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ABSTRACT

This paper develops a finite-sample distribution-free inference system for the parameters of

a structural nonlinear model. We introduce an instrument validity condition with respect to the

structural error signs. We notice that the conditional distribution of the structural error signs is

nuisance-parameter free and known. This allows us to conduct a Monte-Carlo-based inference

which, in conjunction with projection techniques, produces valid results in finite samples robust

to identification failures in very general settings - nonnormality, heteroskedasticity, nonlinearly

dependent errors, weak instruments. The proposed inference method is asymptotically valid in

presence of serially dependent errors. Basically, the sign-based approach relies on artificial regres-

sions where the signs of the constrained residuals are regressed on some “auxiliary” instruments

[Anderson and Rubin (1949), Dufour (2003)]. Then, we study the problem of building optimal

instruments, in case of overidentification. We provided IV sign-based estimators in identifed

setups. Consistency and asymptotical normality are established under weaker assumptions than the

ones used for the 2SLAD estimator asymptotic theory. Finally, simulations show that sign-based

methods overcome usual methods and methods robust to weak instruments in non-normal and

heteroskedastic settings. A re-analysis of the returns to education based on Angrist and Krueger

(1991) data is also provided.

Key words: sign-based methods; median regressions; instrumental variables; finite samples; simul-

taneous inference; Monte Carlo tests; projection methods; non-normality; heteroskedasticity; serial

dependence; GARCH; stochastic volatility; bootstrap.
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1. Introduction

Instrumental Variable (IV) regression results greatly rely on the quality of the instruments used.

When the latter are weakly correlated with the endogenous variable, usual estimators are biased and

asymptotic approximations are not anymore valid; see Bound, Jaeger, and Baker (1995), Staiger

and Stock (1997), Dufour (1997, 2003), Wang and Zivot (1998), Stock and Wright (2000). Infer-

ence relying on estimator asymptotic behavior such as Wald tests may be greatly misleading. One

approach to circumvent the problem of weak instruments is to dissociate testing from estimation

and to investigate alternative test procedures. Contrary to Wald tests, tests based on the Anderson-

Rubin (AR) statistic have correct size for normally distributed disturbances without requiring the

parameter to be identified. AR tests are valid in the presence of weak instruments; see Anderson

and Rubin (1949), Dufour (1997), Nelson, Startz, and Zivot (1998). However, the AR procedure

relies on a Gaussian assumption or at least on some asymptotic justification. In small samples with

non-Gaussian disturbances, AR tests (such as any asymptotic test) may be affected by size distor-

tions. Fully exact inference procedures in models where some regressors are endogenous have been

less studied. In a regression setup, we propose to use the residual signs to conduct nonparametric

valid tests with controlled level for any sample size.

We consider here a possibly nonlinear equation which involves endogenous regressors. A set

of exogenous variables is available and no parametric assumption is imposed on the disturbance

process. The latter is only assumed to have median zero conditional on the exogenous variables

(hereafter, the instruments) and its own past. Without any further restriction, we notice that the

sign vector distribution of the constrained residuals is a pivotal function. This property is actually

a natural extension of the one stated in Coudin and Dufour (2009). The sign vector distribution

does not depend on nuisance parameters and can easily be simulated. Basically, we use Monte

Carlo test techniques [see Dwass (1957), Barnard (1963) and Dufour (2006)] to construct joint

sign-based tests that control the level for any sample size. The validity of these tests does not

depend on identification assumptions nor on any parametric approximation. In the presence of weak

instruments or identification failures, sign-based test levels still equal their nominal size. Then, a

complete system of finite-sample inference - as well as asymptotic extensions - can be applied [see

Coudin and Dufour (2009)]. Simultaneous confidence sets for the whole parameter are obtained

by test inversion. Next, confidence sets and tests of general hypotheses are built using projection

techniques [see Dufour and Kiviet (1998), Dufour and Jasiak (2001), Dufour and Taamouti (2005)].

Finally, Hodges-Lehmann estimators are provided in identified cases [Hodges and Lehmann (1963),

Coudin and Dufour (2008)]. They correspond to the parameter value least rejected by the tests.

As entailed by the results in Dufour (1997), the derived confidence regions may have a non-zero

probability of being unbounded in the presence of identification failures.

Nonparametric approaches investigated up to now in the literature have been based on rank and

permutation tests. A rank-version of the AR test was introduced by Andrews and Marmer (2008). It
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dominates the usual AR in terms of size and power for asymmetric and thick tail error distributions.

It yields exact tests if the exogenous regressors are independent of instruments and errors. Besides,

Bekker and Lawford (2008) proposed exact inference based on permutation tests. Both methods

are especially adapted to cross-sectional data, since the errors are assumed to be independent and

identically distributed (i.i.d.). By contrast, sign-based methods are known to be the only way of

producing inference procedures that are proved to be valid under heteroskedasticity of unknown

form for a given sample size; see Lehmann and Stein (1949) and Coudin and Dufour (2009). Sign-

based methods provide valid results under very few assumptions. Especially, they allow for general

forms of nonlinear dependence in the data. For example, the shape of the error distribution may

depend on the instruments provided a sign invariance condition is satisfied. Our approach, which

can be applied in time series and in cross-section contexts, extends that part of the literature.1

Other test procedures, which are valid in the presence of weak instruments, are parametric or

asymptotically justified. A first approach exploits AR-type statistics; see Dufour (1997), Dufour and

Jasiak (2001) and Stock and Wright (2000). More recently, Dufour and Taamouti (2005) extended

the AR procedure to construct a whole system of inference on the structural parameters. They de-

rived closed-form solutions for the simultaneous confidence regions and for projection-based confi-

dence intervals in special cases. The second approach, followed by Kleibergen (2002, 2005, 2007),

considered a score-type statistic in the limited information simultaneous equation model (LISEM).

The so-called K statistic, which is asymptotically a pivotal function, does not depend on the number

of instruments, in contrast with AR tests which loose power when many instruments are involved in

the model. In a Gaussian context, Bekker and Kleibergen (2003) investigated the K statistic proper-

ties in finite samples. They derived a conservative inference by bounding its behavior. Finally, the

conditional approach proposed by Moreira (2003) relies on similar tests; see also Moreira (2001),

Moreira and Poi (2003), Cruz and Moreira (2005), Andrews, Moreira, and Stock (2004, 2007). Un-

der the null hypothesis, the size of similar tests does not depend on unknown parameters (especially

the endogenous explanatory variables and the instruments). Consequently, a similar test remains

valid in the presence of weak instruments. Moreira showed that similar tests can be constructed

from non-similar ones by associating a critical value function of those unknown parameters. The

conditional likelihood ratio test (CLR) so derived exhibits the best properties. Heteroskedastic and

autocorrelation corrected versions of the K and the LR statistics are proposed by Kleibergen (2007).

See also Andrews and Stock (2005) for a complete review of the IV literature.

The sign-based approach is in the spirit of Anderson and Rubin.2 Basically, test statistics are ob-

tained by regressing the signs of the constrained residuals on auxiliary regressors (the instruments)

with the particularity that tests are performed using the exact distribution of those statistics. Like
1For a recent econometric exploitation of this sign invariance property, see also Chernozhukov, Hansen, and Jans-

son (2009) who proposes a finite-sample testing approach in a generic quantile model with conditionally independent
sampling.

2It is also related to Moreira’s approach since the derived tests are similar.
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the AR procedure, a sign-based test may suffer from underrejection when many instruments are

involved. This well-known drawback of AR-type procedures is corrected by considering "optimal"

instruments which maximize test power. Two optimality concepts are considered: the first one leads

to locally optimal tests in the neighborhood of the tested value; the second one to point-optimal tests

against a particular alternative. Approximate optimal instruments are constructed by split-sample

methods; see Angrist and Krueger (1995), Dufour and Jasiak (2001), Dufour and Taamouti (2005).

Other works on median (and quantile) regression with endogenous regressors have focussed on

estimation. The starting point was the two-stage-least-absolute-deviation estimator (2SLAD) in-

troduced by Amemiya (1982), which is an adaptation of 2SLS to the least absolute value (LAV)

regression [see also Powell (1983) for the asymptotic properties]. In a first stage, the endogenous

variable is regressed by ordinary least squares on the instruments. The second stage consists in

a LAV regression which involves the fitted values of the endogenous variable. Chen and Portnoy

(1996) extended the idea of two step-estimation to other quantiles. Two robust IV quantile es-

timators based on GMM formulations are due to Honore and Hu (2004). The first one involves

signs of the residuals and the second one their ranks. In a linear median regression model, Hong

and Tamer (2003) proposed a minimum distance kernel-based estimator that can be used both in a

point identified setup or when there exists a set of observationally equivalent parameters. Besides,

control function approaches were used by Lee (2003) in a partially linear quantile regression, by

Chernozhukov and Hansen (2008) with a double simultaneous optimization,3 and by Sakata (2001)

who proposed a general approach also based on a double optimization of the ratio between the error

dispersion controlled by the instruments and the dispersion without control. Here, we propose to

associate a Hodges-Lehmann-type estimator to the finite-sample-based inference results when the

parameter is identified. The estimate (or the set of estimates) is the (set of) value(s) least rejected by

sign-based tests, or equivalently the one(s) leading to the highest p-value [see Hodges and Lehmann

(1963) and Coudin and Dufour (2008)].

