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Allocating Systematic and Unsystematic Risks in a Regulatory
Perspective

Abstract

This paper discusses the allocation of reserves among financial entities
from a regulatory point of view. We introduce axioms of decentralization,
additivity, compatibility with risk ordering, which should be satisfied by the
allocations and we characterize the set of allocations compatible with these
axioms. Then, we explain how to disentangle systematic and unsystematic
risk components in these allocations. Finally, we discuss the usual relation-
ship between basic reserve and reglementary required capital, and propose
alternative solutions to the question of procyclical required capital.

Keywords : Risk Measure, Allocation, Regulation, Systematic Risk, Pro-
cyclical Effect.
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1 Introduction

The definition of the required capital in Basel regulation is often presented
as an important reason in the development of the recent financial crisis. The
following arguments are in particular invoked :

i) The regulatory reserves were not sufficiently large to cover the (extreme)
risks.

ii) They did not account for comovement of financial institutions assets and
liabilities, that is, for the systematic risk factors.

iii) This regulation has a procyclical effect, instead of the expected counter-
cyclical effect.

These possible drawbacks of the previous regulation explain the recent
changes in both regulation and academic research. Examples are the in-
troduction of an additional regulator focusing on systemic risk, the vari-
ous stress-testing performed in US as well as in European countries, or the
new measures of systemic risk introduced in the academic literature [see
e.g. Adrian, Brunnermeier (2009), Acharya et alii (2010), Brownless, Engle
(2010), Tarashev et alli (2010), Billio, Mamo, Pelizzon (2010)].

The aim of our paper is to discuss these questions in a detailed and critical
way. Let us first recall that Basel regulation defines the required capital in
two steps. In a first step each financial entity has to compute a measure
of its own risk.3 The standard risk measure used by these entities is the
Value-at-Risk (VaR), which gives the maximum loss within a α% confidence
interval. The level α is fixed by the regulator and the risk of an individual
entity is considered in isolation. Then, in a second step, the required capital
is fixed from the observed individual history of VaR. A typical formula for
required capital at day t is for instance :

RCt = max(V aRt, k
1

60

59∑

h=0

V aRt−k), (1.1)

where V aRt denotes the VaR at horizon 1-year and the trigger parameter
k depends on the technical level of the entity and is generally larger than
3. This nonlinear link function between the risk measure and the required

3and also such measures for each business line separately.
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capital induces two regimes : in a standard risk environment for the bank,

formula (1.1) reduces to : RCt = k
1

60

59∑

h=0

V aRt−h. The smoothing of risk

measures over 60 opening days, i.e. 3 months, is introduced to avoid an
erratic evolution of the reserves. Coefficient k introduces an additional in-
surance against risk. When the entity becomes suddenly very risky, that

is, when the current risk measure V aRt is larger than
k

60

59∑

k=0

V aRt−h, the

required capital becomes equal to V aRt.
The existence of these two steps shows that any discussion has to distin-

guish the possible defaults of the suggested VaR risk measure and those of
the link function (1.1).

We first discuss in Section 2 the subadditivity property of the standard
risk measures considered in the literature, that are the Value-at-Risk, and
the Distortion Risk Measures (DRM) including the Expected Shortfall (ES).
These measures are used to measure the global risk, but have to be dis-
aggregated between the entities and also to be split into systematic and
unsystematic components . We introduce in Section 3 the decentralization,
additivity and risk ordering axioms, which are relevant for this decomposi-
tion and characterize the allocations satisfying the three axioms. Then, we
discuss the properties of the different risk contributions proposed in the lit-
erature from the regulatory point of view4. Section 4 considers the special
case of Euler allocations and discusses their sensitivities. This marginal in-
terpretation is used in Section 5 to derive a disaggregation formula not only
in terms of entities, but also in terms of systematic and unsystematic risks,
both in linear and nonlinear models. Section 6 explores the link between the
required capital and the objective measures of systematic and unsystematic
risks. In particular, we explain why the Through The Cycle (TTC) smooth-
ing treatment of these components have to be performed separately to avoid
the spurious procyclical effect of the standard regulation and we propose al-
ternative solutions to avoid this procyclicity of the required capital. Section
7 concludes. Technical proofs are gathered in appendices.

4The research of an appropriate allocation of capital for a purpose internal to a bank ,
for instance to maximize shareholder value, achieve capital efficiency, or measure concen-
tration risk in a portfolio [see e.g. Patrick et alii (1999), Dhaene, Goovaerts, Kaas (2003),
Sherris (2007), Tasche (2008)] is clearly out of the scope of the present paper.
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2 Subadditivity of a risk measure

The notion of subadditivity is often used in this paper. So, it is worthwile to
discuss its relevance.

There exists a rather large literature interested in the suitable properties
of a risk measure interpretable as a level of reserve. The pioneering papers
in this field are Artzner et alii (1997), (1999), who introduce the concept
of coherent risk measure. 5 Let us denote by i, i = 1, . . . , n, the entity of
interest (i.e. a bank in Basel regulation, an insurance company in Solvency
2), by Xi the (random) future Loss and Profit (L&P) of this entity, and
by R(Xi) the level of reserve corresponding to the L&P 6 7. As usual the
individual L&P is written in dollar and not in percentage value, that is in
return (see Appendix 4 for the equivalent expressions when the analysis is
performed in returns). This is especially important for derivative portfolios.
Indeed, derivatives such as swaps often start with a low, or even zero value
[Fung, Vasicek (1997)]. Among the axioms introduced for a coherent risk
measure is the subadditivity property :

R(
n∑

i=1

Xi) ≤
n∑

i=1

R(Xi). (2.1)

This axiom is usually justified in the literature by the potential gain due
to diversification 8. However, it is also interesting to discuss subadditivity
condition (2.1) in a regulatory perspective. Under condition (2.1), if a regu-
lator requires the level of reserve R(Xi) for entity i, the sum of these reserves
is sufficient to cover the global risk, for any possible comovement between
the individual L&P . Typically, Basel regulation suggested the use of the

5See also the discussion in Goovaerts et alii (1984).
6For expository purpose, we omit the time index, when it is not informative. When t

denotes the period, the future L&P Xit is known at the end of period t and random at the
beginning of this period. The risk measure Rt−1(Xt) has to be known at the beginning of
this period and is in general function of the available information.

7The standard notation R(X) may be misleading, since the level of reserve depends on
the distribution of X, not on the variable itself.

8The idea that diversification is profitable and the associated subadditivity condition of
the global risk measure are questionable. Diversification can be profitable for standard in-
dependent risks Xi, ”since due to the Law of Large Numbers, the risk (per invested money
unit) diminishes ” [Dhaene, Goovaerts, Kaas (2003)]. However, undiversified portfolios can
be preferred when the Law of Large Numbers does not apply, for instance in presence of
common risk factors, or for extreme risks [see e.g. Gourieroux, Monfort (2004)].
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VaR, or of the expected shortfall at a given level α for each entity. This is a
stand-alone contribution, where the portfolio of each entity is considered in
isolation. If these risk measures are subadditive 9, the two first arguments
invoked in the introduction for the amplifying role of the regulation in the
recent financial crisis are misleading.

Let us illustrate these questions in the Gaussian case :

(X1, . . . , Xn) ∼ N(m,Σ). (2.2)

The α-quantile (i.e. the α-VaR) of the individual L&P is :

qα(Xi) = mi + qασ
1/2
ii , (2.3)

where qα denotes the α-quantile of the standard normal distribution. Since
Xi is a loss and profit, α is large (for instance α = 0.95 or 0.99), and qα is

positive. The α-quantile of the aggregated L&P,X =
n∑

i=1

Xi, is :

qα(X) =
n∑

i=1

mi + qα(
n∑

i=1

σii +
∑

i6=j

σij)
1/2. (2.4)

By noting that the standard deviation is a quadratic norm, ‖ . ‖2 say, we
see immediately that :

qα(X) =
n∑

i=1

mi + qα ‖
n∑

i=1

Xi ‖2

≤
n∑

i=1

mi + qα

n∑
i=1

‖ Xi ‖2=
n∑

i=1

qα(Xi). (2.5)

Thus, the subadditivity property is satisfied by the VaR in the multivari-
ate Gaussian framework.

To summarize, the previous regulatory policy is a prudential approach,
which provides enough reserve to cover the total risk (at least in this Gaussian
framework and if all banks’ risk models work accurately). How to understand

9It is known that the expected shortfall is subadditive. The VaR is subadditive, if some
additional assumptions are introduced on the risk distribution, for instance in a Gaussian
framework with or without stochastic volatility.
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the misleading assertion that the levels of reserve computed in isolation un-
derestimate the risk since they do not account for the possible comovement
between individual risks? This is likely a consequence of the different ad-
ditivity properties of the variance and standard error, respectively. More
precisely, if the risks are positively correlated σij ≥ 0,∀i 6= j, we have :

V (
n∑

i=1

Xi) ≥
n∑

i=1

V (Xi),

whereas the VaR involves the standard deviation and inequality in the reverse
direction :

[V (
n∑

i=1

Xi)]
1/2 ≤

n∑
i=1

[V (Xi)]
1/2.

