

(1) :

st+1 = µ′zt+1 + ϕ1(st − µ′zt) + σ(zt+1, zt)εt+1

(where σ is the (1, 1) entry of Σ1/2) using the Kitagawa-Hamilton algorithm. Then

replacing the z′ts by their smoothed values ẑt we get the system :


st = µ′ẑt + ϕ1(st−1 − µ′ẑt−1) + σ(ẑt, ẑt−1)εst

yt = ψ0 + ψ1(st−1 − µ′ẑt−1) + ψ′2yt−1 + Σ1/2
22 (ẑt, ẑt−1)εyt

(44)

(where Σ1/2
22 is the south-east block of Σ1/2).

Adding Gaussian error terms ξt in (41) and replacing zt by ẑt we have :

F̃ (t,Hit, Di) =
1
Di

Hit+Di−1∑
h=Hit

exp[m(t, h) + cshst + cyh
′
yt + czh

′ẑt] + ξt (45)

ξt ∼ IIN(0, ω2I), i = 1, . . . , Nt

Equations (44) and (45) constitute a state space model, in which the latent variable

is yt. The transition equations are the second set of (44) and, therefore, linear, whereas

the measure equations are (45) and the first equation of (44) and, therefore, nonlinear.
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The parameters appearing in this nonlinear state-space system can be estimated using

the extended Kalman filter.

Another possibility would be to estimate simultaneously the RN parameters and the

yt’s, by minimizing with respect to these two sets of variables the sum of the squared

differences between the observed values of the F̃ (t,Hit, Di) and their theoretical formulas.

In these formulas the zt’s might be replaced by smoothed values obtained from a first

stage estimation of the univariate dynamics of (st, zt) based, for instance, on a switching

AR(p).

8. POSSIBLE EXTENSIONS

8.1. Multiple lags

In the previous section we have assumed that only one lag appears in all the equations.

However it would be straightforward to introduce more lags, using, in particular, the

fact that a Car(p) process can be transformed into a Car(1) by extending the size of the

process. It is, however, preferable not to introduce lags in the latent variables y2t in order

to keep the simplicity of the inversion technique proposed in section 6.2. Since a priori

insights on the dynamics of latent variables are not in general available, this constraint

is not really restrictive.

8.2. Use of the spot price returns

Instead of using the variable st = logSt, we could use the return variables st =

log
St
St−1

. The only change would be in the expression of F (t, h). Putting again s̃t =

st − ν̃st , we would have :

F (t, h) = EQt St+h

= StE
Q
t exp(st+1 + . . .+ st+h)

= St exp(ν̃st+1 + . . .+ ν̃st+h)EQt exp(s̃t+1 + . . .+ s̃t+h) (46)

If the process s̃t is Car(1) in the RN world, the multihorizon Laplace transform

appearing in (46) can be easily computed using proposition 1 using αh = eJ+1, h =

1, . . . ,H.
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8.3. Non additive impact of the exogenous variables

We have assumed that, in the RN world, the exogenous variables only appear in

the systematic part of ν̃st and ν̃yt of the additive decomposition logSt = ν̃st + s̃t and

yt = ν̃yt + ỹt. In particular we have assumed that the RN transition probabilities π∗ij

do not depend on exogenous variables, contrary to their historical counterpart πijt. The

introduction of non additive exogenous variables would lead to a non homogenous Car(1)

dynamics of w̃t characterized by a conditional Laplace transform of the form

exp[a′t+1(u)wt + bt+1(u)]

where at+1(.) and bt+1() depend on time through the exogenous variables.

It turns out that, in this context, the multihorizon conditional Laplace transforms

can still be computed recursively, using a generalized algorithm which is forward in h and

backward in t (see appendix 6 and Gourieroux Monfort Polimenis (2006) for details).

8.4. Dynamic specification of the exogenous variables

Up to know we have worked conditionally to future scenarios for the exogenous vari-

ables and, therefore, we dit not have to specify their dynamics. However if we do not

wish to consider scenarios of exogenous variables we will have to incorporate them in the

wt vector and specify their historical as well as their risk neutral dynamics.

The simplest solution is to consider that these exogenous variables are a subvector

of yt, which is observable. Nothing is changed in the pricing and estimation results,

the only particular feature is that, in system (1), the right hand side of the equation

corresponding to the exogenous variables only contain past values of these variables and

the error term is independent of the others and of the process zt. In other words there

is no feedback from all the other variables towards the exogenous variables.

