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Abstract

This paper considers the issue of measuring segregation in a population of units that

contain few individuals (e.g. establishments, classrooms, ...). When units are small,

the usual indices based on sample proportions are biased. We propose a parametric

solution: the probability to belong to the minority is assumed to be distributed as

a mixture of two beta distributions. The model is estimated and indices are then

deduced. Simulations show that this new method performs well compared to existing

methods, even in the case of misspecification. An application to residential segregation

in France according to parents’ nationalities is then proposed.
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similarity index.
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1 Introduction

Designing public policies facilitating minorities’ social attainment implies understanding

their concentration pattern. Knowing how minority groups are spread across schools,

firms, neighborhoods is a preliminary step to decision making. There exists an immense

number of segregation indices, each with its own properties, which can be used to account

for the various dimensions of segregation.1 However, when units contain few individuals,

these indices, because they rely on sample proportions, are poor estimates of the actual

level of segregation. Economists and social scientists interested by the distribution of em-

ployees across firms, pupils across schools or classrooms, or inhabitants across districts

or buildings, may be directly affected by this small-unit bias.2 The bias is even stronger

when the minority group under interest is relatively rare in the total population.

All segregation measures rely on the fact that the observed proportion of the minority

group in each unit is a good estimate of the true unobserved probability that a member of

this unit belongs to the minority group. When units are small, this assumption may not

be realistic. First, assume that the population is made of two equally sized groups (think

of men and women, for instance), evenly distributed across units. Given that units have

a finite size, observed proportions of each group obviously vary around an average of one

half. The smaller the sample in each unit, the higher the variance of these observed pro-

portions are around the true value, one half. This issue is amplified when the population

of interest is relatively rare. For instance, let us assume that a minority group represent

5% of total population, that groups are evenly distributed across units, and that, in every

units, there are ten observations. Mechanically, it is impossible to observe proportions

of one twentieth in these units: only 0, .1, and more rarely .2 or .3, will be observed.

Thus, segregation indices are biased when units are small, and this bias increases with the

scarcity of the population of interest.

This issue has been first explicited in Cortese, Falk, and Cohen (1976). This text, written

1Massey and Denton (1988) attempt to list the dimensions of segregation. More axiomatic approches
are also used to categorize segregation indices; see e.g. James and Taeuber (1985) or Hutchens (2004).

2See Carrington and Troske (1995), Kremer and Maskin (1996), Kramarz, Lollivier, and Pelé (1996),
Carrington and Troske (1998a), Carrington and Troske (1998b), Bayard, Hellerstein, Neumark, and Troske
(1999) and Hellerstein and Neumark (2008) for examples of studies dealing with workplace segregation.
Allen, Burgess, and Windmeijer (2009) or Söderström and Uusitalo (2010) are attempts to account for the
small-unit bias in the context of school segregation.
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at the climax of the “Index War” that opposed in the late sixties and the seventies several

social scientists, mainly sociologists, about the meaning of the dissimilarity index and its

appropriateness as a measure of spatial segregation, is the first to mention that it might be

sensible to separate randomness from evenness. What they meant is that the index value

should not be compared to zero (the even case) but to the positive value of the index that

would be measured if groups were randomly allocated across units. The idea was further

explicited in Winship (1977), who proposed an adjusted index that would equal zero in

a situation of randomness, instead of evenness. Carrington and Troske (1997) – hereafter

CT – develop this idea and introduce a corrected index, close to Winship’s one. Their

method is the most frequently used in the applied econometrics literature. Allen, Burgess,

and Windmeijer (2009) – hereafter ABW – propose to correct indices by a bootstrap pro-

cedure and provide simulations that prove its efficiency in removing the small-unit bias.

Interestingly, their work emphasizes the issue of inference and proposes statistical tests of

segregation.

The main contribution of our paper is to propose a simple parametric approach to remedy

the small-unit issue. The approach developed here is based on the estimation of a model

generating the probability that an individual in a given unit belongs to the minority group.

This probability, which is treated here as a random variable, is assumed to be distributed

according to a mixture of two beta distributions whose parameters are to be estimated,

taking explicitly into account the fact that smaller units offer less precision. This model

is an extension of the beta-binomial model, which was introduced by Skellam (1948) and

has been used for decades in contexts as diverse as marketing, education and epidemiology

(Lee and Sabavala (1987) propose a short review of this literature). Its main advantage

is to offer an appreciable trade-off between flexibility, as the mixture of two beta distri-

butions is appropriate to approximate many kinds of distributions over the [0, 1] segment,

and parcimony, as the distribution is summed up by only five parameters. Once the pa-

rameters of the distribution are estimated, it is easy to compute concentration indices.

Bootstrap is used to provide for inference in this framework.

I also compare the performances of the main existing methods. The CT method is shown

to be biased when applied to the dissimilarity index, except when the underlying distri-
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bution is discrete with three masspoints – on 0, 1, and the mean of the distribution. For

every other distribution, the dissimilarity index corrected with the CT method is found

to be below the true value. Simulations are also run in order to compare the methods

proposed by CT and ABW to the one that I propose here, for the dissimilarity, the Gini

and the Theil indices. These simulations show that the correction method relying on the

estimation of the beta mixture performs well in various cases, including those in which

the parametric model is misspecified. The CT method frequently overcorrects the dissim-

ilarity and the Gini indices, but achieves satisfying results for the Theil index. The ABW

method seems to work well, except when the true level of segregation is low and when the

underlying distribution is discrete.

Finally, the beta-mixture correction method is applied to measure the residential segrega-

tion of first- and second-generation migrants, according to their country of origin, in the

French case. This case illustrates well the small-unit issue. The only available data that

allows one to tackle the issue of residential segregation of second-generation migrants is

a survey in which the number of individuals by unit is equal to 30 on average. Besides,

the groups of interest represent only a few percents of the total population. The gap

between directly-computed indices and corrected ones is found to be large and the rank

of the indices between groups to be altered by the bias. French individuals whose parents

are African immigrants are shown to experience the highest levels of segregation, amongst

the non-immigrant groups. Amongst the immigrants, the Asians are the most segregated

population.

The next section shows how standard indices behave in the context of small-size units and

motivates the relevance of considering alternative approaches. Existing methods which

account for the bias are then presented and some of their advantages and drawbacks

explicited. Section 3 presents the new method introduced in this paper, how to estimate the

distribution parameters, how to derive concentration indices, and how to infer confidence

intervals for each quantity. Section 4 displays the performance of the proposed approach

on simulated data, whether the model is correctly specified or not. A comparison with

other methods is also provided. Section 5 presents an application to the issue of ethnic

4



residential segregation in the French case. Segregation indices according to parents’ origin

are computed, using sampling units of the French Labor Force Surveys.

2 The problem and its existing solutions

As surveyed in the widely cited contributions by James and Taeuber (1985) or Massey

and Denton (1988), concentration indices are useful tools to capture the unevenness of

the distribution of different groups in different units. These units may be, in practice,

occupations, industries, firms, schools as well as neighborhoods or metropolitan areas.

Populations may be defined according to gender, nationality, ethnicity, social status... In

the case of gender, one may expect that the proportions of each group in units oscillate

around one half. In the case of nationality, proportions close to zero frequently occur.

2.1 Statistical framework

A population is assumed to be split into two groups, a group of interest and the rest of

the population, and to be geographically distributed across A units a = 1 . . . A. In the

present analysis, the number of individuals in unit a, denoted as Ma, are drawn from a

given, unknown distribution. The number of units with M individuals is denoted AM .

Now assume that there exists a random variable p taking values in (0, 1), that represents

the probability for an individual of a given unit to be a member of the population of

interest. The cdf of p is denoted by Fp(.). pa are realizations of this random variable.

Unfortunately, while Ma are perfectly observed, pa are not. What is observed, in each

unit, is the realization Na of a Binomial(Ma, pa): the number of individuals in unit a

that belong to the group of interest. The quantity that is usually used to estimate pa is

πa = Na/Ma, the observed sample proportion of the population of interest in unit a. Note

that πa is unbiased and that, when the number of individuals in unit a Ma goes to infinity,

πa is a consistent estimator of pa.

This work is focused on the measure of segregation of the population of interest across

units. To do so, many indices may be used in practice. For the sake of concision, only

three of them, amongst the most frequent ones, are considered in this work: the Gini, the

dissimilarity (or Duncan) and the Theil index. The notation I is used to refer to any of
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them. A segregation index is a real-valued functional from the space of the distributions

defined on the interval [0, 1]. Most indices are defined to that they take value on the

interval [0, 1]. The quantity of interest of this work is I(Fp), the index computed on the

distribution Fp of rv p.

In most applied cases, the number of units A is large; in what follows, asymptotic values

are obtained for A tends to infinity, with Ma fixed. When A is large, E(p) is identified:

the sample mean
∑

aNa/
∑

aMa tends to E(p) when A tends to infinity, regardless of the

unit size. In this case of large A, observing the true probabilities pa would be a sufficient

condition to obtain a fairly good estimate of I(Fp). The issue is that, whenever Ma are

small, πa are going to be poor estimates of pa and direct indices poor estimates I(Fp). In

particular, previous works documented that large biases were to be expected when Ma is

small and pa is close to 0 or 1.