Thus, the variance, which cannot be considered as a level of reserve since
its unit is $ squared and not $, is superadditive, whereas the standard error
is subadditive.

The inequalities above become equalities in two extreme cases of depen-

dence. We have V (
n∑

i=1

Xi) =
n∑

i=1

V (Xi), when the variables are independent,

whereas [V (
n∑

i=1

Xi)]
1/2 =

n∑
i=1

[V (Xi)]
1/2, when the variables are linearly de-

pendent.

3 Disaggregation of risk measures

The aim of the recent literature on risk measures and systematic risk is
twofold. First, the contributions of each entity to the total reserve needed to
hedge the global risk have to be defined. Second, this individual contribution
has to highlight the reserve needed to cover the exposure to systematic risk
and unsystematic (or idiosyncratic) risk. More precisely, let us consider
a global risk measured by the global L&P : X, which is the sum of the

L&P ′s of the individual entities X =
n∑

i=1

Xi. A global reserve function R(X),

depending on the probability distribution of X, has been defined. It has to
be assigned to the different entities :
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R(X) =
n∑

i=1

R(X,Xi), (3.1)

say, where R(X,Xi) denotes the reserve of entity i.
Moreover, we would like to decompose the individual contribution into :

R(X,Xi) = Rs(X,Xi) +Ru(X,Xi) +Rs,u(X,Xi), (3.2)

where Rs (resp. Ru) denotes the reserve for marginal systematic (resp. un-
systematic) risk and Rs,u the reserve for the cross effects. We focus in this
section and the following one on decomposition (3.1) and defer the main
discussion on systematic risk to Sections 5 and 6.

3.1 A set of axioms

From an axiomatic point of view, it is important to distinguish the reserve
R(X) for global risk, where the risk measure R is usually either a VaR, or a
coherent measure satisfying a subadditivity condition, and the contributions
to the total reserve R(X, .). These contributions are contingent to the total
risk level and should satisfy at least a decentralization axiom, an additivity
axiom and a risk ordering axiom.

i) Decentralization axiom

Decentralization axiom : The individual contribution R(X,Xi) of
entity i depends on the joint distribution of (X,Xi), but is independent
of the decomposition of X −Xi into Σj 6=iXj.

This axiom has been first introduced in Kalkbrener (2005). In a reg-
ulatory perspective, it has the advantage of allowing for a computation of
R(X,Xi) by entity i, while preserving a minimal confidentiality on the indi-
vidual portfolios of the other entities.

More precisely, let us consider entities invested in stocks. The individual
L&P ′s are : Xi = Y ′γi, where Y denotes the vector of share values of the
stocks, and γi is the portfolio composition for entity i. The reserves are
usually evaluated for a crystallized portfolio, that is, with the composition
γ−
i existing at the beginning of period t (end of period t − 1). With this

practice, the regulator has to provide to entity i the type of measure R(X,Xi)
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to consider, the past data on Y , and the sum
n∑

j=1

γ−
j corresponding to the

global crystallized portfolio, without providing the individual information on
competitors’portfolios γ−

j ,∀j 6= i.

ii) Additivity axiom

The additivity axiom has been first introduced in Garman (1997) [see
also Kalkbrener (2005), where it is called linear aggregation axiom].

Additivity axiom :

R(X) =
n∑

i=1

R(X,Xi), for any decomposition of X into X =
n∑

i=1

Xi.

Intuitively, the total reserve should not depend on the number of entities
holding the risk and of their respective sizes, whenever the sum of these
L&P ′s stays the same. The additivity axiom has several consequences.

i) For n = 1, we get : R(X) = R(X,X).
ii) For n = 2, 3, we have :
R(X) = R(X,X1 +X2) +R(X,X −X1 −X2)

= R(X,X1) +R(X,X2) +R(X,X −X1 −X2),
which implies :

R(X,X1 +X2) = R(X,X1) +R(X,X2),∀X1, X2. (3.3)

This is the additivity property of the function Xi → R(X,Xi), for any
given X. By imposing the additivity axiom, any merging, or demerging of
entities without effect on global risk provides no spurious advantage in terms
of reserve.

The discussion in Section 2 has shown that an α-quantile qα(.), or more
generally a coherent risk measure R(.), does not satisfy the additivity condi-
tion; in general we have :

R(X) 6=
n∑

i=1

R(Xi).

Thus, such an individual measure of risk cannot be used as the contribu-
tion to global reserve, that is, we cannot choose : R(X,Xi) = R(Xi). The
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main reason is that the standard measures of individual risk such as the VaR
and the expected shortfall are not contingent to the level of global risk. By
choosing an oversized level of reserve, the regulator will penalize without any
economic reason the entities i such that :

R(Xi)/
n∑

i=1

R(Xi) ≥ R(X,Xi)/R(X).

According to Tasche (2008) [Remark 17.2], the choice of stand-alone risk
measure values as risk contributions would punish more those banks which
improve the diversification of the global regulatory portfolio.

iii) Risk ordering axiom

The allocations have also to be compatible with an appropriate notion
of stochastic dominance. Intuitively, the allocations have to take into ac-
count not only the individual risk of entity i, but also its hedging potential
with respect to the set of other entities. Thus, we have to introduce a di-
rectional notion of stochastic dominance valid for an individual risk X1, say,
and a given global L&P : X. For this purpose, let us consider the virtual
decomposition of the global portfolio into X1 and X̃2 = X −X1 obtained by
aggregating the L&P of the other entities.

Definition 3.1 : Let us consider the L&P : X,X1, X
∗
1 . We say that X∗

1

stochastically dominates X1 at order 2 with respect to X, if and only if :

E[U(X∗
1 , X −X∗

1 )|X] ≥ E[U(X1, X −X1)|X],

for any concave function U , increasing with respect to both arguments.

This is a stochastic dominance at order 2 applied to the virtual portfolio
X1, X̃2, whose allocations are constrained to sum up to a given X. The
directional stochastic partial ordering is denoted by ºX .

The directional stochastic dominance can be characterized in simpler
ways.

Proposition 3.2 : We have the following equivalences :
i) X∗

1 ºX X1;
ii) E[U(X∗

1 )|X] ≥ E[U(X1)|X], for any concave function U ;

9



iii) There exists a variable Z such that :

X1 = X∗
1 + Z, with E(Z|X,X∗

1 ) = 0.

Proof : See Appendix 1.

Proposition 3.2 above shows that the directional stochastic dominance is
equivalent to the standard stochastic dominance at order 2 applied to the
conditional distribution of X1 given X [see Rothschild, Stiglitz (1970)].

The next axiom concerns the compatibility of the contribution with the
directional stochastic dominance.

Risk ordering axiom

We have R(X,X∗
1 ) ≤ R(X,X1) for any pair of entity risks such that

X∗
1 ºX X1.

iv) Restrictions implied by the set of axioms

The decentralization and additivity axioms imply rather strong restric-
tions on the contributions as shown by the next Propositions.

Proposition 3.3 : Under the decentralization and additivity axioms, we
have :

R(X,X1 + Z) = R(X,X1),

for any variable Z independent of (X,X1) with a symmetric distribution.

Proof : We have the equalities :

R(X) = R(X,X1) +R(X,X1) +R(X,X − 2X1)

= R(X,X1 + Z) +R(X,X1 − Z) +R(X,X − 2X1).

Since the joint distributions of the pairs (X,X1+Z) and (X,X1−Z) are
the same under the assumptions of Proposition 3.3, we deduce :

R(X,X1) = R(X,X1 + Z).

10



QED

The result in Proposition 3.3 clearly shows the difference between a
marginal measure of risk and an allocation. By passing from X1 to X1 + Z,
we increase marginally the risk for the second-order stochastic dominance.
However, due to the additivity and decentralization axioms, this increase
has not been taken into account in the contribution. This is due to the
compensation between X1 and the L&P of the other entities.

Since some axioms imply strong restrictions on the contributions, we have
to check if there exist contributions satisfying jointly the three axioms.

Proposition 3.4 : The contributions : R(X,Xi) = E[Xi|X = R(X)] satisfy
the three axioms.

Proof : i) We have :

n∑
i=1

R(X,Xi) =
n∑

i=1

E[Xi|X = R(X)]

= E[X|X = R(X)] = R(X),

which proves the additivity.

ii) Moreover if X∗
1 ºX X1, we have :

E[X1|X = R(X)]

= E[X∗
1 + Z|X = R(X)], with E(Z|X∗

1 , X) = 0

= E{E[X∗
1 + Z|X∗

1 , X]|X = R(X)}

= E[X∗
1 |X = R(X)], by Proposition 3.2 iii).

Thus, R(X,X∗
1 ) = R(X,X1).

We deduce the compatibility with the risk preordering, at least in a wide
sense.

QED
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The decomposition above is valid for any choice of function R(X) and
in particular does not assume a priori the subadditivity of this global risk
function (see the discussion in Section 6.2).

We deduce the following Corollary :

Corollary 3.5 : The contributions :

RµP
(X,Xi) =

∫
E[Xi|X = x]µP (dx),

where µP is a measure (not necessarily a probability measure), which can
depend on the distribution P of X and is such that∫

xµP (dx) = R(X), satisfy the three axioms.