The drawback of the previous solution is that the dynamics of the exogenous variables

is assumed to be linear autoregressive and, moreover, the impact of these variables on

logSt is assumed to be linear. The latter assumption is not necessarily satisfactory if the

exogenous variable is the temperature or the difference between the temperature and a

”normal” level. In this case an alternative modeling, which will allow to stay in the Car

domain, at least in the risk neutral world, is to assume that the exogenous variable of
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interested has been discretized. If we denote by zet this observable discrete value process,

and if we denote by z̃t the latent discrete value process aiming at capturing the spikes,

the overall discrete value process introduced at the beginning of this study becomes

zt = z̃t ⊗ zet . In other words zt is valued in the set of vectors obtained as the Kronecker

product of vectors ek ⊗ el, ek being of size K and el of size L, i.e. in the set of vectors

eq of size KL. If this process is an homogenous Markov chain the process wt is Car(1)

in the historical world, and also in the RN world if we use the same kind of s.d.f. as in

section 3.1, and like previously this process could be Car (1) in the RN world even if it

is not in the historical world. Attractive features of this modeling are that the impact

of zet on logSt is nonlinear, that we could introduce different causality schemes and that

the estimation procedure could be made sequentially.

Let us consider the case where z̃t has 2 states, whereas zet has 3 states. In this case

zt has 6 states and an unconstrained Markov dynamics would have 30 parameters. The

other extreme case would be to assume that z̃t and zet are two independent Markov chains,

in this case the number of parameters would be 2 + 6 = 8 parameters and, moreover, the

6 parameters of the dynamics of zet could be estimated separately since zet is observable.

Several intermediate cases are also of interest. Indeed we have :

P (z̃t = ej , z
e
t = e∗j/z̃t−1 = ẽi, z

e
t−1 = e∗i )

= P (z̃t = ej/z
e
t = e∗j , z̃t−1 = ẽi, z

e
t−1 = e∗i )P (zet = e∗j/z̃t−1 = ẽi, z

e
t−1 = e∗i )

The first term of the RHS depends on 18 parameters and the second of 12 parameters,

the total beeing 30 as mentioned above. Since zet is exogenous it is natural to assume that

z̃t−1 does not appear in the second term of the RHS which, therefore, only depends on 6

parameters which can be estimated separately. If we assume moreover that zet−1 does not

appear in the first term of the RHS, that is to say that zet causes z̃t only instantaneously,

this first term only depends on 6 parameters, which can be estimated by the Kitagawa

Hamilton algorithm. Moreover the term µ′zt+1 in (1) could be specified additively :

µ′zt+1 = µ̃z̃t+1 + µ∗
′
zet+1. For the model to be identified we would have to impose a

constraint on (µ′, µ∗
′
), for instance that one component of µ̃, or µ∗ is zero. Therefore in

the example above the number of parameters appearing in µ′zt+1 would be 4.
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Historical Risk neutral

µ1 0 0

µ2 0.5 0

ϕ1 0.6 0.5450

ϕ2 0.1 -0.4450

ψ0 0 0

ψ1 0.5 -0.4450

ψ2 0.1 0.5450

Σ1

 0.05 0.0112

0.0112 0.01

  0.05 0.0112

0.0112 0.01



σ2

 0.5 0.0884

0.0884 0.0625

  0.5 0.0884

0.0884 0.0625


P

0.99 0.01

0.80 0.20

 0.99 0.01

0.80 0.20


Table 1: Characteristics of historical and risk neutral dynamics

9. Illustration

Let us give some examples of simulated spot and forward electricity prices generated

by affine models. The objective is not to explore the whole set of possibilities of affine

models. Here, we illustrate how simple models can represent spikes in spot prices and

many forms of forward curves.

9.1. Simulated spot prices

In this section we consider a regime switching VAR(1) model described by (1) with

a latent factor yt and two regimes: the first regime is persistent and represent ”normal”

spot prices, while the second aims at representing spikes. The values of the historical

and risk neutral parameters are given in table 1. Figure 1 shows behavior variations

due to the transition probability matrix and specifically to the probability of obtaining

a spike. As expected the frequency of simulated spikes is directly related to the values

of the transition probability.
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p11 = 0.99 p11 = 0.95

Figure 1: Simulated spot price in function of transition probabilities. The model is a VAR(2) composed

of 2 regimes

ϕ1 = 0.4 ϕ1 = 0.8

Figure 2: Simulated spot price in function of ϕ1. The model is a VAR(2) composed of 2 regimes

Figure 2 shows behavior variations due to the auto-regressive coefficient ϕ1. This re-

sult shows the capability of the model to differently represent the effect of a spike on

subsequent dates.

