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1THEMA, Université de Cergy-Pontoise and CREST. email: bec@ensae.fr
2Banque de France, DGEI-DCPM.
3Banque de France, DGEI-DERIE.



Introduction

Since the renewal of nonlinear econometrics theory two decades ago, the asymmetric

dynamics of real output growth over the business cycle has been widely acknowledged

by empirical studies — see the early contributions by e.g. Neftci [1984], Hamilton [1989],

Luukkonen and Terasvirta [1991] or Beaudry and Koop [1993]. So far, the Markov-

Switching (MS) model developed by Hamilton [1989] is the most popular framework

for the business cycle empirical analysis. Actually, this model and its direct extensions

by e.g. Sichel [1994], Clements and Krolzig [1998] or Clements and Krolzig [2003] have

proved to be quite successful in disentangling expansion vs recession periods.

Nevertheless, one implication of Hamilton’s model is quite pessimistic in that it

predicts that the effects of a recession will be permanent for the output level. In other

words, this model implies that following the end of a recession, the economy will grow

from a permanently lower level. From an economic theory perspective, the conclusions

of endogenous growth models regarding the long term impact of recessions are not clear-

cut. Some authors as e.g. Caballero and Hammour [1994] or Aghion and Saint Paul

[1998] conclude that the cleansing effect of recessions has a permanent positive impact on

output. By contrast, a negative long term impact of recessions is predicted by Martin and

Rogers [1997]’s model, due to the adverse effect of recessions on learning-by-doing and

hence on human capital accumulation. A negative long term effect is also predicted by

Stadler [1990] when technology is endogenous or by Stiglitz [1993] and Aghion, Askenazy,

Berman, Cette and Eymard [2008] in presence of credit markets imperfections. Recent

empirical studies tend to support the latter view. For instance, using the large panels

of countries from the World Bank and Penn World Tables, Cerra and Saxena [2005]

point to a cumulative output loss in recession which averages 7.5%. This figure falls to

3-4% when only high-income countries are considered. Furceri and Mourougane [2009]’s

analysis of 30 OECD countries focuses on financial crises only, and exhibits a permanent

loss in the output level of 4% on average.

These recent results contrast with Friedman [1993]’s view, first advocated by the
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author in 19644, according to which “a large contraction in output tends to be followed

on by a large business expansion; a mild contraction, by a mild expansion”. Indeed,

such a view allows for revivals as strong as the previous recession and hence possibly

contradicts Hamilton’s model prediction regarding long term effects. This possibility was

first explored by Sichel [1994] who allowed for a third regime in its MS model. From his

empirical findings, this author argued that postwar US business cycles typically consist

of three phases: contraction, followed by high-growth recovery and then a period of

moderate growth. Nevertheless, Sichel’s model does not allow the recovery to depend

on the duration of the previous recession. This next step is done by Kim, Morley

and Piger [2005]: While maintaining the two-regime assumption of Hamilton’s model,

these authors have extended it so as to allow for more flexible end of recessions than

the “L”-shaped recessions implied by Hamilton’s model. In particular, they introduce a

bounce-back term — or function — in the expression of the state-dependent mean which

accounts for the possibility of a post-recession recovery: following the end of a recession,

the output growth rate could be large enough to imply a recovery towards the output

level before the recession. This extended framework allows not only for “U”-shaped or

“V”-shaped recessions, but also for recoveries which explicitly depend on the duration

and depth of the previous recession. Estimating this model from US real GDP postwar

quarterly data, Kim et al. [2005] find a permanent loss in the output level by 0.4%,

which is roughly 10 times smaller than the one found from Hamilton’s model.

Our main contribution to this empirical literature is to propose a more general version

of the bounce-back (BB) MS model which extends the existing one in two directions.

Firstly, contrary to the models considered in Kim et al. [2005] or Morley and Piger [2009],

it allows the bounce-back effect to appear later than immediately after the trough. This

extension seems relevant for countries which are less flexible than, say, the U.S. For

instance, some countries may experience more inertia around a trough in terms of GDP

growth rate dynamics which in turn may delay the bounce-back effect. Secondly, our

4See “Monetary Studies of the National Bureau”, The National Bureau Enters Its 45th Year, 44th

Annual report, 1964, pp. 7-25.
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general bounce-back MS model makes it possible to let the data select the appropriate

bounce-back shape. Actually, it allows for a larger set of recovery shapes than the

existing ones and also encompasses the latter: the “depth”-based bounce-back MS model

(denoted BBD hereafter), the “U”-shaped, the “V”-shaped recovery bounce-back MS

models (denoted BBU and BBV) as well as Hamilton’s original model (denoted H) are

special cases of ours. As such, they can be tested from simple linear restrictions on

the coefficients of the bounce-back function. Since in our general framework Hamilton

[1989]’s measure of the permanent effect of recessions has no closed-form solution, we

also propose a measure adapted to the general case.

Finally, our work proposes an international comparison of these bounce-back effects

using post World War II quarterly growth rates of US, UK and French real GDPs. The

empirical results emphasize the relevance of the extended framework and the country-

specific nature of the shape of recoveries. They also reveal an important contribution of

the bounce-back effect in reducing the long term negative impact of recessions on the

output level.

The paper is organized as follows. Section 1 presents and discusses the bounce-

back extensions of Hamilton’s model. Section 2 describes the data and the linearity

test which is the preliminary step of the empirical analysis. Section 3 presents the MS

models estimates and the specification tests. In Section 4, we examine the implications

of our results for the shape of the recovery as well as the permanent impact of recessions

on the output level in each country. Section 5 concludes.