2.2 Three indices

Even if most of the analysis presented in this work can be carried out with any concen-

tration or segregation index, three of them will be used in what follows: the Gini index,

the dissimilarity index, and the Theil index.

The indices can be expressed of functions of Fp and E(p).

G =
1− E(p)− ∫ 1

0 F 2
p

E(p)(1− E(p))

D =

∫ 1
0 |z − E(p)|dFp(z)

2E(p)(1− E(p))

H = 1−
∫ 1
0 z log zdFp(z) +

∫ 1
0 (1− z) log(1− z)dFp(z)

E(p) logE(p) + (1− E(p)) log(1− E(p))

The sample versions of these indices are often computed, based on the observationsMa and

Na, and defining p̄ =
∑

aNa/
∑

aMa as the sample analog of E(p) and wa = Ma/
∑

a′ Ma′

as the weight of unit a in the sample. These sample versions are referred as “direct” or

“naive” in what follows as they ignore the small-unit issue.

6



G̃ =
1

2p̄(1− p̄)

∑
a

∑
a′

wawa′ p̄(1− p̄)

D̃ =
1

2p̄(1− p̄)

∑
a

wa |πa − p̄|

H̃ = 1−
∑
a

wa
πa log πa + (1− πa) log(1− πa)

p̄ log p̄+ (1− p̄) log(1− p̄)

2.3 The small-unit bias of segregation indices

Segregation measurement using indices suffers from a series of limitations. Duncan and

Duncan (1955) list some of them, without giving much formalization. They mention that

small unit size might matter for how the indices values are interpreted. Cortese, Falk,

and Cohen (1976) and Cortese, Falk, and Cohen (1978) are the first to pinpoint this par-

ticular issue. Their work makes it clear that there exists a difference between evenness

and random allocation. Evenness refers to actual equality: if firms have ten employees

and if there are as many men and women in the working population, evenness occurs if

there are exactly five men and five women in each firm. Random allocation implies that

the probabilities for a given individual to be a woman (or a man) are equal in all firms,

even if strict equality is not reached. Indices computed using the direct formulas provide

information about the distance to evenness whereas practitioners are more interested in

the distance to random allocation. The issue is evoked in similar terms in Winship (1977),

which, in line with Cortese, Falk, and Cohen (1976), asserts that randomness is a more

relevant reference than evenness. Morgan and Norbury (1981) proposes an extension of

Winship’s framework to the case in which there are more than two groups involved in the

index. More recently, the issue has been revived by econometricians, namely by CT and

ABW.

In statistical terms, segregation indices computed from observed proportions are biased

when units are of finite size. This is because the observed proportions πa are used to

estimate the true probabilities pa for an individual in the unit a to belong to the group of

interest. The bias exists, but how large is it? Say that the population is divided into two

groups and spread over 10,000 units. The true probability for an individual to belong to

the group of interest is assumed to be equal across units: pa = p̄, ∀a. This represents the
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no-segregation case, that is, the case in which both groups are equally spread across units.

The size of the units is another parameter, also assumed equal in all units: Ma = M, ∀a.
In a first set of simulations, p̄ is set to .05, .2 and .5, while M is set to 2, 3, 4 . . . 20. In a

second set of simulations, M is set to 3, 10 and 20, while M is set to .025, .05, .075 . . . .5.

At each step, 1,000 simulations are performed.3 For each simulation, the whole distribu-

tion of the individuals is drawn randomly according to the parameters. Then, the index

is computed; in this example, the dissimilarity index.

Figure 1 plots the mean value of the dissimilarity index in each case. As these simulations

are made under the assumption that there is no segregation, the value of the index must

be interpreted as bias. Three conclusions need to be drawn from this figure.4

• First, the magnitude of the bias, around .5 for units of 15 people and a minority

proportion of 5%, makes it an issue one cannot neglect.

• When the probability is kept constant, the bias decreases with the unit size.

• When the unit size is kept constant, the bias decreases with the group proportion un-

til this proportion is equal to 50% and increases afterwards. The curve is symmetric

around the equiprobability of the groups.

2.4 The main existing methods to account for small-unit bias

2.4.1 The linear correction proposed by Carrington and Troske (1997)

CT propose to adjust the index by subtracting the value of the index obtained under ran-

dom allocation from the segregation index and to normalize the result so that it ranges from

0 to 1.5 The method proposed in CT has been used in several applied works, by the au-

thors themselves (Carrington and Troske 1998a), and also, for example, by Hellerstein and

Neumark (2008), Dustmann, Glitz, and Schönberg (2009), Persson and Sjögren Lindquist

(2010) or Söderström and Uusitalo (2010). Their method has also been extended to the

measurement of conditional segregation by Åslund and Skans (2009).

3All computations, simulations, estimations, graphical outputs have been made using the statistical
software R; see R Development Core Team (2010). All programs are available from the author.

4The same kind of figure and conclusions can be found in Cortese, Falk, and Cohen (1976) and CT.
5Cortese, Falk, and Cohen (1976) proposed a similar method except that the difference is divided by

the standard error. Winship (1977) proposed a solution similar to one of CT.
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Figure 1: Mean bias of the dissimilarity index by group proportion and unit size, in the
no-segregation case
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The conditions under which the CT correction allows them to get rid of the small-unit

bias are not explicited in their paper. In which case is the CT estimator consistent? Let

us introduce a few notations. For any index, Ĩ refers to the index computed based on a

sample of (Na,Ma){a=1...A}; this is the direct or naive measure of segregation. Note that,

as a function of the sample values, this index is itself a random variable. As such, one

will be interested in the properties of its probability limit, plimĨ, when the number of

units A goes to infinity (but not the number of individuals per unit). Conversely, I refers

to the unfeasible index, computed using the true pa, invisible to the practitioner. I is

also a rv and one will be interested on the properties of plimI. Finally, I∗ denotes the

random-allocation value of the index. Formally, the random-allocation value is defined as

the probability limit of Ĩ, when all units are assigned the same probability pa = p̄.

The CT corrected index is denoted by:

ICT
.
=

Ĩ − I∗

1− I∗

Most segregation indices take values between zero and one. Zero segregation occurs when,

in all units, the probability is equal to the expectation p̄. This distribution is denoted as

Dp̄. In this case, for all samples, I = plimI = 0 and plimĨ = I∗. Maximum segregation

occurs when the two populations do not cohabit, so that, in some units pa = 1, while in

the others, pa = 0. This two-masspoint distribution is denoted as D0,1(p̄), where p̄ stands

for the expectation of the distribution and in this case the weight on masspoint 1. In this

case, for all samples, I = plimI = Ĩ = plimĨ = 1.

Let us introduce the distribution defined as the mixture between these two discrete dis-

tributions, which plays a key role for the CT correction. In the non-degenerate case, a

three-masspoint distribution is obtained, denoted as D0,p̄,1(w), where w is the weight on

the distribution Dp̄ and (1−w) is the weight on the distribution D0,1(p̄). This distribution

is always of expectation p̄, and its variance varies from 0, when w = 1, to p̄(1− p̄), when

w = 0.

The performance of the method proposed by CT depends on the true distribution of p
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and on which index one attempts to compute. Three conclusions can be established for

the Theil and the dissimilarity index.6

• When the true distribution is one of the family D0,p̄,1(w), the CT correction is exact:

plimICT = plimI.

• For the dissimilarity index, this turns out to be an equivalence:

plimDCT = plimD ⇐⇒ ∃(w, p̄), pa ∼ D0,p̄,1(w)

For every other distribution, continuous or discrete, the CT method overcorrects the

index: plimDCT < plimD.

• For the Theil index, there is no such property. Many distributions may lead to a

zero asymptotic bias. Moreover, the asymptotic bias may be positive or negative,

depending on the distribution.

Even when an estimator is not consistent, it may lead to results which are sufficiently

close to the truth to satisfy the practitioner. The relevant issue is whether, in cases in

which researchers are likely to use this correction, the remaining bias after the correction

proposed by CT is large or not. This issue is left to section 4 in which simulations are run

to compare the performance of the different methods. In a nutshell, CT gives satisfactory

results for the Theil index but is severely biased for the dissimilarity and the Gini when

the true distribution is not one of the family D0,p̄,1(w).

2.4.2 The bootstrap approach of Allen, Burgess and Windmeijer

ABW use a statistical framework which is similar to the one presented here and allow for

the presence of an arbitrary number of groups. Essentially, the authors propose to use

bootstrap techniques to adjust the index for the presence of a potential bias. Given the

unit size Ma and the observed proportions πa, they simulate B samples, drawing Na(b),

b = 1 . . . B. For each simulated sample b = 1 . . . B, an index I(b) (whether the dissimilarity

6A formal proof is provided in appendix.
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or the Gini index) is computed. The corrected index they propose is then:

IABW
.
= 2Ĩ − 1

B

B∑
i=1

I(b).

Their idea is that Ĩ − 1
B

∑B
i=1 I(b) is an estimator for the small-unit bias and that sub-

tracting it from Ĩ provides an estimator for the unbiased estimator. This strategy achieves

to reduce the order of the bias from O(1/M) to O(1/M3/2) or even O(1/M2).An addi-

tional advantage of their method is that it allows one to perform inference on the indices.In

practice, their Monte Carlo simulations show that their correction technique performs well

when the unit size or the true segregation level are not too small, that is, when the noise

can be separated from the actual unevenness. We investigate this method in more detail

in Section 4.