9.2. Simulated Forward prices

We are now interested in simulating forward prices from affine models. We first

consider ν̃st = ν̃yt = 0. Figure 3 shows different forward curves F (t, h) obtained by simu-

lating model (1) with several values of parameters. Paramter µ1 impacts the beginning

of the curve and the long term equilibrium value. Parameter p11 impacts the long term

behaviour of the curve. The value of observation Xt also impact the beginning of the

31



curve. The persistence of this impact is related to the eigen values of the matrix of poly-

nomials in the lag operator of the risk neutral dynamics. Indeed, figure 3c shows forward

curves when the highest eigen value is 0.95 whereas figure 3d shows forward curves when

the higher eigen value is 0.99, where the value of Xt is more persistent.

These results illustrate the capability of affine models to represent a large set of possible

foward curves.

Also note that a risk neutral deterministic part, say ν̃st , can be introduced to represent,

for example, seasonality in the forward curve. Indeed, consider ν̃st as a product of a daily

and a monthly coefficients:

ν̃t = DtMt, (47)

where Dt = Cdi if t corresponds to the ith day of the week, and Mt = Cmj if t belongs to

the jth month of the year.

Figure 4 shows examples of simulated forward curves from affine models when all effects

(parameters and seasonality) are mixed. This result shows the effectiveness of affine

models in well representing forward prices.

10. CONCLUDING REMARKS

Building on recent developments of econometrics of asset pricing, we have proposed

flexible and tractable modeling strategies for the joint behavior of spot electricity prices,

forward prices and option prices. We have considered different types of data : season-

ally adjusted versus raw spot prices, estimated forward curves versus forward contracts

prices, different statistical specifications and different estimation strategies. This general

framework should provide a guideline for various kinds of applications.
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(a) (b)

(c) (d)

Figure 3: Simulated Forward curves in function of (a) mean µ1, (b) transition probability p11, and value

of observation Xt when higher root of AR-polynomial is (c) 0.95 and (d)0.99.
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Figure 4: An example of realistic forward curve.
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APPENDIX 1

NONCAUSALITY AND INDEPENDENCE IN THE HISTORICAL AND

THE RISK NEUTRAL WORLDS

i) Non causality in the historical world.

Let us consider the stochastic process (w′t, w
e′

t )′, t = 1, . . . , T. by definition, wt does

not (Granger) cause wet if :

f(wet /wt−1, w
e
t−1) = f(wet /w

e
t−1),∀t

that is, if wet and wt−1 are independent conditionally to wet−1.

This definition is equivalent to the Sims definition :

f(wt/wt−1, w
e
T ) = f(wt/wt−1, w

e
t ),∀t, T

that is : wt and the future values of we are independent conditionally to wt−1, w
e
t .

Indeed the joint p.d.f. of wT , weT can always be written :

f(wT , weT ) = ΠT
t=1f(wt/wt−1, w

e
T )ΠT

t=1f(wet /w
e
t−1)

= ΠT
t=1f(wt/wt−1, w

e
t )Π

T
t−1f(wet /wt−1, w

e
t−1)

and the result follows.

Thus, if wt does not cause wet we have

f(wT , weT ) = ΠT
t=1f(wt/wt−1, w

e
t )Π

T
t=1f(wet /w

e
t−1)

Although the notion of (strong) exogeneity is not perfectly equivalent to the notion

of non-causality (see Gourieroux-Monfort 1996, chapter 1, volume 1, for the details), we

will not distinguish them here.

ii) Non causality and independence in the risk neutral world

We consider the processes wt, wet and wit introduced in section 2.2. Let us assume

that the SDF between t− 1 and t is factorized as follows :
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M̃t−1,t = exp(−rt)M∗t−1,t(wt, w
e
t )M

e
t−1,t(w

e
t )M

i
t−1,t(w

i
t)

where

E(M∗t−1,t/wt−1, w
e
t ) = 1

E(Me
t−1,t/w

e
t−1) = 1

E(M i
t−1,t/w

i
t−1) = 1

and rt is the short rate between t− 1 and t, (which is a function of wit−1).