Proof : We have essentially to check the additivity condition. We get :

n∑
i=1

∫
E[Xi|X = x]µP (dx)

=

∫
xµP (dx) = R(X).

QED

Note that the contributions in Proposition 3.4 are obtained when µP is a
point mass at R(X). Corollary 3.5 also implies :

Corollary 3.6 : The contributions satisfying the three axioms are not
unique.

When the distribution of X is continuous, with a strictly increasing cdf,
the contributions in Corollary 3.5 can be written in terms of quantiles.

Corollary 3.7 : The contributions :

R(X,Xi) =

∫
E[Xi|X = qα(X)]νP (dα),

where νP is a measure, which can depend on the distribution P of X and is
such that :

12



∫
qα(X)νP (dα) = R(X), satisfy the three axioms.

Proof : The result is obtained by applying the change of variable x = qα(X).

QED

The equality R(X) =

∫
qα(X)νP (dα) implies that R(X) is a weighted

quantile. νP looks like a distortion measure, except that it can depend on the
distribution of X, since the allocation is contingent to X. It will be called
the allocation distortion measure (ADM) in the rest of the paper.

More precisely, let us consider a global risk measure equal to a standard
distortion risk measure (DRM) that is, a weighted combination of VaR [see
Wang (2000), Acerbi (2002)] :

R(X) = DRMH(X) =

∫
qα∗(X)H(dα∗),

where H denotes a distortion (or spectral) probability measure 10 on (0, 1).
This measure H is fixed independently of the distribution P of global risk.
This DRM is subadditive if and only if function H is convex [Wang, Young
(1998)]. Corollary 3.7 is saying that we do not have necessarily to use the
fixed distortion measure H defining the DRM as the allocation distortion
risk measure. Indeed, a given level of global reserve, 2 billions $, say, can
be seen as the value of a VaR as well as the value of an ES, and more
generally as the value of an infinite number of alternative DRM, whenever

R(X) =

∫
qα(X)νP (dx). The measures to define the global reserve and to

allocate it can be different.

It is important to stress that, under rather weak conditions, all the con-
tributions are necessarily of the form given in Corollary 3.5.

Proposition 3.8 : Let us assume that the L&P : X,Xi belong to a space
L2(Y ), where Y is a given set of random variables. If the contribution Xi →

10The unit mass property of the distortion measure is a consequence of the certainty
axiom, saying that R(c) = c for a constant risk X = c. When the allocation distortion
measure νP depends on risk distribution P , the certainty axiom implies that νP is unit
mass for every P equal to a point mass at c. νP can have a non unit mass, otherwise.
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R(X,Xi) is continuous with respect to Xi for the L2-norm, then, under
Axioms 1 and 2, we have R(X,Xi) = E[aP (X)Xi], where aP (X) is a square
integrable function on X, which can depend on the distribution of X and is
such that E[aP (X)X] = R(X).

Proof : In the Hilbert space L2(Y ), the continuous linear form are neces-
sarily of the type :

R(X,Xi) = E[a(Y )Xi],

where a(Y ) ∈ L2(Y ) [see e.g. Rudin (1966), Chapter 4]. The special ex-
pression of function a(Y ) is a direct consequence of the decentralization and
additivity axioms.

QED

The conditionXi ∈ L2(Y ) means that the portfolios of interest are written
on some basic assets Y , possibly including derivatives with nonlinear (square
integrable) payoffs.

The allocations in Proposition 3.8 are the same as the allocations in Corol-
lary 3.5. Indeed, we have :

E[aP (X)Xi] = E[aP (X)E(Xi|X)]

=

∫
E[Xi|X = x]aP (x)P (dx),

where P (dx) is the historical distribution of X. This expression is of the
form given in Corollary 3.5.

Since aP is a measure density, R(X,Xi) is simply a weighted risk allo-
cation in the terminology of Furman, Zitikis (2008). When aP is positive,
the allocation can be interpreted as the value of Xi obtained by applying the
pricing operator aP function of the distribution of X. This corresponds to
the premium calculation principle introduced in Gerber (1979).

Other axioms have been considered in the literature. For instance Kalk-
brener (2005) proved the uniqueness of the allocation under an additional

14



continuity assumption and the fact 11 that :

Diversification axiom :

R(X,Xi) ≤ R(X,X) = R(X), ∀Xi.

Moreover, under these additional conditions, the global reserve R(X) is
necessarily a subadditive function.

We do not introduce this diversification axiom. Indeed, since :

R(X) = R(X,X1) +R(X,X2), when X1 +X2 = X,

this axiom implies the nonnegativity of the reserve contribution. It is im-
portant to leave open the possibility of a negative contribution 12, when a
given entity is more prudential than deemed necessary. Typically, if the en-
tity portfolio includes mainly riskfree asset, the contribution will be negative,
which means the authorization for an increased leverage without requiring
positive reserve in liquid riskfree asset.

Tasche (2008) proved the uniqueness of the allocation under an additional
condition of compatibility between the global and individual Return On Risk
Adjusted Capital (RORAC). Such a performance criterion may be appropri-
ate for a capital allocation to business units, but is difficult to interpret from
a regulatory point of view 13.

In fact, as for the notion of coherent risk measure, the axiomatic has to re-
strict the set of possibilities to easily interpretable allocations, not necessarily
to provide a unique solution.

3.2 Related literature

There exist two streams of literature for defining risk measures contingent
to the level of global risk. Some authors focus on the direct introduction of
the contingent reserve levels R(X,Xi). The CoVaR [Adrian, Brunnermeier

11A similar diversification condition is introduced in Hesselager, Andersson (2002), or
Furman, Zitikis (2008).

12see e.g. Uryasev, Theiler, Serrano (2010) for a practical example of negative allocation.
13The definition of the RORAC in Tasche (2008) as RORAC(X) = E(X)/R(X) seems

rather restrictive. The recent literature on portfolio management has typically preferred
the ratio q1/2(X)/qα(X), that is, a median instead of a mean in the numerator when R(X)
is a VaR.
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(2009)], or the computation of the reserve based on the Shapley value [De-
nault (2001), Koyluoglu, Stocker (2002), Taraschev et alii (2009)] belong to
to this literature. Other authors directly introduce a decomposition formula
(3.1) of the total reserve, and then try to interpret ex-post the elements
R(X,Xi) in this decomposition [see e.g. Tasche (2000), (2001), Acharya et
alii (2010)]. Let us briefly describe these approaches.

i) The CoVaR and its limitations

Adrian and Brunnermeier (2009) propose to analyze the risk of the entities
(resp. the system), when the system (resp. entity) is in distress.

More precisely, let us denote by qα(X) the α-quantile corresponding to
the system14. The CoVaR for entity i and confidence level α when the system
is in distress is defined by :

P [Xi < CoV aRi|s,α(X)|X = qα(X)] = α. (3.4)

Similarly, let us denote by qα(Xi) the α-quantile corresponding to entity
i, the CoVaR for the system and confidence level α, when i is in distress is
defined by :

P [X < CoV aRs|i,α(X)|Xi = qα(Xi)] = α. (3.5)

The two CoVaR above are generally different, leading to alternative def-
initions of the contribution of entity i to systematic risk. For instance, the
authors define the systematic component of the reserve of entity i as :

Rs(X,Xi) = CoV aRs|i,α(X)− qα(X), (3.6)

and, implicitly, add this quantity, called ∆ CoVaR, to the usual individual
VaR considered as the second (unsystematic) component :

Ru(X,Xi) = qα(Xi). (3.7)

Thus the underlying total reserve for entity i becomes :

R(X,Xi) = CoV aRs|i,α(X)− qα(X) + qα(Xi).

Alternatively, it would be possible to choose :

14A similar approach can be based on another risk measure such as the Expected Short-
fall [see e.g. Kim (2010)].
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R∗
s(X,Xi) = CoV aRi|s,α(X)− qα(Xi), (3.8)

with R∗
u(X,Xi) = qα(Xi). In this case the total reserve for entity i is :

R∗(X,Xi) = CoV aRi|s,α(X).

Choosing the causality direction, that is, choosing between definition
(3.5)-(3.6) and definition (3.7)-(3.6), is a first difficulty. Moreover, the Co-
VaR approach features other drawbacks. For instance :

(*) The CoVaR cannot be computed for identical entities (clones in Adrian,
Brunnermeier terminology). Indeed, let us assume X1 = X2, for in-
stance, and X = 2X1. Then, the conditional distribution of X given
X1 (resp. X1 given X) is discrete, which does not allow for the unique-
ness of the α-quantile, except for limiting confidence levels α = 0, or
1.

(**) The implicit choice Ru(X,Xi) = qα(Xi) is not appropriate. Indeed, we

have seen in Section 2, that, in general,
n∑

i=1

qα(Xi) > qα(X); this means

that the individual α−quantiles are more than sufficient to cover the
total risk and in particular its systematic component. Thus, qα(Xi)
already includes some reserve for systematic risk.

