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Abstract

Difference in differences (DID) require that the treatment rate is equal to 0% in the control

group and during period 0 (no “always takers”) and to 100% in the treatment group in period 1

(no “never takers”). Sometimes, treatment rate increases more in the treatment than in the control

group but there are never or always takers. This paper derives identification results applying to

such settings. They only require one common trend assumption on the outcome of interest (Y)

whereas the standard instrumental variable result usually invoked also requires common trend on

treatment rate. When there are never takers but no or few always takers, common trend on Y is

sufficient to identify exactly an ATT or at least its sign.
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1 Introduction

Since the seminal work by Ashenfelter and Card [1985], differences in differences (DID) are

commonly used to estimate average treatment effects on the treated (ATT) when treatment D is not

randomly allocated. DID compare the evolution of some mean outcome Y between two periods (0

and 1) and across two groups of individuals (control and treatment). In Rubin’s causal model where

potential outcomes with and without treatment (Y (1) and Y (0)) are introduced, and where treatment

effects (Y (1) − Y (0)) are allowed to be heterogeneous across observations, it has been shown that a

DID identifies an ATT under two assumptions (see Abadie [2005]). The first one is a common trend

assumption which states that if all observations had remained untreated the mean of Y would have

followed parallel trends from period 0 to 1 in the two groups. The second one, which is implicit,

is a perfect compliance assumption: the treatment rate should be equal to 0% in the control group

and during period 0 (no “always takers”) and to 100% in the treatment group in period 1 (no “never

takers”).1 In many instances, this last assumption is violated: the treatment rate (or treatment

intensity if treatment is multivariate) increases more in the treatment than in the control group but

there are “never” or “always” takers.2 This differential change in treatment rate / intensity across the

control and the treatment group might still be used to identify an ATT. This is what I refer to as a

fuzzy DID identification strategy.

When compliance is imperfect, common trend alone is not sufficient for identification in a model

allowing for heterogeneous treatment effect. Under common trend on Y (0), if no observation is treated

in any group, trends are parallel in the two groups and the DID is merely equal to 0. In a standard

DID, the only reason why trends might diverge across groups is that observations in the treatment

group × period 1 cell get treated, so that the DID measures the effect of the treatment on them. A
1By never takers, I merely refer to untreated observations in the treatment group in period 1. Always takers are

treated observations in the three other groups.
2This might not be an issue when panel data is available. In this case, researchers can indeed choose observations

making up the treatment and the control group. They can for instance keep only observations of the control group who
were untreated in period 0 and 1, and observations of the treatment group untreated in period 0 and treated in period
1 (see for instance Field [2005]). Despite the arbitrariness of this definition of groups, which might entail that common
trend is violated, it ensures that the perfect compliance assumption is met. But when only pooled cross-sections are
available, it is no longer possible to select observations thus. Even in the panel data case, such a trick might not be
possible when treatment is multivariate and that all observations received some amount of treatment. Think of treatment
as number of years of education completed: hardly anyone completes 0 years of education.
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DID computation will therefore yield one equation with only one unknown. In a fuzzy DID, since there

might be treated observations in each of the four time × group cells, diverging trends can potentially

arise from the effect of the treatment within each of those four subgroups and a DID computation will

yield one equation with up to four unknowns. The identification problem arises because Y (1)−Y (0) is

allowed to vary across observations, implying that the effect of the treatment might vary across cells.

Assuming Y (1)− Y (0) to be constant across observations would solve the issue: the unknowns in the

DID equation would all be equal to each other so that we would be back to one equation with one

unknown.

Therefore, the starting point of the paper is to show that in a fuzzy DID, when treatment effect is

allowed to be heterogeneous, a common trend assumption on Y (0) is generally not sufficient to identify

some ATT. However, in the special case where there are never takers but no always takers (a situation I

henceforth refer to as the “no always takers” special case), this assumption is sufficient for identification,

as in the standard DID model. Indeed, in such a situation, even though not all observations of the

test group are treated in period 1, there are still treated observations in one group only, so that a DID

computation will yield one equation with one unknown. When there are always takers, common trend

on Y (0) does not allow for point identification, but partial identification of some ATT is still possible

provided Y is bounded. I derive explicit sharp bounds in this case. The identification region is likely

to be narrow enough to identify the sign of this ATT when there are “few” always takers. Whether

there are “many” or “few” never takers does not matter. It is also possible to derive a second and

narrower identification region for the same ATT under the supplementary assumption that treatment

effects do not change between the two periods in the control group. This second identification region

will be narrow when there are few treated observations in the treatment group in period 0, and when

the change in the the treatment rate from period 0 to 1 is small in the control group.

Actually, fuzzy DID has already been used often in the applied economics literature. Up to now,

researchers who implemented it estimated the impact of the treatment through an instrumental variable

(IV) regression using the interaction of time and group as an instrument for treatment. The resulting

coefficient is the DID on Y divided by the DID on D. Duflo [2001] uses this strategy to estimate the

impact of educational attainment on wages. Bleakley and Chin [2004] use it to estimate the impact
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of language proficiency on wages. Papers which use differential evolution of exposure to treatment

across US states to estimate treatment effects build upon the same intuition. A good example is Evans

and Ringel [1999] who use changes in cigarette taxes across US states as an instrument for smoking

prevalence among pregnant women, in order to estimate the impact of smoking during pregnancy on

children’s weight. Because their regressions include state and year fixed effects, their estimate arises

from the comparison of the evolution of children’s weight in states with and without changes in tax.

Had there been only two states and two years in their data, their regression coefficient would merely be

the DID on children’s weight divided by the DID on smoking prevalence among pregnant women, as in

Duflo [2001] or Bleakley and Chin [2004]. However, the underlying assumptions of this identification

strategy have not been clarified so far.

Imbens and Angrist [1994] have shown that IV coefficients can be interpreted as a local average

treatment effect (LATE) in a model allowing for heterogeneous treatment effect. I put forward in a

companion paper (de Chaisemartin [2010]) that when applied to fuzzy DID their result holds under two

common trend assumptions, on Y and on D, and a monotonicity assumption (no “defiers”). Common

trend on Y allows recovering the intention to treat effect of the policy, whereas common trend on D

allows recovering the share of compliers.

My results contribute to the literature because they require only one common trend assumption

on Y . Thus, I remove the monotonicity condition. Even though it is often thought of as an innocuous

assumption, it may be restrictive in some instances as discussed in Small and Tan [2007]. Above all,

they do not require common trend on D. One might argue that the marginal cost of this second

common trend assumption is weaker than for the first: if one is ready to believe that without the

program trends would have been parallel on Y , one should be ready to take the same assumption on

D. However, this might not always be true. For instance, in Evans and Ringel [1999], it may be the

case that states which choose to rise taxes on cigarettes do so because they face an increasing trend in

smoking, whereas there is no reason to suspect that this decision is related to trends on babies weight

at birth. Moreover, even in applications where there is no obvious reason to suspect that trends on Y

or on D would have strongly diverged, there is no reason why they should have been exactly parallels

neither because assignment to treatment is not random. The most we can reasonably expect is that
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trends in the untreated group provide a fairly good “first order approximation” of what would have

happened in the treated group. Results requiring one first order approximation might therefore be

more reliable than results requiring two. The combination of two small errors in the numerator and

in the denominator of the Wald-DID could indeed lead to a large difference between the Wald-DID

and the true treatment effect. Therefore, the contribution of this paper is to bring new fuzzy DID

identification results which rely on weaker assumptions than the standard Imbens and Angrist IV

result.

My results might be useful in applications with no or few always takers. To illustrate this, I

measure the efficacy of a new pharmacotherapy for smoking cessation. Varenicline is a drug which

was made available to French cessation clinics in February 2007 as one possible pharmacotherapy for

smoking cessation support. In 15 services, less than 3% of all patients consulted have been prescribed

varenicline during the year following its release. In 13 services, more than 20% of patients were

prescribed varenicline. Because in this application there are some but few always takers, I derive

bounds for the ATT which are narrow enough to infer its sign. Had there been more always takers, 0

would lie within the identification region. Therefore, in a fuzzy DID, common trend on Y is sufficient

to obtain accurate information on an ATT when there are few always takers, even if there are many

never takers. My results might also be useful in applications considering the extension of a policy, that

is to say when the control group was already eligible in period 0 and the test group became eligible

in period 1 (see for instance Bach [2009]). Indeed, in such situations the share of treated observations

in the treatment group in period 1 is by definition equal to 0. Consequently, the second identification

region I derive will be narrow provided the share of treated observations did not change too much

between period 0 and 1 in the control group.

The remainder of the paper is organized as follows. Section 2 is devoted to identification. Section

3 deals with estimation and asymptotic analysis. Section 4 is devoted to the application. Section 5

concludes.
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2 Identification

I place myself in the pooled cross-section case: each individual is observed only at one period. Let

T ∈ {t0; t1} denote time and G ∈ {gc; gt} denote treatment (gt) and control (gc) groups. I assume that

treatment status is binary and is denoted by an indicator D (I show in Appendix A that all results

can easily be extended when treatment takes a finite number of values).