The paper is organized as follows. The model and notations are presented in section 2. In

section 3, general results on the finite-sample sign-based inference are stated: the distribution of

the constrained signs is derived under the sign invariance assumption. Then, simultaneous tests

with controlled level are constructed by Monte Carlo test techniques. Further, confidence sets and

general tests are built using projection techniques. In sections 4 and 5, we go further in details and

choose the form of the sign-based test statistics on the basis of power properties. Pointwise and

local optimality concepts are both considered for choosing the instruments. We also follow two

different approaches for determining the form of the sign-based statistic. First, we study a classical

GMM statistic that is a quadratic form of the residual signs with a certain weight matrix. We

also consider a Tippett-type combination [Tippett (1931)], which relies on the minimum of the p-

values corresponding to each sign-based moment equation tested separately. Section 6 is dedicated
3Their estimate of the parameter suffering from endogeneity both satisfies the regression criterion minimization and

minimizes the instrumental regressors parameters norm. They also obtain valid confidence regions by test inversion.
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to asymptotic properties of the proposed test procedures under assumptions weaker than the ones

required for finite-sample validity. Section 7 presents IV sign-based estimators when identification

holds. The power performances of the sign-based methods are compared to other usual methods

in the simulation studies of section 8. Finally, an illustrative application to the returns to schooling

[Angrist and Krueger (1991)] is provided in section 9. We conclude in section 10. Appendix A

contains the proofs.

2. Framework

In this section, we extend the linear median regression framework used in Coudin and Dufour (2009)

and Coudin and Dufour (2008) to a nonlinear and instrumental setup. Let {Wt = (yt, x
′
t, z

′
t) :

Ω → Rp+k+1}t=1,...,n be a stochastic process defined on a probability space (Ω,F , P ), and

{Wt,Ft}t=1,...,n an adapted stochastic sequence where Ft is a σ-field in Ω such that Fs ⊆ Ft
for s < t and σ(W1, . . . ,Wt) ⊂ Ft. yt is the real dependent variable, which can take continuous or

discrete values, xt = (xt1, . . . , xtp)
′ is a p-vector of explanatory variables (possibly endogenous)

and zt = (zt1, . . . , ztk)
′ is a k-vector of exogenous variables. We further assume that yt, xt and the

parameter of interest, θ ∈ Rq, are related through a nonlinear function f : R1+p+q → R up to an

error term ut:

f(yt, xt, θ) = ut, t = 1, . . . , n.

For convenience, we will use the following matrix notation

f(y,X, θ) = u (2.1)

where y = (y1, . . . , yn)
′ and u = (u1, . . . , un)

′ are real n-vectors, X = (x1, . . . , xn)
′ is a n × p

real matrix.

We denote Z = (z1, . . . , zn)
′ the n × k real matrix of instruments. The terminology of instru-

ments is very general. It covers exogenous random variables but the instruments may also depend

on the parameter θ such as a score vector in a nonlinear model. In such a case, we shall denote

Zθ :=
(
z1(θ), . . . , zn(θ)

)′. Instruments may be strongly or weakly correlated with the endogenous

regressors, but they have to be valid in the following sense.

Assumption A1 Z-CONDITIONAL MEDIANGALE. Let {ut,Ft} t=1,2,... be an adapted stochastic

sequence and Ft = σ(u1, . . . , ut, Z). We assume that

P [u1 > 0|Z] = P [u1 < 0|Z] = 1/2,

P [ut > 0|Z, ut−1, . . . , u1] = P [ut < 0|Z, ut−1, . . . , u1] = 1/2, for t > 1.

Assumption A1 is an adaptation of the mediangale concept defined in Coudin and Dufour (2009)

to an instrumental setup. We condition on Z instead of X since some explanatory variables are
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endogenous. {ut}t=1,...,n are not supposed to be i.i.d.. The past values of ut may have an influence

on the form of the distribution of the current ut, provided they do not affect its probability of

being positive or negative. This flexible setup covers the standard limited information simultaneous

equations model (LISEM) [see Hausman (1983)]:

yt = x′tθ + ut,

xt = z′tΠ + vt,(
ut

vt

)
iid∼ N (0, Σ), for t = 1, . . . , n,

(ut, v
′
t) independent of zt, for t = 1, . . . , n,

where yt is a scalar dependent variable, xt is a p-vector of explanatory and possibly endogenous

variables, zt is a k-vector of exogenous variables, ut is the error term of the structural equation

, and vt is the p-vector of disturbances of the instrumental equation. θ is a p-vector of structural

parameters andΠ is the k×pmatrix of the reduced form parameters. In a standard LISEM, (ut, v′t)

are i.i.d. normally distributed and independent of zt.

Model (2.1) with the Assumption A1 is much more general. Parametric assumptions on the error

term distribution are relaxed. The normality restriction is not required neither in finite samples nor

asymptotically. Assumption A1 allows for heteroskedasticity of unknown form. Only the median is

assumed to be zero (conditional on Z). This leads to three important special cases.

First, the independence assumption between the observations is relaxed. Past realizations of ut
can have an influence on the shape of the current ut distribution. For example, ut, t = 1, . . . , n,

can satisfy the following assumptions:

u1 = σ1ε1 ,

ut = σt(u1, . . . , ut−1)εt , for t = 2, . . . , n

ε1, . . . , εn are independent with median zero,

σ1 and {σt(u1, . . . , ut−1)}t=2, ... , n are non-zero with probability one. (2.2)

This includes in a time series context ARCH(q) with non-Gaussian noise εt, where

σt(u1, . . . , ut−1)
2 = α0 + α1u

2
t−1 + · · ·+ αqu

2
t−q. (2.3)

Second, the instruments may have an influence on the shape of the current ut distribution, pro-

vided the probability of being positive or negative is not affected. In finite samples, an instrument

affecting the shape of the disturbance distribution, may be the cause of asymptotic test great dis-

tortions. Examples can be found in section 8. In such a case, one can exploit Assumption A1 that

allows for some nonlinear dependence between Z and u, for any sample size. A large spectrum of
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heteroskedastic patterns is covered, such as:

ut = σt(Z) εt, t = 1, . . . , n, (2.4)

where ε1, . . . , εn are i.i.d. conditional on Z. This can be useful when the instrument choice is

limited by data availability.

A third interesting case arises when the endogenous variables affect the shape of the structural

error distribution. The usual linear specification simplifies calculus and interpretation. However,

if the relation is not well captured by linear modeling, the shape of the structural error distribution

may be affected. In such a case, asymptotic tests are invalid even in a large sample.

When ut and zt are only asymptotically uncorrelated, Assumption A1 may not hold (e.g. due to

feedback on the error signs). However, we will see below that sign-based tests are still asymptoti-

cally valid.

3. Finite-sample inference with possibly weak instruments

Assumption A1 is the cornerstone of the validity of sign-based inference methods. If the distur-

bances satisfy a conditional mediangale condition, their signs have a known joint distribution that

does not depend on any nuisance parameter (conditional on the instruments). This property holds

for any sample size, without imposing additional distributional assumptions. The sign pivotality

property was stated in Coudin and Dufour (2009) for classical median regressions. It was exploited

to construct sign-based simultaneous tests with controlled level for any sample size by Monte Carlo

test techniques. In that section, we extend that result to nonlinear and possibly instrumental re-

gressions. Then, we follow the same strategy and conduct simultaneous tests. More generally, the

whole finite-sample based inference system presented in Coudin and Dufour (2009, 2008) applies

here. Simultaneous confidence regions with controlled level are constructed by inverting simulta-

neous tests; and more general confidence sets or tests, by projecting the simultaneous confidence

regions. We rapidly present the leading ideas and principles of finite-sample based inference system.

For a detailed presentation, the reader is referred to Coudin and Dufour (2009, 2008).

3.1. Pivotality

Let us begin with some notations. We define the sign operator s : R→ {−1, 0, 1} as

s(a) = 1[0,+∞)(a)− 1(−∞,0](a), where 1A(a) =

{
1, if a ∈ A,
0, if a /∈ A.

(3.1)

For convenience, the notation will be extended to vectors. Let u ∈ Rn and s(u), the n-vector com-

posed by the signs of its components. This enables us to formally state the following proposition:
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Proposition 3.1 SIGN DISTRIBUTION. Under model (2.1), suppose the errors (u1, . . . , un) sat-

isfy Assumption A1 conditional on Zθ. Then the variables s(u1), . . . , s(un) are i.i.d. conditional

on Zθ according to the distribution

Pθ[s(ut) = 1|Zθ] = Pθ[s(ut) = −1|Zθ] = 1/2 , t = 1, . . . , n . (3.2)

The proofs of the theorems and propositions appear in the Appendix.