Using the iterated expectation formula we get :

E(M̃t−1,t/wt−1, w
e
t−1, w

i
t−1) = exp(−rt)

Moreover the joint conditional RN p.d.f of (wt, wet , w
i
t) given (wt−1, w

e
t−1, w

i
t−1) is

obtained as the product of the historical one :

f(wt/wt−1, w
e
t )f

e(wet /w
e
t−1)f i(wit/w

i
t−1)

by M∗t−1,t,M
e
t−1,tM

i
t−1,t, and we get :

fQ(wt/wt−1, w
e
t )(f

e)Q(wet /w
e
t−1)(f i)Q(wit/w

i
t−1)

where :

fQ = f ×M∗t−1,t

(fe)Q = fe ×Me
t−1,t

(f i)Q = f i ×M i
t−1,t

So the exogeneity of wet and the independence of wit are preserved in the RN world.

iii Pricing
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The pricing at t of a payoff g(wT , weT ) delivered at T > t is given by :

p̃t = EQt exp(−rt+1 − . . .− rT )g(wT , weT )

where EQt is the RN conditional expectation given (wt, wet , w
i
t).

Since wit is Q-independent of (wt, wet ) we get :

p̃t = B(t, T − t)EQt g(wT , weT )

where B(t, T − t) is the price at t of the zero-coupon bond of residual maturity T − t.

Moreover if we fix a scenario weT for the future exogenous variables, the conditional price

is :

pt = B(t, T − t)EQ[g(wT , weT )/wt, weT ]

and given the exogeneity of we and using Sims’ version of the non-causality mentioned

in (i), this conditional expectation is obtained by fixing weT at scenario values and using

the p.d.f. :

T∏
τ=t+1

fQ(wτ/wτ−1, w
e
τ )

i.e by considering wet+1, . . . , w
e
T as non random and fixed at their scenario values.

Also note that the conditional price can be written, using the historical dynamics and

the stochastic discount factor Mt−1,t = exp(−rt)M∗t−1,t

pt = B(t, T − t)E[M∗t,t+1 . . .M
∗
T−1,T g(wT , weT )/wT , weT ]

= E[Mt,t+1 . . .MT−1,T g(wT , weT )/wt, weT , w
i
t]

In other words, we can work with a stochastic discount factor Mt−1,t of the form

exp(−rt)M∗t−1,t, with E(M∗t−1,t/wt−1, w
e
t ) = 1.

APPENDIX 2

PROOF OF PROPOSITION 1
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Lt,1(α) = Et exp(α′Hwt+1) = exp[a(αH)′wt + b(αH)]

and since c1 = a(αH), d1 = b(αH), the formula is true for h = 1,∀t.

Let us assume that it is true for h− 1,∀t, we have :

Lt,h(α) = Et[exp(α′H−h+1wt+1)Et+1 exp(α′H−h+2wt+2 + . . .+ α′Hwt+h)]

= E[exp(α′H−h+1wt+1)Lt+1,h−1(α)]

= Et[exp(α′H−h+1wt+1 + c′h−1wt+1 + dh−1)]

= exp[a(αH−h+1 + ch−1)′wt + b(αH−h+1 + ch−1) + dh−1]

and the result follows.

APPENDIX 3

HISTORICAL CONDITIONAL LAPLACE

TRANSFORM OF wt+1

The historical conditional Laplace transform of wt+1 = (z′t+1, x
′
t+1)′ is

ϕt(u, v) = Et exp(u′zt+1 + v′xt+1)

= Et exp[u′zt+1 + v′µ(zt+1, zt) + v′Φxt + v′Σ1/2(zt+1)εt+1]

Taking first the conditional expectation given (wt, zt+1) we get :

ϕt(u, v) = exp(v′Φxt)Et exp[u′zt+1 + v′µ(zt+1, zt) +
1
2
v′Σ(zt+1, zt)v]

= exp[v′Φxt + (A1t, . . . , AJt)zt]

where

Ait = log


J∑
j=1

πijt exp
[
u′ej + v′µ(ej , ei) +

1
2
v′Σ(ej , ei)v

]
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APPENDIX 4

RISK NEUTRAL CONDITIONAL LAPLACE TRANSFORM OF wt+1

The RN conditional Laplace transform of wt+1 is :

ϕQt (u, v) = EQt exp(u′zt+1 + v′xt+1)

= EtM
∗
t,t+1 exp(u′zt+1 + v′xt+1)

= Et exp(Γ′t+1εt+1 −
1
2

Γ′t+1Γt+1 + δ′t+1zt+1 + u′zt+1 + v′xt+1)

with Γt+1 = Γ(zt+1, zt, xt, w
e
t+1)