Throughout the paper it is implicitly assumed that the stable unit treatment value assumption holds.

Under this assumption I define Y (1) and Y (0) as the potential outcomes of an individual with and

without the treatment. Only the actual outcome Y = Y (1) × D + Y (0) × (1 − D) is observed. The

treatment effect is Y (1)−Y (0). Average treatment effects are the corresponding expectations. X ∼ Y

means that X and Y have the same probability distribution. X is the support of X. To alleviate the

notational burden, I introduce several shorthands following Athey and Imbens [2006]:

Yij(k) ∼ Y (k) | t = i, g = j ∀(k, i, j) ∈ {0; 1} × {t0; t1} × {gc; gt}

Yij ∼ Y | t = i, g = j ∀(i, j) ∈ {t0; t1} × {gc; gt}

Dij ∼ D | t = i, g = j ∀(i, j) ∈ {t0; t1} × {gc; gt}

Under those notations, the standard DID parameter is:

DID = E(Yt1,gt)− E(Yt0,gt)− [E(Yt1,gt)− E(Yt0,gc)] .

I denote by DIDP the DID on treatment rate from period 0 to 1 across the two groups. I assume

that DIDP 6= 0: the definition of a fuzzy DID is that exposure to treatment should have evolved

differentially in the two groups. Without loss of generality, I assume that DIDP > 0. The no always

takers special case is met when P(Dt0,gt = 1) = P(Dt1,gc = 1) = P(Dt0,gc = 1) = 0. It is likely

to arise for instance when a new social program is implemented with only a specific group eligible

to it (unemployed...) and take-up is below 100%. ATTi,j = E(Yi,j(1) − Yi,j(0)|D = 1), ∀(i, j) ∈

{t0; t1} × {gc; gt} is the average treatment effect on treated individuals of group j in period i. ATT =

E(Y (1) − Y (0)|D = 1) is the average treatment effect on the treated. I denote PAT = P(Dt0,gt =

1) + P(Dt1,gc = 1) + P(Dt0,gc = 1) the sum of the three shares of always takers.
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I take a common trend assumption which is at the basis of the DID approach (see for instance

Abadie [2005]):

A.1 Common trend for the outcome variable

E(Yt1,gt(0))− E(Yt0,gt(0)) = E(Yt1,gc(0))− E(Yt0,gc(0)).

Lemma 1: Non-identification.

Under A.1, none of the ATTi,j is identified and

DID = ATTt1,gt × P(Dt1,gt = 1)−ATTt0,gt × P(Dt0,gt = 1)

−ATTt1,gc × P(Dt1,gc = 1) +ATTt0,gc × P(Dt0,gc = 1). (1)

According to Lemma 1, under A.1, if compliance is imperfect, the DID on Y can be written as a

weighted DID of four average treatment effects on four different populations. This is the equation with

several unknowns mentioned in the introduction. Because two ATT enter the equation with positive

sign and two enter with negative sign, the DID cannot be given any causal interpretation. It might

for instance be positive whereas the four ATT are negative. The intuition for this result is that under

common trend on Y (0), if no observations had been treated in any of the four time × group cells,

trends would have been parallel in the two groups and the DID would have merely been equal to 0.

In a standard DID, the only reason why trends might diverge across groups is that observations in the

treatment group get treated in period 1, so that the DID measures the effect of the treatment on them.

In a fuzzy DID, since there might be treated observations in several time × group cells, diverging trends

can potentially arise from the effect of the treatment in each of those cells. Then, if no restrictions are

placed on how heterogeneous the treatment effect can be across these four subgroups, it is not possible

to identify any of the ATTi,j from a standard DID computation, since it yields one equation with

several unknowns.

Proposition 1: Point identification.
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i) In the no always takers special case, A.1 is sufficient for ATTt1,gt to be identified and

ATTt1,gt =
DID

P(Dt1,gt = 1)

ii) Under A.1 and the supplementary assumption that ∀(i, j) ∈ {t0; t1} × {gc; gt} , ATTi,j = ATT , the

ATTi,j and the ATT are identified:

∀(i, j) ∈ {t0; t1} × {gc; gt} , ATTi,j = ATT =
DID

DIDP

In the no always takers special case, common trend is sufficient to identify ATTt1,gt as in a standard

DID because there are treated observations in one group only. Therefore, there is only one unknown

left in (1). This result is strikingly similar to Battistin and Rettore’s [2008] result on regression

discontinuity (RDD). They indeed show that in a fuzzy RDD, when treatment rate is equal to 0 below

the eligibility threshold, so that fuzziness arises only because of never takers (i.e. untreated individuals

above the threshold), identification is obtained under the same assumptions than in a sharp RDD.

Estimation of ATTt1,gt still requires being able to estimate P(Dt1,gt = 1). Sometimes treatment status

is not observed, making it impossible to estimate P(Dt1,gt = 1) (see e.g. Eissa and Leibman [1996]).

Since ATTt1,gt and DID have the same sign and |DID| ≤ |ATTt1,gt |, it is at least possible to estimate

a lower bound of ATTt1,gt by computing the DID. For instance, Eissa and Leibman’s 1.4 percentage

points DID is a lower bound on the true effect of the EITC extension on lone mothers’ participation

to the labor market.

Then in part ii) of Proposition 1, I show that it is enough to restrict the heterogeneity of the

treatment effect, assuming that it does not vary across time and group, to identify exactly the ATT .

This is because under this assumption the four unknowns in (1) are actually equal to each other. But

this is fairly restrictive an assumption. The underlying assumption to a fuzzy DID is indeed that

treatment rate increased more from period 0 to 1 in the treatment group than in the control group.

This might for instance be the case because treatment group individuals were more incentivized to

receive the treatment in period 1 than in period 0. Inside the treatment group, treated individuals

during period 1 are therefore likely to differ from those treated during period 0 so that the average
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treatment effect could arguably be different in these two groups.

Before stating Proposition 2, I define three quantities:

B0(u, v) =
DID+(E(Yt0,gt |D=1)−u)×P(Dt0,gt=1)+(E(Yt1,gc |D=1)−u)×P(Dt1,gc=1)−(E(Yt0,gc |D=1)−v)×P(Dt0,gc=1)

P(Dt1,gt=1) ,

B1 =
DID+(E(Yt0,gt |D=1)−M)×P(Dt0,gt=1)+(max(E(Yt1,gc |D=1);E(Yt0,gc |D=1))−M)×(P(Dt1,gc=1)−P(Dt0,gc=1))

P(Dt1,gt=1) and

B2 =
DID+(E(Yt0,gt |D=1)−m)×P(Dt0,gt=1)+(min(E(Yt1,gc |D=1);E(Yt0,gc |D=1))−m)×(P(Dt1,gc=1)−P(Dt0,gc=1))

P(Dt1,gt=1) .

Proposition 2: Partial Identification.

i) Under A.1 and the supplementary assumption that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1,

B− ≤ ATTt1,gt ≤ B+.

B− = max
(
B0(M,m) ; E(Yt1,gt |D = 1)−M

)
and B+ = min

(
B0(m,M) ; E(Yt1,gt |D = 1)−m

)
,

B− and B+ are sharp.

PAT ≤ P(Dt1,gt = 1) is a sufficient condition to have that either B− = B0(M,m) or B+ = B0(m,M).

ii) Under A.1 and the supplementary assumptions that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤ M) = 1 and

that ATTt1,gc = ATTt0,gc ,

B
′
− ≤ ATTt1,gt ≤ B

′
+

B
′
− = max

(
min(B1 ; B2) ; E(Yt1,gt |D = 1)−M

)
and

B
′
+ = min

(
max(B1 ; B2) ; E(Yt1,gt |D = 1)−m

)
.

B
′
− and B′+ are sharp.

P(Dt0,gt = 1) + |P(Dt1,gc = 1)− P(Dt0,gc = 1)| ≤ P(Dt1,gt = 1) is a sufficient condition to have that

either B′− = min(B1 ; B2) or B′+ = max(B1 ; B2).