To sum up, even though the existence of a bias has been acknowledged by the literature,

there are still few attempts to remedy it. CT propose an easy-to-use corrected index,

which proxies well the true index for a restricted family of distributions but may be biased,

especially in the case of the dissimilarity index. ABW present an attractive bootstrap-

based corrected index, which provides results further from the true value when units are too

small or when the true level of segregation is too small. In the next section, an alternative

technique, based on parametric assumptions, is presented to correct for small-unit bias.

3 A parametric method

Alternatively to existing methods, this paper proposes a correction method based on a

parametric assumption. In a given unit a, the number of minority individuals is assumed

to be a Binomial(Ma, pa). Then, we assume that this probability pa is a random variable

and we specify its distribution: here, a mixture of two beta distributions. In a first step,

the parameters of this distribution are estimated, based on the data. In a second step,

segregation indices are computed, using the estimated parameters of the distribution of

pa. Inference is performed by full bootstrap on the units.
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3.1 Beta distributions and beta mixtures

The support of the distribution of the probability pa is naturally bounded on the ]0, 1[

segment. Among the different continuous distributions that might suit this requirement,

beta distributions are a natural choice. First, as remarked in the early work of Greenwood

(1913), a virtue of the beta distribution is that it is the conjugate prior of the binomial dis-

tribution, making computations easier. Second, this model is not new: known for decades

as the beta-binomial model in the statistical literature, it was first formalized by Skellam

(1948). In the last half century, it has been then applied in many fields, such as epidemi-

ology, marketing or education sciences, as recalled in Lee and Sabavala (1987).7 To my

knowledge though, it is the first time this kind of model is applied in this context.

Beta distributions are usually chosen both because of their flexibility and their parci-

mony. Flexible as they encompass many different cases. Examples of beta distributions

as well as beta mixtures with expectation fixed to .3, letting the other parameters vary,

are featured in figure 2. Parcimonious as the whole distribution is specified by only two

parameters. Here, we propose the use of either one or a mixture of two beta distribu-

tions. In the latter case, five parameters have to be estimated, but the mixture allows for

even more flexibility. Both are tested in the Monte Carlo simulations featured in Section 4.

Formally, the pdf of the rv pa writes:

fpa(p)
.
= f(p;α1, β1, α2, β2, λ) = λfα1,β1(p) + (1− λ)fα2,β2(p)

where fα,β(p) is the pdf of the beta distribution of parameters α and β.

fα,β(p) =
pα−1(1− p)β−1

B(α, β)

with B(., .) the beta function.

The probability that n individuals belong to the group of interest, conditional on pa and

7More recent examples show that the use of this model is rather widespread: Buckley and Schneider
(2005) in education sciences, Cogley and Sargent (2009) in macroeconomics, Cox and Katz (1999) in
political science or Heitjan (1995) in epidemiology. The beta-logistic model of Heckman and Willis (1977)
is an extended version of the beta-binomial model to include covariates.
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Figure 2: Examples of beta distributions (top panel) and mixture of two beta distributions
(bottom panel), all of expectation .3
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Ma, is equal to:

P(Na = n|pa = p,Ma = m) =

⎛
⎝ m

n

⎞
⎠ pn(1− p)m−n

Integrating this expression with respect to the pdf of the mixture,

P(Na = n|Ma = m) =

⎛
⎝ m

n

⎞
⎠[

λ
B(α1 + n, β1 +m− n)

B(α1, β1)

+(1− λ)
B(α2 + n, β2 +m− n)

B(α2, β2)

]
(1)

Equation (1) allows one to link the proportions of units of size m in which there are n

individuals of the group of interest to the parameters α1, β1, α2, β2 and λ. The idea of

the estimation is to find the five parameters so that the observed proportions are as close

as possible to expression (1).

3.2 The estimation

Conditional on the unit size Ma, the probability expressed in (1) is the likelihood that

a unit a will contain Na persons from the population of interest out of a total of Ma.

Therefore, summing up over all units with n persons, the log-likelihood may be written:

�m(α1, β1, α2, β2, λ) =

m∑
n=0

An
m log

[
λ
B(α1 + n, β1 +m− n)

B(α1, β1)

+(1− λ)
B(α2 + n, β2 +m− n)

B(α2, β2)

]

where An
m is the number of sample units with m individuals, among which n belong to

the group of interest.

Then, for each m > 1, maximizing �m(α1, β1, α2, β2, λ) with respect to α1, β1, α2, β2 and

λ provides the estimators α̂1(m), β̂1(m), α̂2(m), β̂2(m), λ̂(m).8

Assuming that the same model holds for a set of units of size belonging toM = {m1 . . .mr},
8Griffiths (1973) is the first to detail the maximum likelihood estimation of this kind of model. More

recent works, like Lee and Sabavala (1987), suggest Bayesian approaches to perform the estimation, espe-
cially in the case of small samples or when there exists a prior about the parameters. As, in our application,
the sample size is rather large and we have no prior, we estimate the model by MLE.
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it is possible to estimate the parameters of the distribution conditional on a set of units

and not a single value. In other words, units of different sizes may easily be pooled in the

same estimation. The likelihood to be maximized is then:

∑
m∈M

�m(α1, β1, α2, β2, λ)

3.3 The concentration indices

Now that the distribution of the probabilities is known, the concentration indices still

have to be computed. Two methods may a priori be used. The most obvious way to

compute the concentration indices associated with each group is to simulate many ob-

servations within the mixture of two beta distributions with parameters α̂, β̂, α̂2, β̂2, λ̂,

and then to compute the indices using the usual formulae. However, this method may be

computationally heavy and can easily be avoided, at least in the case of beta distributions.

Some algebra provide us direct expressions of the indices, as a function of the five param-

eters. In the case of a mixture of beta distributions, the Lorenz curve (sometimes referred

to as the segregation curve in the literature) is defined by the following mapping:9

L(x(z)) = y(z) with z ∈ (0, 1) (2)

with:

x(z) = λ
β1

α1 + β1
I(z;α1, β1 + 1) + (1− λ)

β2
α2 + β2

I(z;α2, β2 + 1)

y(z) = λ
α1

α1 + β1
I(z;α1 + 1, β1) + (1− λ)

α2

α2 + β2
I(z;α2 + 1, β2)

where I(z;α, β) is the regularized incomplete beta function, which is also the cdf of the

9To obtain the Lorenz curve, plot the cumulative proportion of the majoritary population as a function of
the cumulative proportion of the minoritary population after sorting units into descending order according
to the percentage of minoritary individuals pa. If f(.) is the pdf of the distribution of the proportions pa,
the Lorenz curve connects the dots of coordinates (xt, yt) such that:

xt =

∫ t

0
(1− z)f(z)dz

∫ 1

0
(1− z)f(z)dz

yt =

∫ t

0
zf(z)dz

∫ 1

0
zf(z)dz

.
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beta distribution. As the dissimilarity index is the maximum distance between the diago-

nal line and the Lorenz curve, it is straightforward to compute it numerically.

After some computation, the Gini index admits the following expression, using the pre-

ceding notations.

G(α1, β1, α2, β2, λ) = 1− 2

∫ 1

0
y(z)

(
λβ1

α1 + β1
f(z;α1, β1 + 1)

+
(1− λ)β2
α2 + β2

f(z;α2, β2 + 1)

)
dz (3)

By definition, the Theil index may be expressed as 1−∑
Ea/Ē, where Ea is the entropy

associated with each area a and Ē, the global entropy, is equal to

Ea = −pa log pa − (1− pa) log(1− pa)Ē = −p̄ log p̄− (1− p̄) log(1− p̄)

Given that pa is distributed following a B(α, β), the index may be computed directly as a

function of the parameters:

H(α1, β1, α2, β2, λ) = 1− λE(α1, β1) + (1− λ)E(α2, β2)

p̄ log(p̄) + (1− p̄) log(p̄)
(4)

where

p̄ = λ
α1

α1 + β1
+ (1− λ)

α2

α2 + β2

E(α, β) = αψ(α+ 1) + βψ(β + 1)− (α+ β)ψ(α+ β + 1)

and ψ(.) is the digamma function.

Equations (2), (3) and (4) provide direct expressions that allow one to derive the index of

dissimilarity, the Gini index and the Theil index as functions of the estimated parameters

of the beta mixture.

Full bootstrap on units is performed in order to provide for inference. At each step, the

model is re-estimated, providing new estimates for the segregation indices. Confidence
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intervals are computed based on the bootstrap distribution of the estimates. Implicitly,

200 iterations are performed, and 95% confidence intervals are displayed.

4 Simulations

In this section, simulations are used to assess the performance of the method presented in

this paper, as well as to compare it to the solutions presented in CT and ABW.

Bias-correcting methods should be robust to the distribution function of pa as well as to

the unit size. As practitioners do not know a priori the form of the underlying distribution

of the probabilities, they expect these methods to work on the largest possible spectrum

of distributions. Beta, beta mixtures, truncated normal, truncated Weibull as well as

several discrete distributions are used in the simulations presented in this section. All

distributions are calibrated to be of expectation around .1. In the baseline simulations,

the unit size is fixed to 10 but, in the appendix, simulations with unit sizes of 3 and 5

are also presented. For each unit size and each distribution, 100 draws in 10,000 units are

done. First pa is drawn i.i.d. in the given distribution. Then, Na is drawn in a binomial

of parameters Ma, pa.