From the latter proposition, it follows that the vector of constrained signs

s(f(y,X, θ)) :=
(
s(f(y1, x1, θ)), . . . , s(f(yn, xn, θ))

)′ (3.3)

has a nuisance-parameter-free distribution (conditional on Z), i.e. it is a pivotal function. When the

disturbance process satisfies Assumption A1, the error signs are mutually independent according to

a known distribution.

Furthermore, any real-valued function of the form

T θ
(
y, θ) = T

(
s(f(y,X, θ)), Zθ, θ

)
(3.4)

has a distribution which does not depend on unknown nuisance parameters. Its conditional distribu-

tion given Zθ can be analytically derived or simulated because the joint distribution of s(f(y,X, θ))

is completely specified by Proposition 3.1. Consequently, we can construct conditional tests for

which size is fully controlled.

Consider the problem of testing

H0(θ0) : θ = θ0 vs H1(θ0) : θ 6= θ0.

Under H0,

T
(
s(f(y,X, θ0)), Zθ0 , θ0

)
∼ T (Sn, Zθ0 , θ0) (3.5)

where Sn = (s1, . . . , sn)
′ and s1, . . . , sn are i.i.d. Bernoulli random variables conditional on Zθ0

that equal 1 with probability 1/2 and −1 with probability 1/2. A test with level α rejects the null

hypothesis when

T
(
s(f(y,X, θ0)), Zθ0 , θ0

)
> cT (Zθ0 , α, θ0) (3.6)

where cT (Zθ0 , α, θ0) is the (1 − α)-quantile of the distribution of T (Sn, Zθ0 , θ0) conditional on

Zθ0 .

This property is an extension of the one stated in Coudin and Dufour (2009); see also Dufour

(1981), Campbell and Dufour (1991, 1995) and Wright (2000).4 Here, T
(
s(f(y,X, θ0)), Zθ0 , θ0

)
4For an econometric exploitation of a version of the sign invariance property adapted to generic quantile regression

with independent conditional sampling, see also Chernozhukov, Hansen, and Jansson (2009).
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and Zθ0 depend on the tested value θ0. This property can be adapted to error distributions with a

mass at zero by randomly breaking the zeros in a way similar to Coudin and Dufour (2009).

Furthermore, the sign pivotality result allows one to construct nonparametric tests through

Monte Carlo test techniques.

3.2. Monte Carlo tests

Under H0(θ0) and Assumption A1, the conditional distribution of Tθ0
(
s(f(y,X, θ0)), Zθ0

)
given

Zθ0 is free of nuisance parameters with a known distribution that can be simulated. Those two

features are sufficient to apply Monte Carlo test procedures.5 Given Tθ0 , the test proposed in section

2 rejectsH0(θ0) when Tθ0 ≥ c, with c depending on the level. The general idea of Monte Carlo tests

is to order the observed statistic with N simulated ones. The Monte Carlo test rejects H0(θ0) when

the observed statistic is larger than at least (1 − α) × N simulated replicates. As the distribution

of Tθ0 is discrete, we need a criterion to order two equal realizations. We shall use the randomized

tie-breaking presented in Dufour (2006) and Coudin and Dufour (2009).

The Monte Carlo test for H0(θ0) can equivalently be conducted with empirical p-values. Let

T
(0)
θ0

be the "observed" statistic, (T (1)
θ0
, . . . , T

(N)
θ0

) be a N -vector of independent replicates drawn

from the same distribution as Tθ0 , and (W (0), . . . ,W (N)) be a N + 1-vector of i.i.d. real uniform

variables. A Monte Carlo test with level α consists in rejecting the null hypothesis whenever the

empirical p-value, denoted p̃θ0N (T
(0)
θ0

), is smaller than α with

p̃θ0N (x) =
NG̃θ0N (x) + 1

N + 1
, (3.7)

where

G̃θ0N (x) = 1− 1

N

N∑
i=1

1[0,∞)(x− T
(i)
θ0

) +
1

N

N∑
i=1

1[0](T
(i)
θ0
− x)1[0,∞)(W

(i) −W (0))

is the simulated survival function. If N is such that α(N + 1) is an integer

P [p̃θ0N (T
(0)
θ0

) ≤ α] = α for 0 ≤ α ≤ 1.

The Monte Carlo test so obtained has size α for any given sample size T . No identification

condition is needed to conduct tests with fully controlled level. The instruments may be poorly

informative, the test levels are always controlled provided that the instruments are exogenous in the

sense of Assumption A1. We shall see later on that Assumption A1 can be slightly relaxed while

maintaining the test levels asymptotically controlled.

5See Dwass (1957), Barnard (1963) and Dufour (2006)
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Those basic joint tests constitute the matrix for a whole nonparametric inference system where

simultaneous confidence regions are obtained by test inversion and tests of general hypothesis by

projection techniques.

3.3. Confidence sets, projection-based confidence intervals and confidence
distributions

We use the simultaneous sign-based tests to build confidence sets for θ with given level. These are

obtained in the following way: Monte Carlo sign-based tests forH0(θ0) are performed for any value

of θ0 ∈ Rq (or more reasonably for a grid of values) yielding a p-value p̃θ0N (T
(0)
θ0

). This associated p-

value reflects the degree of confidence one may have in the hypothesis θ = θ0 given the realization

T
(0)
θ0

[see Coudin and Dufour (2008)]. The simultaneous confidence region with level 1 − α is

composed by the values of θ0 with p-value higher than α. Next, from this simultaneous confidence

set for θ, it is possible to derive confidence intervals for the individual components and to perform

tests for general nonlinear hypotheses using projection techniques.6 In Coudin and Dufour (2008),

we directly applied projection techniques on the simulated p-value function. The projected p-value

function associated with the individual component θk gives a graphical summary of the inference

results on θk.

The functions involved here are highly nonlinear and no closed-form analytical solutions can

easily be obtained. Practical implementation requires to solve optimization problems under non-

linear constraints. Search programs such as simulated annealing are used [see Goffe, Ferrier, and

Rogers (1994) and Press, Teukolsky, Vetterling, and Flannery (2002)].

3.4. Simplifications: restrictions on the parameter space

This approach requires in theory to evaluate the sign-based statistic for any value of the parameter

in the parameter space. When the size of the parameter space increases, the search programs rapidly

become computationally intensive especially when projection techniques are used. So, any addi-

tional piece of information that helps to reduce the size of the parameter space is welcome and must

be included as a constraint in the program. First of all, restrictions implied by the economic theory

or by the relevance of the model have to be taken into account. If the underlying economic model

specifies that a certain coefficient must be less than one (such as an elasticity for example), there is

no use to investigate what happens outside.

More generally, a conditional approach is also possible. If one accepts to fix some of the parame-

ter components in a certain subspace, sayΘc, the approach presented above gives results conditional

on θ belonging to Θc.
6For examples in different settings and for further discussion on projection techniques, the reader is referred to Coudin

and Dufour (2009), Dufour (1990), Dufour (1997), Wang and Zivot (1998), Dufour and Jasiak (2001), Dufour and
Taamouti (2005).
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An alternative approach consists in restricting the parameter space to a consistent set estimator.

Such confidence-set restricted Monte-Carlo tests are asymptotically valid under some general

regularity conditions; see Dufour (2006).

The two following sections are dedicated to the construction of efficient test statistics which

satisfy the general form Tθ
(
s(f(y,X, θ)), Zθ

)
so that the finite-sample inference system can be

applied. We consider two approaches. First, we establish the general form of point-optimal tests

versus a specified alternative. This theoretical result yields a power frontier for sign-based proce-

dures. However, methods that combine various point-optimal tests to approach the power envelope

are not easily tractable in practice. Hence, we turn to a more classical approach and derive locally

optimal instruments. We study statistics that involve signs in a quadratic form and a Tippett-type

combination although other (less usual) statistics could also be envisaged (e.g. linear plus quadratic

forms or polynomials at various orders involving signs). The class of quadratic IV-type sign-based

statistics provides good competitors when the final aim is estimation.

4. Point-optimal tests

Point-optimal tests are usually derived for parametric models since they rely on the likelihood ratio

that follows from the classical Neyman-Pearson lemma. Here, they can be constructed for nonpara-

metric models thanks to the sign transformation. In this section, we present point-optimal tests for

signs in a general context and then, in a regression context.

4.1. General point-optimal sign-based result

Point-optimal tests based on signs are derived for a very general nonparametric framework in which

signs are independent and heterogeneously distributed according to Bernoulli distributions with

parameters (p1, ..., pn).