If Y (0) is bounded, it is possible to find bounds for ATTt1,gt which can be non-parametrically

estimated from the sample in the spirit of Manski [1990]. This comes from the fact that the only three

quantities appearing in (1) which are not observed and do not belong toATTt1,gt are E(Yt0,gt(0)|D = 1),

E(Yt1,gc(0)|D = 1) and E(Yt0,gc(0)|D = 1). Therefore, it suffices to build up worst-case scenarii for

each of them to derive bounds for ATTt1,gt . But those worst case scenarii might not be compatible

with the common trend assumption and might therefore yield values lower (resp. higher) than the
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lowest (resp. highest) possible value for ATTt1,gt compatible with the data, i.e. E(Yt1,gt |D = 1)−M

(resp. E(Yt1,gt |D = 1) − m). Hence the need to ensure that B− ≥ E(Yt1,gt |D = 1) − M and

B+ ≤ E(Yt1,gt |D = 1)−m. If B− = E(Yt1,gt |D = 1)−M and B+ = E(Yt1,gt |D = 1)−m, the bounds

are uninformative. If PAT ≤ P(Dt1,gt = 1), that is to say if the share of treated observations in the

period 1 × treatment group cell is greater than the shares of always takers, at least one of the bounds

is informative. Conversely, when PAT > P(Dt1,gt = 1), at least one of the bounds in uninformative.

There is no sufficient condition on PAT which ensures that the two bounds are informative (except

PAT = 0), because even when PAT is very small, it is still possible to build up a DGP such that

one of the bounds is uninformative, for instance setting E(Yt0,gt(0)|D = 1) = M . Apart from such

extreme cases, if PAT ≤ P(Dt1,gt = 1), it is likely that the two bounds will be informative. This

condition appears because PAT is the “size” of the three subgroups for which Y (0) is not observed,

which enter into (1), and for which worst case scenarii must be constructed. P(Dt1,gt = 1) is the size of

the only subgroup for which Y (0) is not observed, which enters the common trend equation and does

not enter into (1), that is to say the size of the only degree of freedom left to verify common trend

once worst case scenarii have been constructed for the three groups of always takers. When the two

bounds are informative, the length of [B−;B+] is equal to (M −m)× PAT
P(Dt1,gt=1) . It is increasing with

PAT , and decreasing with P(Dt1,gt = 1). However, whether 0 belongs to [B−;B+] does not depend

on P(Dt1,gt = 1) but on the size of DID with respect to M −m, , P(Dt0,gt = 1), P(Dt1,gc = 1), and

P(Dt0,gc = 1).

In part ii) of Proposition 2 I show that narrower bounds for ATTt1,gt can be derived under

the supplementary assumption that the ATT is constant over time in the control group.3 Such an

assumption might be credible for instance when the treatment rate does not significantly change

between period 0 and 1 in the control group, when observable characteristics of treated individuals

in the control group do not change much over the two periods, or when E(Yt1,gc |D = 1) is close

from E(Yt0,gc |D = 1). Under this hypothesis, (1) becomes an equation with only three unknowns,

and worst case analysis must be conducted on only two expectations. Those worst case scenarii

might also not be compatible with common trend and may therefore yield lower and upper bounds
3I am very grateful to Roland Rathelot for suggesting this result.
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outside the range of values of ATTt1,gt compatible with the data, hence the need to ensure that

B
′
− ≥ E(Yt1,gt |D = 1)−M and B′+ ≤ E(Yt1,gt |D = 1)−m for the bounds to be sharp. If P(Dt0,gt =

1)+ |P(Dt1,gc = 1)− P(Dt0,gc = 1)| ≤ P(Dt1,gt = 1), at least one of the two bounds will be informative.

The sign of ATTt1,gt will be identified if both P(Dt0,gt = 1) and |P(Dt1,gc = 1)− P(Dt0,gc = 1)| are

small. With respect to part i) of the Proposition, P(Dt1,gc = 1) + P(Dt0,gc = 1) has been replaced by

|P(Dt1,gc = 1)− P(Dt0,gc = 1)|: what matter are no longer the shares of treated observations in the

control group but the change in this share from period 0 to 1. This is somewhat similar to the change

in the size of the identification region when Lee bounds (see Lee [2009] and Horowitz and Manski

[1995]) are used to deal with attrition instead of Manski bounds. This result is of particular interest to

place narrow bounds on the ATT in applications considering the extension of policy to a group which

was previously not eligible to it and which use a group previously eligible as the control group. Indeed,

in such cases P(Dt0,gt = 1) = 0 by definition. Consequently, if the change in the treatment rate from

period 0 to 1 in the control group is not too large,
[
B
′
−;B

′
+

]
will be narrow. Point identification can

even be obtained if P(Dt1,gc = 1) = P(Dt0,gc = 1).

3 Inference

The objective of this section is to build up confidence intervals (CI) for ATTt1,gt based upon the

identification results of section 2. I denote LBθ
x and UBθ

x the lower and upper bounds of the CI of a

parameter θ with x% asymptotic coverage. A first candidate is CI1 =

[
LB

DID

DIDP

(1−α) ;UB
DID

DIDP

(1−α)

]
. In the no

always takers special case, common trend is enough for CI1 to be a consistent CI for ATTt1,gt , since

ATTt1,gt = DID
DIDP

. But when there are always takers, CI1 is a CI for ATTt1,gt (i.e. ATTt1,gt = DID
DIDP

)

only under the very strong assumption that ATT do not vary across time × group cells. In such cases,

partial identification results might allow deriving CI for ATTt1,gt under weaker assumptions. This is

the purpose of Proposition 3.

Proposition 3: CI for ATTt1,gtbased on partial identification results

i) Under A.1 and the supplementary assumption that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤ M) = 1, CI2 =[
LB

B−
(1−α);UB

B+

(1−α)

]
and CI3 =

[
LB

B−
(1−2α);UB

B+

(1−2α)

]
are CI for ATTt1,gt with asymptotic coverage of
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(1− α)%.

ii) Under A.1 and the supplementary assumptions that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤ M) = 1 and

that ATTt1,gc = ATTt0,gc , if either P(Dt1,gc = 1)− P(Dt0,gc = 1) 6= 0 or P(Dt0,gt = 1) 6= 0, then

CI4 =

[
LB

B
′
−

(1−α);UB
B
′
+

(1−α)

]
and CI5 =

[
LB

B
′
−

(1−2α);UB
B
′
+

(1−2α)

]
are CI for ATTt1,gt with asymptotic

coverage of (1− α)%.

Based on the first partial identification result in Proposition 2, one can build a CI for ATTt1,gt with

(1− α)% asymptotic coverage using the lower bound of the (1− α)% CI of B− and the upper bound

of the (1− α)% CI of B+. This yields CI2. As shown in Imbens and Manski [2004], using (1− 2α)%

lower and upper bounds will also yield a CI for ATTt1,gt with (1− α)% asymptotic coverage. This is

CI3. However, it suffers from uniform convergence issues: when we get close to point identification

(PAT → 0), CI3 will be narrower than CI1 despite the fact that it is based on a partial identification

result whereas CI1 relies on point identification and stronger assumptions. To circumvent this issue,

Imbens and Manski introduce a third CI lying in-between the (1−α)% and the (1−2α)% CI. It accounts

for the fact that because the parameter is partially identified, the (1−α)% CI is too conservative and

also avoids the above mentioned uniform convergence issue. Stoye [2009] shows that this third CI relies

on a superefficiency condition which is verified when by construction B̂− ≤ B̂+ and when

√
n

 B̂− −B−

B̂+ −B+

 d→ N (0,Σ)

uniformly in P. While the former is true here, the latter is not as shown in Proposition 4. Therefore,

this third CI cannot be used here.

Finally, based on the second identification result in Proposition 2 which relies on stronger identifying

assumptions, one can use B′− and B′+ instead of B− and B+ to build up CI for ATTt1,gt . Using the

lower bound of the (1 − α)% CI of B′− and the upper bound of the (1 − α)% CI of B′+ yields CI4.

Using the corresponding (1− 2α)% bounds yields CI5.

Proposition 3 shows how to build up CI for ATTt1,gt based upon CI for B−, B+, B
′
− and B′+. I show

now how to construct such CI for B− and B+. Let (Yi, Di, Ti, Gi)1≤i≤n be an iid sample of size n drawn
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from the distribution of (Y, D, T, G). I assume that P(T = i, G = j) > 0 ∀(i, j) ∈ {t0; t1} × {gc; gt}

and that Y is bounded, meaning that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤ M) = 1, where m and M are

known by the econometrician. Empirical counterparts are used to estimate B− and B+. I consider the

asymptotic behavior of B̂− and B̂+. On that purpose, I define a variance matrix Σ =

 σ21 ρ

ρ σ22


whose explicit expression is given in Appendix B and which can be consistently estimated by Σ̂.

Proposition 4:
√
n-consistency of B̂− and B̂+.

If B0(M,m) > E(Yt1,gt |D = 1)−M ,

√
n
(
B̂− −B−

)
d→ N (0, σ21).

If B0(M,m) = E(Yt1,gt |D = 1)−M ,

√
n
(
B̂− −B−

)
d→ S1

where S1 = max
(
N1;N2

)
with

(
N1 N2

)′
∼ N (0,Σ).

If B0(M,m) < E(Yt1,gt |D = 1)−M ,

√
n
(
B̂− −B−

)
d→ N (0, σ22).