1 Bounceback effects

1.1 The basic Hamilton MS-model

Let yt denote the log of real output. The model we will consider throughout this paper

is the following:

φ(L)(∆yt − µt) = εt, (1)
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where ∆ is the first difference operator, φ(L) is a lag polynomial of order p with roots

lying outside the unit circle, εt i.i.d. N (0,σ) and µt is allowed to switch across regimes.

The Markov-Switching model proposed by Hamilton [1989] postulates the existence of an

unobserved variable, denoted St, which takes on the value zero or one. St characterizes

the “state” or “regime” of the economy at date t. The standard version of Hamilton’s

model could be written as:

µt = γ0 + γ1St, (2)

which means that the growth rate of yt is γ0 if St = 0 and γ0+γ1 otherwise. Here, St = 1

is identified as the recession regime by assuming γ0 > 0 and γ0+γ1 < 0. Hamilton [1989]

further assumes that the unobserved state variable St is the realization of a two-state

Markov chain with transition probability P (St = j|St−1 = i) = pij. This Markov

chain implies that St depends on past realizations of y and S only through St−1. The

model given by equations (1) and (2) allows for an asymmetric behavior across regimes.

For instance, the expansion regime may be characterized by long and gradual upward

moves if γ0 is positive and small and p00 is close to one, while the recession regime may

correspond to sharp and short declines if γ1 is negative and large in absolute value and

p11 is small. It is worth noticing that the current change in output can be independent

of the state that prevailed last period, as in a random walk, if p00 = 1− p11.

1.2 Existing bounce-back functions

Recently, Kim et al. [2005] have proposed extensions of equation (2) in the Hamilton’s

model presented above which allow for the length and/or depth of each recession to

influence the growth rate of output in the periods immediately following the recession.

We will follow their terminology and refer to these models as “bounce-back” MS models.

They consider three kinds of bounce-back functions, which correspond respectively to

“U”- or “V”- shaped recessions, or “Depth” nonlinear bounce-back models. For these

models, equation (1) above remains unchanged since the bounce-back function is intro-

duced in the regime-dependent mean of ∆yt. In the U-shaped recession model, denoted
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BBU hereafter, the equation for µt becomes:

µt = γ0 + γ1St + λ
m
∑

j=1

γ1St−j , (3)

where them and λ parameters govern respectively the duration and the magnitude of the

bounce-back effect. For the V-shaped recession model, denoted BBV, the bounce-back

function takes the form:

µt = γ0 + γ1St + (1− St)λ

m
∑

j=1

γ1St−j . (4)

Finally, the expression of µt in the“Depth” bounce-back model, denoted BBD, is:

µt = γ0 + γ1St + λ
m
∑

j=1

(γ1 +∆yt−j)St−j . (5)

The value of the bounce-back parameter, λ, is crucial for the shape of the recovery.

First, it is worth noticing that all these models differ from Hamilton’s model if and only

if λ 6= 0. Then, for a bounce-back effect to occur, this parameter must be negative: in

this case, the last term of the right hand side of the three equations above is positive

and makes the growth rate larger for the quarters immediately following a recession.

To illustrate the difference between these bounce-back models and Hamilton’s original

model, we simulate the following process:

yt = yt−1 + µt

where µt is given in equations (2), (3), (4) and (5) respectively, with γ0 = 1, γ1 = −2,

m = 4 and λ = {−0.2,−0.4}. The initial value of yt is set to 10. At time t = 6,

the state variable switches from the expansion to the recession regime, and remains in

the latter for three consecutive quarters before switching back to the expansion regime.

Figure 1 reports the impact of these various bounce-back functions on the growth rate

of yt for λ = −0.2 (top panel) and λ = −0.4 (bottom panel). First, by contrast with

Hamilton’s model — denoted (H) in this Figure, all bounce-back models imply growth

rates values greater than γ0 for the four quarters following the end of the recession. Of
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course, this effect would last longer for larger values ofm. It can be seen that the value of

λ basically influences the magnitude of the recovery: when λ = −0.2, the larger growth

rate of the bounce-back models reaches almost 2.5% at time t = 9. When λ = −0.4, the

maximum growth rate reaches around 3.5% at the same time. Then, the main difference

between the bounce-back functions comes from the BBV function which, due to the

presence of (1− St), becomes active only when the recession is over and St comes back

to zero. Finally, for the set of parameters values retained in this experiment, the BBD

function is the one which generates the largest growth rates just one quarter after the

beginning of a recession: the bounce-back effect of this function is further enhanced by

the negative values of the recent past of ∆y. The accumulation of these µt’s starting

from y0 = 10, gives the impact of these various bounce-back functions on yt in levels.

The resulting yt’s, together with a linear trend with slope γ0, are plotted in Figure 2,

again for λ = −0.2 and - 0.4. The solid line, which represents the yt series resulting

from Hamilton’s model, shows the permanent effect of recession this model implies: from

the trough on, yt increases at the expansion growth rate γ0 only, i.e. it grows from a

permanently lower level. By contrast, depending on the value of λ, the bounce-back

models may predict a partial recovery, as illustrated by the y(BBU) and y(BBV) curves

in the top panel of Figure 2, a complete recovery (see the y(BBD) curve in the same

panel) or even a growth of output level from a permanently higher level, as shown in the

bottom panel of Figure 2 which corresponds to a large λ in absolute value. Such a case

is actually predicted by endogenous growth theories which belong to the Schumpeterian

tradition (see e.g. Caballero and Hammour [1994] or Aghion and Saint Paul [1998]).