P [st = 1] = pt, P [st = −1] = 1− pt, t = 1, . . . , n. (4.8)

Let us consider the problem of testing

H0 : (p1, ..., pn)
′ = (p01, ..., p0n)

′, (4.9)

versus

H1 : (p1, ..., pn)
′ = (p11, ..., p1n)

′. (4.10)

Proposition 4.1 POINT-OPTIMAL SIGN-BASED TEST. When testing H0 versus H1, the most
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powerful test based on signs rejects H0 when

n∑
t=1

st ln

(
p1t(1− p0t)
p0t(1− p1t)

)
> c(α,H1)

with c(α,H1) depending on the level.

The proof is a direct application of the Neyman-Pearson lemma [see for example Gouriéroux and

Monfort (1995)]. Point-optimal tests are often derived in parametric setups because they rely on the

form of the likelihood function under the null hypothesis and under the alternative. Here, the point-

optimal test can be derived in a nonparametric setup thanks to the sign transformation. The main

strength of the sign transformation is indeed to get rid of the distributional characteristics of the

underlying process. However, one has to choose the alternative hypothesis to specify {p1t}t=1,...,n.

4.2. Point-optimal sign-based tests in a regression framework

We now go back to the regression framework of model (2.1) with Assumption A1. Consider testing

H0 : θ = θ0 versus H1 : θ = θ1, Proposition 4.1 yields the following corollary.

Corollary 4.2 POINT-OPTIMAL SIGN-BASED TEST IN A REGRESSION CONTEXT. In model

(2.1), let {Wt = (yt, x
′
t, z

′
t)}t=1,...,n be a i.i.d. process and {ut}t=1,...,n have a common distribu-

tion function G conditional on Z that does not depend on θ. Suppose further that the mediangale

Assumption A1 holds. Then the most powerful sign-based test of H0 : θ = θ0 versus H1 : θ = θ1 in

the sense of Neyman-Pearson rejects H0 when

n∑
t=1

s(ut) ln

(
1−G(ht)
G(ht)

)
> c(α, θ1) (4.11)

where (h1, . . . , hn)
′ = (f(y1, x1, θ1) − f(y1, x1, θ0), . . . , f(yn, xn, θ1) − f(yn, xn, θ0))

′, and

c(α, θ1) depends on the level.

The point-optimal sign-based test is a linear form of the signs with weights depending on the error

distribution and the chosen alternative hypothesis. When the distribution function G is logistic, the

statistic simplifies and the optimal weights turn out to be {ht}t=1,...,n.

Point-optimal sign-based tests are theoretically interesting objects because they bound what can

be done with signs and combining them allows one to approach the power envelope. However,

a point-optimal test requires first to specify the alternative hypothesis and then to compute the

optimal weights {p1t}t=1,...,n that depend on the error distribution. In a parametric setup, this can

be done analytically. But in a nonparametric setup (as here), the error distribution is not fixed and

{p1t}t=1,...,n are not straightforward to choose. Point-optimal statistic can be approached if one

"guesses" the behavior of the error term under the alternative hypothesis. This can be done by split-

sample techniques. A first part of the sample is used to approach the error distribution, the other

part, to construct the statistic; see Dufour and Taamouti (2010) for an example of use.
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However, approaching point-optimal tests and power envelope quickly become computationally

intensive. For this reason, we turn in the next section to another optimality concept that does not

require to specify the alternative hypothesis and still provides "locally" optimal tests. The so-called

locally optimal test statistics turn to be quadratic forms of the constrained signs and of optimal

instruments. We also study other combinations (than quadratic) of sign-based moment equations

that may present power in weak identified cases.

5. IV sign-based statistics

The easiest way to introduce IV sign-based statistics is to refer to a GMM setup. Signs and in-

struments that satisfy the mediangale Assumption A1 also satisfy usual moment conditions. GMM

statistics exploiting the orthogonality between the error signs and the instruments can be constructed

using the analogy principle. More generally, we follow the idea of auxiliary regressions [Anderson

and Rubin (1949) and Dufour (2003)] to circumvent the problem of endogeneity; see also the arti-

ficial regressions of Davidson and McKinnon (2001). We consider regressions of the constrained

signs on "auxiliary" instruments (when present in the model their coefficient must be zero). We con-

sider two approaches. IV sign-based statistics correspond either to F-type statistics for testing that

the parameter vector in the previous multivariate regression is zero (denoted GMM-type), either to

Tippett-type combination of univariate regressions involving one "auxiliary" regressor at once (de-

noted Tippett-type). The proposed sign-based statistics are pivotal functions and exact sign-based

tests can be built for any sample size regardless of the strength of the instruments. Then, we focus on

IV sign-based statistics that yield to the best (local) power considerations and on the corresponding

optimal instruments.

5.1. Sign-based moment equations

In a usual LISEM model (with valid instruments), the estimating equations correspond to the or-

thogonality conditions between zt and ut.

E[(yt − xtθ)zjt] = 0, for j = 1, . . . , k, t = 1, . . . , n. (5.12)

Under Assumption A1, Proposition 3.1 entails that the error signs are i.i.d. conditional on Z and

centered. Consequently, in model (2.1), the following "sign-based" moment conditions (where the

residuals are replaced by their signs) hold:

E
[
s
(
f(yt, xt, θ)

)
zjt
]
= 0, for j = 1, . . . , k, t = 1, . . . , n. (5.13)

More generally, Assumption A1 entails

E
{
s
(
f(yt, xt, θ)

)
gj
(
zt(θ), θ

)}
= 0, for j = 1, . . . , J, t = 1, . . . , n. (5.14)

12



where {gj}j=1,...,J are measurable functions of the instruments and θ.7 If necessary, we shall re-

define instruments as z̃jt(θ) = gj
(
zt(θ), θ

)
, t = 1, . . . , n, j = 1, . . . , J but the following applies

without any further modification.

In those sign-based moment equations, the parameter of interest is not present in an explicit form

but is implicitly involved through a robust transformation by the sign operator. The sign operator

gets rid of any nuisance parameter affecting the distribution of the error term and enables one to

conduct fully robust tests to heteroskedasticity of unknown form for any sample size.

The analogy principle entails the following sample-based moment equations:

n∑
t=1

s
(
f(yt, xt, θ)

)
zjt = 0, j = 1, . . . , k. (5.15)

5.2. Combining sign-based moment equations: GMM or multiple tests

These new orthogonality conditions can be exploited for constructing GMM-type statistics. For

testing H0(θ0) : θ = θ0 versus H1(θ0) : θ 6= θ0 in model (2.1), we shall consider test statistics of

the following form:

DS(θ0, Z,Ωn) = s(f(y,X, θ0))
′Zθ0Ωn

(
s(f(y,X, θ0)), Zθ0

)
Z ′θ0s(f(y,X, θ0)) (5.16)

where Ωn
(
s(f(y,X, θ0)), Zθ0

)
is a k × k positive definite weight matrix that may depend on the

constrained signs s(f(y,X, θ0)) under H0(θ0).

The statistic associated with Ωn = (Z ′θ0Zθ0)
−1 is given by: 8

DS

(
θ0, Zθ0 , (Z

′
θ0Zθ0)

−1) = s
(
f(y,X, θ0)

)′
P (Zθ0)s

(
f(y,X, θ0)

)
(5.17)

where PZθ0 = Zθ0(Z
′
θ0
Zθ0)

−1Z ′θ0 . That is the squared norm of the fitted values from the regression

of s(f(y,X, θ0)) on Zθ0 . In other words, DS

(
θ0, Zθ0 , (Z

′
θ0
Zθ0)

−1) is a monotonic transformation

of the Fisher statistic for testing γ = 0 in the artificial regression model s
(
f(y,X, θ0)

)
= Zθ0γ+v.

Another way to approach the problem of building sign-based statistics is then to consider re-

gressions of the constrained signs on appropriately chosen “instruments”:

s
(
f(y,X, θ0)

)
= Zθ0γ + v . (5.18)

Testing H0(θ0) is equivalent to test γ = 0 in (5.18) where Z̃(θ0) are related to X but excluded

from the structural model. Z̃(θ0) are called "auxiliary regressors": when present in the model,

their coefficient must be zero. Remark that the unilateral point-optimal test presented in Proposition

4.1 can also be viewed as a t-test obtained by regressing the signs on some appropriate auxiliary
7Hong and Tamer (2003) proposed for example to use kernel functions.
8This is the GMM statistic studied by Chernozhukov, Hansen, and Jansson (2009) in their conditionally independent

setting.
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instruments (precisely the scores under the alternative). Thus, the set of test-statistics based on

auxiliary instruments is very general and includes point-optimal Neyman-Pearson-type statistics

among the related t-statistics.