(***) In the approach (3.8), we get :

R∗(X,Xi) = CoV aRi|s,α(X),

The CoVaR does not satisfy the additivity axiom since the sum of
CoVaR can be different for different allocations Xi, i = 1, . . . , n of a

same portfolio X =
n∑

i=1

Xi.

ii) The Shapley value

A Shapley value [Shapley (1953)] is a fair allocation of gains obtained by
cooperation among several actors. Let us assume that all actors i = 1, . . . , n
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accept to cooperate and introduce a superadditive value function v(S), which
measures the gain of this cooperation for a coalition S ⊂ {1, . . . , n}. The
superadditivity condition :

v(S ∪ T ) ≥ v(S) + v(T ),

expresses the fact that cooperation can only be profitable.
The Shapley value is one way to distribute the total gains of the players,

if they all collaborate, by demanding for each actor i a contribution v(S ∪
{i})− v(S) as a fair compensation to join coalition S. The Shapley value is
defined as a mean of these compensations over all possible coalitions :

Vi =
∑

S⊂{1,...,n}\{i}

{ |S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)]

}
, (3.9)

where |S| denotes the number of actors in coalition S. Denault (2001),
Koyluoglu, Stocker (2002), Tarashev et alii (2009) (with the Varying Tail
Events procedure) propose the Shapley value as a fair allocation of the reserve
with v(S) = −R(Σi∈SXi), andR a risk measure such as a VaR, or an expected
shortfall.

In a regulatory perspective, the drawback of this approach is threefold15 :

(*) It considers as given the oversized VaR measure, for instance, proposed
by the regulator, without trying to correct this overevaluation of risks.

(**) It assumes a total cooperation of the entities, which are in practice
competitors.

(***) The Shapley allocation does not satisfy the decentralization, i.e. con-
fidentiality, axiom (which intuitively is not compatible with a total
cooperation).

In fact, as mentioned in Denault (2001), the Shapley principle is ap-
propriate for reallocating in a fair manner the oversizing of reserves in the
current regulation, but not in suppressing in a fair manner this oversizing.

15However, this approach can be appropriate for the internal allocation of the economic
capital of a bank between its business lines, or departments.
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In a regulatory perspective, such a Shapley reallocation could only be done
by the regulator itself (due to confidentiality restriction). This would lead
to a highly centralized computation of VaRs by the regulator itself, but is
clearly not implementable in practice. First, the regulator does not possess
the technical departments to make such computations for all entities. Sec-
ond, such a centralized approach contradicts the spirit of the second Pillar of
Basel regulation, where the entities have to learn how to manage and control
their internal risks by themselves.

iii) The disaggregation approaches

In Tasche (2000), (2001) the global risk measure is for instance an α-
quantile. Then it is noted that:

R(X) = qα(X) = E[X|X = qα(X)]

=
n∑

i=1

E[Xi|X = qα(X)]. (3.10)

The contribution of entity i to global reserve level is defined as :

R(X,Xi) = E[Xi|X = qα(X)].

This is exactly the allocation principle in Proposition 3.4 (see Appendix
4 i) for the equivalent expression written in returns).

Similarly, the Expected Shortfall16 (ES) as a risk measure for the global
risk can be decomposed as [Tasche (2000)] :

R(X) = ESα(X) = E[X|X > qα(X)]

=
n∑

i=1

E[Xi|X > qα(X)]. (3.11)

Then, the contribution of institution i to global reserve level is defined
as :

16Also called Conditional VaR (CVaR) in a part of the literature [see e.g. Rockafel-
lar, Uryasev (2002), Acerbi, Tasche (2002)], or TailVaR, or Conditional Tail Expectation
(CTE) [Kim (2007)].
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R(X,Xi) = E[Xi|X > qα(X)].

This allocation is called Tail Conditional Expectation (TCE) allocation.
TCE allocations have been computed for several multivariate distribution
families, as the Gaussian family [Panjer (2002)], the elliptical distributions
[Landsman, Valdez (2003)], the multivariate skew-elliptical [Cai, Tan (2005)],
or multivariate Pareto [Chiragiev, Landsman (2007)].

Decompositions (3.10) and (3.11) above differ essentially by the condition-
ing set. They stress that an additive decomposition involves both condition-
ing with respect to system distress [as in definition (3.4) of the CoVaR] and
conditional expectations (instead of conditional quantiles as in the CoVaR
approach) to ensure the additivity property.

Note also that decomposition formulas (3.10) and (3.11) are valid if the
entities use the same information set at the beginning of the period.

However, there exists a multiplicity of decompositions of the global risk,
for example of the expected shortfall (see Corollary 3.5). For instance, by
applying the allocation principle in Proposition 3.4, we derive an alternative
set of allocations of the expected shortfall :

R̃(X,Xi) = E[Xi|X = ESα(X)]. (3.12)

If the distribution of X is continuous with a strictly positive density,
qα(X) and ESα(X) are both continuous strictly increasing function of α.
Thus, TCE allocation E[Xi|X = ESα(X)] in (3.13) is equal to a VaR allo-
cation (3.10) : E[Xi|X = qα∗(X)] associated with another confidence level
α∗.

Both sets of allocations (3.11) and (3.12) of the expected shortfall satisfy
the three axioms of Section 3.1.

3.3 Gaussian L&P

If the LSP ′s are jointly Gaussian, we have the following Property :

Proposition 3.9 : In the Gaussian framework, all allocations of Corollary
3.5 coincide.

Proof : In the Gaussian case, we have :
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E(Xi|X = x) = E(Xi) +
Cov(Xi, X)

V (X)
[x− E(X)].

We deduce immediately the expressions of the other allocations in Corol-
lary 3.5. We have :

Rµ(X,Xi) = E(Xi) +
Cov(Xi, X)

V (X)
[

∫
xµP (dx)− E(X)]

= EXi +
Cov(Xi, X)

V (X)
[R(X)− E(X)],

and we obtain the result.

QED

Loosely speaking, we get the uniqueness of all allocations satisfying the
three axioms under the additional Gaussian assumption.17

Expression Rµ(X,Xi) shows the hedging interpretation of the allocation.
It is the sum of the expected individual L&P and an hedging premium,
equal to a sensitivity coefficient [i.e. the standard beta Cov(Xi, X)/V (X)]
multiplied by the excess global risk R(X)−EX (often called global Economic
Capital).

In the particular case of the VaR : R(X) = qα(X), we get :

qα(X) = E(X) + qα[V (X)]1/2,

and R(X,Xi) = EXi + qαcov(Xi, X)/V (X),

where qα is the α-quantile of the standard normal. This risk allocation is
called Component VaR by Garman (1996).

4 Sensitivity analysis

In this section, we consider the effects on the global reserve and contributions
of some changes in individual L&P. Let us assume given benchmark L&P ′s :

17More generally, whenever E(Xi|X = x) is linear affine in x.
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X1, . . . , Xn, X =
n∑

i=1

Xi and modify the respective sizes of the entities port-

folios to λ1X1, . . . , λnXn, with λi ≥ 0,∀i. The total L&P becomes
n∑

i=1

λiXi

and the associated global reserve is a function of ∧ = (λ1, . . . , λn)
′ and the

joint distribution of X1, . . . , Xn. We focus on the dependence in ∧ and de-
note :

R∗(∧) = R(
n∑

i=1

λiXi). (4.1)

In particular q∗α(∧), ES∗
α(∧), DRM∗(∧) are the VaR, ES and DRM eval-

uated at this modified portfolio.

When ∧ = e = (1, . . . , 1)′, the total reserve is R∗(e) = R(X).

4.1 Euler allocation

As noted in Litterman (1996), p28, and Garman (1997), footnote 2, if the
risk measures are homogenous of degree 1, that is, satisfy the condition :

R(λX) = λR(X), ∀λ > 0, (4.2)

or, equivalently, R∗(λe) = λR∗(e),∀λ > 0,∀∧, we get the Euler condition :

R∗(e) =
n∑

i=1

∂R∗(e)
∂λi

, (4.3)

(obtained by differentiating both sides of equation (4.2) with respect to λ).
This provides a decomposition of a global risk measure as the sum of its
sensitivities corresponding to shocks performed separately on each entity.
This justifies the terminology Euler allocation 18 used in McNeil et alii (2005),
Section 6.3, and Tasche (2007).

Let us consider this decomposition for a global risk defined by a distortion
risk measure.

18The Euler allocation has an interpretation in terms of game theory and correspond to
an Aumann-Shapley value [see Denault (2001)].
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DRMH(X) =

∫
qα∗(X)H(dα∗), (4.4)

where H denotes a distortion (probability) measure on (0,1).

The VaR and more generally the DRM are homogenous functions of de-
gree 1. Thus, the total reserve can be decomposed into :

DRMH(X) =
n∑

i=1

DMH,i, (4.5)

where the marginal expected distortion risk measures are given by :

DRMH,i =

∫
qα∗,iH(dα∗),with qα,i =

∂q∗α(e)
∂λi

. (4.6)

The following result has been derived in Gourieroux, Laurent, Scaillet
(2000) [see also the beginning of Appendix 2, formula a.3].

Proposition 4.1 :

qα,i =
∂q∗α(e)
∂λi

= E[Xi|X = qα(X)].