These simulated paths emphasize the flexibility of bounce-back models compared to

Hamilton’s original model. Finally, the U- and V-shapes of the corresponding bounce-

back functions are well illustrated by Figure 2: the y(BBU) curves are softer during and

after recessions than the y(BBV) curves.
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1.3 Our proposed bounce-back framing

As stressed in the introduction, we wish to allow for a bounce-back effect which happens

not necessarily immediately after the trough date, but which may possibly be delayed

by a few quarters instead. To this end, we introduce a new parameter, ℓ ≥ 0, which

denotes the delay, in terms of quarters after the trough, before the bounce-back effect

begins. This bounce-back framing MS model, denoted BBF(p,m, ℓ) hereafter, is given

by equation (1) with:

µt = γ0 + γ1St + λ1St

ℓ+m
∑

j=ℓ+1

γ1St−j + λ2(1− St)
ℓ+m
∑

j=ℓ+1

γ1St−j + λ3

ℓ+m
∑

j=ℓ+1

∆yt−jSt−j . (6)

In order to illustrate the bounce-back effect possibly generated by this model, we

have done the same simulation as the one reported in Figure 1, retaining the same

parameters values for γ0 and γ1 and considering a 3-quarter recession starting at t =

6. Here, we arbitrarily set λ1 = −0.1, λ2 = −0.2 and λ3 = −0.3. Figure 3 below

reports the corresponding impact on the growth rate for ℓ ∈ {0, 1, 2}. The case where

ℓ = 0 corresponds roughly to an intermediate case between the BBU and BBD models

presented in the previous section. The most interesting case is the one where ℓ = 1,

i.e. an intermediary case lasting shorter than the recession itself: in this configuration,

the bounce-back effect is not activated at the beginning of the recession, but is instead

lagged by ℓ quarters. Finally, the case where ℓ = 2, so that ℓ + 1 is exactly the length

of the recession considered in this example, looks like the BBV model at date t = 6, but

then the bounce-back effect lasts two quarters longer than in the simple BBV case.

1.4 A formal test of recoveries shapes

It is worth noticing that model (6) above encompasses the BB models presented in Kim

et al. [2005]. As discussed in the previous section, the different MS models considered

above imply different output behavior during and after a recession. Therefore, the choice

of the bounce-back function is crucial for forecasting purpose. Morley and Piger [2009]

propose to select the model following various information criteria. We actually believe
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that these criteria prove very useful for model’s comparison when formal testing is not

possible, i.e. for non-nested models. Nevertheless, it is well-known that these information

criteria do not perform very well in small sample analysis or in presence of nonlinear

parameters. For this reason, we will use the BBF model from which Hamilton’s, BBU,

BBV and BBD models can be retrieved by imposing linear restrictions on its parameters

values. Hamilton’s original model corresponds, in equation (6), to the null hypothesis:

HH
0 : λ1 = λ2 = λ3 = 0. (7)

Then, the BBU(p,m, ℓ) is a constrained version of the BBF(p,m, ℓ) in which the following

linear restrictions on the parameters hold:

HU
0 : λ1 = λ2 = λ and λ3 = 0, (8)

with λ a strictly negative real parameter. Similarly, the BBV(p,m, ℓ) model is obtained

from equation (6) by imposing the following null hypothesis:

HV
0 : λ1 = λ3 = 0. (9)

Finally, the general model given in (6) reduces to a BBD(p,m, ℓ) model under the joint

restrictions:

HD
0 : λ1 = λ2 = λ3 = λ. (10)

Remark that the models considered by Kim et al. [2005] and given by equations (3),

(4) and (5) correspond respectively to the BBU(p,m, ℓ), BBV(p,m, ℓ) and BBD(p,m, ℓ)

models in the particular case where ℓ = 0. It is worth noticing that all the null hy-

potheses HU
0 , H

V
0 and HD

0 above are nuisance-parameter free. Hence, they can be tested

using a standard Likelihood Ratio — or Lagrange Multiplier, or Wald — test statistics

which in turn is asymptotically Chi-squared distributed with two degrees of freedom for

HU
0 , H

V
0 and HD

0 . Finally, assuming m and ℓ are known, the LR test statistics of the

null hypothesis HH
0 against the BBF(p,m, ℓ) alternative is asymptotically Chi-squared

distributed with three degrees of freedom.
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2 The data

The quarterly real GDP data used for the United Kingdom come from the Office of

National Statistics and are available for the period 1955Q1–2010Q1. For France, we use

data from the INSEE which are available from 1949Q1 to 2010Q1. U.S. data come from

the Bureau of Economic Analysis and the sample starts in 1947Q1.

Before turning to the BBF model estimation, let us first discuss the business cycles

dating for these samples since it will provide a benchmark to evaluate the relevance of

the regime-switching model’s estimates. We will also perform the linearity test proposed

by Carrasco, Hu and Ploberger [2009].