Similarly one can show that B̂+ is
√
n-consistent with three possible limiting distributions depending

on the respective positions of B0(m,M) and E(Yt1,gt |D = 1)−m.

B− is not differentiable at B0(M,m) = E(Yt1,gt |D = 1) −M and B+ is not differentiable at

B0(m,M) = E(Yt1,gt |D = 1) −m. Therefore,
√
n
(
B̂− −B−

)
and
√
n
(
B̂+ −B+

)
do not converge

to a normal distribution uniformly in P. If B0(M,m) > E(Yt1,gt |D = 1) − M ,
√
n
(
B̂− −B−

)
converges to a normal distribution. If B0(M,m) < E(Yt1,gt |D = 1) − M , it converges to another

normal distribution. If B0(M,m) = E(Yt1,gt |D = 1)−M , its limiting distribution is non standard.

In all cases, it is possible to build CI for B− and B+. Let us consider B− (the reasoning

follows the same steps for B+). If B0(M,m) > E(Yt1,gt |D = 1) − M , a CI for B− is CIA =
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[
̂B0(M,m)−

q1−α2
×σ̂2

1√
n

; ̂B0(M,m) +
q1−α2

×σ̂2
1√

n

]
, where q1−α

2
is the 1 − α

2
th quantile of a N (0, 1) dis-

tribution. If B0(M,m) = E(Yt1,gt |D = 1)−M , a CI for B− is CIB =

[
B̂− +

q̃α
2√
n

; B̂− +
q̃1−α2√

n

]
, where

q̃α
2
and q̃1−α

2
are the α

2
th and 1− α

2
th quantiles of S̃1 = max

(
N1;N2

)
with

(
N1 N2

)′
∼ N

(
0, Σ̂

)
.

Finally, if B0(M,m) < E(Yt1,gt |D = 1)−M , a CI for B− is

CIC =

[
Ê(Yt1,gt |D = 1)−M −

q1−α2
×σ̂2

2√
n

; Ê(Yt1,gt |D = 1)−M +
q1−α2

×σ̂2
2√

n

]
.

But B0(M,m) and E(Yt1,gt |D = 1) −M are unknown, hence the need to find CI with (1 − α)%

asymptotic coverage irrespective of their respective position. This is achieved by choosing CIA when

̂B0(M,m) is more than ln(n)√
n

above Ê(Yt1,gt |D = 1)−M , CIB when ̂B0(M,m) is less than ln(n)√
n

away

from Ê(Yt1,gt |D = 1)−M , and CIC when ̂B0(M,m) is more than ln(n)√
n

below Ê(Yt1,gt |D = 1)−M .4

The reason why this decision rule yields a CI with (1−α)% asymptotic coverage uniformly in B0(M,m)

and E(Yt1,gt |D = 1)−M is that since 1√
n

= o
(
ln(n)√
n

)
, the probability to pick the “wrong” CI converges

to 0.

Proposition 5: CI for B̂− and B̂+ with uniform asymptotic coverage

CI = CIA × 1{
Ê(Yt1,gt |D=1)−M+

ln(n)√
n
< ̂B0(M,m)

}

+CIB × 1{
Ê(Yt1,gt |D=1)−M− ln(n)√

n
≤ ̂B0(M,m)≤Ê(Yt1,gt |D=1)−M+

ln(n)√
n

}
+CIC × 1{ ̂B0(M,m)+

ln(n)√
n
<Ê(Yt1,gt |D=1)−M

}
is a CI for B− with (1− α)% asymptotic coverage uniformly in B0(M,m) and E(Yt1,gt |D = 1)−M .

A CI for B+ with (1− α)% asymptotic coverage uniformly in B0(m,M) and E(Yt1,gt |D = 1)−m can

be constructed following the same steps.

Let us now consider B′− and B′+. As in Proposition 4, one can show that whatever the value of

P(Dt1,gc = 1)−P(Dt0,gc = 1), E(Yt1,gc |D = 1)−E(Yt0,gc |D = 1), min(B1 ; B2)−E(Yt1,gt |D = 1)−M

and max(B1 ; B2) − E(Yt1,gt |D = 1) − m, B̂′− and B̂
′
+ are

√
n-consistent, with standard normal

limiting distributions when those four quantities are different from 0, and with non standard limiting
4Instead of ln(n), one can choose whatever sequence un such that un → +∞ and un√

n
→ 0
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distributions when one of them quantities is equal to 0. It is also possible to derive CI for B− and B+

with (1−α)% asymptotic coverage irrespective of the value of those four unknown quantities. Because

both B′− and B′+ are not differentiable at 3 points, careful analysis of their limiting distribution requires

distinguishing 27 cases. Similarly, the construction of uniform CI for B′− and B′+ involves 27 auxiliary

CI. Due to a concern for brevity, the two corresponding propositions are not presented here.

4 Application to the impact of varenicline on smoking cessation.

4.1 Data and methods

I use the data base of French smoking cessation clinics participating in the “Consultation Dépen-

dance Tabagique” program (hereafter referred to as CDT). This program started in 2001 and led to

the progressive implementation of smoking cessation services nationwide. During patients’ first visit,

smoking status is evaluated according to daily cigarettes smoked and a measure of expired carbon

monoxide (CO) which is a biomarker for recent tobacco use. At the end of this first visit, treatments

may be prescribed to patients (nicotine replacement therapies. . . ). Follow-up visits are offered during

which CO measures are usually made to validate tobacco abstinence.

Varenicline is a pharmacotherapy for smoking cessation support which was made available to

these centers in February 2007. 59 services recorded at least one patient per year in 2006 and 2007

and followed at least 50% of their patients. The kernel density estimate of the rate of prescription

of varenicline per center is shown in Figure 1. It is bimodal, with a first peak at very low rates of

prescription, and a second smaller peak around 35-40%. In 15 services, less than 3% of all patients

consulted have been prescribed varenicline during the year following its release. In 13 services, more

than 20% of patients were prescribed varenicline. I exploit this to estimate the impact of varenicline

on smoking cessation through a fuzzy DID identification strategy. The control group is made up

of patients registered by the 15 “below 3% prescription rate” services, whereas the treatment group

consists of patients recorded by “above 20% prescription rate” centers. Period 0 goes from February

2006 to January 2007, and period 1 from February 2007 to January 2008.

[Figure 1 inserted here]
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8 581 patients consulted those 28 services over period 0 and 1. Because many patients never

came back for follow-up visits, there are only 5 299 patients (62% of the initial sample) for whom

follow-up CO measures are available. I exclude patients for whom no such measures are available from

the analysis. Among remaining patients, which I refer to as the included sample, I compute a point

prevalence abstinence rate, that is to say the share of patients whose last follow-up CO determination

was inferior or equal to 5 parts per million (ppm).

4.2 Results

In Table 1, I provide descriptive statistics on patients per group of centers and per period of time.

Patients consulted in those cessation services are middle-aged, rather educated and the majority of

them are employed. They are very heavy smokers since they smoke more than 21.6 cigarettes per day

on average, which corresponds to the 90th percentile in the French distribution of smokers (Beck et

al. [2007]). 17% of them suffer from chronic obstructive pulmonary diseases (COPD) and more than

30% suffer from tobacco related diseases (lung cancer, COPD...). They have therefore been classified

as “hardcore” addicts in the medical literature (Le Faou et al. [2005] and Le Faou et al. [2008]).

[Table 1 inserted here]

In period 0, the prescription rate of varenicline was equal to 0% in control centers and to 0.01%

in treatment centers (varenicline was prescribed to 6 patients recorded in the last week of January

2007, that is to say right before the release of varenicline). In period 1, it was equal to 1.6% in control

centers and to 38.2% in treatment centers. This sharp rise in varenicline prescription in treatment

centers entailed a strong decrease in the prescription of other treatments such as nicotine patch.

Finally, from period 0 to 1, the point prevalence abstinence rate increased (from 53.7% to 56.9%) in

treatment centers, whereas it decreased (from 46.6% to 41.6%) in control centers. Among treatment

patients prescribed varenicline in period 0, abstinence rate was equal to 50.0%. Among control patients

prescribed varenicline in period 1, abstinence rate was equal to 58.3%. Applying the formulas of

section 2, I compute that B̂− = 19.1% (P-value = 0.008) and B̂+ = 24.5% (P-value = 0.001). Finally,

D̂ID

D̂IDP
= 22.7% (P-value=0.003).
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̂B0(M,m) is higher than Ê(Yt1,gt |D = 1) − 1 − ln(5299)√
5299

, and ̂B0(m,M) + ln(5299)√
5299

is lower than

Ê(Yt1,gt |D = 1). Consequently, the CI to be used for B− and B+ are CIA (see Proposition 5). Then,

using Proposition 3, I construct 3 CI for ATTt1,gt : CI1 =

[
LB

DID

DIDP

95 ;UB
DID

DIDP

95

]
= [7.8%; 37.5%],

CI2 =
[
LB

B−
95 ;UB

B+

95

]
= [5.0% : 38.6%], CI3 =

[
LB

B−
90 ;UB

B+

90

]
= [7.3% : 36.3%]. The uniform

convergence issue mentioned in Imbens and Manski [2004] shows up here since CI3 is shorter than

CI1. But here even CI2 is enough to infer the sign of ATTt1,gt .