Fisher and GMM-type statistics are quadratic forms of the moment equations. Other types of

combination of sign-based moment equations can be exploited. We can for example follow Tippett

(1931) and consider

DT ip
S (θ0, Zθ0) = min(p1, . . . , pk) (5.19)

where p1, . . . , pk are the (empirical) p-values associated with testing γi = 0 in the univariate re-

gression involving one instrument (here ziθ0) at once:

s(f(y,X, θ0)) = γizθ0i, i = 1, . . . , k. (5.20)

The idea behind is the following. Statistics based on a quadratic combination of moment equations

are specifically adapted for test and estimation when the parameter is well identified because they

rely a local optimality concept. However, in weakly identified cases, there is no gain to restrict on

statistics that provide power in the vecinity of the true value parameter because those values may be

observationally equivalent (due to the lack of identification). In such cases, other combinations of

the moment equations such as the Tippett combination may provide better overall properties.

5.3. Artificial regressions

The use of artificial regressions such as (5.18) and (5.20) to circumvent endogeneity has been first

proposed by Anderson and Rubin (1949) [see also Dufour (2003), Davidson and McKinnon (2001)

who presented artificial regressions in general nonlinear models]. In the linear Gaussian model,

they proposed an exact test of γ = 0 based on a Fisher-type statistic. The derived inference is valid

and robust to possibly weak instrument settings [see also Dufour (1997), Staiger and Stock (1997),

Dufour and Taamouti (2005)]. However, the procedure power depends on the choice of the instru-

ments. In the LISEM model with exact identification and Gaussian disturbances the AR procedure

is optimal, but it may suffer from underrejection when a large number of instruments is involved

in the model. With "many instruments", asymptotically justified methods such as Kleibergen’s K

statistic or Moreira’s LM statistic may provide better asymptotic power. However, those statistics

are no longer pivots in finite samples and a relying inference without other adjustment may suffer

from size distortion even in a Gaussian context.9

Here, our objective is double. We propose test statistics that are first pivotal functions for any

sample size, under the null hypothesis and with known distribution, in order to conduct exact infer-

ence (i.e. that satisfy Assumption A1) and that are based on an "optimal" choice of instruments.
9The K statistic distribution depends on nuisance parameters in finite samples. In a Gaussian context, Bekker and

Kleibergen (2003) derived bounding distributions and conservative tests.
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5.4. Locally optimal instruments

In case of overidentification, instruments can be selected to improve power consideration. When

testing H0(θ0) with level α, the power function of the sign-based statistics T
(
s(f(y,X, θ0)), Zθ0

)
is:

β(θ) = Pθ
[
T
(
s(f(y,X, θ0)), Zθ0

)
> cT (Zθ0 , α)

]
. (5.21)

We search for instruments that "maximize" the power function locally around θ0 in a just identified

setup.10 Around θ0, sign-based test power functions follow the behavior of their second derivatives

w.r.t. θ, which turn to be quadratic forms of the sign vector. Consequently, we derive the optimal

instruments from the weights involved in the latter quadratic forms and derive locally optimal sign-

based test statistics. This result is stated in the following proposition. Locally optimal instruments

are derived in a setup with i.i.d. observations. In the sequel, all results are conditional on the

available set of instruments.

Proposition 5.1 LOCALLY OPTIMAL INSTRUMENTS. Consider the problem of testing H0 : θ =

θ0, in model (2.1) versus a sequence of alternatives Hn : θ = θn such that θn → θ0
θn 6=θ0

, and assume

that:

a) (yt, xt, zt), t = 1, . . . , n are identically and continuously distributed;

b) f is continuously differentiable in θ, with continuous derivative Ht(θ) = ∂f(yt,xt,θ)
∂θ′

∣∣∣
θ

and

H(θ)′ = (H0(θ)
′, . . . ,Hn(θ)

′)′ for t = 1, . . . , n;

c) ∃V (θ0) such that

sup
θ∈V (θ0)

∣∣∣∣∣∣∣∣E [ ∂f(yt, xt, θ)∂θ′

∣∣∣∣
θ

]∣∣∣∣∣∣∣∣ = sup
θ∈V (θ0)

||E[Ht(θ)]|| ≤M1, ∀t = 1, . . . , n;

d) ut has continuous distribution function G which is continuously differentiable at zero with

derivative G′ also continuously differentiable at zero and G′′(0) = 0, for t = 1, . . . , n;

e) setting Pθn
[
ut −

(
Ht(θ)− EHt(θ)

)
(θn − θ0) ≤ x

]
= Gθn(x),

1
||θn−θ0||

(
Gθn(0)−G(0)

)
→ 0 and

(
G′θn (0)−G′(0)

)
→ 0,

for all θ such that ||θ0 − θ|| ≤ ||θ0 − θn||.

Then, a locally optimal set of instruments is given by

Z∗(θ0) = E[H(θ0)], (5.22)

10Another alternative is to compute instruments maximizing the power function versus a specified alternative. This
strategy has been followed by Dufour and Taamouti (2002) who derived point-optimal AR tests in a Gaussian context.
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and a locally optimal GMM sign-based statistic is

D∗S(θ0) = s
(
f(y, x, θ0)

)′
EH(θ0)[EH(θ0)

′EH(θ0)]
−1EH(θ0)

′s
(
f(y, x, θ0)

)
. (5.23)

The regularity conditions b,c and d insure continuity, differentiability and integrability of f and of

its derivatives. Condition d states that the errors possess a mode at zero. Further, condition e sets

the speed of convergence of the distribution functions Gn towards G. Further, if ut − [Ht(θ) −
EHt(θ)](θn − θ0) has a symmetric distribution for any value of θn then condition e holds.

If the matrix Ht(θ0) is exogenous it can directly be used. If not, we need an exogenous estimate

to ensure inference validity for a given n. This is feasible by splitting the sample into two parts.

5.5. Quasi-optimal instruments and split-sample

When observations are independent, one may resort to split-sample techniques.11 The principle is

the following. The sample is divided into two parts: (Y(1), X(1), Z(1)) and (Y(2), X(2), Z(2)). The

first part is used to estimate

∂f(Y(1), X(1), θ)

∂θ′

∣∣∣∣′
θ=θ0

= h(Z(1), θ0) + ε, (5.24)

yielding an estimate ĥ. This first stage regression may be linear or not, parametric or not depending

on the structural model. A sign-based estimation can also be used.

Then, quasi-optimal instruments are constructed for the second part of the sample, Z̃(2) =

ĥ(Z(2)) and used as auxiliary regressors in the second step regression:

s(f(Y(2), X(2), θ0)) = γZ̃(2) + v(2). (5.25)

A test of H0(θ0) is thus based on a GMM sign-based statistic

SSS(θ0) = s
(
f(Y(2), X(2), θ0)

)′
Z̃(2)[Z̃

′
(2)Z̃(2)]

−1Z̃ ′(2)s
(
f(Y(2), X(2), θ0)

)
. (5.26)

The latter statistic does not depend on nuisance parameters under the null hypothesis because Z̃(2)

is exogenous. Consequently, Monte Carlo tests can be used. This point also validates the use of

simulation-based statistics such as a Tippett-type statistic

TSS(θ0) = min{p1, . . . , pp} (5.27)

11The split-sample technique was used by Dufour and Taamouti (2002) in a quite similar context to ours. They search
an exogenous estimate of the point-optimal matrix of instruments, which, in a Gaussian context, allow them to construct
exact inference based on generalized AR statistics, [see also Angrist and Krueger (1995), Dufour and Jasiak (2001) for
other uses and a discussion on the optimal split of the sample].
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where p1, . . . , pp are the empirical p-values for testing γi = 0 in the univariate regressions of the

form

s(f(Y(2), X(2), θ0)) = γiz̃i(2), i = 1, . . . , p. (5.28)

6. Asymptotic properties

A drawback of the mediangale Assumption A1 is the exclusion of linearly dependent processes even

though usual asymptotic inference can still be conducted on them. In Coudin and Dufour (2009), we

pointed out that heteroskedasticity and autocorrelation corrected sign-based statistics are asymptot-

ically pivotal functions when signs and explanatory variables are uncorrelated. We also showed that

Monte Carlo testing method remained asymptotically valid under weaker distributional assumptions

than usual asymptotic Wald tests. In particular, heavy-tailed distributions including infinite variance

disturbances were covered. In this section, we show these results apply to IV sign-based statistics

without any major modification. We established them for a general nonlinear instrumental regres-

sion. A sign HAC-statistic with a weight matrix directly derived from the asymptotic covariance

matrix of the signs and the instruments, say DS

(
θ, Z, 1n Ĵ

−1
n (Z)

)
, turns out to be asymptotically

χ2(k) distributed under H0 where k is the number of instruments used.

6.1. Asymptotic behavior of IV GMM sign-statistics

We consider model (2.1) with the following assumptions.

Assumption A2 MIXING. {(x′t, z′t(θ0), ut)}t=1,2,..., is α-mixing of size −r/(r− 2) with r > 2.12

Assumption A3 MOMENT CONDITION. E[s(ut)zt(θ0)] = 0, ∀t = 1, . . . , n, ∀n ∈ N.