2.1 Business Cycles dates

Following the “classical” business cycle approach as described by Burns and Mitchell

[1947], the NBER’s Business Cycle Dating Committee provides the U.S. business cycle

turning points: these dates will be used in the analysis below. Outside the U.S., “clas-

sical” business cycle dating studies include Birchenhall, Osborn and Sensier [2001] or

Harding and Pagan [2002]. Both studies rely on the Bry and Boschan [1971] algorithm,

as adapted to quarterly data. For French and UK business cycle dating, we will follow

Birchenhall et al. [2001] approach: a peak is identified at t if the log level of quarterly

real GDP (yt) is strictly greater than the values for the subsequent two quarters (i.e.

yt+1 − yt < 0 and yt+2 − yt < 0) while also being at least as large as all values within a

year in the past (i.e. yt−i − yt ≤ 0, for i = 1, . . . , 4) and in the future (i.e. yt+i − yt ≤ 0,

for i = 1, . . . , 4). The resulting peak and trough dates for UK and French real GDPs

as well as the US business cycle NBER dating5 are reported in Table 1. This Table

clearly points to the fact that the US have experienced more business cycles than the

UK and France: over the common sample 1955-2010, there were nine recessions in the

US, compared to five and four in the UK and France respectively. One explanation is

5Note that the NBER method is quite different from our approach in that it uses a set of monthly

data. Nevertheless, Morley, Piger and Tien [2009] show that the recession dates obtained from both

approaches yield quite similar results.
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Table 1: Business cycle turning points

US UK FR

Peak (a) Trough (b) Peak (a) Trough (b) Peak (a) Trough (b)

1948Q4 (12) 1949Q4 (4)

1953Q2 (14) 1954Q2 (4)

1957Q3 (13) 1958Q2 (3)

1960Q2 (8) 1961Q1 (3)

1969Q4 (35) 1970Q4 (4)

1973Q4 (12) 1975Q1 (5) 1973Q2 (-) 1975Q3* (9) 1974Q3 (-) 1975Q2 (3)

1980Q1 (20) 1980Q3 (2) 1979Q2 (15) 1981Q1 (7) 1980Q1 (19) 1980Q4 (3)

1981Q3 (4) 1982Q4 (5)

1990Q3 (31) 1991Q1 (2) 1990Q2 (37) 1992Q2 (8) 1992Q3 (47) 1993Q2 (3)

2001Q1 (40) 2001Q4 (3)

2007Q4 (24) 2009Q2 (6) 2008Q1 (63) 2009Q3 (6) 2008Q1 (59) 2009Q3 (6)

(a): expansion duration in quarters, from previous trough to this peak.

(b): contraction duration in quarters, from peak to trough.

Dates in italic require future confirmation. * See text.

that after the end of World War II, the United Kingdom and France experienced almost

three decades of sustained growth. As a result, only one recession occurred in the UK

before the seventies, while none was observed in France. Regarding the latter, it is worth

mentioning that this GDP series has been corrected for the May 1968 outlier due to a

national strike. For the UK data, we have followed Birchenhall et al. [2001] in rejecting

a trough at 1974Q1 while maintaining the one in 1975Q3. These authors choose to

reject the first trough because the low value of GDP in that quarter and the subsequent

increases in 1974Q2 and 1974Q3 reflect the impact of a three-day week associated with

a miners’ strike. In all these countries, the duration of expansions is remarkably longer

than the one of recessions.

Before turning to the MS models estimation, we first perform the linearity test re-

cently developed by Carrasco et al. [2009] which is specifically suitable against MS

alternatives.
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2.2 Linearity test

Recently, Carrasco et al. [2009] have proposed a class of optimal tests for the constancy

of parameters in random coefficients models. Their testing procedure covers the class

of Hamilton models, where the parameters vary according to an unobservable Markov

chain. An important advantage of their SupTS test is that it only requires estimating

the model under the null hypothesis where the parameters are constant. Using the

Gauss codes kindly provided by the authors, empirical critical values are computed from

10,000 iterations for a sample size equal to the size of the original data set. The values

of the parameters used to simulate the series are those obtained from the estimation of

the model under the linear null. The 1%, 5% and 10% critical values are reported in

the last three columns of Table 2. As can be seen in this table, the null hypothesis of

parameters stability is strongly rejected against a Markov-switching alternative.

Table 2: Carrasco, Hu and Ploberger linearity test

Series T SupTS 1% c.v. 5% c.v. 10% c.v.

US 252 11.96 4.75 3.51 2.96

UK 220 15.99 4.46 3.53 3.00

FR 244 12.37 4.51 3.51 3.03

3 BBF models estimation

Following Kim et al. [2005], the BBF model given in equation (6) is estimated by max-

imum likelihood method using the filter presented in Hamilton [1989]. Note that here,

due to the terms involving the sum of lagged values of St, one has to keep track of

2p+m+ℓ+1 states versus 2p+1 when constructing the likelihood function in each period.

Standard errors are based on numerical second derivatives. Basically, the autoregressive

lag parameter p is chosen as the smallest one which succeeds in eliminating residuals

autocorrelation according to the LM test. Computing residuals for MS models is not so
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straightforward. Using the approach described in Kim, Shephard and Chib [1998] and

also used in Bec, Rahbek and Shephard [2008], we construct the BBF model residuals

from the one-step-ahead prediction distribution functions as follows: From equations

(1) and (6), it can be seen that time-t residuals depend on ξt ≡ (St, St−1, . . . , St−ℓ−m−p).