From Proposition 4.1, we deduce that the allocation considered in (3.10)
is a Euler allocation. The Euler allocation of a distortion risk measure is
given by :

DRMH,i =

∫
E[Xi|X = qα∗(X)]H(dα∗). (4.7)

This Euler allocation applied to DRM satisfies the three axioms of Section
3.1. However, it is rather restrictive, since it corresponds to the choice
of an allocation distortion measure equal to the distortion measure
itself.

The Euler decomposition formula (4.7) is in particular valid for the ex-
pected shortfall19, for which the distortion measure is the uniform distribu-
tion on the interval (α, 1) [Wang (2000), Acerbi, Tasche (2002)] :

19The expected shortfall is the smallest coherent risk measure dominating the VaR
[Delbaen (1998), Theorem 6.10].
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ESα(X) =
1

1− α

∫ 1

α

qα∗(X)dα∗, (4.8)

It can be checked that the marginal expected shortfall is equal to :

MESi =
1

1− α

∫ 1

α

E[Xi|X = qα∗(X)]dα∗

= E[Xi|X > qα(X)]. (4.9)

This simplified expression of the marginal expected shortfall has been
first derived by Tasche (2000) [see also Scaillet (2004), Fermanian, Scaillet
(2005) and Appendix 2]. Thus, TCE allocation (3.12) [and not decomposition
(3.13)] corresponds to the relative Euler allocation of the expected shortfall.

The Euler allocations of global risk depend on the selected distortion
measure, for instance of the choice between the VaR and the expected short-
fall [see e.g. Kurth, Tasche (2002), for a theoretical comparison based on
the CreditRisk+ model]. However, there exist important cases in which the
relative Euler allocations do not depend on the selected DRM as shown in
the example below.

Example : A stochastic volatility model.

Let us assume : Xi = σ(f)ui, i = 1, . . . , n, where u1, . . . , un are inde-
pendent Gaussian variables, ui ∼ N(0, σ2

i ) and, f is a factor independent of
these error terms. We have :

n∑
i=1

λiXi = σ(f)
n∑

i=1

λiui

= σ(f)(
n∑

i=1

λ2
iσ

2
i )

1/2v,

where v is a standard Gaussian variable. Since a quantile function is ho-
mogenous of degree 1, we have :
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q∗α(∧) = (
n∑

i=1

λ2
iσ

2
i )

1/2qα[σ(f)v],

and
∂q∗α(e)
∂λi

=
σ2
i

n∑
j=1

σ2
j

q∗α(e) = E[Xi|X = qα(X)].

Thus, the relative Euler allocations are σ2
i /

n∑
j=1

σ2
j , and are independent

of α. The relative allocations are also the same for any DRM.

Note however that the homogeneity assumption of the global risk measure
is questionable, especially if the regulation is used for economic policy. As an
illustration, let us assume that the portfolios of interest include the different
types of credits. From a macroeconomic point of view, there exists an optimal
level for the global amount of credit to be distributed in the economy. The
global risk measure has to be chosen as an incentive to reach this optimal
level. The cost of the reserve has to be small, if the current amount of credit
is below this optimal level, large, otherwise. Mathematically, we expect
function λ → R(λX)/λ to be increasing in λ, not constant. For instance
Rc(X) = E(X) + E[(X − c)+], where c is the ”optimal level” would satisfy
this condition.20 21

4.2 Euler allocation sensitivities

The Euler allocation of the global reserve involves the first-order expan-
sion of the risk measure with respect to a uniform change of portfolio sizes

20The homogeneity assumption is sometimes justified by an invariance of the risk mea-
sure with respect to a change of money unit. We note that function Rc(X) satisfies this
latter condition which involves the changes X → λX and c → λc, since the optimal level
is also written in money unit, but is not homogenous of degree 1 in X for fixed c.

21For a similar reason, we have not introduced the translation axiom R(X+c) = R(X)+
c, for any constant c. Indeed, the economic policy has also to manage the distribution
of credit in the economy between the very risky projects (start up) and less risky ones.
Therefore, it can be natural to penalize some non risky distribution of credits. In such a
case, we expect R(c) > c, for a large positive deterministic L&P .
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(X1, . . . , Xn) → (λX1, . . . , λXn). Let us now consider the second-order ex-
pansion for a non uniform change of portfolio allocation :

(X1, . . . , Xn) → (λ1X1, . . . , λnXn),

where ∧ = (λ1, . . . , λn)
′ is close to e = (1, . . . , 1)′.

The expansion of a distortion risk measure is :

DRM∗
H(∧) ' DRM∗

H(e) +
∂DRM∗

H(e)

∂∧′ (∧ − e) +
1

2
(∧ − e)′

∂2DRM∗
H(e)

∂ ∧ ∂∧′ (∧ − e)

(4.10)

=
∂DRM∗

H(e)

∂∧′ ∧+
1

2
(∧ − e)′

∂2DRM∗
H(e)

∂ ∧ ∂∧′ (∧ − e). (4.11)

Since the first-order partial derivative
∂DRM∗

H(∧)
∂λi

is equal to the Eu-

ler allocation DRMH,i(∧) of the global risk measure to entity i, when the
individual L&P ′s are λiXi, i = 1, . . . , n, we deduce that :

∂2DRM∗
H(e)

∂λi∂λj

=

(
∂

∂λi

[
∂

∂λj

DRM∗
H(∧)

])

∧=e

=

[
∂

∂λi

DRM∗
H,j(∧)

]

∧=e

,

(4.12)
and we have the following result :

Proposition 4.2 : The marginal change in the Euler allocation DRMH,j

associated with a change of size of entity i is such that :

DRM
(i)
H,j ≡

[
∂DRM∗

H,j(∧)
∂λi

]

∧=e

=
∂2DRM∗

H(e)

∂λi∂λj

,∀i, j.

In particular,

i) It is equal to the second-order cross-derivative of the global risk measure
with respect to changes in portfolio values of entities i and j.

i) The marginal reserve allocations satisfy the symmetry property :

DRM
(i)
H,j = DRM

(j)
H,i, ∀i, j.
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iii) They are such that :

n∑
i=1

n∑
j=1

DRM
(i)
H,j = 0.

Proof : Parts i) and ii) are direct consequences of equality (4.11) and of
the symmetry of an Hessian matrix. Property iii) is a consequence of the
homogeneity property. Indeed, we know that :

DRM∗
H(λe) = λDRM∗

H(e),∀λ,
and, by applying the second-order expansion with ∧ = λe, we deduce that :

e′
∂2DRM∗

H(e)

∂ ∧ ∂∧′ e = 0,

that is,
n∑

i=1

n∑
j=1

DRM
(i)
H,j = 0.

QED

Moreover, if the distortion risk measure DRMH is subadditive, the Hes-
sian is positive semi-definite,22 and, by Cauchy-Schwarz inequality, we have
the equivalences :

e′
∂2DRM∗

H(e)

∂ ∧ ∂∧′ e = 0 ⇐⇒ ∂2DRM∗
H(e)

∂ ∧ ∂∧′ e = 0 ⇔ e′
∂2DRM∗

H(e)

∂ ∧ ∂∧′ = 0.

We deduce the following restrictions on the allocation sensitivities.

Corollary 4.3 : If the cumulative function H of the distortion measure is
convex23, the matrix of Euler allocation sensitivities is positive semi-definite,
and

22Since subadditivity and homogeneity of degree 1 imply convexity.
23The convexity of cumulative distribution function H is equivalent to the convexity of

the DRMH with respect to risk variable X, or equivalently to its subadditivity, since a
DRM is homogenous of degree 1.
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n∑
j=1

DRM
(i)
H,j = 0,∀i = 1, . . . , n,

n∑
i=1

DRM
(j)
H,i = 0,∀j = 1, . . . , n,

The results above are well-illustrated for the expected shortfall, whose
second-order derivative with respect to the changes of portfolio values is
proportional to a variance-covariance matrix. More precisely, we have :

∂2ES∗(e)
∂ ∧ ∂∧′ =

p[qα(x)]

α
V







X1
...

Xn


 |X = qα(X)


 , (4.13)

where p is the density of X [see e.g. Bertsimas, Lauprete, Samarov (2004),
formula (9)].

However, the restrictions on allocations given in Corollary 4.3 valid for
an Euler allocation and a subadditive DRM, are difficult to interpret from an
economic point of view. They are consequences of the specific choice of the
ADM. They are not valid in general for the other allocations satisfying the
three axioms given in Corollary 3.5, when the allocation distortion measure
differs from the distortion measure.

4.3 Gaussian L&P

Let us finally consider the effect on VaR allocations given in Section 3.3 of a
change of size for entity i : Xi → λiXi, the values for the other entities being
fixed, for jointly Gaussian L&P .

Proposition 4.4 : We have :

∂2q∗α(e)
∂ ∧ ∂∧′ = qα

{
Σ

(e′Σe)1/2
− Σee′Σ

(e′Σe)3/2

}
.

Proof : See Appendix 3.