Assumption A4 BOUNDEDNESS. zt(θ0) =
(
z1t(θ0), . . . , zpt(θ0)

)′ and E|zht(θ0)|r < ∆ <

∞, h = 1, . . . , k, t = 1, . . . , n, ∀n ∈ N.

Assumption A5 NON-SINGULARITY. Jθ0n = var
[

1√
n

∑n
t=1 s(ut)zt(θ0)

]
is uniformly positive

definite.

Assumption A6 CONSISTENT ESTIMATOR. Ωθ0
n is symmetric positive definite uniformly over n

and Ωθ0
n − 1

n(J
θ0
n )−1

p→ 0.

Then we have the following asymptotic distribution.

Theorem 6.1 ASYMPTOTIC DISTRIBUTION OF STATISTIC SHAC. In model (2.1), with Assump-

tions A2- A6, we have, under H0,

DS(θ0, Zθ0 , Ω
θ0
n )→ χ2(k).

12See White (2001) for a definition of α mixing.
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Corollary 6.2 In model (2.1), with the mediangale Assumption A1 and Assumption A4. If Z ′Z/n

is positive definite uniformly over n and converges in probability to a definite positive matrix, we

have under H0,

DS

(
θ0, Z, (Z

′Z)−1
)
→ χ2(k).

Theorem 6.1 holds for split-sample statistics with n2 → ∞ and when Z depends on θ (with Z

evaluated at θ0). The proofs are adaptations of Theorem 6.6 and Corollary 6.7 in Coudin and

Dufour (2009).

The χ2(k) distribution is familiar in instrumental and weak instruments settings. The statistic

k × AR is asymptotically χ2(k) distributed [see Anderson and Rubin (1949), Staiger and Stock

(1997), Dufour and Jasiak (2001), Dufour and Taamouti (2005)]. This distribution also bounds the

LR and LM statistics [see Wang and Zivot (1998)]. However, the χ2(k) distribution is directly re-

lated to the number of instruments and the use of many instruments (k large) may entail a power loss.

This pleads for theK-statistic favor [see Kleibergen (2002)] in setups with normally distributed dis-

turbances or for any statistic whose distribution does not depend of the number of instruments used.

When the setup involves more general processes like non-normal of heteroskedastic errors, there

is no reason why the power of a K test would be higher than the one of a sign-based test in finite

samples. Nevertheless, if one is concerned about the "many instruments" curse, let us underline

that sign-based statistics with quasi-optimal instruments are asymptotically χ2(p) distributed as the

K-statistic, with the advantage of also providing exact inference in finite samples. Only the com-

bination of a joint testing approach with valid instruments entails exact inference for any sample

size.

6.2. Asymptotic validity of Monte Carlo tests

Let a test statistic be asymptotically free of nuisance parameters under H0, with asymptotic dis-

tribution F . Monte Carlo tests that rely on replicates possessing the same asymptotic distribution

F will asymptotically control the level. This result entails that Monte Carlo tests presented in the

previous sections "do at least as well as" asymptotic methods when the mediangale Assumption

A1 is relaxed and replaced by a classical moment condition (Assumption A3); see Coudin and Du-

four (2009). Moreover, those Monte Carlo tests present two considerable advantages over classical

asymptotic methods. First, if mediangale Assumption A1 holds, one is sure that the level of Monte

Carlo tests is controlled for any sample size. The second advantage comes from the fact that Monte

Carlo tests are constructed with replicates based on the same sample size. This differs to a classical

Monte Carlo test with replicates constructed from the asymptotic distribution. Simulation studies

suggest that such Monte Carlo tests perform an implicit sample-size correction [Coudin and Dufour

(2009)]. Indeed, for a given sample size, the distribution of the sign statistic may be closer to the

one of the replicates than to the (common) asymptotic distribution. Although the use of such Monte
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Carlo tests is asymptotically justified, they can be more reliable in small samples than tests based

on asymptotic critical values. Under Assumptions A2- A6, testing

H0(θ0) : θ = θ0 versus H1(θ0) : θ 6= θ0,

with the statistic DS

(
θ, Zθ0 , Ĵ

−1
n (Zθ0)

)
is conducted in the following way:

1. Observe D(0)
S = DS

(
θ0, Zθ0 , Ĵ

−1
n (Zθ0)

)
. Draw N replicates of the sign vector as if the n

observations were independent. The n components of the replicates are thus independent and

drawn from a B(1, .5) distribution.

2. Construct (D(1)
S , D

(2)
S , . . . , D

(N)
S ), the N pseudo replicates of DS

(
θ0, Zθ0 , (Z

′
θ0
Zθ0)

−1) un-

der the null hypothesis. We call them pseudo replicates because they are drawn as if observa-

tions were independent.

3. Draw N +1 independent replicates (W (0), . . . ,W (N)) from a U[0,1] distribution and form the

couple (D
(j)
S , W (j)).

4. Compute p̂(N)
n (θ0) using (3.7).

5. The confidence region {θ ∈ Rp|p̂(N)
n (θ) ≥ α} level is at least 1 − α. We reject H0 if

p̂
(N)
n (θ0) ≤ α.

In contrast with Wald-type tests based on LIML or GMM estimators which require identification,

those asymptotic results lead to valid inference whatever the informative power of the instruments is

and for any degree of identification. Finally, moments and density on the ut process may not exist.

7. IV sign-based estimators

In the previous sections, we have presented simultaneous tests, confidence sets and more general

tests based on signs. Estimation is the last step to a complete the inference system. IV sign-based

estimators are obtained in a way similar to the one used for the sign-based estimators studied in

Coudin and Dufour (2008) in a linear regression without instrument. The estimators maximize the

p-value function of the parameter given the form of the IV sign-based statistic and the sample size.

They present the highest confidence degree based on the chosen IV GMM sign-based statistic. They

also turn out (with probability one) to minimize the quadratic function of the signs that is given

by the sign-based statistic. Here, we introduce IV sign-based estimators for a general nonlinear

possibly instrumental regression. We show, for those general models, that they are consistent with

asymptotic normal distribution.13

13Estimators based on the Tippett-sign statistic could be defined as solutions of a double optimization problem: maxi-
mization of the minimal p-value (a sort of Rawls criteria between the moment equations). That question is not addressed
in the present paper.
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7.1. IV sign-based estimators under point identification

When θ is identified, we can define an IV sign-based estimator as any solution θ̂n(Ωn) of the

problem

min
θ∈Rp

s(f(y,X, θ))′ZθΩn (s (f(y,X, θ)) , Zθ)Z
′
θs(f(y,X, θ)). (7.29)

IV sign-based estimators are analogues of sign-based estimators studied in Coudin and Dufour

(2008). These constitute Hodges-Lehmann-type estimators in the sense that they are associated

with the highest degree of confidence one may have in a value of θ given the realization of the

sample and the choice of the sign-based test statisticDS(Zθ, Ωn, θ) [Hodges and Lehmann (1963)].

The reader is referred to Coudin and Dufour (2008) for a detailed presentation. IV-sign based

estimators can also be interpreted as GMM estimators exploiting the orthogonality between error

signs and instruments. See Honore and Hu (2004) for a presentation in an instrumental linear

regression with i.i.d. disturbances and Coudin and Dufour (2008) for equivalence (with probability

one) between both definitions.

For practical use, we also introduce a two-step estimator θ̂
2S

n (Ωn) as any solution of the problem

min
θ∈Rp

s(f(y,X, θ))′ZθΩn
(
s(f(Y,X, θ̂n)), Zθ̂n

)
Z ′θs(f(y,X, θ)), (7.30)

where θ̂n is a first stage consistent estimator.

In the following, we show that the IV sign-based estimators defined in equations (7.29) and

(7.30) are consistent and asymptotically normal if the parameter is identified.

7.2. Consistency

We first prove the consistency of IV sign-based estimators when the auxiliary regressors are inte-

grable and continuous functions of the parameter θ and of some l-vector process vt, t = 1, 2, . . . ,

on which the mixing conditions are imposed. Let ht : Θ × Rl → Rk, ∀t,

zt(θ) = ht(θ, vt), t = 1, . . . . (7.31)

We assume that the following conditions hold.

Assumption A7 MIXING. {W v
t = (yt, x

′
t, v
′
t)}t=1,2,... is α-mixing of size−r/(r− 1) with r > 1.

Assumption A8 CONTINUITY OF F. f(yt, xt, θ) is measurable, a.e. continuous in θ with

P [f(yt, xt, θ) = 0] = 0, ∀θ ∈ Θ.

Assumption A9 BOUNDEDNESS AND CONTINUITY.
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a) zt(θ) = (z1t(θ), . . . , zpt(θ))
′ and E|zht(θ)|r+1 < ∆ < ∞, h = 1, . . . , k, t =

1, . . . , n, ∀n ∈ N, ∀θ ∈ Θ.

b) zht(θ) is a.e. continuous in θ,∀t.

c) P [zht(θ) = 0] = 0, ∀θ ∈ Θ,∀t.