The one-step-ahead prediction distribution functions are defined by:

ǫt =
2p+m+ℓ+1

∑

i=1

P (ξit|It−1)Φ

(

ε̂it
σ̂

)

, (11)

where ε̂it denotes the ML estimates of the BBF model residuals in regime i and Φ is the

distribution function of the standard normal. Note that the P (ξit|It−1)’s can be easily

obtained as by-products of the filtering algorithm. If the nonlinear model is true and

ignoring the effect of estimating parameters, the ǫt are approximately standard uniform

and iid. We can then map these to our residuals for the BBF model by the standard

normal inverse distribution function, εBBF
t = Φ−1(ǫt) and then test for the absence of

serial correlation. Once the lag length parameter fixed as described above, the choice

of m and ℓ parameters values is made from a double-grid search for m = 2, . . . , 6 and

ℓ = 0, . . . , 3, so as to maximize the likelihood function. In order to identify the regime

1 as a recession regime, we rule out models where γ0 + γ1 > 0 and where p11 < 0.5. The

last condition stems from the fact that a recession is formally defined as at least two

consecutive quarters of negative growth rate.

The United States Since the estimation of regime-switching models has been shown

to be quite sensitive to forgotten structural breaks (see for instance Kim and Nelson

[1999]), we follow Morley and Piger [2009] by introducing i) a break in the growth rate

mean in the first quarter of 1973 corresponding to the so-called productivity slowdown

documented by e.g. Bai, Lumsdaine and Stock [1998] and ii) a break in volatility in

the second quarter of 1984 to account for the so-called Great Moderation put forward

by McConnell and Perez-Quiros [2000] for instance. Those breaks are introduced as in

Kim and Nelson [1999]: For the great moderation, both the conditional variance and the

difference in growth rates across regime change, but the change in conditional variance
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is assumed to be proportional to the squared change in the difference in growth rates.

For the productivity slowdown, the mean growth rate in the expansion regime is allowed

to change.

The log-likelihood, the AIC criterion6 and the LR test statistics for the shape of

the bounce-back effect are reported in Table 3 below. For the US, the lag order for

the bounceback models is set to two: with p = 2, the LM tests of no serial correlation

up to order 4 and 8 are 90% and 97% respectively for the bounceback model retained

below. With p = 2, the pair (m, ℓ) = (4, 1) is found to be the one maximizing the log-

likelihood of the BBF model. This means that one quarter after the end of a recession,

the bounceback effect is activated for the next four quarters before the GDP growth rate

comes back to the expansion regime. In their bounceback models with ℓ assumed to be

known and fixed to zero, Kim et al. [2005] have found that p = 0 and m = 6 following

the Schwartz information criterion. From the AIC values reported in the last column

of Table 3, it appears that all kinds of MS models considered here (Hamilton original

model included) outperform the linear autoregressive models, whatever the number of

lags included in the latter up to twelve7. It is also worth noticing that according to the

AIC, the bounceback models are preferred to Hamilton original model. This is especially

true for the BBD which is also the model for which the Likelihood Ratio test p-value,

i.e. 79%, is the largest against the BBF alternative8. When looking at the BBF(2,4,1)

estimation results given in Table 4, one immediately notices that the estimates of λ1, λ2

and λ3 are quite similar. Hence, the loss of likelihood generated by the constraint that

these three coefficients are identical is very close to zero: it falls from -297.70 for the

BBF(2,4,1) model to -297.93 for the BBD(2,4,1), as can be seen from Table 3. Actually,

the parameters estimates of the BBD model, where λ1 = λ2 = λ3, are quite similar to

the ones of the BBF model. According to both models, the average length of a recession,

6The AIC is defined as in Davidson and MacKinnon [2004], pp. 676-677, so that larger values of the

criterion are preferred. The number of parameters retained in the penalty function is denoted np in the

tables.
7All results are not reported here but are available upon request from the authors.
8The LR statistics is equal to 0.46 and is distributed as a χ2(2).
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Table 3: Comparison of US models

Model Log-L np AIC LR stat p-val.

Linear

AR(1) -310.07 5 -315.07

AR(2) -307.79 6 -313.79

AR(3) -305.07 7 -312.07

AR(4) -304.95 8 -312.95

AR(8) -304.28 12 -316.28

Bounceback

BBF(2,4,1) -297.70 12 -309.70

BBU(2,4,1) -299.81 10 -309.81 4.22 0.12

BBV(2,4,1) -300.63 10 -310.63 5.86 0.05

BBD(2,4,1) -297.93 10 -307.93 0.46 0.79

Hamilton

H-AR(2) -301.90 9 -310.90 8.40 0.04

Morley and Piger (2009)

BBD(0,6,0) -307.90 8 -315.90

Log-L denotes the log-likelihood.

np is the number of parameters.

Table 4: US Bounce-back models estimates

γ0 γ1 σ λ1 λ2 λ3 φ1 φ2 δγ δγ,σ p00 p11

BBF(2,4,1)

1.03 -2.09 0.91 -0.21 -0.18 -0.24 0.14 0.23 0.69 0.51 0.96 0.81

(0.16) (0.42) (0.07) (0.06) (0.05) (0.09) (0.07) (0.08) (0.13) (0.05) (0.02) (0.09)

BBD(2,4,1)

1.00 -1.96 0.91 -0.21 -0.21 -0.21 0.15 0.23 0.70 0.52 0.96 0.81

(0.15) (0.33) (0.07) (0.04) (0.07) (0.07) (0.13) (0.05) (0.02) (0.09)

Standard errors in parentheses. Constrained coefficients in italic.