Results of the simulations are displayed in Table 1 and 2. Table 1 displays average values

of the estimates, as well as 95% confidence intervals, while table 2 displays their mean

squared errors (MSE). Each panel of the tables is dedicated to a given distribution; the

indices are in rows and the methods compared in columns. MSE are computed as the mean

of the squared differences between the estimate and the theoretical value of the index (the

theoretical value being obtained from the parameters of the distribution).

In table 2, the first column presents the MSE of the direct, or naive, estimates, obtained

when one ignores the small-unit bias. These estimates are computed using, as an estimator

for probability pa, the sample proportion πa. This column gives an idea of the extent of

the error that should be expected when direct indices are used. The second and the third

columns show the values of the MSE when the parametric method presented in the previ-

ous section is used, assuming either a simple beta model (column 2) or a mixture of two

beta distributions (column 3). Note that in all but the two first cases, the parametric spec-
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Table 1: Simulations: Estimates with units of 10 individuals
Simulations with a beta model: B(1, 9)

Unfeasible Direct Simple beta Beta mixture CT ABW

Theil 0.13
0.13−0.13

0.28
0.27−0.28

0.13
0.12−0.14

0.13
0.12−0.14

0.12
0.11−0.13

0.19
0.18−0.19

Dissimilarity 0.39
0.38−0.39

0.53
0.52−0.54

0.39
0.38−0.40

0.39
0.37−0.40

0.23
0.21−0.24

0.41
0.40−0.42

Gini 0.53
0.52−0.53

0.71
0.70−0.71

0.53
0.51−0.54

0.53
0.51−0.54

0.34
0.32−0.35

0.61
0.60−0.62

Simulations with mixture of two betas: .3B(1, 9) + .7B(.1, .9)
Unfeasible Direct Simple beta Beta mixture CT ABW

Theil 0.43
0.42−0.44

0.52
0.51−0.53

0.42
0.41−0.44

0.43
0.42−0.44

0.41
0.40−0.43

0.46
0.45−0.47

Dissimilarity 0.67
0.66−0.67

0.73
0.73−0.74

0.69
0.69−0.70

0.67
0.66−0.68

0.56
0.55−0.58

0.67
0.67−0.68

Gini 0.84
0.84−0.85

0.89
0.89−0.90

0.85
0.84−0.86

0.84
0.84−0.85

0.76
0.74−0.77

0.86
0.86−0.87

Simulations with a (0, .1, 1)-discrete model

Unfeasible Direct Simple beta Beta mixture CT ABW

Theil 0.50
0.49−0.51

0.59
0.58−0.60

0.47
0.46−0.49

0.49
0.44−0.51

0.50
0.48−0.52

0.53
0.52−0.55

Dissimilarity 0.50
0.49−0.52

0.70
0.69−0.70

0.72
0.71−0.73

0.56
0.53−0.59

0.50
0.48−0.52

0.61
0.60−0.62

Gini 0.75
0.74−0.76

0.89
0.88−0.90

0.87
0.86−0.88

0.78
0.70−0.80

0.75
0.73−0.77

0.85
0.84−0.86

Simulations with a (.05, .1, .5)-discrete model

Unfeasible Direct Simple beta Beta mixture CT ABW

Theil 0.10
0.10−0.11

0.28
0.27−0.28

0.12
0.11−0.12

0.10
0.10−0.11

0.11
0.10−0.12

0.18
0.17−0.18

Dissimilarity 0.24
0.24−0.25

0.49
0.48−0.50

0.37
0.35−0.38

0.26
0.25−0.28

0.16
0.14−0.17

0.34
0.33−0.36

Gini 0.36
0.35−0.37

0.69
0.68−0.70

0.50
0.49−0.52

0.37
0.34−0.40

0.29
0.27−0.31

0.57
0.56−0.59

Simulations with a (0, .05, .1, .15, .2)-discrete model

Unfeasible Direct Simple beta Beta mixture CT ABW

Theil 0.11
0.11−0.11

0.25
0.24−0.25

0.09
0.08−0.10

0.09
0.09−0.11

0.08
0.08−0.09

0.15
0.15−0.16

Dissimilarity 0.33
0.33−0.34

0.50
0.50−0.51

0.32
0.31−0.33

0.33
0.31−0.35

0.18
0.17−0.20

0.38
0.37−0.39

Gini 0.44
0.44−0.45

0.67
0.66−0.68

0.44
0.43−0.46

0.45
0.43−0.48

0.25
0.24−0.26

0.56
0.55−0.57

Simulations with a truncated normal model

Unfeasible Direct Simple beta Beta mixture CT ABW

Theil 0.04
0.04−0.04

0.21
0.20−0.21

0.04
0.03−0.04

0.04
0.03−0.04

0.04
0.03−0.04

0.10
0.09−0.10

Dissimilarity 0.21
0.20−0.21

0.43
0.43−0.44

0.20
0.19−0.22

0.20
0.19−0.22

0.07
0.06−0.09

0.28
0.27−0.29

Gini 0.29
0.29−0.29

0.60
0.59−0.61

0.29
0.27−0.31

0.29
0.27−0.31

0.11
0.10−0.13

0.46
0.45−0.47

Simulations with a truncated Weibull

Unfeasible Direct Simple beta Beta mixture CT ABW

Theil 0.13
0.12−0.13

0.28
0.27−0.29

0.13
0.12−0.13

0.13
0.12−0.13

0.12
0.11−0.12

0.19
0.18−0.19

Dissimilarity 0.38
0.37−0.38

0.53
0.52−0.54

0.38
0.37−0.39

0.38
0.37−0.39

0.22
0.21−0.23

0.41
0.40−0.42

Gini 0.52
0.51−0.52

0.71
0.70−0.71

0.52
0.51−0.53

0.52
0.50−0.53

0.33
0.31−0.34

0.61
0.60−0.62

Source: simulations by the author.

Note: For each distribution, simulations are based on 100 draws of samples of 10,000 areal units,

each of which with 10 individuals. 95% confidence interval are showed in parentheses.
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Table 2: Simulations: Mean Square Errors with units of 10 individuals

Simulations with a beta model: B(1, 9)
Direct Simple beta Beta mixture CT ABW

Theil 2.24 0.00 0.00 0.01 0.33
Dissimilarity 1.98 0.00 0.00 2.60 0.04
Gini 3.22 0.00 0.01 3.62 0.71

Simulations with mixture of two betas: .3B(1, 9) + .7B(.1, .9)
Direct Simple beta Beta mixture CT ABW

Theil 0.81 0.01 0.00 0.03 0.11
Dissimilarity 0.43 0.07 0.00 1.10 0.01
Gini 0.23 0.00 0.00 0.78 0.04

Simulations with a (0, .1, 1)-discrete model

Direct Simple beta Beta mixture CT ABW

Theil 0.81 0.08 0.04 0.01 0.11
Dissimilarity 3.64 4.64 0.33 0.01 1.08
Gini 1.93 1.47 0.12 0.01 0.94

Simulations with a (.05, .1, .5)-discrete model

Direct Simple beta Beta mixture CT ABW

Theil 2.96 0.02 0.00 0.01 0.52
Dissimilarity 6.16 1.54 0.05 0.77 1.02
Gini 10.97 2.08 0.04 0.49 4.72

Simulations with a (0, .05, .1, .15, .2)-discrete model

Direct Simple beta Beta mixture CT ABW

Theil 1.94 0.04 0.03 0.07 0.18
Dissimilarity 2.83 0.02 0.02 2.27 0.19
Gini 4.99 0.01 0.02 3.76 1.28

Simulations with a truncated normal model

Direct Simple beta Beta mixture CT ABW

Theil 2.80 0.00 0.00 0.00 0.36
Dissimilarity 5.18 0.01 0.01 1.74 0.57
Gini 9.78 0.01 0.01 3.13 2.90

Simulations with a truncated Weibull

Direct Simple beta Beta mixture CT ABW

Theil 2.38 0.00 0.00 0.01 0.37
Dissimilarity 2.34 0.01 0.00 2.60 0.10
Gini 3.58 0.01 0.01 3.64 0.85

Source: simulations by the author.

Note: For each distribution, simulations are based on 100 draws of samples of 10,000 areal units,

each of which with 10 individuals. For the sake of clarity, values in the table are actually 100

times the MSE.
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ification assumption is violated: the assumed parametric model does not match the true

data-generating process. It is indeed interesting to assess how the parametric correction

performs in cases of misspecification. In the fourth column, the MSE related to indices

corrected using the CT method are reported. Even though the original paper only deals

with the dissimilarity index, the same technique is applied here to the Gini and the Theil

indices. The last column presents the value of the MSE when indices are corrected with

the ABW bootstrap method. In addition, in table 1, the unfeasible estimate is reported,

to make comparisons easier.

Two remarks may be drawn from these tables about the bias suffered by the direct indices.

First, the magnitude of the bias, which is always upward, is large compared to the true

value of the indices, which stresses that it is important to attempt to correct for small-unit

bias. Second, in many cases, the error of the naive estimator is higher than the bias of all

presented methods, which shows that, despite their imperfections, existing methods are at

least hardly ever harmful.