δt+1 = δ(zt, st, wet+1)

and
J∑
j=1

πijt exp[δj(ei, st, wet+1)] = 1,∀ei, st, wet+1

Using the expression of xt+1 given by (19) we get :

ϕQ
t (u, v) = Et exp[Γ′t+1εt+1 −

1

2
Γ′t+1Γt+1 + δ′t+1zt+1 + u′zt+1 + v′[µ(zt+1, zt) + Φxt

+Σ1/2(zt+1, zt)εt+1]

= exp(v′Φxt)×

Et exp[−
1

2
Γ′t+1Γt+1 +

1

2
(Γt+1 + Σ

1/2
t+1v)′(Γt+1 + Σ

1/2
t+1v) + δ′t+1zt+1 + u′zt+1 + v′µt+1

= exp(v′Φxt)Et exp[v′Σ
1/2
t+1Γt+1 +

1

2
v′Σt+1v + δ′t+1zt+1 + u′zt+1 + v′µt+1]

= exp[v′Φxt + (Ā1t . . . ĀJt)zt]

with :
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Āit = log


J∑
j=1

πijt exp
[
v′Σ1/2(ej , ei)Γ(ej , ei, xt, wet+1)

+
1
2
v′Σ(ej , ei)v + δj(ei, st, wet+1) + u′ej + v′µ(ej , ei)

]}
APPENDIX 5

RN DYNAMICS

The RN conditional Laplace transform of w̃t+1 = (x̃t+1, zt+1) given by (20), and the

transition matrix π∗ij is :

EQt exp(u′zt+1 + v′x̃t+1)

= exp(v′Φ∗x̃t)E
Q
t exp[u′zt+1 + v′µ∗(zt−1, zt) + v′Σ1/2(zt+1, zt)ε∗t+1]

= exp[(A∗1 . . . A
∗
J)zt + v′Φ∗x̃t]

with A∗i = log{
J∑
j=1

π∗ij exp[u′ej + v′µ∗(ej , ei) +
1
2
v′Σ(ej , ei)v]}

Therefore the RN conditional Laplace transform of wt+1 implied by (20) and π∗ij is,

using x̃t = xt + νt − ν̃t :

exp[v′Φ∗(νt − ν̃t) + v′Φ∗xt + (A′1 . . . A
∗
J)zt]

Comparing with ϕQt (u, v) given in proposition 4, we see that they are identical if :

i) πijt exp[δj(ei, st, wet+1)] = π∗ij

ii) Σ1/2(ej , ei)Γ(ej , ei, xt, wet+1) = (Φ∗ − Φ)xt + Φ∗(νt − ν̃t) + µ∗(ej , ei)− µ(ej , ei)

So, for a given historical dynamics characterized by πijt,Φ, µ and νt and any wished

RN dynamics characterized by π∗ij ,Φ
∗, µ∗ and ν̃t, we can adjust the SDF in an appropriate

way by choosing the δj satisfying i) and Γ satisfying ii) that is :
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δj(ei, st, wet+1) = log
π∗ij
πijt

and

Γ(ej , ei, xt, wet+1) =

Σ−1/2(ej , ei)[(Φ∗ − Φ)xt + Φ∗(νt − ν̃t) + µ∗(ej , ei)− µ(ej , ei)]

Note that the δj thus defined automatically satisfy constraints (14).

APPENDIX 6

EXTENSION OF PROPOSITION 1 TO THE NON HOMEGENOUS

CASE

We want to compute :

Lt,h(α) = Et[exp(α′H−h+1wt+1 + . . .+ α′Hwt+h)]

∀t = 1, . . . , t, h = 1, . . . ,H, with α = (α′1, . . . , α
′
H)′

when

Et[exp(u′wt+1)] = exp[a′t+1(u)wt + bt+1(u)]

We want to show :

Lt,h(α) = exp(c′t,hwt + dt,h),∀t, h

This formula is true of h = 1 and any t since :

Lt,1(α) = Et[exp(α′Hwt+1)]

= exp[a′t+1(αH)wt + bt+1(αH)]

and we have :ct,1 = αt+1(αH), dt,1 = bt+1(αH).

Moreover assuming that the formula is true for h− 1 and any t we have :
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Lt,h(α) = Et[exp(α′H−h+1wt+1)Et+1 exp(α′H−h+2wt+2 + . . .+ α′Hwt+h)]

= Et[exp(α′H−h+1wt+1)Lt+1,h−1(α)]

= Et[exp(α′H−h+1wt+1 + c′t+1,h−1wt+1 + dt+1,h−1]

= exp[a′t+1(αH−h+1 + ct+1,h−1)wt + bt+1(αH−h+1 + ct+1,h−1) + dt+1,h

and we get

ct,h = at+1(αH−h+1 + ct+1,h−1)

dt,h = bt+1(αH−h+1 + ct+1,h−1) + dt+1,h−1

Note that we get the right values of ct,1 and dt,1 by taking ct,0 = 0 and dt,0 = 0 for

all t.