φi’s are the autoregressive coefficients in eq. (1).
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given by 1/(1− p11), is 5 quarters while the average length of an expansion is six years

and a quarter. This results are very similar to those found by Morley and Piger [2009]:

their p11 and p00 estimates are respectively 0.79 and 0.94 for a sample ending in 2006Q4.

Finally, the two shift parameters, δγ and δσ, are significantly different from one: these

mean and variance breaks are clearly supported by our results. The value of 0.7 for

δγ implies a decrease in γ0, the mean growth rate in the expansion regime, by 70%

after 1973Q1. The decrease in the variance is even stronger since δσ estimate is around

0.5: the variance after 1984Q2 is a fourth of its value before (σ2
t>1984Q2 = σ2 × δ2σ).

A more detailed evaluation of the impact of the structural breaks on the mean and

standard deviation parameters is reported in Table 10 in the Appendix. The smoothed

probability of being in a contractionary regime reported in Figure 4 closely matches the

NBER recession dates represented by the dotted line. For eight recessions out of eleven,

the smoothed probability reaches more than 50% immediately or one quarter after the

peak date. By contrast, for the 1970, 1973 and 2001 recessions, this probability increases

but remains below 30%.

The United Kingdom Since the structural break dates are not as much documented

for the UK as they are for the US, the methodology described in Sensier and van Dijk

[2004] is used to test for structural change in conditional mean and/or volatility. As

a result, a mean break is detected in 1980Q1 at the 1.3% level and a variance break,

conditional on the mean break, in 1980Q2 at a level lesser than 1%. Since these are two

consecutive dates, corresponding to the election of Margaret Thatcher and the restrictive

monetary policy she initiated then, both the conditional variance and the difference in

growth rates across regime are allowed to change at the same date9, with the change in

conditional variance assumed to be proportional to the squared change in the difference

in growth rates.

9We have retained 1980Q2 but the results remain the same with 1980Q1. We also allowed for an

additional break in mean in 1980Q1 but the estimated coefficient of this break was not significantly

different from one.
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Figure 4: Smoothed probability of recession state for the US

According to the LM test of no serial correlation, the lag order for the BB models

was set to zero: The p-values of the LM(4) and LM(8) tests are respectively 44% and

31% for our preferred BBF model. Then, for this lag order, the BBF(0,5,0) was found to

maximize the log-likelihood: the bounce-back effect is longer than in the US case, but it

is not delayed here. The AIC of linear autoregressive models and nonlinear BB models

are reported in Table 5. As in the US case, all the regime-switching models clearly

outperform the linear autoregressive ones. Then, among the nonlinear models, the BBF

is preferred to BBU, BBV, BBD and Hamilton’s models. The LR test statistics for the

BBU, BBV and BBD models against the BBF alternative always exceed the 5% critical

value. These models’ estimates of the bounce-back parameter λ is basically zero so that

they mimic Hamilton’s model. Hence, this UK case emphasizes another advantage of

the BBF approach: the BBF model allows for more general recovery shapes than the

BBU, BBV and BBD models. As can be seen from the BBF(0,5,0) parameters estimates

reported in Table 6, only λ1 is different from zero. Hence, we also report the results
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Table 5: Comparison of UK models

Model Log-L np AIC LR stat p-val

Linear

AR(1) -283.38 4 -287.38

AR(2) -278.21 5 -283.21

AR(3) -275.28 6 -281.28

AR(4) -275.24 7 -282.24

AR(8) -270.67 11 -281.67

Bounceback

BBF(0,5,0) -262.84 9 -271.84

BBU(0,5,0) -267.18 7 -274.18 8.68 0.01

BBV(0,5,0) -267.18 7 -274.18 8.68 0.01

BBD(0,5,0) -267.18 7 -274.18 8.68 0.01

Hamilton

H-AR(0) -267.18 6 -273.18 8.68 0.03

Log-L denotes the log-likelihood.

np is the number of parameters.

of the estimation of a constrained version of this BBF model were λ2 and λ3 are set to

zero. The log-likelihood remains the same in the constrained BBF model, i.e. -262.84,

and the AIC becomes -269.82 since the number of parameters is only 7. According to

p11 estimate, the average length of a recession would be eight quarters in the UK. By

contrast, expansions would last fifty quarters, or 12.5 years in this country. The mean

and variance shift in 1980Q2 is also significantly different from one: the γ1 parameter

is almost divided by three after this date, while the standard deviation decreases to

0.47. This is an even greater moderation than in the US. Further details are reported

in Table 10, see the Appendix. Finally, a strong correspondence between the smoothed

probability of being in the recession regime and the recession dates (dotted line) can be

seen from Figure 5. The last two recessions in 1990 and 2008 are closely accounted for by

the BBF model: the smoothed probability exceeds 50% immediately after the business

cycle peak date. The first oil shock recession is also detected, in that the smoothed
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Table 6: UK Bounce-back models estimates

γ0 γ1 σ λ1 λ2 λ3 δγ,σ p00 p11

BBF(0,5,0)

0.74 -2.12 1.26 -0.14 0.00 0.00 0.37 0.98 0.88

(0.05) (0.24) (0.03) (0.07) (0.00) (0.00) (0.04) (0.01) (0.08)

Constrained BBF(0,5,0)

0.74 -2.12 1.26 -0.14 0.00 0.00 0.37 0.98 0.88

(0.05) (0.24) (0.03) (0.07) (0.00) (0.00) (0.04) (0.01) (0.08)

Standard errors in parentheses. Constrained coefficients in italic.

probability increases to almost 30% just after the peak date, even though it hardly

exceeds 30% over that recession period. Regarding the second oil shock recession, the

model clearly detects it two quarters after its beginning and hence is a little bit late.