The comparison of the last four columns underlines the advantages and drawbacks of each

method. Consistently with what was found in section 2, the CT index systematically

under-estimates the true values of the dissimilarity index, except when the true distri-

bution is a D0,E(p),1. Interestingly, it seems to be also true for the Gini index. In many

cases, the downward biases suffered by the CT-corrected Gini and dissimilarity indices are

severe, e.g. the dissimilarity index is equal to .07 instead of .21 with a truncated normal.

Conversely, the CT correction works remarkably well for the Theil index: the CT-corrected

Theil index always lies not more than a few points above or below the true value.10

The indices corrected by the method by ABW are upward biased in most cases, which

is consistent with the idea that this kind of correction removes only the first order bias.

The ABW method performs particularly well, for all three indices, in the case of the beta-

mixture, a continuous distribution with a high level of segregation. The ABW method

experience larger biases with discrete distributions and when the level of true segregation

is low, as in the D.05,.1,.5 or the truncated normal case. In the case of the Theil index, the

10This result is not surprising following the analysis in appendix; see figure 5.
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ABW method is relatively less efficient than the other methods.

The simple beta correction, where the probabilities are assumed to be distributed as a beta

distribution, is obviously at its best when the data are drawn in a beta distribution. How-

ever, its performance is surprisingly satisfying in other cases, even dealing with discrete

distributions or distributions that do not look like beta distributions. For all distributions

except the discrete ones (0, .1, 1) and (.05, .1, .5), the error is always quite to zero, for each

of three indices. In these two exceptions, the Theil index is almost correct but the Gini

and the dissimilarity may be quite distant.

The beta mixture correction improves on the previous one and offers more flexibility at the

price of less parcimony. The performance of this correction is even better in the cases in

which the simple beta correction was already good but it is also better in the other cases.

The largest error (.33) is experienced for the dissimilarity index with the D0,.1,1 distribu-

tion, a value which remains quite small compared to the performance of other methods in

some cases. It also provides almost unbiased results in the case of the Theil index.

Table 3: Simulations: which method should be preferred in which case

Theil Dissimilarity Gini

B(1, 9) Beta, CT Beta, ABW Beta
.3B(1, 9) + .7B(.1, .9) Beta, CT Beta, ABW Beta, ABW
D0,.1,1 CT, Beta CT CT
D.05,.1,.5 Beta, CT Beta Beta
D0,.05,.1,.15,.2 Beta, CT Beta Beta
truncated Normal (.1, .052) Beta, CT Beta Beta
truncated Weibull (1.1, .1) Beta, CT Beta, ABW Beta

Source: simulations by the author.

Note: This table is a summary of table 1. For each distribution and each index, the least-biased

method is reported. If other methods provides estimates with a MSE lower that .10, they appear

in second (and third if necessary) positions.

Table 3 sums up the results of the simulations. For each dgp and index, the table reports

the method that leads to the estimator with the lowest MSE. The methods which provide

indices with a MSE lower than .10 are also reported in second position. Because the beta

mixture method outperforms the simple beta one, Beta in the table relates to the former.
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A rapid glance at the table shows that the beta mixture method is the one that gives the

least biased estimates in most cases. The only case in which the beta mixture method does

not score well is the dissimilarity index with the discrete distributions D0,.1,1. The second

part of the appendix presents more simulation results, in the case in which the number of

observation per unit is equal to five. The conclusions of this section remain valid in this

case.

5 An application to residential segregation by parents’ na-

tionalities in France

This section presents an application of the method introduced in the previous section.

The objective is to measure the level of ethnic residential segregation of the population

living in France. In the US, most segregation indices are computed using the Censuses,

often at the scale of the census tract. In France, it is forbidden by law to collect race or

ethnicity variables. The best way to proxy ethnicity is to consider individuals’ national

origins, which involves not only the nationalities of individuals, but also the nationalities

and countries of birth of their ancesters. In practice, the most common way to define

ethnicity is to use parents’ nationality at birth.11 Unfortunately, while Censuses provide

many variables (social and labor situations, education...) at the scale of the neighbor-

hood, parents’ nationality remains absent from this file, still for legal reasons. The largest

dataset in which parents’ nationalities are observed, since 2005, is the Labor Force Survey.

The sample design of the LFS, though complex, defines ad hoc neighborhoods. Households

are selected through a three-fold geographical cluster sampling. First, using information

from the 1999 Census, primary units (of several thousands inhabitants) are selected using

stratified random sampling. Then, within each of these primary units, at least one sector,

consisting of between 120 and 240 contiguous households, is defined. Last, six sampling

units (named“aires”) of, on average, 20 contiguous households are constituted within each

sector. Households of one given sampling unit are all interviewed during the same week;

11This approach is used in many works dealing with discrimination on the labor market, e.g. Domingues
Dos Santos (2005), Frickey, Primon, Borgogno, and Vollenweider-Andresen (2005), Silberman and Fournier
(2008) or Aeberhardt, Fougère, Pouget, and Rathelot (2010). See Meurs, Pailhé, and Simon (2006) for a
description of the few solutions available to social scientists to tackle issues relating to second-generation
in France before 2003.
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they enter and leave the sample on the same quarter. After their last interview, they are

replaced by households of another sampling unit belonging to the same sector. The final

dataset provides, for each individual, the ID of the sector and of the sampling unit where

he lives. Still, the geographical location of the sampling units and the sectors remains

unknown, as these IDs are meaningless.

The LFS is likely to be the only dataset allowing to measure ethnic residential segregation

in France.12 However, naive segregation indices would suffer from biases since sampling

units are of small size. Figure 3 displays the distribution of the sizes of sampling units and

sectors. The mean size of a sampling unit is 30; the median is 31. 25% of the sampling

units have a size smaller than 20 and 91% smaller than 50. A sector contains, on average,

three to four sampling units. The mean size of a sector is 95; the median is 100. 2%

of the sectors have a size smaller than 20 and 25% smaller than 50. Small-unit bias are

likely to be an issue when one works with sampling units. For sectors, this issue might

be less at stake. Small-unit issues are likely to be aggravated by the fact that minorities

are rather rare compared to French individuals of French origin, as reported in the first

column of tables 4 and 5. In what follows, we show that if small-unit biases are large for

all populations when segregation is computed at the sampling-unit scale, it is also an issue

for the rarest populations even at the sector scale.

The LFS from 2005 to 2008 is used to fit a two-beta-distribution mixture model for the

proportions of ethnic minorities within sampling units. Three sets of indices are then

computed. The first set relates to the total population, whether immigrants or not. In the

second set, only individuals of French nationality, born in France or arrived before three

years old, are kept in the sample. In the third set, only immigrants arrived in France after

the age of 3 are kept. For the sake of simplicity, individuals of this second sample are re-

ferred to as French-born, while individuals in the third set is referred to as the immigrants.

The groups are defined according to parents’ nationalities. For all populations (“Africa”,

“Maghreb”, “Middle East”, “Southern Europe”, “Northern Europe”, “Eastern Europe” and

“Asia”), individuals are required to have at least one parent of the corresponding nation-

12Maurin (2004) uses the LFS to obtain concentration measures of social status and ethnicity but,
because of the small-unit issue, does not use the usual indices.
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Figure 3: Distribution of the sizes of the sampling units (top panel) and the sectors (bottom
panel) in the French LFS

0
50

10
0

15
0

20
0

25
0

30
0

35
0

1 8 16 25 34 43 52 61 70 79 88 100 113 125 147

0
10

20
30

40

1 15 32 49 66 83 102 123 144 165 186 207 228 250

Source: Labor Force Survey 2005-2008 (Insee).

Note: The y-axis reports the number of units, whether sampling units or sectors, that contain

exactly x individuals, x being the figure reported on the x-axis.
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ality. To belong to the “France” group, individuals must have both parents born French

in France.13

Results computed at the scale of sampling units are reported in table 4. Those computed

at the scale of sectors are in table 5. The three segregation indices are computed both

directly (columns 5 to 7) and following the method presented in this paper (columns 2 to

4). As already noted in the simulations section, there exists large biases between indices

computed directly or using this methodology. As a rule of thumb, the bias seems higher

when the group is rarer and when the units is smaller (sampling units are on average three

to four times smaller than sectors). In our example, populations are not exactly ranked

in the same way according to the three indices.

In the whole sample, two groups may be distinguished. Individuals with parents born

French or in Europe are the least segregated group. Individuals with parents born with a

nationality of Maghreb, Africa, Middle East or Asia are the most segregated group.

Focusing on the group born in France, this ranking is not much changed, the values are

smaller but are more contrasted. The least segregated group is the one with French par-

ents. Then comes the group with parents from Southern and Northern Europe. Children

of Eastern European migrants are slightly more segregated than those from elsewhere in

Europe. Next come the groups with parents from Maghreb and Asia. Finally, the indi-

viduals with parents from Middle East and Africa are the most segregated group.

Focusing now on immigrants, indices are substantially higher and closer to each other.

The ranking is rather different than in the two former cases. Immigrants from Southern

Europe are the least segregated. Next come immigrants from Southern and Eastern Eu-

rope and from Maghreb. Immigrants from Africa are slightly more segregated. The most

segregated group are the immigrants from Asia.