Point identification of ATTt1,gt relies on a strong constant treatment effect assumption whereas

identification of [B−; B+] is obtained under much weaker assumptions. Moreover, inference on B̂−

is sufficient to draw inference on the sign of ATTt1,gt . Finally, even using CI2, inference on B̂− and

B̂+ yields a 95% CI for ATTt1,gt which is only slightly broader than the one obtained when drawing

inference on D̂ID

D̂IDP
. Therefore, one might consider that here, the parameters which achieve the best

trade-off between the accuracy of the information they deliver and the identifying assumptions on

which they rely are B̂− and B̂+ and not D̂ID

D̂IDP
.

4.3 Robustness checks

The only substantial assumption which is needed to identify [B−; B+] is the common trend

assumption. To “test” it, I use the fact that I have several years of data available and I compute placebo

DID from 2003 to 2008. They are displayed in the top panel of Table 2 along with their P-values.

Only the 2006-2007 DID is significant, which gives some credit to the common trend assumption. I

also compute 2006-2007 placebo DID on 9 patients’ observable characteristics. They are also displayed

in Table 2. This test is less conclusive since 2 DID out of 9 are significantly different from 0 at the

95% level. For instance, daily cigarettes smoked increased by 1.45 more among treatment centers than

among control centers patients from 2006 to 2007. Similarly, the percentage of patients suffering from

COPD increased by 4.4 percentage points more in treatment than in control services. This might

cast some doubt on the validity of the common trend assumption. However, the P-value of the DID

on the percentage of successful quits from 2006 to 2007 is still the lowest by far out of the 14 DID

computed in Table 2. Moreover, high number of daily cigarettes smoked and COPD are predictors of

unsuccessful quits. Since my fuzzy DID identification strategy does not correct for diverging trends on
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those variables, it might underestimate the true effect of varenicline.

Attrition seems orthogonal to the interaction of period 1 and treatment centers, since the DID

computed on the percentage of patients included is low and insignificant (+2.2%, P-value = 0.30).

Therefore, estimates do not seem contaminated by attrition bias. However, the delay between patients’

first visit and the last CO measure available increased more in treatment than in control clinics. This

is very likely to be because varenicline being a newly released drug with more severe secondary effects

than nicotine patch, doctors put more effort in following their patients over a longer period of time

to ensure they tolerate it well. Anyway, since smoking cessation is known to be a “duration” type

of process, observing patients over a longer period of time in period 1 than in period 0 in treatment

clinics can only bias downward my estimate.

Finally, one might worry about the arbitrariness of the definition of my treatment and control

groups which is not based on some objective characteristic of cessation services. I investigate the

sensitivity of the results to the 3%-20% rule as a robustness check. I ran the same analysis with 9

different pairs of thresholds and always got B̂− ≥ 0 with 6 P-values lower than 0.05. The results of

this last robustness check are displayed in the bottom panel of Table 2.

[Table 2 inserted here]

4.4 Why do treatment and control services have different prescription rates ?

Finally, I investigate where the difference in varenicline prescription rates across services comes

from. A first hypothesis is that this might be because services attend different type of patients with

different needs in terms of drug prescription. Simple probit regressions of varenicline prescription on

the 9 patients characteristics used above indicate that it is positively related to employment status,

daily cigarettes smoked and addiction levels. However, treatment and control patients consulted in

period 1 significantly differ only on cigarettes smoked (1 more cigarette smoked per day in treatment

services). Moreover, when the treatment clinics dummy is added to this probit regression model, the

pseudo R-squared rises from 0.02 to 0.29, which indicates that differences in varenicline prescription

across services cannot be explained only by the heterogeneity of patients attended.
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A second hypothesis is that professionals working in those clinics differ, either in terms of occupation,

qualifications or beliefs about effective ways of accompanying smoking cessation. Since no information

on professionals working in smoking cessations clinics is available in the CDT data base, a survey was

conducted to collect some information on them. Only 7 services (4 treatment and 3 control) out of the

28 included in the analysis answered to it. Still, the 4 treatment services recorded 1 612 patients over

period 0 and 1, that is to say 64.5% of the “treatment” sample, and the 3 control services recorded 1

828 patients, that is to say 65.3% of the control sample.

Information on 29 professionals was collected, 20 working in the control services, 9 working in the

treatment services. Since the number of patients recorded by each center varies a lot, and because inside

a given clinic professionals do not dedicate the same amount of time to smoking cessation consultations,

each of these 29 professionals is assigned a weight which proxies the percentage of patients in the sample

consulted by her. Let Ci denote the number of patients recorded by clinic i, Di,j denote the number

of days per week dedicated to smoking cessation consultations by professional j who works in clinic i.

Let C =
∑
i
Ci be the total number of patients in the sample and Di =

∑
j
Di,j be the total number of

days per week dedicated to smoking cessation consultations by professionals working in clinic i. Each

professional is assigned the weight wi,j = Ci
C ×

Di,j
Di

.

It appears that as per these weights, patients consulted in treatment clinics had a higher “probability”

of being consulted by a doctor (76% against 47%, P-value = 0.12). On the contrary, they had a lower

probability of being consulted by a psychologist (3% against 18%, P-value = 0.23) or by someone

trained to behavioral and cognitive therapies (4% against 48%, P-value = 0.006). Finally, treatment

services consulted 193 new patients per full time working professional in 2007, against only 75 in control

services.

Contrarily to nicotine replacement therapies, varenicline must be prescribed by a doctor. This

sharp difference in prescription rates across the two groups of centers might therefore come from the

lower proportion of doctors in control clinics. But patients consulted in those clinics still had a 47%

probability of being consulted by a doctor and only 1.6% were prescribed varenicline. A complementary

explanation is that there might be two approaches to smoking cessation among professionals. The first

approach, which seems to be more prominent in treatment clinics, puts the emphasis on providing
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patients pharmacotherapies to reduce the symptoms of withdrawal. The second approach, which seems

more prominent in control services, lays more the emphasis on giving them intensive psychological

support, hence the higher share of professionals trained to behavioral and cognitive therapies and the

lower number of patients consulted per professional.

5 Summary and conclusions

This paper provides new identification results applying to fuzzy DID. Most of them hold under

a common trend assumption on the outcome only, whereas the IV result commonly invoked in such

settings holds under two common trends (on the outcome and on the treatment) and a monotonicity

assumption. This single common trend assumption is sufficient to identify an ATT when there are

no always takers, or at least its sign when there are “few” of them. When the shares of always takers

are “large”, supplementary assumptions must be taken. For instance, identification of an ATT can be

obtained under the assumption that ATT do not vary across time and group. The milder assumption

that the ATT in the control group did not change from period 0 to 1 substantially improves partial

identification. This last result is of particular interest in applications considering the extension of a

policy because in such situations it is likely to yield a narrow identification region.

I present an application in which the bounds I derive allow drawing inference on the sign of an

ATT. This is because in this example, there are few always takers. Had there been more of them,

the identification region would have been too large to infer the sign of the ATT. Consequently, in a

fuzzy DID, common trend on Y is sufficient to obtain accurate information on the ATT when there are

few always takers, even if there are many never takers. Conversely, in applications with many always

takers, identification heavily relies on common trend on D and on monotonicity, or on alternative

assumptions (constant ATT across time and group, constant ATT in the control group...).
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Appendix A: multivariate treatment

Following Angrist and Imbens [1995], I assume that treatment is multivariate: D ∈ {0, 1, ...,K}. I

define the corresponding K + 1 potential outcomes of an individual: Y (k), k ∈ {0, 1, ...,K}. Only one

outcome is observed, which is denoted

Y = Y (0) + (Y (1)− Y (0))× 1{D=1} + ...+ (Y (K)− Y (0))× 1{D=K}

or alternatively

Y = Y (0) + (Y (1)− Y (0))× 1{D≥1} + ...+ (Y (K)− Y (K − 1))× 1{D≥K}.

I denote

DIDP = P(Dt1,gt > 0)− P(Dt0,gt > 0)− [P(Dt1,gc > 0)− P(Dt0,gc > 0)]

and

DIDD = E(Dt1,gt)− E(Dt0,gt)− [E(Dt1,gc)− E(Dt0,gc)] .

I also define two types of parameters of interest:

ACE1
i,j =

K∑
k=1

E(Yi,j(k)− Yi,j(0)|D = k)× P(Di,j = k)

P(Di,j > 0)

and

ACE2
i,j =

K∑
k=1

E(Yi,j(k)− Yi,j(k − 1)|D ≥ k)× P(Di,j ≥ k)

E(Di,j)

which are weighted sums of ATT with weights summing up to 1.