France For French data, the approach used by Sensier and van Dijk [2004] reveals two

breaks: a mean break in 1974Q1 and a variance break in 1968Q4 are hence introduced

in the bounce-back model’s estimation. The smallest lag length of nonlinear models

which succeeds in eliminating residuals autocorrelation is two: For the preferred BBD

model below, the LM(4) and LM(8) p-values are 71% and 33% respectively. Regarding

the bounce-back models, the values m = 4 and ℓ = 0 are the ones which maximize the

likelihood. The improvement of the Akaike criterion by the nonlinear models is not as

large as it is for US and UK data. Nevertheless, the BBF(2,4,0) AIC dominates the one

of the best linear model. Then, the BBV(2,4,0) model is clearly rejected at the 5% level

against the corresponding BBF model according to the LR test: this probably stems

from the fact that the bounce-back parameter is not significantly different from zero

in this model, with an estimate equal to -0.04 and a standard error reaching 0.05. By

contrast, the constraints imposed by the BBU and BBD are not rejected. Amongst these

two candidates, the BBD exhibits a slight improvement compared to the BBU in terms

of likelihood. BBD model’s estimates are reported in Table 8. The two shift parameters

are significantly different from one, which confirms the role of those structural breaks.
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Figure 5: Smoothed probability of recession state for the UK

Table 7: Comparison of French models

Model Log-L np AIC LR stat p-val

Linear

AR(1) -218.03 5 -223.03

AR(2) -211.17 6 -217.17

AR(3) -210.59 7 -217.59

AR(4) -205.67 7 -213.67

AR(8) -201.87 11 -213.87

Bounceback

BBF(2,4,0) -200.24 12 -212.24

BBU(2,4,0) -202.97 10 -212.97 5.46 0.07

BBV(2,4,0) -205.64 10 -215.64 10.80 0.00

BBD(2,4,0) -202.51 10 -212.51 4.54 0.10

Hamilton

H-AR(2) -205.73 9 -214.73 10.98 0.01

Log-L denotes the log-likelihood.

np is the number of parameters.
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Table 8: French bounce-back models estimates

γ0 γ1 σ2 λ1 λ2 λ3 φ1 φ2 δγ δγ,σ p00 p11

BBF(2,4,0)

1.33 -4.26 0.85 -0.28 -0.04 -0.04 0.23 0.36 0.48 0.47 0.99 0.94

(0.24) (0.66) (0.07) (0.03) (0.04) (0.05) (0.06) (0.06) (0.11) (0.05) (0.01) (0.05)

BBD(2,4,0)

1.32 -3.74 0.86 -0.17 -0.17 -0.17 0.27 0.34 0.47 0.48 0.99 0.88

(0.25) (0.58) (0.07) (0.03) (0.06) (0.06) (0.11) (0.05) (0.01) (0.10)

Standard errors in parentheses. Constrained coefficients in italic.

φi’s are the autoregressive coefficients in eq. (1).

As can be seen from Table 10 in the Appendix, the standard deviation drops from 0.86

before 1968Q4 to 0.41 after this date, whereas the gap between expansion and recession

regimes mean growth rates decreases from 3.74 to 1.79 from there on. Finally, the

bounce-back parameter’s estimate is -0.17, which is slightly lesser in absolute value than

the one found from the US data (-0.21). According to the BBD parameters estimates,

a recession lasts around eight quarters on average, whereas an expansion would last

about 25 years. Beside the fact that no recession occurred before the first oil shock, this

striking result might stem from the fact that the model captures major recessions only,

as can be seen from Figure 6. Actually, only half the recessions — the ones beginning

in 1973 and 2008 — are well detected by the smoothed probabilities. In that respect,

the bounce-back model seems less successful here than in the US and UK cases.

4 Implications of estimated bounce-back models

4.1 Which kind of recovery shape?

Using the BB models parameters estimates reported in the previous section, we obtain

the typical shapes of recoveries specific to each country. They are plotted in Figure 7.

According to our estimates, France experiences the deepest drop at the beginning of a
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Figure 6: Smoothed probability of recession state for France

Figure 7: Estimated bounce-back effects
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recession, and then recovers for the next five quarters. The ‘W’-like recession observed

on this graph comes from the fact that m = 4. This indeed implies that the first deep

drop into recession vanishes from the bounce-back term (λ
∑m

j=1
(γ1 +∆yt−j)St−j) after

five quarters, and then this last term becomes slightly smaller than the mean growth

rate in recession, which explains the second drop. When finally St goes back to zero after

8 quarters, the bounce-back term adds up to the mean growth rate in expansion, which

translates into an overshooting effect. The French case illustrates the flexibility of the

BBF model, in that it is also able to mimic some kind of W-type recession. The shape

obtained for the UK stems directly from the estimated m parameter which is 5 in this

case while the average length of recession is 8 quarters. Hence, the bounce-back activates

immediately after the first drop, then reaches its maximum value on the fifth quarter

and stays at this level until St goes back to zero. From there on, the mean growth rate in

expansion regime dominates the dynamics. Finally, the bounce-back function obtained

in the US is quite similar to the one corresponding to the BBF(0,4,1) that is plotted in

Figure 3.