We check that, for any δ :

28



δ′
∂2q∗α(e)
∂ ∧ ∂∧′ δ = qα

{
δ′Σδ

(e′Σe)1/2
− (δ′Σe)2

(e′Σe)3/2

}
≥ 0,

by Schwarz inequality, and that

∂2qα(e)

∂ ∧ ∂∧′ e = 0.

Indeed, in the Gaussian case, the VaR satisfies the subadditivity property
(see Section 2), and therefore Corollary 4.3.

Thus, an increase of size of entity i has a negative effect on the allocation

of entity j, if and only if σij ≤ σi.σ.j

σ..

, where σi. =
n∑

j=1

σij, σ.j =
n∑

i=1

σij, σ.. =

n∑
i=1

n∑
j=1

σij, which differs from the intuitive condition σij < 0.

The allocations and allocation sensitivities for other distortion risk mea-
sures have similar expressions after substituting the distortion measureDRMα

of the standard normal distribution to the quantile qα of the standard normal
in all expressions above.

5 Contribution of systematic risk

The disaggregation approaches provide contributions of individual entities
satisfying the axioms, but do not try in general to reallocate the global risk
between systematic and unsystematic components. The aim of this section is
to explain how the allocation principle can be applied to disentangle the sys-
tematic and unsystematic components of the risk. We first consider models
with linear factors driving the systematic risk which are usually considered
when we focus on market risk, that is the risk in the trading book. Then,
the approach is extended to nonlinear factors. Nonlinear factor models are
involved whenever options and/or credit risks are considered. Thus, the anal-
ysis of nonlinear factor effects has to be taken into account not only when
considering the banking book, but also in a joint analysis of the trading and
banking books, currently treated separately in the regulation. Indeed several
factors, such as the riskfree interest rate, the business cycle, or the price of
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the real estate have effects on both books [see the discussion in Breuer et alii
(2010)].

We first discuss the disaggregation of the reserves into systematic and
unsystematic components, when

i) the individual L&P ′s are linearly decomposed;

ii) the global risk measure is a VaR;

ii) the allocation to entities are Euler allocations.

Then, we extend this approach to more general frameworks.

5.1 Linear factor model, VaR global risk measure and
Euler allocation

Let us first consider a linear factor model. The individual L&P ′s can be
decomposed as :

Xi =
K∑

k=1

βikfk + γiui, (5.1)

where f1, . . . , fK are systematic factors and ui idiosyncratic terms with
K < n. These factors are random at the beginning of period t, and observable
at the end of this period. For instance, for fixed income derivatives, the main
risk factors can be the interest rate level, slope and curvature, the spreads
over T-bond rates, the exchange rates... The total P&L can be decomposed
as :

X =
K∑

k=1

[
(

n∑
i=1

βik)fk

]
+

n∑
i=1

γiui. (5.2)

The α-quantile of X is a function :

qα(X) = q∗α

(
n∑

i=1

βi1, . . . ,

n∑
i=1

βiK , γ1, . . . , γn, θ

)
, (5.3)

where θ denotes the parameters characterizing the joint distribution of
f1, . . . , fK , u1 . . . , un.
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i) Euler allocation

The marginal effect of an homothetic change of exposure of the entities

passing from Xi to λXi =
n∑

k=1

λβikfk + λγiui, i = 1, . . . , n is :

[
dqα(λX)

dλ

]

λ=1

=
K∑

k=1

(
n∑

i=1

βik)
∂qα(X)

∂βk

+
n∑

i=1

γi
∂qα(X)

∂γi
. (5.4)

where βk =
∑n

i=1 βik.

The composite term :

K∑

k=1

βik
∂qα(X)

∂βk

+ γi
∂qα(X)

∂γi
≡ ∂q∗α(e)

∂λi

, (5.5)

measures the VaR Euler contribution of entity i. The Euler allocation can
be decomposed from (5.5) to highlight the effects of systematic factors and
idiosyncratic term.

In some sense, decomposition formulas (5.4)-(5.5) explain how to pass
from Euler allocations computed by entity, to Euler allocations computed by
”virtual business lines” associated with the different risk factors, as summa-
rized in Table 1. In other words, we propose to treat in a symmetric way the
contributions to global risk of both risk factors and entities.

Table 1 : Euler decomposition of global VaR
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entity 1 i n risk contribution
risk factor of the factors

f1
...

fK

n∑
i=1

βiK
∂qα(X)

∂βK

u1
...

un γn
∂qα(X)

∂γn

risk contribution
∂q∗α(e)
∂λi

V aR(X)

of the entity

Formula (5.5) involves the following partial derivatives of the α− quan-
tile :

∂q∗α(e)
∂λi

= E[Xi|X = qα(X)], (5.6)

∂qα(X)

∂βk

= E[fk|X = qα(X)], (5.7)

∂qα(X)

∂γi
= E[ui|X = qα(X)]. (5.8)

This provides another interpretation of Euler decomposition of the global
risk in terms of sensitivity to risk exposure. We have :

qα(X) =
n∑

i=1

E[Xi|X = qα(X)] =
n∑

i=1

∂q∗α(e)
∂λi

=
n∑

i=1

{
K∑

k=1

βik
∂qα
∂βk

(X) + γi
∂qα
∂γi

(X)

}
. (5.9)

We get as a by-product, the Euler components associated with systematic
and unsystematic risks, respectively, as :
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Rs(X,Xi) =
K∑

k=1

βik
∂qα
∂βk

(X) =
K∑

k=1

βikE[fk|X = qα(X)], (5.10)

Ru(X,Xi) = γi
∂qα
∂γi

(X) = γiE[ui|X = qα(X)], (5.11)

and the additivity property is also satisfied by these components :

R(X) = Rs(X) +Ru(X), (5.12)

with Rs(X) =
n∑

i=1

Rs(X,Xi), Ru(X) =
n∑

i=1

Ru(X,Xi). (5.13)

ii) Large number of entitites

Finally, let us discuss the case of large n. If n is large, and the entities
of similar sizes, we deduce from the Law of Large Numbers (LLN) that
the idiosyncratic terms can be diversified, whereas the systematic factors
cannot be. For expository purpose, let us consider a single factor model with
γi = 1,∀i. We have :

X = (
n∑

i=1

βi)f +
n∑

i=1

ui.

Let us assume that the beta coefficients are i.i.d. with a positive mean
E(β) > 0, and are independent of factor f and idiosyncratic errors ui, i =
1, . . . , n. Let us also assume that these errors are independent with zero
mean E(ui) = 0. The Euler contribution to the VaR is equal to :

E[Xi|X = qα(X)] = E[Xi|X/n = qα(X/n)],

since the quantile function is homogenous of degree 1.24

By the LLN, we deduce that :

lim
n→∞

(X/n) = E(β)f.

24Note that X depends on size n, but this dependence is not indicated for expository
purpose.
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Thus, the idiosyncratic part has been diversified, whereas the effect of
systematic risk persists asymptotically.

When n = ∞, the Euler allocation of the VaR becomes :

limn→∞E[Xi|X = qα(X)] = limn→∞E[Xi|X/n = qα(X/n)]

= E[Xi|E(β)f = qα[E(β)f ]]

= E[βif + ui|E(β)f = qα[E(β)f ]

= E[βif |E(β)f = qα[E(β)f ]

= limn→∞E[βif |X = qα(X)]

= limn→∞E[Xs,i|X = qα(X)].

In this limiting case, the Euler allocation for entity i and the Euler allo-
cation for its systematic component coincide. Moreover, it is equivalent to
condition on X, on the factor summary E(β)f , or on factor f itself.

The derivation above is important to understand the systematic contribu-
tion used in Acharya et alii (2010), Brownless, Engle (2010), which underlies
the daily updated systematic risk ranking diffused by NYU Stern’s Volatil-
ity Lab. [www.systemicrisisranking.stern.nyu.edu], defined by 25 E[Xi|X =
qα(X)]. This definition is valid under the assumptions above, i.e. when the
unsystematic component can be diversified and when factor f can be identi-
fied to the market portfolio.

For n large, but finite, it is easily checked by applying granularity theory
[Gagliardini, Gourieroux (2010)], that the expressions :

E[Xs,i|X = qα(X)] = E[βif |X = qα(X)],

and E[Xi|X = qα(X)] differ.

25Their analysis concerns stock market. Xi is the capitalization in stock i, whereas X
is the market portfolio value.
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5.2 General allocations in a linear factor model

The interpretation of Euler allocation discussed in Table 1 provides a prin-
ciple of allocation between systematic and unsystematic risks in a general
framework. The idea is to choose as new entities the (initial entity) × (type)
of risk. The L&P for entity i and systematic risk (resp. unsystematic risk)

is : Xs,i =
K∑

k=1

βikfk(resp. Xu,i = γiui). The components of the total L&P

are defined accordingly by : Xs =
n∑

i=1

Xsi and Xu =
n∑

k=1

Xu,i. Then, for a

given ADM µP , the allocations are defined by :

Rµ,s(X,Xi) = Rµ(X,Xsi),

Rµ,u(X,Xi) = Rµ(X,Xui)

Rµ(X,Xi) = Rµ,s(X,Xi) +Rµ,u(X,Xi),

Rs(X) =
n∑

i=1

Rµ,s(X,Xi) = Rµ(X,Xs),

Ru(X) =
n∑

i=1

Rµ,u(X,Xi) = Rµ(X,Xu).