Under those notations, it can be shown that

Lemma 1’: Non identification.

Under A.1,

DID =
K∑
k=1

E(Yt1,gt(k)−Yt1,gt(k−1)|D ≥ k)×P(Dt1,gt ≥ k)−
K∑
k=1

E(Yt0,gt(k)−Yt0,gt(k−1)|D ≥ k)×P(Dt0,gt ≥ k)
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−
K∑
k=1

E(Yt1,gc(k)−Yt1,gc(k−1)|D ≥ k)×P(Dt1,gc ≥ k)+
K∑
k=1

E(Yt0,gc(k)−Yt0,gc(k−1)|D ≥ k)×P(Dt0,gc ≥ k)

and

DID =
K∑
k=1

E(Yt1,gt(k)−Yt1,gt(0)|D = k)×P(Dt1,gt = k)−
K∑
k=1

E(Yt0,gt(k)−Yt0,gt(0)|D = k)×P(Dt0,gt = k)

−
K∑
k=1

E(Yt1,gc(k)−Yt1,gc(0)|D = k)×P(Dt1,gc = k) +
K∑
k=1

E(Yt0,gc(k)−Yt0,gc(0)|D = k)×P(Dt0,gc = k),

so that none of the parameters of interest is identified.

Proposition 1’: Identification.

i) In the no always takers special case, A.1 is sufficient for ACE1
t1,gt and ACE

2
t1,gt to be identified.

ACE1
t1,gt =

DID

P(Dt1,gt > 0)

and

ACE2
t1,gt =

DID

E(Dt1,gt)
.

ii) Under A.1 and the supplementary assumption that

∀(i, j) ∈ {t0; t1}×{gc; gt} , ∀k ∈ {1, ...,K} ,E(Yi,j(k)−Yi,j(k−1)|D ≥ k) = E(Yt1,gt(1)−Yt1,gt(0)|D ≥ 1)

then

∀(i, j) ∈ {t0; t1} × {gc; gt} , ACE2
i,j =

DID

DIDD
.

Before stating Proposition 2’, I define the following function:

B0(u, v) =
DID+(E(Yt0,gt |D>0)−u)×P(Dt0,gt>0)+(E(Yt1,gc |D>0)−u)×P(Dt1,gc>0)−(E(Yt0,gc |D>0)−v)×P(Dt0,gc>0)

P(Dt1,gt=1) .

Proposition 2’: Partial identification.

i) Under A.1 and the supplementary assumption that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1,

B− ≤ ACE1
t1,gt ≤ B+.

B− = max
(
B0(M,m) ; E(Yt1,gt |D > 0)−M

)
and B+ = min

(
B0(m,M) ; E(Yt1,gt |D > 0)−m

)
,
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B− and B+ are sharp.

P(Dt0,gt > 0) + P(Dt1,gc > 0) + P(Dt0,gc > 0) ≤ P(Dt1,gt > 0) is a sufficient condition to have that at

least one of the two bounds is informative.

ii) Under A.1 and the supplementary assumptions that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1

and that ∀k ∈ {1, ...,K} , E(Yt0,gc(k)− Yt0,gc(0)|D = k) = E(Yt1,gc(k)− Yt1,gc(0)|D = k),

B
′
− ≤ ACE1

t1,gt ≤ B
′
+.

B
′
− = max

(
DID+(E(Yt0,gt |D>0)−M)×P(Dt0,gt>0)+A−

P(Dt1,gt>0) ; E(Yt1,gt |D > 0)−M
)
,

with

A− =
K∑

k=1

(
(max (E(Yt1,gc |D = k);E(Yt0,gc |D = k))−M)× 1{P(Dt1,gc=k)−P(Dt0,gc=k)>0}

)
×(P(Dt1,gc = k)− P(Dt0,gc = k))

+
K∑

k=1

(
(min (E(Yt1,gc |D = k);E(Yt0,gc |D = k))−m)× 1{P(Dt1,gc=k)−P(Dt0,gc=k)<0}

)
×(P(Dt1,gc = k)− P(Dt0,gc = k))

and

B
′
+ = min

(
DID+(E(Yt0,gt |D>0)−m)×P(Dt0,gt>0)+A+

P(Dt1,gt>0) ; E(Yt1,gt |D > 0)−m
)
,

with

A+ =
K∑

k=1

(
(min (E(Yt1,gc |D = k);E(Yt0,gc |D = k))−m)× 1{P(Dt1,gc=k)−P(Dt0,gc=k)>0}

)
×(P(Dt1,gc = k)− P(Dt0,gc = k))

+
K∑

k=1

(
(max (E(Yt1,gc |D = k);E(Yt0,gc |D = k))−M)× 1{P(Dt1,gc=k)−P(Dt0,gc=k)<0}

)
×(P(Dt1,gc = k)− P(Dt0,gc = k)).

B
′
− and B′+ are sharp.

P(Dt0,gt > 0) +
K∑
k=1

|P(Dt1,gc = k)− P(Dt0,gc = k)| ≤ P(Dt1,gt > 0) is a sufficient condition to have

that at least one of the two bounds is informative.

The only thing to be noted here is that the generalization of part ii) of Proposition 2 to multivariate

treatment requires an assumption even stronger than in the case of binary treatment: not only should

ATT be constant across time and group, but they should also be linear with respect to treatment doses

(E(Yi,j(k)− Yi,j(k − 1)|D ≥ k) = E(Yt1,gt(1)− Yt1,gt(0)|D ≥ 1)).

Appendix B: Explicit expression of Σ

Let
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X =
(
Y TG Y (1− T )G Y T (1−G) Y (1− T )(1−G) Y D(1− T )G YDT (1−G) Y D(1− T )(1−G)

DTG D(1− T )G DT (1−G) D(1− T )(1−G) TG (1− T )G T (1−G) (1− T )(1−G)

)′
Let us denote θ = E(X), V = V(X) , θ̂ the sample counterpart of θ and V̂ the sample counterpart of

V .

Since Y is bounded, all the coordinates of X have a variance. Therefore, according to the central limit

Theorem,
√
n(θ̂ − θ) d→ N (0, V ).

Let us denote

h(x) =


x1
x12
− x2
x13
− x3
x14

+
x4
x15

+
(
x5
x9
−M

)
× x9
x13

+
(
x6
x10
−M

)
×x10
x14
−
(
x7
x11
−m

)
×x11
x15

x8
x12

x1
x12
−M

 ,

which I define ∀x = (x1, x2, x3, x4x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15) ∈ R7 × (R∗)8.

θ ∈ R7 × (R∗)8 and h is continuously differentiable over R7 × (R∗)8 with jacobian H(x) ∈M2,15.

I can therefore apply the delta method to state that:

√
n

 ̂B0(M,m)−B0(M,m)

Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

 d→ N (0; Σ)

where Σ = H(θ)V H(θ)′.

A consistent estimator of Σ is Σ̂ = H(θ̂)V̂ H(θ̂)′.

Appendix C: proofs

Proof of Lemma 1:

∀(i, j) ∈ {t0; t1} × {gc; gt} , Yi,j = Yi,j(1)×D + Yi,j(0)× (1−D) = (Yi,j(1)− Yi,j(0))×D + Yi,j(0),

then,

DID = E [(Yt1,gt(1)− Yt1,gt(0))D]− E [(Yt0,gt(1)− Yt0,gt(0))D]
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−E [(Yt1,gc(1)− Yt1,gc(0))D] + E [(Yt0,gc(1)− Yt0,gc(0))D]

+E(Yt1,gt(0))− E(Yt0,gt(0))− E(Yt1,gc(0)) + E(Yt0,gc(0)).

Under A.1,

E(Yt1,gt(0))− E(Yt0,gt(0))− E(Yt1,gc(0)) + E(Yt0,gc(0)) = 0.

Thus

DID = E(Yt1,gt(1)− Yt1,gt(0)|D = 1)× P(Dt1,gt = 1)− E(Yt0,gt(1)− Yt0,gt(0)|D = 1)× P(Dt0,gt = 1)

− [E(Yt1,gc(1)− Yt1,gc(0)|D = 1)× P(Dt1,gc = 1)− E(Yt0,gc(1)− Yt0,gc(0)|D = 1)× P(Dt0,gc = 1)] , (2)

hence the result.

QED.

Proof of Proposition 1:

Proof of i)

In the “no always takers” special case, P(Dt0,gt = 1), P(Dt1,gc = 1) and P(Dt0,gc = 1) are all equal to

0. Therefore, (2) can be rewritten as

DID = E(Yt1,gt(1)− Yt1,gt(0)|D = 1)× P(Dt1,gt = 1),

hence the result.