There exists a small but significant difference between the segregation levels observed at

13Note that, according to these definitions, one individual may belong to two groups, if for example, his
father came from Algeria and his mother from Poland. In practice, it is only the case for a few tens of
people
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Table 4: Segregation indices, by parents’ nationalities, unit of observation: sampling unit

Whole sample

Beta model Direct indices

Parents’ nationalities N Theil Dissimilarity Gini Theil Dissimilarity Gini

France 236234 0.14
(0.13−0.14)

0.35
(0.34−0.35)

0.49
(0.47−0.49)

0.17 0.39 0.54

Africa 2474 0.31
(0.30−0.32)

0.75
(0.73−0.76)

0.88
(0.87−0.89)

0.41 0.87 0.93

Maghreb 14826 0.27
(0.27−0.28)

0.60
(0.59−0.60)

0.76
(0.76−0.77)

0.34 0.65 0.82

Middle East 4462 0.35
(0.29−0.32)

0.75
(0.67−0.71)

0.88
(0.83−0.86)

0.39 0.81 0.91

Southern Europe 18335 0.11
(0.11−0.12)

0.38
(0.37−0.39)

0.52
(0.51−0.53)

0.18 0.47 0.63

Northern Europe 5970 0.12
(0.11−0.13)

0.44
(0.37−0.45)

0.58
(0.52−0.60)

0.25 0.63 0.77

Eastern Europe 4659 0.13
(0.11−0.14)

0.46
(0.44−0.48)

0.61
(0.59−0.63)

0.27 0.69 0.81

Asia 1173 0.28
(0.27−0.30)

0.76
(0.74−0.77)

0.88
(0.87−0.89)

0.42 0.92 0.95

French-born sample

Beta model Direct indices

Parents’ nationalities N Theil Dissimilarity Gini Theil Dissimilarity Gini

France 236234 0.14
(0.13−0.14)

0.35
(0.34−0.36)

0.49
(0.48−0.49)

0.17 0.39 0.54

Africa 709 0.24
(0.22−0.26)

0.73
(0.70−0.75)

0.86
(0.84−0.88)

0.42 0.94 0.96

Maghreb 6298 0.19
(0.18−0.19)

0.54
(0.54−0.55)

0.70
(0.69−0.71)

0.29 0.68 0.82

Middle East 1160 0.26
(0.24−0.27)

0.72
(0.71−0.74)

0.86
(0.85−0.87)

0.41 0.92 0.95

Southern Europe 11494 0.08
(0.02−0.09)

0.35
(0.11−0.35)

0.47
(0.15−0.48)

0.18 0.49 0.65

Northern Europe 3582 0.09
(0.08−0.10)

0.39
(0.37−0.41)

0.53
(0.51−0.56)

0.26 0.71 0.81

Eastern Europe 2742 0.10
(0.09−0.11)

0.43
(0.41−0.46)

0.58
(0.56−0.60)

0.29 0.77 0.85

Asia 481 0.20
(0.18−0.22)

0.69
(0.65−0.72)

0.84
(0.80−0.86)

0.43 0.96 0.97

Immigrants

Beta model Direct indices

Parents’ nationalities N Theil Dissimilarity Gini Theil Dissimilarity Gini

Africa 1765 0.34
(0.32−0.44)

0.79
(0.77−0.86)

0.91
(0.90−0.94)

0.43 0.91 0.95

Maghreb 8528 0.29
(0.28−0.30)

0.66
(0.65−0.67)

0.81
(0.80−0.82)

0.36 0.73 0.86

Middle East 3302 0.31
(0.30−0.32)

0.73
(0.72−0.74)

0.87
(0.86−0.88)

0.40 0.85 0.92

Southern Europe 6841 0.16
(0.16−0.17)

0.51
(0.50−0.52)

0.67
(0.66−0.68)

0.27 0.65 0.79

Northern Europe 2388 0.21
(0.20−0.23)

0.63
(0.61−0.65)

0.78
(0.76−0.80)

0.36 0.84 0.90

Eastern Europe 1917 0.23
(0.21−0.25)

0.67
(0.64−0.69)

0.82
(0.80−0.83)

0.38 0.87 0.92

Asia 692 0.36
(0.34−0.59)

0.85
(0.83−0.97)

0.94
(0.93−0.99)

0.47 0.95 0.97

Source: Labor Force Survey 2005-2008 (Insee).

Note: Segregation is measured at the level of the sampling unit of the LFS. The first three

columns present the indices computed after the estimation of the beta model. The last three

columns present the indices directly computed with the observed proportions. Confidence inter-

vals at the level of 5% are displayed in parentheses.
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Table 5: Segregation indices, by parents’ nationalities, unit of observation: sector

Whole sample

Beta model Direct indices

Parents’ nationalities N Theil Dissimilarity Gini Theil Dissimilarity Gini

France 236234 0.11
(0.11−0.13)

0.33
(0.32−0.34)

0.45
(0.44−0.47)

0.13 0.33 0.47

Africa 2474 0.24
(0.22−0.25)

0.61
(0.59−0.63)

0.79
(0.78−0.81)

0.29 0.71 0.86

Maghreb 14826 0.22
(0.21−0.23)

0.54
(0.52−0.56)

0.70
(0.69−0.71)

0.25 0.56 0.73

Middle East 4462 0.24
(0.23−0.25)

0.60
(0.59−0.62)

0.77
(0.76−0.78)

0.29 0.67 0.83

Southern Europe 18335 0.09
(0.08−0.09)

0.34
(0.33−0.35)

0.47
(0.45−0.48)

0.11 0.38 0.52

Northern Europe 5970 0.09
(0.08−0.10)

0.34
(0.33−0.36)

0.48
(0.46−0.50)

0.14 0.44 0.61

Eastern Europe 4659 0.08
(0.08−0.10)

0.35
(0.33−0.36)

0.48
(0.47−0.51)

0.15 0.47 0.64

Asia 1173 0.20
(0.18−0.22)

0.61
(0.59−0.64)

0.78
(0.76−0.80)

0.29 0.79 0.88

French-born sample

Beta model Direct indices

Parents’ nationalities N Theil Dissimilarity Gini Theil Dissimilarity Gini

France 236234 0.11
(0.11−0.12)

0.33
(0.32−0.33)

0.45
(0.44−0.46)

0.13 0.33 0.47

Africa 709 0.15
(0.13−0.17)

0.56
(0.51−0.60)

0.72
(0.67−0.76)

0.29 0.84 0.90

Maghreb 6298 0.14
(0.13−0.15)

0.47
(0.46−0.49)

0.62
(0.60−0.63)

0.19 0.54 0.70

Middle East 1160 0.19
(0.16−0.21)

0.56
(0.53−0.60)

0.75
(0.70−0.78)

0.29 0.79 0.88

Southern Europe 11494 0.07
(0.06−0.08)

0.32
(0.29−0.33)

0.44
(0.40−0.45)

0.11 0.38 0.52

Northern Europe 3582 0.06
(0.06−0.07)

0.31
(0.29−0.33)

0.43
(0.41−0.46)

0.14 0.47 0.64

Eastern Europe 2742 0.07
(0.06−0.08)

0.33
(0.31−0.36)

0.46
(0.44−0.50)

0.17 0.52 0.69

Asia 481 0.16
(0.12−0.18)

0.61
(0.49−0.68)

0.74
(0.67−0.79)

0.31 0.88 0.92

Immigrants

Beta model Direct indices

Parents’ nationalities N Theil Dissimilarity Gini Theil Dissimilarity Gini

Africa 1765 0.27
(0.24−0.28)

0.68
(0.65−0.69)

0.84
(0.82−0.85)

0.32 0.78 0.89

Maghreb 8528 0.24
(0.22−0.25)

0.59
(0.58−0.60)

0.75
(0.74−0.77)

0.27 0.62 0.78

Middle East 3302 0.24
(0.22−0.26)

0.63
(0.62−0.66)

0.80
(0.78−0.81)

0.29 0.71 0.85

Southern Europe 6841 0.11
(0.11−0.12)

0.41
(0.40−0.42)

0.56
(0.54−0.57)

0.16 0.48 0.64

Northern Europe 2388 0.15
(0.13−0.17)

0.48
(0.45−0.50)

0.65
(0.61−0.67)

0.23 0.63 0.79

Eastern Europe 1917 0.15
(0.13−0.17)

0.49
(0.46−0.51)

0.67
(0.63−0.70)

0.24 0.67 0.81

Asia 692 0.26
(0.20−0.26)

0.75
(0.68−0.75)

0.88
(0.83−0.88)

0.34 0.88 0.93

Source: Labor Force Survey 2005-2008 (Insee).

Note: Segregation is measured at the level of the sector, a set of sampling units of the LFS.

The first three columns present the indices computed after the estimation of the beta model.

The last three columns present the indices directly computed with the observed proportions.

Confidence intervals at the level of 5% are displayed in parentheses.
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the sampling-unit scale and the sector scale. Obviously, the larger the unit on which indi-

viduals are aggregated, the lower segregation will be. Reardon, Matthews, O’Sullivan, Lee,

Firebaugh, Farrell, and Bischoff (2008) show in the case of the US that segregation indices

decrease when calculated at a larger scale. Using a index based on a kernel estimation and

letting the bandwidth of the kernel vary, Mele (2007) finds, on US data, the same kind

of downward relationship.14 One might object, in the case of sampling units and sectors,

that the difference might be due to the difference in unit sizes. For instance, one might

claim that, if some bias still remained and if the remaining bias happened to be larger

when units were smaller, then, for the same level of true segregation, indices computed on

sampling units would indeed be higher than those computed on sectors.