Assumption A10 COMPACTNESS. θ ∈ Int(Θ), where Θ is a compact subset of Rp.

Assumption A11 POINT IDENTIFICATION.

lim
n→∞

E

[
1

n

∑
t

s
(
f(yt, xt, θ)

)
⊗ zt(θ)

]
= 0⇒ θ = θ0

Assumption A12 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. Ωn(θ) is symmetric pos-

itive definite for all θ in Θ.

Assumption A13 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX. Ωn(θ) is symmetric positive

definite for all θ in a neighborhood of θ0.

The mixing condition (Assumption A7) is imposed on a underlying process, {vt}t=1,2,..., be-

cause the instruments are functions of the parameter. Assumptions A8 and A9 contain the regularity

conditions required on the functions f and ht. Remark in particular that the sets of zeros are as-

sumed to be negligible. Assumption A10 is the classical compactness condition. Assumptions A11,

A12 and A13 are classical and required for identification. Then we have the following property.

Theorem 7.1 CONSISTENCY. Under model (2.1) with the Assumptions A3 and A7-A12, any IV

sign-based estimator defined by (7.29) is consistent.

When Assumption A12 is replaced by Assumption A13, the two-step estimators defined in (7.30)

are consistent. Consistency is established without requiring second-order moment existence of the

disturbances ut. Indeed, the disturbances appear in the objective function only through their sign

transforms which possess finite moments at any order. Consequently no additional restriction should

be imposed on the disturbance process. Those points also entail a more general CLT than usual.

7.3. Asymptotic normality

Asymptotic normality requires some additional assumptions.

Assumption A14 UNIFORMLY BOUNDED DENSITIES. ∃gU < +∞ such that , ∀n ∈ N,∀λ ∈ R,

sup
1≤t≤n

|gt(λ|x1, . . . , xn)| < gU , a.s.
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Assumption A15 DIFFERENTIABILITY OF f . f is a.e. continuously differentiable in θ and

E|| ∂f
∂θ′
|θ|| < +∞, ∀θ ∈ Θ .

Assumption A16 MIXING WITH r > 2. {Wt = (yt, x
′
t, v
′
t)}t=1,2,..., is α-mixing of size −r/(r −

2) with r > 2.

Assumption A17 DIFFERENTIABILITY OF h . zt = ht(θ, vt) and ht is a.e. continuously differ-

entiable in θ and E||∂ht
∂θ′
|θ|| < +∞, ∀θ ∈ Θ, ∀t = 1, . . . , n, ∀n ∈ N.

Assumption A18 DEFINITE POSITIVENESS. Jn(θ0) is k × k and uniformly positive

definite in n and converges to a definite positive symmetric matrix J , where, Jn(θ) =

var
[

1√
n

∑n
t s(ut)ht(θ, vt)

]
.

Assumption A19 DEFINITION OF Ln. Ln(θ0) is a p× k matrix defined as:

Ln(θ) =
1

n

∑
t

E

[
ht(θ, vt)

∂f(yt, xt, θ)

∂θ′
gt
(
f(yt, xt, θ)|z1, . . . , zn

)]
+
1

n

∑
t

E

[
∂ht
∂θ′

s
(
f(yt, xt, θ)

)]
.

L′n(θ0)ΩnLn(θ0) is nonsingular uniformly in n.

Assumption A16 is the classical mixing condition required in asymptotic normality proofs. As-

sumptions A15, A17 and A19 are regularity conditions for nonlinear setups. Assumption A14 is

usual in the LAD and quantile theory: bounded variance conditions (horizontal spread) are replaced

by bounded vertical spreads. Assumption A18 is classical. We see in Assumption A19 that Ln(θ)

has a second term induced by the fact that the instruments depend on the parameter. Then, we have

the following theorem.

Theorem 7.2 ASYMPTOTIC NORMALITY. Under the conditions for consistency and Assumptions

A14-A19 we have:

S−1/2n

√
n
(
θ̂n(Ωn)− θ0

) d→ N(0, Ip) (7.32)

where

Sn = [Ln(θ0)ΩnLn(θ0)
′]−1Ln(θ0)ΩnJnΩnLn(θ0)

′[Ln(θ0)ΩnLn(θ0)
′]−1.

When Ωn = Ĵ−1n ,

[Ln(θ0)Ĵ
−1
n Ln(θ0)]

−1/2√n
(
θ̂n(Ĵ

−1
n )− θ0

) d→ N(0, Ip). (7.33)

22



Theorem 7.2 holds in particular for classical instrumental setups when the instruments Z do not

depend on θ. In such a case, Ln(θ) simplifies to

Ln(θ) =
1

n

∑
t

E

[
zt
∂f(yt, xt, θ)

∂θ′
gt(f(yt, xt, θ)|z1, . . . , zn)

]
. (7.34)

This result extends the classical sign-based estimator asymptotic normality established in Coudin

and Dufour (2008) for nonlinear and instrumental regressions. Note again the existence of the

second-order moment disturbances is not required. The sign asymptotic normality holds for heavy-

tail distributions whereas usual estimators, such as the 2SLS estimator, do not. The dispersion

measure adapted to sign-based estimators do not refer to the error variance but to the (inverse of

the) error density evaluated at zero. This alternative dispersion measure, called the "diffusivity", is

involved in Cramér-Rao type lower bound for median-unbiased estimators; see Coudin and Dufour

(2008), Sung, Stangenhaus, and David (1990) and So (1994).

The properties of consistency and asymptotic normality entirely rely on the identification as-

sumption whereas the sign-based inference presented previously does not. This provides the occa-

sion to recall the main message of the weak IV literature: when some identification failure or the

presence of weak instruments are suspected, tests based on the asymptotic behavior of estimators

should be avoided. Inference should be based on test statistics that are robust to identification failure

such as IV sign-based statistics. The next section illustrates by a simulation study, how important it

can be to use the exact distribution of such robust statistics.

8. Simulation study

In this section, we present simulation studies comparing the performance of sign-based meth-

ods with usual instrument-based techniques. We consider the basic sign-based statistic

DS(θ, Z, (Z
′Z)−1) (denoted BS) and a split-sample based one that aims to overcome possibly

power loss when "many instruments" are used (SSS). We compare tests based on those two statis-

tics with Wald tests based on the 2SLS estimator and the 2SLAD estimator (both estimators are

unreliable in the presence of weak instruments), and with some tests that are "robust to weak in-

struments". Those robust tests rely on the Anderson-Rubin statistic (AR) [Anderson and Rubin

(1949)], the Anderson-Rubin statistic with split-sample (SSAR) [Dufour and Jasiak (2001)], the

score statistic proposed by Kleibergen (2002) (K) and the score statistic corrected for heteroskedas-

ticity (KLM) [Kleibergen (2007)]. We use the following linear model taken from Kleibergen (2002)

with different numbers of instruments, degrees of identification and various disturbance behaviors:

y = Y θ + ε

Y = XΠ + V,
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where n is the number of observations, y, Y : n × 1, X : n × k, X ∼ N (0, Ik ⊗ In),

Π : k × 1, θ = 0. In Π = (π1, . . . , πk)
′, four different values of π1 are considered: 1 (strong valid

instrument), 0.5 (instrument of mild strength), 0.1 (weak instrument), and 0 (no identification).

Other components of Π are set to zero. The number of instruments k alternatively equals 1, 5 or 10

in view of studying the effect of including irrelevant instruments.

We wonder what the test performances are for various schemes of disturbances. Therefore,

we do not restrict on i.i.d. normal disturbances. We also study heavy-tailed disturbances and het-

eroskedastic schemes. We use the four following data generating processes:

Case 1: i.i.d. normal disturbances:

(ε, V ) ∼ N (0, Σ ⊗ In), Σ =

(
1 .99

.99 1

)
.

Case 2: i.i.d. Cauchy disturbances:

(ε1, V 1) ∼ C and (εt, Vt)
′ = Σ(ε1t , V

1
t )
′, with Σ =

(
1 .99

.99 1

)
.

Case 3: some instruments affect the shape of the structural error ε :

(ε1, V ) ∼ N (0, Σ ⊗ In), εt = x2t1ε
1
t , t = 1, . . . , T.

Case 4: the endogenous variable affects the shape of ε:

(ε1, V ) ∼ N (0, Σ ⊗ In), εt = Y 2
t ε

1
t , t = 1, . . . , T.

Cases 1 and 2 illustrate the effect of a departure from normality on the different tests: ho-

moskedastic disturbances, which are normally distributed in case 1 and Cauchy distributed in case

2. In normal cases, with one instrument, the K statistic which equals the AR is optimal. We wonder

what happens when normality is relaxed and especially when the disturbances possess heavy tails.

The next DGPs (cases 3 and 4) illustrate heteroskedasticity. In case 3, the instruments affect the

variance of the structural error. In case 4, the endogenous variable affects the variance of the struc-

tural error. We illustrate how the classical tests (K, AR) fail in the presence of heteroskedasticity and

we focus on comparing sign-based tests to the KLM tests that are corrected for heteroscedasticity.