5.3 Nonlinear factor model

The allocation of the global reserve among the entities can be done for both
linear and nonlinear factor models. However, the allocation between system-
atic and unsystematic components is less than obvious if :

Xi = gi(f, u), (5.14)

where (multidimensional) factor f and idiosyncratic term u are independent,
due to the presence of cross effects.

However, it is possible to decompose the individual L&P as :
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Xi = E(Xi|f) + [E(Xi|u)− E(Xi)] + [Xi − E(Xi|f)− E[Xi|u] + E(Xi)]

≡ Xs,i +Xu,i +Xu,s,i, say, (5.15)

where Xs,i, Xu,i, Xs,u,i are the principle systematic and unsystematic effects,
and the cross effect, respectively 26 27. Even if the systematic factor f and
the idiosyncratic term u are independent, interaction effects will appear in
the risk contributions due to the nonadditive decomposition.

Then, the allocation of entity i can be decomposed as :

R(X,Xi) = Rs(X,Xi) +Ru(X,Xi) +Rs,u(X,Xi), (5.16)

where :

Rs(X,Xi) = E[Xs,i|X = qα(X)] = E[E(Xi|f)|X = qα(X)],

Ru(X,Xi) = E[Xu,i|X = qα(X)] = E[E(Xi|u)|X = qα(X)]− E(Xi),

Rs,u(X,Xi) = R(X,Xi)−Rs(X,Xi)−Ru(X,Xi).

This decomposition does not depend on the selected representations of
the factor and the idiosyncratic term, that is, the decomposition is invariant
when f or u is transformed by a one-to-one transformation.

Example : As an illustration, let us consider models with stochastic drift
and volatility driven by a same factor f :

Xi = mi(f) + σi(f)ui, i = 1, . . . , n,

where f is independent of u = (u1, . . . , un)
′, and the errors are iid zero mean.

We have :

26As in Section 5.1, we have implicitly included the expected L&P in the systematic
component.

27This type of decomposition can also be used to distinguish the effects of dependent
systematic factors [see Rosen, Saunders (2010), Section 4.5]
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Rs(X,Xi) = E[mi(f)|X = qα(X)],

Ru(X,Xi) = E[E{σi(f)}ui|X = qα(X)],

Rs,u(X,Xi) = E[(σi(f)− E{σi(f)})ui|X = qα(X)].

This example shows that in a nonlinear model, the effect of the systematic
factor is captured by both Rs and Rs,u. Their relative magnitude can be
highly different for the different entities. For instance in a basic stochastic
volatility model, where mi(f) = 0, only the cross effect matters.

6 Required Capital

The benchmark reserves introduced in the previous sections are simply ob-
jective risk measures. They vary according to the risk cycle, and are the
basis for defining the required capital. The link function [see equation (1.1)
for a typical example] is a crucial element of the regulatory policy. Whereas
the trigger parameter is a control variate for more or less prudential policy,
the smoothing can be used to decrease, or increase the effects of cycles.

The recent financial crisis revealed important drawbacks of a link function
like (1.1) :
i) The trigger parameter k has been taken fixed, independently of the market
environment. We would have expected a reduced trigger during a liquidity
crisis.
ii) As already mentioned in the introduction, the link function implies two
regimes that are a smoothed and an unsmoothed regime, the latter one ap-
pearing with a large increase of the risk of entity i. However, the consequences
are not the same if this risk increase is due to an idiosyncratic shock, or to
a shock on a systematic factor. In the first situation, there is an additional
demand of liquid asset by entity i, which can be easily satisfied by the mar-
ket. In the second situation, there is the demand for liquid asset by several
entities together, which may force financial institutions to deliver at fire-sale
prices, creates the deleveraging spiral, (that is, selling assets to reduce the
debt (also called margin/haircut spiral in Brunnermeier, Pedersen (2009),
CGFS (2010)). and accentuates the cycles and the crisis.
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6.1 Change of the link function

Clearly a drawback of a link function like (1.1) is the lack of distinction
between systematic and unsystematic risk, that is, of the micro and macro
prudential approaches [Borio (2004)]. Instead of a formula of the type :

RCi,t = max[Rt(X,Xi), kt
1

60

59∑

h=0

Rt−h(X,Xi)], (6.1)

an improved formula has to separate the two types of risks, in order to take
into account the fact that the systematic components are almost comono-
tonic, and has to apply the two regime formula to the unsystematic compo-
nent only. 28 An alternative to formula (6.1) might be :

RCi,t = max[Ru,t(X,Xi), ku,t
1

60

59∑

h=0

Ru,t−h(X,Xi)]

+ ks,t
1

H

H−1∑

h=0

Rs,t−h(X,Xi) ≡ RCu
i,t +RCs

i,t. (6.2)

The first component concerning the unsystematic risk is sufficient to pe-
nalize the risky investments specific to a given entity, while avoiding a too
volatile evolution of the associated required capital. The second component
has to be linear, since the quantile function is linear for comonotonic risks.
Moreover, the smoothing window H is introduced for another purpose, not
for avoiding a too volatile required capital, but for obtaining a countercycli-
cal effect. In this respect, the smoothing window for systematic risk has too
be much larger than the usual 3-month (i.e. H = 60), and able to cover a
significant part of the cycle (one year for instance). Finally, the trigger pa-
rameter ks,t has to be much smaller than ku,t, and dependent of the position
within the cycle, that is smaller in the bottom of the cycle, larger in its top,
to avoid the spurious creation of a liquidity gap.

The required capital RCi,t has to be provided to the regulators in liquid,
high rated assets. Intuitively the components RCs

i,t and RCu
i,t have to be

included in different accounts of the Central Bank : the unsystematic com-
ponent should be in an account specific of entity i, but all contributions for

28To simplify the discussion, we assume a linear factor model, therefore a zero cross
term : Rs,u = 0.

38



systematic risk might be mutualized at least at the country level. Indeed,
this account will serve to insure the global system against systematic risk,
which is an example of catastrophic event. If an entity is close to failure
due to a systematic effect, the total reserve for systematic component can be
used to avoid the failure of the entity and also some potential failures of the
other ones by contagion.

Even if the application of different link functions to the systematic and
unsystematic risk components seems relevant, its implementation will en-
counter the same difficulties than the stress testing. Indeed, the systematic
factors have to be defined in a same way for all the entities by the regulators
and there are many common risk factors which can be considered. Instead
of looking for an exhaustive set of factors, it can be preferable to select a
well-chosen limited set, focusing on the most important factors for systemic
risk.

6.2 Change of global risk measure

The usual regulatory approach distinguishes the underlying basic allocation
and the required capital. As noted in Section 6.1 above, the link function can
be adjusted to avoid the procyclical effect of the required capital. However,
this two step approach lacks coherency. For instance, the additivity property
satisfied by the basic allocations is not satisfied by the required capital, since
the link function is nonlinear. Is it possible to develop a one-step coherent
approach ?

A possible answer is to define more precisely the global risk function
R(X) in a regulatory perspective. Let us consider the framework of Section
5, with underlying factors driving the systematic risk. These factors have to
be known and observed ex-post by the regulators. Thus, the regulators have
an augmented information set including both global L&P,X, and factors F .
Their risk measures should not only take into account the level of X, but also
the comparison of this level with the position in the cycle, function of F . In
other words, the assumption, that the global reserve R(X) depends on the
distribution of X only, is likely not appropriate in a regulatory perspective.
This global measure should depend on the joint distribution of F,X, and a
better notation would be R(F,X). We have seen that the allocation problem
is an hedging problem w.r.t. global L&P X. Similarly, the choice of an
appropriate level of global reserve is also an hedging problem, but w.r.t. to a
real economic benchmark and not the problem of controlling the stand alone
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risk ofX. Typically, for a mortgage portfolio the optimal amount of mortgage
to be distributed should depend on the real estate cycle. For instance the
global reserve could be qα(Q)(X), where Q denotes the distribution of F , or
Rc(F,X) = E(X) + E([X − c(F )]+), that is, the global risk measure could
change along the real estate cycle.

A similar remark can be done for the allocations. The result of Proposi-
tion 3.8 is still valid, but with an increased information set. More precisely,
function aP (X) should now be replaced by a function aP (X,F ), where P
denotes the joint distribution of (X,F ).

7 Concluding remarks

The aim of this paper was to survey and complete the current literature on
capital allocation in a regulatory perspective and with special attention to
systematic risk. The main message of the literature and of this paper is to
avoid a crude use of a coherent risk measure such as a VaR, or an ES for
computing the reserve both at the individual level and at the global level.
More precisely,

i) An allocation problem is different from a risk measurement problem.
The allocations are contingent to the level of global risk and have to satisfy
some basic axioms.

ii) The axioms are not sufficient to define a unique allocation, and it
could be important to distinguish the distortion risk measure underlying the
measure of global risk from the allocation distortion risk measure explaining
how to allocate the global reserve.

iii) The allocation by ADM seems applicable to any type of global hedging
measure and also to disentangle marginal systematic and unsystematic risk
components and cross effects.

iv) If the regulation has a purpose of economic policy, that is, if the
monetary policy is not enough for the Central Bank, a coherent risk measure
for global risk is likely not appropriate. The subadditivity axiom, the axiom
of homogeneity... are likely not appropriate for regulatory purpose. The
risk measure has to be chosen in relation with the economic environment,
especially with the position in the business or real estate cycle. The regulator
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faces an hedging problem, not the problem of managing the stand alone global
risk.