This concern is addressed by computing segregation indices at different scales, fixing the

number of individuals per unit. The result of this robustness exercise is reported in table

6. Two samples are built up. For each sector, only one sampling unit is drawn. The first

sample is made up with the selected sampling units. The second one is built drawing in

each sector the same number of observations as the selected sampling unit. Computing

segregation on the first sample gives results at the sampling-unit scale, whereas the second

sample provides segregation measures at the sector scale. As the sample size is strictly

identical across the two samples, the gap between these measures can be attributed to

the scale. The top panel of table 6 should be compared to table 5, and the bottom panel

to table 4. If confidence intervals are larger in table 6 compared to those reported in

tables 4 and 5, the indices take very similar values. This tends to show that there is

indeed a negative relationship between segregation indices and the scale at which they are

computed.

14Using simulations, he also shows that, if the global trend is always decreasing, there could locally exist,
for some particular data generating process, some violations to monotonicity.
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Table 6: Segregation indices, by parents’ nationalities, immigrants and non-immigrants
together

Random individuals drawn in a sector

Beta model Direct indices

Parents’ nationalities N Theil Dissimilarity Gini Theil Dissimilarity Gini

France 76380 0.12
(0.12−0.13)

0.33
(0.32−0.35)

0.47
(0.45−0.48)

0.16 0.37 0.52

Africa 810 0.25
(0.22−0.28)

0.68
(0.59−0.70)

0.83
(0.77−0.84)

0.38 0.85 0.91

Maghreb 4681 0.23
(0.22−0.25)

0.55
(0.53−0.57)

0.72
(0.70−0.73)

0.30 0.62 0.79

Middle East 1390 0.25
(0.23−0.27)

0.63
(0.60−0.65)

0.78
(0.76−0.80)

0.36 0.79 0.89

Southern Europe 5913 0.09
(0.08−0.10)

0.34
(0.32−0.35)

0.46
(0.45−0.48)

0.16 0.44 0.59

Northern Europe 1940 0.10
(0.09−0.12)

0.37
(0.34−0.39)

0.51
(0.48−0.55)

0.24 0.61 0.76

Eastern Europe 1447 0.09
(0.08−0.11)

0.36
(0.33−0.40)

0.51
(0.46−0.55)

0.25 0.67 0.78

Asia 381 0.23
(0.19−0.25)

0.69
(0.56−0.72)

0.84
(0.74−0.85)

0.40 0.91 0.94

One area randomly chosen per sector

Beta model Direct indices

Parents’ nationalities N Theil Dissimilarity Gini Theil Dissimilarity Gini

France 76334 0.15
(0.14−0.16)

0.36
(0.34−0.37)

0.50
(0.48−0.51)

0.18 0.39 0.55

Africa 794 0.31
(0.25−0.34)

0.75
(0.68−0.76)

0.88
(0.83−0.89)

0.41 0.87 0.93

Maghreb 4816 0.27
(0.26−0.29)

0.60
(0.58−0.61)

0.76
(0.75−0.77)

0.33 0.65 0.82

Middle East 1442 0.30
(0.28−0.33)

0.69
(0.67−0.71)

0.85
(0.82−0.86)

0.39 0.81 0.91

Southern Europe 5888 0.11
(0.10−0.12)

0.36
(0.35−0.38)

0.50
(0.49−0.52)

0.18 0.46 0.62

Northern Europe 1874 0.11
(0.10−0.12)

0.40
(0.38−0.42)

0.55
(0.53−0.57)

0.24 0.62 0.77

Eastern Europe 1493 0.14
(0.12−0.17)

0.43
(0.40−0.47)

0.60
(0.56−0.65)

0.28 0.69 0.81

Asia 372 0.26
(0.20−0.29)

0.73
(0.65−0.76)

0.87
(0.80−0.88)

0.40 0.92 0.94

Source: Labor Force Survey 2005-2008 (Insee).

Note: The segregation indices are computed on immigrants and non-immigrants. The sample

used for the upper table is built drawing one sampling unit in each sector. The sample used

for the bottom table is built drawing in the sector the same number of observations as in the

sampling unit drawn for the upper table. The first three columns present the indices computed

after the estimation of the beta model. The last three columns present the indices directly

computed with the observed proportions. Confidence intervals at the level of 5% are displayed

in parentheses.
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6 Conclusion

When segregation indices are computed using samples in which there are few observations

per unit (neighborhoods, school, firms...), they suffer from large upward biases. This is

because the proportion of a minority group in a unit is a poor estimate, when this unit

is small, of the true probability that an individual of the unit belongs to the minority

group. The existence of such a bias hinders any further analysis, such as, for instance, any

comparison across groups, metropolitan areas, or countries. In this paper, a new method,

parametric and flexible, to compute segregation indices is introduced to deal with these

biases. The idea is to assume that the probability that, in a given unit, an individual

belongs to the group of interest is a random variable distributed as a mixture of two beta

distributions. The parameters of this distribution are estimated and, from these, the val-

ues of the segregation indices are deduced. This new method is compared to the two main

existing methods, introduced by Carrington and Troske (1997) and Allen, Burgess, and

Windmeijer (2009), using simulations. In most cases, which are not restricted to data

generating processes distributed as beta mixtures, the new method is showed to perform

better than the other two. An application provides the first available figures about ethnic

residential segregation in France, using the Labor Force Survey and its unique sampling

scheme to define neighborhoods. French individuals whose parents are immigrants ex-

perience higher levels of residential segregation than the French whose parents are not

immigrants. There are also strong differences across countries of origin: individuals with

parents from Subsaharan Africa, Middle East and Northern Africa experience higher levels

of residential concentration than those with parents that came from Europe.
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Apprendix A. The bias of Carrington and Troske’s correction

For simplicity, it is assumed here that all units have the same size M . The sample size

A is assumed to be large enough so that the estimation of the expectation of the rv pa,

p̄, is assumed not to be an issue. All the analysis here uses p̄ as a known quantity. The

computations are equivalent for the dissimilarity and the Theil indices, where:

h(p) = 1− plog(p) + (1− p)log(1− p)

p̄log(p̄) + (1− p̄)log(1− p̄)
for the dissimilarity index D

h(p) =
|p− p̄|

2p̄(1− p̄)
for the Theil index T

The analysis driven cannot be directly extended to the case of the Gini index, as it cannot

be expressed in the same way. We rely on simulation results (see infra) to assess the

performance of the CT correction for the Gini.

If F (.) is the cdf of the probability pa, the probability limit of the index I ∈ {T,D} can

be written as:

plimI =

∫ 1

0
h(p)dF (p)

The probability limit of the naive index, denoted by Ĩ, is

plimĨ =

∫ 1

0
HM (p)dF (p)

with

HM (p) =

M∑
J=0

h

(
N

M

)⎛
⎝ M

N

⎞
⎠ pN (1− p)M−N

Note that the probability limit of the naive index if there were no segregation, denoted by

I∗, is equal to HM (p̄).

The index corrected by CT method converges to:

plimICT =
plimĨ − I∗

1− I∗

Defining RM (p) as the rescaled version of HM (p), this probability limit can be simply
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written as:

plimICT =

∫ 1

0
RM (p)dF (p) with RM (p) =

HM (p)−HM (p̄)

1−HM p̄

The asymptotic bias of the CT estimator is therefore equal to:

plimICT − plimI =

∫ 1

0
[RM (p)− h(p)] dF (p)

The case of the dissimilarity index

Focusing on the dissimilarity index I = D, we may precise the expression of the bias. For

given M and p̄, it is possible to plot RM (p)− h(p).

The left panel of figure 4 shows the case M = 5, p̄ = .5. In this case, RM (p) ≤ h(p)

for all p ∈ [0, 1]. The inequality is even strict for all p except {0, p̄, 1}. Therefore, for all

distributions except discrete ones with masspoints at 0, 1 or p̄, plimDCT < plimD.

Figure 4: Dissimilarity index: the function RM (p) − h(p), p̄ = .5 (left panel) and p̄ = .2
(right panel)
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Source: Author’s computations.

The same result holds when p̄ 	= .5 but the proof is less trivial. The right panel of figure

4 shows, for instance, the case M = 5, p̄ = .2. In this case, there is a range, when p is

large, for which RM (p) > h(p). However, because the probabilities have expectation .2,
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this range is less likely than the one around .2, which is globally negative. More formally,

computing the maximum of the asymptotic bias across the whole set of the distribution

with expectation p̄, D(p̄) and showing that it is non-positive would close the proof. The

infinite-dimension problem maxF∈D(p̄)

∫ 1
0 δM (p)dF (p) with δM (p) = RM (p)−h(p) reduces

to a finite dimension one, using a result from D’Haultfœuille and Rathelot (2011). Fol-

lowing the reasoning of Theorem 2.2, the maximum of the integral is achieved when F is

the cdf of a discrete distribution with at most M + 1 masspoints.