Proof of ii)

From (2),

DID = ATTt1,gt×P(Dt1,gt = 1)−ATTt0,gt×P(Dt0,gt = 1)−ATTt1,gc×P(Dt1,gc = 1)+ATTt0,gc×P(Dt0,gc = 1).

If ∀(i, j) ∈ {t0; t1} × {gc; gt} , ATTi,j = ATT , then,

DID = ATT ×DIDP ,

25



hence the result.

QED.

Proof of Proposition 2:

Proof of i)

Assume that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1. I denote

A = E(Yt0,gt(0)|D = 1)×P(Dt0,gt = 1)+E(Yt1,gc(0)|D = 1)×P(Dt1,gc = 1)−E(Yt0,gc(0)|D = 1)×P(Dt0,gc = 1).

This is the only quantity appearing in (2) which cannot be estimated from the sample and therefore

needs to be bounded.

Since m ≤ Y (0) ≤M , A−1 ≤ A ≤ A
+
1 , with

A−1 = m× P(Dt0,gt = 1) +m× P(Dt1,gc = 1)−M × P(Dt0,gc = 1)

and

A+
1 = M × P(Dt0,gt = 1) +M × P(Dt1,gc = 1)−m× P(Dt0,gc = 1).

But for bounds to be sharp, the common trend assumption should hold, which implies:

0 = E(Yt1,gt(0)|D = 1)× P(Dt1,gt = 1) + E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1))

−E(Yt0,gt(0)|D = 1)× P(Dt0,gt = 1)− E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1))

−E(Yt1,gc(0)|D = 1)× P(Dt1,gc = 1)− E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1))

+E(Yt0,gc(0)|D = 1)× P(Dt0,gc = 1) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1)).

The only quantity in this equation which is both unobserved and does not enter into (2) is E(Yt1,gt(0)|D =

1). For common trend to hold, it should be equal to

A+ E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1)) + E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1))

P(Dt1,gt = 1)

26



−E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1)) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1))

P(Dt1,gt = 1)
.

Since m ≤ E(Yt1,gt(0)|D = 1) ≤M , this implies that we should have A−2 ≤ A ≤ A
+
2 , with

A−2 = m×P(Dt1,gt = 1)−E(Yt0,gt |D = 0)× (1−P(Dt0,gt = 1))−E(Yt1,gc |D = 0)× (1−P(Dt1,gc = 1))

+E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1)) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1))

and

A+
2 = M ×P(Dt1,gt = 1)−E(Yt0,gt |D = 0)× (1−P(Dt0,gt = 1))−E(Yt1,gc |D = 0)× (1−P(Dt1,gc = 1))

+E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1)) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1)).

Consequently, we should have

max(A−1 ;A−2 ) ≤ A ≤ min(A+
1 ;A+

2 ). (3)

Combining (2) and (3) and rearranging yields B− and B+, which are sharp by construction.

I show now that if none of the two bounds is informative then PAT > P(Dt1,gt = 1). If B− and B+

are uninformative we have B0(M,m) < E(Yt1,gt |D = 1) −M and B0(m,M) > E(Yt1,gt |D = 1) −m.

Subtracting those two inequalities yields PAT > P(Dt1,gt = 1). This implies that PAT ≤ P(Dt1,gt = 1)

is a sufficient condition to have that at least one of the two bounds is informative.

To show that this condition is not sufficient to have that the two bounds are informative, it suffices to

consider the following DGP. M = 1, m = 0, P(Dt1,gt = 1) = 1, P(Dt0,gt = 1) = P(Dt1,gc = 1) = 0.1,

P(Dt0,gc = 1) = 0, E(Yt1,gt(1)|D = 1) = E(Yt1,gt(0)|D = 1) = 1, E(Yt0,gt(0)|D = 1) = E(Yt1,gc(0)|D =

1) = 0.5, E(Yt0,gt(0)|D = 0) = E(Yt1,gc(0)|D = 0) = 1, E(Yt0,gc(0)|D = 0) = 0.9. Those are all

the quantities which are needed to compute B− since the remaining expectations cancel out in the

calculation. PAT = 0.2 ≤ P(Dt1,gt = 1) = 1, the common trend assumption holds (1×1−0.5×0.1−1×

0.9− 0.5× 0.1− 1× 0.9 + 0.9 = 0), and B− is not informative since it is equal to E(Yt1,gt |D = 1)−M .

Proof of ii)
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If ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1,

E(Yt1,gc |D = 1)−M ≤ ATTt1,gc ≤ E(Yt1,gc |D = 1)−m

and

E(Yt0,gc |D = 1)−M ≤ ATTt0,gc ≤ E(Yt0,gc |D = 1)−m.

If ATTt1,gc = ATTt0,gc = ATTgc , these two inequalities imply that

max (E(Yt1,gc |D = 1);E(Yt0,gc |D = 1))−M ≤ ATTgc

and

ATTgc ≤ min (E(Yt1,gc |D = 1);E(Yt0,gc |D = 1))−m.

Moreover from (2) we get:

ATTt1,gt =
DID +ATTt0,gt × P(Dt0,gt = 1) +ATTgc × (P(Dt1,gc = 1)− P(Dt0,gc = 1))

P(Dt1,gt = 1)
.

Therefore, combining this last equality with the two preceding inequalities yields B1 and B2 as lower

or upper bounds to ATTt1,gt depending on the sign of P(Dt1,gc = 1)− P(Dt0,gc = 1). For some DGP,

min(B1;B2) might be smaller than E(Yt1,gt |D = 1) −M , which means that min(B1;B2) is not a

sharp lower bound, hence the need to set B′− = max
(
min(B1;B2);E(Yt1,gt |D = 1)−M

)
to ensure

sharpness.

Finally, I show that P(Dt0,gt = 1) + |P(Dt1,gc = 1)− P(Dt0,gc = 1)| ≤ P(Dt1,gt = 1) is a sufficient

condition to have that at least one of the two bounds is informative. Assume P(Dt1,gc = 1)−P(Dt0,gc =

1) ≥ 0. None of the two bounds is informative if B1 < E(Yt1,gt |D = 1) −M and B2 > E(Yt1,gt |D =

1)−m. Subtracting those two inequalities yields

(M −m)× (P(Dt0,gt = 1) + P(Dt1,gc = 1)− P(Dt0,gc = 1))

+ (min (E(Yt1,gc |D = 1);E(Yt0,gc |D = 1))−max (E(Yt1,gc |D = 1);E(Yt0,gc |D = 1)))×(P(Dt1,gc = 1)− P(Dt0,gc = 1))
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> (M −m)× P(Dt1,gt = 1) (4)

Since (4) is a necessary condition to have that none of the bounds is informative, the converse inequality

is sufficient to have that at least one of the two bounds is informative. But P(Dt0,gt = 1) + P(Dt1,gc =

1) − P(Dt0,gc = 1) ≤ P(Dt1,gt = 1) implies the converse inequality, hence the result. The proof is

symmetric if P(Dt1,gc = 1)− P(Dt0,gc = 1) < 0.

QED.

Proof of Proposition 3:

Proof of i)

Under A.1 and the supplementary assumptions that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1, ATTt1,gt ∈

[B−;B+] according to the first part of Proposition 2.

lim
n→+∞

P(ATTt1,gt ≥ LB
B−
(1−α)) ≥ lim

n→+∞
P(B− ≥ LBB−

(1−α)) = 1− α

2
.

Similarly,

lim
n→+∞

P(ATTt1,gt ≤ UB
B+

(1−α)) ≥ 1− α

2

which implies that

lim
n→+∞

P(LB
B−
(1−α) ≤ ATTt1,gt ≤ UB

B+

(1−α)) ≥ 1− α.

Therefore, CI2 =
[
LB

B−
(1−α);UB

B+

(1−α)

]
is a CI for ATTt1,gt with (1− α)% asymptotic coverage.

Then, consider P(UB
B−
(1−2α) ≤ ATTt1,gt ≤ UB

B+

(1−2α)).

If ATTt1,gt = B−,

lim
n→+∞

P(UB
B−
(1−2α) ≤ B− ≤ UB

B+

(1−2α)) = lim
n→+∞

P(UB
B−
(1−2α) ≤ B−)− lim

n→+∞
P(B− > UB

B+

(1−2α)) = 1− α

since the second term converges to 0.

If ATTt1,gt = B+, the same argument holds and lim
n→+∞

P(UB
B−
(1−2α) ≤ ATTt1,gt ≤ UB

B+

(1−2α)) = 1 − α

as well.
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If B− < ATTt1,gt < B+,

lim
n→+∞

P(UB
B−
(1−2α) ≤ ATTt1,gt ≤ UB

B+

(1−2α))

= lim
n→+∞

P(UB
B−
(1−2α) ≤ ATTt1,gt)− lim

n→+∞
P(ATTt1,gt > UB

B+

(1−2α)) = 1.