Computation

• Starting from cT+H,0 = 0 we get cT,H after H iterations on ct,h

• Starting form cT+H−1, 0 = 0 we get cT,H−1 and cT−1,H

etc

• Starting from ct,0 = 0 we get ct−1,1, ct−2,2, . . . , ct−H,H ,∀t ∈ {H + 1, . . . , T + 1}

• Starting from ct,0 = 0 we get ct−1,1, . . . , c1,t−1∀t ∈ {2, . . . ,H}.

R E F E R E N C E S

Benth F.E., Kallsen J and T. Meyer-Brandis (2005) : ”A non Gaussian Ornstein-

Ulhenbeck Process for Electricity Spot Price Modeling and Derivative Pricing”, Discus-

sion Paper Center for Mathematics, University of Oslo n◦14/2005.

42



Benth F.E. and S. Koekebakker (2005) : ”Stochastic Modeling of Financial Electricity

Contracts”, Dpt of Pure Mathematics, University of Oslo, Discussion paper n◦024.

Bertholon H., A. Monfort and F. Pegoraro (2008) : ”Econometric Asset Pricing

Modelling”, Journal of Financial Econometrics, 6, 4, 407-458.

Bunn D.W. and N. Karakatsani (2003) : ”Forecasting Electricity Prices”, London

Business School, Working Paper.

Darolles, S., C. Gourieroux, and J. Jasiak (2006) : ”Structural Laplace Transform and

Compound Autoregressive Models”, Journal of Time Series Analysis, 24 (4), 477-503.

Deng S. (2000) ”Stochastic Models of Energy Commodity Prices and Their Applica-

tions : Mean Reversion with Jumps and Spikes”, Working paper, University of California

Energy Institute.

De Jong C. (2005) : ”The Nature of Power Spikes : a Regime Switching Approach”,

Working Paper, Erasmus University Rotterdam n◦ ERS - 2005-052.

Duffie, D., J. Pan, and K. Singleton (2000) : ”Transform Analysis and Asset Pricing

for Affine Jump Diffusions, Econometrica, 68, 1343-1376.

Geman H. and A. Roncoroni (2006) : ”Understanding the Fine Structure of Electricity

Prices”, Journal of Business, 79, 3, 1225-1261.

Gourieroux, C., and A. Monfort (2007) : ”Econometric Specifications of Stochastic

Discount Factor Models”, Journal of Econometrics, 136, 509-530.

Gourieroux, C., A. Monfort, and V. Polimenis (2006) : ”Affine Model for Credit Risk

Analysis”, Journal of Financial Econometrics, 4(3), 494-530.

Gourieroux, C., and A. Monfort (1996) : Statistics and Econometrics Models (2

volumes), Cambridge University Press.

Hamilton J. (1989) : ”A New Approach to the Economic Analysis of Nonstationary

Time Series and the Business Cycle”, Econometrica, 57, 2, 357-384.

43



Huisman R. and R. Mahieu (2003) : ”Regime Jumps in Electricity Prices”, Energy

Economics, 25, 5, 425-434.

Huisman R. (2008) : ”The Influence of Temperature on Spike Probability and Day-

ahead Power Price”, Energy Economics, 30, 5, 2697-2704.

Kim, C. J. (1994) : ”Dynamic Linear Models with Markov Switching”, Journal of

Econometrics, 60, 1–22.

Lucia J. and E. Schwartz (2002) : ”Electricity Prices and Power Derivatives : Evi-

dence from the Nordic Power Exchange”, Review of Derivative Research, 5, 5-50.

Mount T., Ning Y. and X. Cai (2005) : ”Predicting Price Spikes in Electricity Markets

Using a Regime-Switching Model with Time-Varying Parameters”, Energy Economics,

28, 1, 62-80.

Monfort, A., and F. Pegoraro (2007) : ”Switching VARMA Term Structure Models”,

Journal of Financial Econometrics 5(1), 105-153.

Weron R., Bierbrauer M. and S. Truck (2004) ”Modelling Electricity Prices : Jump

Diffusion and Regime Switching”, Physica, 336, 39-48.

44