4.2 Permanent impact of a recession

Hamilton [1989] proposes to evaluate the permanent effects of recessions from the ex-

pected difference in the long-run level of output given that the economy is currently in

the recession regime versus in expansion regime, which may be written as:

lim
j→∞

{E[yt+j |St = 1,Ωt−1]− E[yt+j |St = 0,Ωt−1]} , (12)

where Ωt−1 = {St−1 = 0, St−2 = 0, . . . ; yt−1, yt−2, . . .}. Unfortunately, when bounce-

back terms depend on past growth rates, as in the BBF and BBD models, this limit as

no trivial closed-form solution. Nevertheless, from Figure 7, it appears that the area

defined by the difference between the BB function and the horizontal line set to γ0, i.e.

the growth rate associated to the expansion regime, provides a natural measure of the

accumulated or permanent impact of a recession on the level of output. This measure is

very close to the one suggested by Hamilton [1989] except for one aspect: In Hamilton’s
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measure, starting from the expansion regime growth rate and after the time t recession

is over, the expected long-run output growth rate will not tend towards the expansion

regime growth rate γ0. Instead, the model’s long-run expected growth rate is a weighted

average of the expansion and recession regimes growth rates. In Figure 7, it would

lie somewhere between the first value and the minimum value of the BB curves. As a

result, the magnitude of Hamilton’s measure of permanent loss should be slightly smaller

than ours. However, we believe that an important intrinsic property of this two-regime

MS class of models is to allow for the growth rate to go back to its expansion regime

value after the end of the recession, and hence deliberately include this feature in our

permanent impact evaluation. To this end, we compute numerically the limit given in

equation (12) conditionally to the assumption that once the recession initiated at time

t in the first term is over, i.e. at time t plus the estimated average recession duration,

both expectation terms involved in this limit are governed by the same path for the state

variable. The resulting values are reported in the first line of Table 9, and point to a

permanent negative impact of recessions in all the countries considered. In the US, our

Table 9: Permanent impact evaluation

λ US UK FR

λ = λ̂ -1.02% -3.58% -3.71%

λ = 0 -4.43% -5.57% -13.77%

results suggest that a recession causes a 1.02% permanent drop in the level of GDP. This

result is well in line with the 0.41 drop found by Kim et al. [2005] from a BBU model and

Hamilton’s measure. Without any bounce-back effect, i.e. with λ = 0, the permanent

drop would reach 4.43%, as can be seen in the second line of Table 9. In the UK and

France, the permanent drops following a recession are respectively 3.58% and 3.71%. It is

worth noting that in the French case, the gain from the bounce-back effect is particularly

large since without it, the permanent drop in the GDP level would reach -13.77%. This

large discrepancy comes from the size of γ1 which is much larger in absolute value than
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the ones obtained for the two other countries. Moreover, this French result is very much

in line with the permanent loss in the potential output estimated by the IMF in its 2010

report10 at 3.5%. Regarding the UK, Kim et al. [2005] evaluate this permanent loss at

5.34% for data from 1973 to 2006, while based on a simple production function estimate,

the IMF 2009 staff report11 suggests that “the cumulative loss of potential output over

2008-2010 could be as large as 4 to 5 percentage points”. The Kim et al. [2005] estimate

basically relies on a Hamilton’s model without bounce-back effect, which is the model

we would also have selected if the BBF model had not been considered. Remark that

by setting λ to zero, we obtain a very similar permanent impact: -5.57%. Finally, it is

also worth noticing that the IMF estimate mentioned above considers the last recession

only, and hence may over-estimate the average permanent impact of a recession in the

UK.

5 Concluding remarks

In this paper, we propose an original bounce-back model embedding existing ones while

allowing for new shapes of bounce-back functions. This BBF model allows for formal

statistical testing of standard bounce-back functions as the BBU, BBV or BBD ones.

Our application to three countries GDPs emphasizes the flexibility and relevance of the

proposed framework. For instance, the preferred model for UK data is a constrained

version for the BBF model which does not belong to the standard ones. Moreover, ex-

tending the analysis to other countries than the US also points to the country-specific

shapes of recoveries. As seen above, the framework also allows for ‘W’-like recession

preceding the recovery episode. Finally, this class of models suggests less pessimistic

conclusions than the original Hamilton’s model in terms of the permanent effects of a

recession on the level of GDP: even though the permanent impacts of recessions are still

10See the IMF country report No. 10/240, France: 2010 Article IV Consultation - Staff report, July

2010, p. 13.
11See the IMF country report No. 09/212, The United-Kingdom: 2009 Article IV Consultation -

Staff report, July 2009, p. 25.
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negative, their magnitudes are quite reduced thanks to the bounce-back effect. From

an economic theory perspective, these results question the importance of the cleansing

effects of recessions put forward by endogenous growth models belonging to the Schum-

peterian tradition.
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Appendix

Table 10: Structural breaks impact on growth rates mean and standard deviation

US UK France

Model BBD(2,4,1) BBF(0,5,0) BBD(2,4,0)

Mean break, t0 1973Q1 none 1974Q1

δγ 0.70 – 0.47

Variance break, t1 1984Q2 1980Q2 1968Q4

δγ,σ 0.52 0.37 0.48

γ0,t≤t0 1.00 0.74 1.32

γ0,t>t0 0.70 0.74 0.62

γ1,t≤t1 -1.96 -2.12 -3.74

γ1,t>t1 -1.02 -0.78 -1.79

σt≤t1 0.91 1.26 0.86

σt>t1 0.47 0.47 0.41
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