The problem therefore reduces to:

max
p1...pM ,q1...qM

M∑
k=1

qkδM (pk)

imposing
∑M

k=1 qk = 1 and
∑M

k=1 qkpk = p̄. The Lagrangian of this problem writes:

L =

M∑
k=1

qkδM (pk) + λ1(1−
M∑
k=1

qk) + λ2(p̄−
M∑
k=1

qkpk)

The FOC of the problem lead to, for all (k, �) ∈ {1 . . .M}2,

δ′M (pk) = δ′M (p�) =
δM (pk)− δM (p�)

pk − p�

The SOC of the problem lead to δ′′M (pk) < 0, ∀k = 1 . . .M . There exist only two solutions

points that solve the FOC: p∗1 ∈]0, p̄[ and p∗2 ∈]p̄, 1[, but the SOC do not hold there.

Because of the piecewise convexity of the function δM (p), there is no interior solution for

the maximum (while there is one for the minimum). The maximum is obtained when the

masspoints are the extrema {0, p̄, 1}, which all lead to a maximum equal to zero.

The case of the Theil index

For the Theil index, no such reasoning can be done and several discrete and continuous

distributions may lead to an unbiased CT-corrected index. Figure 5 shows, for instance,

the function RM (p)− h(p) in the case M = 5, p̄ = .2. In the extreme case p̄ = .5, the CT

corrected index is almost everywhere (except for discrete distributions with masspoints

{0, p̄, 1}) upward biased. Otherwise, as soon as p̄ 	= .5, the function RM (p)−h(p) is equal
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to zero for p = 0, p̄, 1− p̄, 1. Around p̄, the function may take positive and negative; thus,

no systematic bias will undermine the method.

Figure 5: Theil index: the function RM (p) − h(p), when p̄ = .5 (left panel) and p̄ = .2
(right panel)
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Source: Author’s computations.

Appendix B. Simulations

In this appendix, we run simulations, taking the unit size equal to 5 individuals. Results,

displayed in tables 7 and 8, show that the conclusion of section 4 remain valid.
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Table 7: Simulations: Mean Square Errors with units of 5 individuals

Simulations with a beta model: B(1, 9)
Direct Simple beta Beta mixture CT ABW

Theil 7.04 0.02 0.01 0.08 1.81

Dissimilarity 10.66 0.09 0.01 4.77 5.24

Gini 7.43 0.17 0.02 6.39 3.17

Simulations with mixture of two betas: .3B(1, 9) + .7B(.1, .9)
Direct Simple beta Beta mixture CT ABW

Theil 2.60 0.01 0.01 0.15 0.56

Dissimilarity 2.53 0.11 0.01 2.80 1.13

Gini 0.58 0.01 0.00 1.80 0.18

Simulations with a (0, .1, 1)-discrete model

Direct Simple beta Beta mixture CT ABW

Theil 2.65 0.01 0.05 0.01 0.77

Dissimilarity 10.41 5.98 0.45 0.01 6.74

Gini 3.25 2.02 0.10 0.01 2.10

Simulations with a (.05, .1, .5)-discrete model

Direct Simple beta Beta mixture CT ABW

Theil 8.98 0.10 0.01 0.01 2.82

Dissimilarity 22.32 2.28 0.14 0.83 13.79

Gini 19.77 3.17 0.19 0.83 12.06

Simulations with a (0, .05, .1, .15, .2)-discrete model

Direct Simple beta Beta mixture CT ABW

Theil 6.82 0.34 0.06 0.20 1.56

Dissimilarity 13.22 1.43 0.06 4.64 6.71

Gini 11.03 2.33 0.05 6.44 5.04

Simulations with a truncated normal model

Direct Simple beta Beta mixture CT ABW

Theil 6.79 0.07 0.07 0.20 1.53

Dissimilarity 13.16 0.07 0.07 4.68 6.66

Gini 10.98 0.06 0.05 6.52 5.00

Simulations with a truncated Weibull

Direct Simple beta Beta mixture CT ABW

Theil 7.44 0.00 0.01 0.07 2.03

Dissimilarity 11.75 0.02 0.01 4.59 6.11

Gini 8.12 0.02 0.02 6.23 3.66

Source: simulations by the author.

Note: For each distribution, simulations are based on 100 draws of samples of 10,000 areal units,

each of which with 5 individuals. 95% confidence interval are showed in parentheses.



Table 8: Simulations: units of 5 individuals

Simulations with a beta model: B(1, 9)
True Direct Simple beta Beta mixture CT ABW

Theil 0.13
0.13−0.13

0.40
0.39−0.40

0.13
0.12−0.14

0.13
0.12−0.15

0.10
0.09−0.11

0.26
0.26−0.27

Dissimilarity 0.39
0.38−0.39

0.71
0.71−0.72

0.38
0.37−0.40

0.39
0.37−0.41

0.17
0.15−0.19

0.62
0.61−0.62

Gini 0.53
0.52−0.53

0.80
0.79−0.80

0.52
0.51−0.55

0.53
0.50−0.55

0.27
0.25−0.30

0.70
0.70−0.71

Simulations with mixture of two betas: .3B(1, 9) + .7B(.1, .9)
True Direct Simple beta Beta mixture CT ABW

Theil 0.43
0.42−0.44

0.59
0.58−0.60

0.43
0.42−0.44

0.43
0.41−0.45

0.39
0.37−0.41

0.50
0.49−0.51

Dissimilarity 0.67
0.66−0.68

0.83
0.82−0.83

0.70
0.69−0.71

0.67
0.65−0.70

0.50
0.49−0.52

0.78
0.77−0.78

Gini 0.84
0.84−0.85

0.92
0.92−0.92

0.85
0.85−0.86

0.84
0.83−0.86

0.71
0.69−0.73

0.89
0.88−0.89

Simulations with a (0, .1, 1)-discrete model

True Direct Simple beta Beta mixture CT ABW

Theil 0.50
0.49−0.52

0.66
0.65−0.68

0.51
0.49−0.52

0.48
0.45−0.51

0.50
0.48−0.52

0.59
0.57−0.60

Dissimilarity 0.51
0.49−0.52

0.83
0.82−0.83

0.75
0.74−0.76

0.57
0.55−0.59

0.50
0.48−0.52

0.76
0.76−0.77

Gini 0.75
0.74−0.76

0.93
0.93−0.94

0.89
0.88−0.90

0.78
0.75−0.80

0.75
0.73−0.77

0.90
0.89−0.90

Simulations with a (.05, .1, .5)-discrete model

True Direct Simple beta Beta mixture CT ABW

Theil 0.10
0.10−0.11

0.40
0.39−0.41

0.13
0.12−0.15

0.11
0.09−0.12

0.11
0.10−0.12

0.27
0.26−0.28

Dissimilarity 0.24
0.24−0.25

0.72
0.71−0.72

0.39
0.37−0.41

0.28
0.25−0.31

0.15
0.13−0.17

0.61
0.60−0.63

Gini 0.36
0.35−0.37

0.80
0.79−0.81

0.53
0.51−0.56

0.39
0.35−0.44

0.27
0.24−0.29

0.70
0.69−0.71

Simulations with a (0, .05, .1, .15, .2)-discrete model

True Direct Simple beta Beta mixture CT ABW

Theil 0.11
0.11−0.11

0.37
0.37−0.38

0.06
0.01−0.10

0.09
0.07−0.10

0.07
0.06−0.07

0.23
0.23−0.24

Dissimilarity 0.33
0.33−0.34

0.70
0.69−0.71

0.25
0.10−0.33

0.31
0.29−0.33

0.12
0.10−0.14

0.59
0.58−0.60

Gini 0.44
0.44−0.45

0.78
0.77−0.78

0.35
0.13−0.46

0.43
0.40−0.46

0.19
0.17−0.22

0.67
0.66−0.68

Simulations with a truncated normal model

True Direct Simple beta Beta mixture CT ABW

Theil 0.04
0.04−0.04

0.34
0.34−0.35

0.02
0.01−0.04

0.04
0.03−0.08

0.03
0.02−0.04

0.20
0.19−0.20

Dissimilarity 0.21
0.20−0.21

0.67
0.66−0.67

0.14
0.08−0.23

0.21
0.17−0.29

0.05
0.04−0.06

0.55
0.54−0.56

Gini 0.29
0.29−0.29

0.74
0.74−0.75

0.19
0.11−0.31

0.29
0.24−0.40

0.08
0.06−0.11

0.61
0.60−0.62

Simulations with a truncated Weibull

True Direct Simple beta Beta mixture CT ABW

Theil 0.13
0.12−0.13

0.40
0.39−0.40

0.13
0.12−0.14

0.13
0.11−0.15

0.10
0.09−0.11

0.27
0.26−0.28

Dissimilarity 0.38
0.37−0.38

0.72
0.72−0.73

0.39
0.37−0.40

0.38
0.35−0.40

0.17
0.15−0.18

0.63
0.62−0.64

Gini 0.52
0.51−0.52

0.80
0.80−0.81

0.53
0.51−0.55

0.52
0.49−0.55

0.27
0.25−0.29

0.71
0.70−0.72

Source: simulations by the author.

Note: For each distribution, simulations are based on 100 draws of samples of 10,000 areal units,

each of which with 5 individuals. 95% confidence interval are showed in parentheses.