Therefore, lim
n→+∞

P(UB
B−
(1−2α) ≤ ATTt1,gt ≤ UB

B+

(1−2α)) ≥ 1− α whatever the value of ATTt1,gt so that

CI3 =
[
LB

B−
(1−2α);UB

B−
(1−2α)

]
is also a CI for ATTt1,gt with (1− α)% asymptotic coverage.

Proof of ii)

The proof follows the same steps as in i), once noted that under A.1 and the supplementary assumptions

that ∃(m, M) ∈ R2/∀k ∈ {0; 1} P(m ≤ Y (k) ≤ M) = 1 and that ATTt1,gc = ATTt0,gc , ATTt1,gt ∈[
B
′
−;B

′
+

]
as per the second part of Proposition 2.

QED.

Proof of Proposition 4:

By the delta method,
√
n
(

̂B0(M,m)−B0(M,m)
)

d→ N (0;σ21).

By the central limit theorem,

√
n
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

)
d→ N (0;σ22).

If B0(M,m) > E(Yt1,gt |D = 1)−M ,

√
n
(
B̂− −B−

)
=
√
n
(
max

(
̂B0(M,m); Ê(Yt1,gt |D = 1)−M

)
−max

(
B0(M,m);E(Yt1,gt |D = 1)−M

))

=
√
n
(

̂B0(M,m)−B0(M,m)
)

+
√
n
(
max

(
̂B0(M,m); Ê(Yt1,gt |D = 1)−M

)
− ̂B0(M,m)

)
.

The second term is op(1) because max
(

̂B0(M,m); Ê(Yt1,gt |D = 1)−M
)

= ̂B0(M,m) with probabil-

ity approaching 1. This implies the result.

If B0(M,m) < E(Yt1,gt |D = 1)−M , the proof is symmetric.
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If B0(M,m) = E(Yt1,gt |D = 1)−M ,

√
N
(
B̂− −B−

)
= max

(√
N
(

̂B0(M,m)−B0(M,m)
)

;
√
N
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

))
.

Due to the continuous mapping Theorem,

max
(√

N
(

̂B0(M,m)−B0(M,m)
)

;
√
N
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

))
↪→ S1 =

(
max

(
N1;N2

))

where
(
N1 N2

)′
∼ N (0,Σ).

QED.

Proof of Proposition 5:

P(B− ∈ CI) = P
(
B− ∈ CIA | Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

< ̂B0(M,m)

)
×P
(
Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

< ̂B0(M,m)

)

+P
(
B− ∈ CIB | Ê(Yt1,gt |D = 1)−M − ln(n)√

n
≤ ̂B0(M,m) ≤ Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

)

×P
(
Ê(Yt1,gt |D = 1)−M − ln(n)√

n
≤ ̂B0(M,m) ≤ Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

)

+P
(
B− ∈ CIC | ̂B0(M,m) +

ln(n)√
n
<Ê(Yt1,gt |D = 1)−M

)
×P

(
̂B0(M,m) +

ln(n)√
n
<Ê(Yt1,gt |D = 1)−M

)
.

If B0(M,m) > E(Yt1,gt |D = 1)−M ,

P
(
Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

< ̂B0(M,m)

)

= P
(√

n
([

̂B0(M,m)−B0(M,m)
]
−
[
Ê(Yt1,gt |D = 1)− E(Yt1,gt |D = 1)

])
> ln(n)−

(
B0(M,m)− (E(Yt1,gt |D = 1)−M)

)√
n
)

I denote Vn this sequence.

lim
n→+∞

ln(n)−
(
B0(M,m)− (E(Yt1,gt |D = 1)−M)

)√
n = −∞.

Consequently, ∀x ∈ R, ∃n0 ∈ N/n ≥ n0 ⇒

P
(√

n
(

̂B0(M,m)−B0(M,m)
)
−
√
n
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

)
> x

)
≤ Vn
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Therefore,

lim
n→+∞

P
(√

n
(

̂B0(M,m)−B0(M,m)
)
−
√
n
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

)
> x

)
≤ lim

n→+∞
Vn

A delta method and the central limit theorem imply that

lim
n→+∞

P
(√

n
(

̂B0(M,m)−B0(M,m)
)
−
√
n
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

)
> x

)
= 1−F (x),

where F (.) is the cdf of a random variable with a normal distribution.

Since this holds ∀x ∈ R, we can let x go to −∞ which yields 1 ≤ lim
n→+∞

Vn. Therefore,

lim
n→+∞

P
(
Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

< ̂B0(M,m)

)
= 1,

which implies that

lim
n→+∞

P
(
B− ∈ CIB | Ê(Yt1,gt |D = 1)−M − ln(n)√

n
≤ ̂B0(M,m) ≤ Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

)
= 0

and

lim
n→+∞

P
(

̂B0(M,m) +
ln(n)√
n
<Ê(Yt1,gt |D = 1)−M

)
= 0.

Consequently,

lim
n→+∞

P(B− ∈ CI) = lim
n→+∞

P
(
B0(M,m) ∈ CIA

)
= 1− α.

If B0(M,m) = E(Yt1,gt |D = 1)−M or B0(M,m) < E(Yt1,gt |D = 1)−M, the same type of reasoning

yields lim
n→+∞

P(B− ∈ CI) = 1− α which completes the proof.

QED.
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Tables

Table 1: Descriptive Statistics

 Whole sample Test Centers Control Centers 
  2006 2007 P-value 2006 2007 P-value 

        

Patients’ characteristics        

% males 48.8% 47.9% 47.9% 0.98 48.5% 50.4% 0.30 

Age 44.1 44.6 43.7 0.08 44.0 44.3 0.52 

% employed 67.3% 65.3% 68.3% 0.11 65.3% 69.8% 0.01 

% with no degree 17.0% 19.2% 21.0% 0.25 14.2% 14.1% 0.98 

Daily cigarettes smoked 21.6 21.7 21.93 0.60 22.1 20.9 <0.01 

FTND 5.9 5.8 5.8 0.29 6.0 5.9 0.11 

% with AHAD>=11 39.8% 40.3% 39.1% 0.54 42.2% 37.7% 0.01 

% with DHAD>=11 11.9% 13.1% 11.7% 0.29 11.6% 11.2% 0.72 

% with chronic obstructive pulmonary diseases 16.7% 16.2% 18.1% 0.19 17.5% 15.1% 0.09 

        

Treatment prescribed        

% prescribed nicotine patch 53.4% 75.0% 45.5% <0.001 45.9% 49.7% 0.05 

% prescribed varenicline 10.0% 0.01% 38.2% <0.001 0% 1.6% <0.001 

        

Cessation Outcome        

Number of days between the first visit and the last CO measure 86.7 89.3 96.7 0.05 84.8 77.6 0.03 

% of successful quits 49.3% 53.7% 56.9% 0.11 46.6% 41.6% <0.01 

        

N 5 299 1 195 1 303  1 300 1 501  
1FTND stands for Fagerström Test for Nicotine Dependence and is a measure of patients’ degree of addiction. 
2AHAD is the anxiety scale in the Hospital Anxiety Depression (HAD) scale, scored from 0 to 21, which is used to identify 
individuals with anxio-depressive disorders, with a threshold score of 11 (see Zigmond et al. [1983]). 
3DHAD is the depression scale in the Hospital Anxiety Depression (HAD) scale, scored from 0 to 21, which is used to 
identify individuals with anxio-depressive disorders, with a threshold score of 11 (see Zigmond et al. [1983]). 
4CO stands for carbon monoxide which is a biomarker for tobacco use. 

35



Table 2: Robustness Checks

  

 Common Trend 

    

 Diff in diff P-value N 

2003-2004 0.045 0.36 1 580 

2004-2005 0.032 0.46 2 499 

2005-2006 0.042 0.19 4 136 

2006-2007 0.082 0.003 5 299 

2007-2008 -0.043 0.17 4 400 

  

 Placebo DID 

    

 Diff in diff P-value N 

Patients’ observable characteristics    

% Males -0.020 0.46 5 299 

Age -1.153 0.08 5 298 

% employed -0.015 0.57 5 299 

% with no degree 0.019 0.36 5 299 

Daily cigarettes smoked 1.454 0.02 5 299 

FTND 0.237 0.06 5 299 

% with AHAD>=11 0.033 0.22 5 299 

% with DHAD>=11 -0.010 0.59 5 299 

% with chronic obstructive pulmonary diseases 0.043 0.04 5 299 

Measurement of smoking status    

Number of days between the first visit and the last CO measure 14.653 0.004 5 299 

% included 0.022 0.30 8 581 

    

 P-value of B_ according to inclusion threshold 

   

  Test centers thresholds 

  Threshold 1: 15% Threshold 2: 20% Threshold 3: 25% 

 Threshold 1: 2% 0.04 0.03 0.04 

Control centers thresholds 
 

Threshold 2: 3% 0.01 0.01 0.02 

 Threshold 3: 4% 0.11 0.08 0.14 
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Figures

Figure 1: Density of the prescription rate of varenicline
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