The main questions that are still to be solved are the following ones :

i) What is (are) the objective(s) of the regulator ? In particular, is he/she
partly in charge of economic policy ? What is seen in our paper is that the
definition of the required capital is an important instrument to control the
quantity of credits and its distribution among firms, households, real estates,
but also the leveraging among banks... Several Central Banks have for official
objective the control of inflation by means of a prime rate. It seems important
to debate of the control of the credit distribution and leveraging by means
of the required capital [see e.g. Hellwig (2010) for a polemical discussion of
the role of regulation].

ii) Once the objective is well-defined, how to choose the global level of
reserve R(F,X), which will be likely different from a global VaR, or from the
sum of VaR’s of the different entities ?

iii) Once the objective and global level of reserve are well-defined, how to
choose the Allocation Distortion Measure, that is, the way of allocating the
global reserve between the entities, between systematic, unsystematic and
cross components?

To summarize, at a time where the databases, the statistical tools, the
marginal and hedging risk measures, are almost in place, the different possible
objectives of the regulation and their consequences on the real economy and
on the required capital have now to be evaluated and compared.
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A P P E N D I X 1

Proof of Proposition 3.2

Equivalence between i) and ii)

First note that the function :

y → U(y, x− y),

where U is concave is itself concave. Therefore ii) implies i).

Conversely, i) implies ii). Indeed let us denote by a a value for which
the one-dimensional concave function U is maximal. If a is finite, U can be
written as :

U(y) = U1(y) + U2(y) + U(a),

with U1(y) = 0, if y ≤ a,
U(y)− U(a), otherwise,

U2(y) = U(y)− U(a), if y ≤ a,
0, otherwise,

U1 (resp. U2) is a decreasing concave (resp. increasing concave) function.
The result is deduced by noting that the function :

(y1, y2) → U1(x− y1) + U2(y2) + U(a),

is concave, increasing w.r.t to both y1 and y2.

If a = +∞ [resp. −∞], the result is deduced by nothing that the function :
(y1, y2) → U(y2) [resp. (y1, y2) → U(x−y1)] is concave, increasing w.r.t both
y1, y2.
Equivalence between ii) and iii)

This equivalence is given in Rothschild, Stiglitz (1970), Theorem 2.

QED
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A P P E N D I X 2

Explicit expression of the marginal expected shortfall

We have to prove that :

∂E[βX + Y |βX + Y > qα(β)]

∂β
= E[X|βX + Y > qα(β)], (a.1)

where P [βX + Y > qα(β)] = 1− α, ∀β, (a.2)

and qα(β) = qα(βX + Y ), say.

Let us assume that the joint distribution of (X,Y ) is continuous with
probability density function 29 f(x, y). Equality (a.2) can be written as :

∫ [∫ ∞

−βx+qα(β)

f(x, y)dy

]
dx = 1− α, ∀β.

Thus, by differentiating with respect to β, we get :

∫
[x− ∂qα(β)

∂β
]f [x, qα(β)− βx]dx = 0,∀β, (a.3)

which implies
∂qα(β)

∂β
= E[X|βX + Y = qα(β)].

The expected shortfall for βX + Y is :

ES(β)

= E[βX + Y |βX + Y > qα(β)]

=
1

1− α

∫ [∫ ∞

−βx+qα(β)

(βx+ y)f(x, y)dy

]
dx

Its derivative with respect to β is equal to :

29The general proof valid for any type of joint distribution for (X,Y ) has been given in
Tasche (2000), Lemma (5.6).
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∂ES(β)

∂β
=

1

1− α

∫ [∫ ∞

−βx+qα(β)

xf(x, y)dy

]
dx

+
1

1− α

∫ [
x− ∂qα(β)

∂β

]
qα(β)f [x, qα(β)− βx]dx

=
1

1− α

∫ [∫ ∞

−βx+qα(β)

xf(x, y)dy

]
dx [from (a.3)]

= E[X|βX + Y > qα(β)],

with is equation (a.1).
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A P P E N D I X 3

Proof of Proposition 4.4

Let us consider the change (X1, . . . , Xn) → (λ,X1, . . . , λXn) and denote

q∗α(∧) = qα(
n∑

i=1

λiXi). We have :

q∗α(∧) = ∧′E(X) + qα[∧′V (X)∧]1/2.
We deduce :

∂q∗α(∧)
∂∧ = E(X) + qα

V (X)∧
[∧′V (X)∧]1/2 ,

∂2q∗α(∧)
∂ ∧ ∂∧′ = qα

[
V (X)

[∧′V (X)∧]1/2 − V (X) ∧ ∧′V (X)

[∧′V (X)∧]3/2
]
.

The result in Proposition 4.4 is derived by choosing ∧ = e.
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A P P E N D I X 4

Analysis in returns

i) Disaggregation of the VaR written in returns

The reserves are defined in subsection 3.2. iii) from the asset values, but
can be alternatively written in terms of returns. For such a return analysis,
the time index has to be explicitly introduced. Let us denote by Xi,t, Xt the
asset values at the end of period t. The associated returns are such that :

ri,t = Xi,t/Xi,t−1 − 1, rt = Xt/Xt−1 − 1.

The quantiles have now to take explicitly into account the information
set available at the end of period t− 1. They will be denoted by qα,t−1. The
decomposition formula of the global conditional quantile becomes :

Et−1[Xt|Xt = qα,t−1(Xt)]
= Xt−1{1 + Et−1(rt|rt = qα,t−1(rt))}
=

n∑
i=1

Xi,t−1{1 + Et−1[ri,t|rt = qα,t−1(rt)]},

or equivalently :

qα,t−1(rt) = Et−1[rt|rt = qα,t−1(rt)] =
n∑

i=1

wi,t−1Et−1[ri,t|rt = qα,t−1(rt)],

(a.4)
where wi,t−1 = Xi,t−1/Xt−1 are time varying weights. Formula (a.4) provides
the decomposition written in terms of returns [see e.g. Acharya et alii (2010),
Brownless, Engle (2010)].

ii) Sensitivity of the return expected shortfall

It is usual to compute a VaR, or an ES, in terms of returns instead of
portfolio values. We have seen in Equation (a.4) that the decomposition of
the global reserve in terms of values has its analogue in terms of returns. For
instance, the return expected shortfall is given by :
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ESr
α = Et−1[rt|rt > qα,t−1(rt)]

=
n∑

i=1

wi,t−1Et−1[ri,t|rt > qα,t−1(rt)], (a.5)

where wi,t−1 = Xi,t−1/Xt−1 are the weights in value.

Let us now consider a small change in the portfolio value of entity i,
passing from Xi,t to λXi,t, the values associated with the other entities being
fixed. We have the following Lemma :

Lemma : The marginal effect of this change on the return expected shortfall
is :

∂ESr,∗
α (e)

∂λi

= wi,t−1{1 + Et−1[ri,t|rt > qα,t−1(rt)]} − 1.

Proof : The effect on the expected shortfall of a small change in the portfolio
value of entity i is :

∂ES∗
α(e)

∂λi

= Et−1[Xit|Xt > qα,t−1(Xt)]

= Xi,t−1 [1 + Et−1[ri,t|rt > qα,t−1(rt)]] .

The expected shortfall on return is :

ESr
α = Et−1[rt|rt > qα,t−1(rt)]

=
1

Xt−1

Et−1[Xt|Xt > qα,t−1(Xt)]− 1

=
ESα

Xt−1

− 1.

Thus, the derivative of the return expected shortfall is :

∂ESr,∗
α (e)

∂λi

=
Xi,t−1

Xt−1

{1 + Et−1[ri,t|rt > qα,t−1(rt)]} .

QED
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The component ESr
α,i = Et−1[ri,t|rt > qα,t−1(rt)] has a complicated inter-

pretation in terms of sensitivity, since :

ESr
α,i = Et−1[ri,t|rt > qα,t−1(rt)] =

1

wi,t−1

{
1 +

∂ESr,∗
α (e)

∂λi

}
. (a.6)

The interpretation above differs from the sensitivity interpretation pro-
posed in Acharya et alii (2010), eq. 4., where the quantity ESr

α,i is said to

be equal to
∂

∂wi,t−1

ESr
α. The main reason for this difference is the following

one : whereas changes of portfolio values are easily interpretable and allow
for changes specific of the entities, this is no longer the case for changes of
percentage shares wi,t−1. Indeed, these percentage shares sum up to one.
Thus a change of wi,t−1 has to be compensated by appropriate changes on

the other entities and the expression of the derivative
∂

∂wi,t−1

depends on

the kind of compensation which is assumed. To summarize the formula in
Acharya et alii (2010) is misleading.
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