Remark that for the four cases, the mediangale Assumption A1 holds and sign-based methods do

exactly control levels for any sample size.

8.1. Size

We first investigate level distortions. We consider the testing problem: H0 : θ0 = 0 versus H1 :

θ0 6= 0, and report empirical rejection frequencies for tests of level .05. Empirical sizes are com-

puted using 10000 simulations. Bootstrap and Monte Carlo methods are both based on 2999 repli-
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cates. For split-sample statistics (SSAR and SSS), 15 observations are used for the first stage and

35 for the second stage.

Sign-based tests (BS, SSS) are the only ones that have perfectly controlled levels in the four pre-

sented cases. Empirical sizes of sign-based tests equal the nominal size. In contrast, empirical sizes

of Wald tests (2SLAD, 2SLS) greatly suffer from the small number of observations, the weakness

of the instruments and the presence of irrelevant instruments. The empirical sizes of the AR, SSAR

and K tests are smaller than the Wald-type test ones in homoskedastic setups because their asymp-

totic levels equal the nominal one whatever the strength and the number of instruments. However,

they are affected by finite-sample distortions and loose their relevance in heteroskedastic setups. Fi-

nally, tests based on the KLM statistic involving a White-type correction for heteroskedasticity have

empirical sizes close to the nominal one for setup 3, but this is no longer true when endogeneity

affects the variance of the structural error (setup 4).

Simulations confirm the theory. Sign-based tests allow to control test levels for a very wide

range of setups and for any sample size. They are the only ones that are robust to heteroskedasticity

of unknown form.
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Table 1. Empirical sizes: n=50.

Case 1 : i.i.d. normal distribution
nb inst. k=1 k=5 k=10
π1 1 .5 .1 0 1 .5 .1 0 1 .5 .1 0
W2SLS .087 .123 .375 .911 .315 .708 .994 1.00 .548 .939 1.00 1.00
W2SLAD .028 .019 .001 .000 .161 .352 .691 .715 .296 .595 .873 .889
AR .059 .059 .059 .059 .067 .067 .067 .067 .088 .088 .088 .088
SSAR .116 .116 .116 .116 .095 .096 .097 .097 .085 .086 .084 .084
K .059 .059 .059 .059 .057 .057 .056 .070 .060 .060 .060 .088
KLM .048 .048 .048 .048 .024 .024 .024 .036 .016 .016 .016 .032
BS .050 .050 .050 .050 .045 .045 .045 .045 .056 .056 .056 .056
SSS .052 .052 .052 .052 .049 .048 .047 .047 .052 .050 .051 .051

Case 2 : i.i.d. Cauchy distribution
π1 1 .5 .1 0 1 .5 .1 0 1 .5 .1 0
W2SLS .477 .607 .822 .937 .987 .998 1.00 1.00 1.00 1.00 1.00 1.00
W2SLAD .001 .001 .000 .000 .037 .037 .038 .036 .045 .047 .048 .047
AR .061 .061 .061 .061 .063 .063 .063 .063 .081 .081 .081 .081
SSAR .121 .121 .121 .121 .103 .103 .102 .102 .080 .082 .081 .081
K .061 .061 .061 .061 .054 .054 .055 .066 .066 .067 .067 .077
KLM .019 .019 .019 .019 .034 .034 .034 .032 .027 .028 .028 .029
BS .051 .051 .051 .051 .053 .053 .053 .053 .056 .056 .056 .056
SSS .050 .050 .050 .050 .047 .047 .047 .047 .056 .053 .056 .055

Case 3 : instruments affect the shape of error distribution
π1 1 .5 .1 0 1 .5 .1 0 1 .5 .1 0
W2SLS .101 .129 .203 .213 .140 .256 .475 .493 .160 .328 .674 .700
W2SLAD .021 .015 .004 .003 .048 .039 .017 .016 .088 .081 .047 .044
AR .417 .417 .417 .417 .249 .249 .249 .249 .223 .223 .223 .223
SSAR .510 .510 .510 .510 .280 .215 .184 .179 .179 .131 .111 .111
K .417 .417 .417 .417 .329 .263 .159 .153 .357 .259 .129 .120
KLM .029 .029 .029 .029 .026 .034 .040 .040 .032 .038 .043 .042
BS .053 .053 .053 .053 .048 .048 .048 .048 .057 .057 .057 .057
SSS .053 .053 .053 .053 .055 .051 .052 .050 .051 .051 .053 .054

Case 4 : endogeneity affects the shape of error distribution
π1 1 .5 .1 0 1 .5 .1 0 1 .5 .1 0
W2SLS .744 .519 .234 .216 .898 .849 .821 .822 .923 .967 .972 .972
W2SLAD .012 .006 .001 .001 .030 .028 .027 .026 .056 .059 .062 .064
AR .526 .220 .068 .061 .300 .128 .072 .069 .323 .162 .084 .080
SSAR .527 .269 .128 .121 .282 .135 .097 .096 .221 .108 .081 .079
K .526 .220 .068 .061 .406 .128 .068 .068 .497 .169 .081 .082
KLM .321 .126 .032 .028 .207 .077 .040 .039 .055 .068 .044 .041
BS .051 .051 .051 .051 .044 .044 .044 .044 .054 .054 .054 .054
SSS .050 .050 .050 .050 .049 .052 .051 .051 .049 .051 .050 .050
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8.2. Power

Then, we compare the power of these tests. Tests of H0 : θ = 0 are performed on data obtained

by letting vary θ. Simulated power is given by a graph with θ in abscissa; see Figures 1, 2, 3, 4.

The power functions presented here are locally adjusted for the level when needed, which allows

comparisons between methods. However, we should keep in mind that only sign-based tests do

exactly control the level for any sample size. All results concerning homoskedastic or heteroskedas-

tic setups with a given number of instruments and for various instrument strength are contained in

a single figure. In Figures 1 and 2, errors are homoskedastic, either normal (first column), either

Cauchy (second column). The number of instruments equals one for Figure 1, and five for Figure

2. Therefore, comparing both columns illustrates which effect a departure from normality (here

Cauchy disturbances) entails on the test powers. The effect of heteroskedasticity is then illustrated

by Figures 3 (model with one instrument) and 4 (model with five instruments). We are particularly

interested in comparing the sign-based method to the KLM method (and 2SLAD, 2SLS for strong

instruments) which is corrected for heteroskedasticity since the K and the AR methods are not.

Let us now examine the results. In a model with one instrument (Figure 1), the K statistic and

the AR statistic are equal. The AR statistic is best for the i.i.d. normal case 1 but the sign-based

power curve is not far from that optimal power curve (first column of Figure 1). With Cauchy

distributions (case 2, column 2 in Figure1), the sign-based power curve is far above all the others.

This holds regardless of instrument strength. The power curves of Wald tests based on the 2SLS and

the 2SLAD estimators are also reported when the instruments are strong. In case 1, these methods

are biased; in case 2, they do not present power anymore.

The AR procedure and the sign-based procedure loose power as the number of (irrelevant) in-

struments included in the model increases. Figure 2 illustrates the power curves when the model

involves five instruments. For the i.i.d. normal case (case 1, column 1 in Figure2), the K statistic,

which now differs from the AR statistic, does not encounter this loss of power and leads to the

highest power curve whereas both the sign-based power curve and the AR-based one stand lower.

However, as soon as we turn to the Cauchy setup (case 2, column 2 in Figure2), the sign-based statis-

tic yields again the highest power. This holds regardless of instrument strength. The two methods

involving a split-sample (SSAR and SSS) do not present good results because of the limited number

of observations. Here, the sample size is 50. First step regressions involve only 15 observations

and second step regressions 35 observations. However, the corresponding power curves generally

follow the same tendencies as the power curves of the corresponding statistic without split-sample.

Results are very clear in Figures 3 and 4 (heteroskedastic setups: case 3 and 4). Sign-based

methods exhibit there more power than all the other studied methods which are robust to weak

instruments (AR, K) included methods corrected for heteroskedasticity (KLM). In the presence

of strong instruments, Wald tests based on 2SLAD and 2SLS have higher power than sign-based

methods. However, the Wald tests are clearly biased and they are no longer valid as soon as the
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strength of the instruments decreases.

In conclusion, sign-based tests present good power properties for a wide range of processes.

They are not far from the optimal AR test in i.i.d. normal case and they provide more power than

other studied methods in setups involving heavy-tailed distributions, heteroskedasticity or nonlinear

dependence. They still provide power under some general endogeneity schemes, especially when

the endogeneity affects the shape of the structural error distribution without affecting its sign.
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Figure 1. Power functions: model with one instrument.
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Figure 2. Power functions: model with 5 instruments.
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Figure 3. Power functions: model with one instrument: heteroscedastic cases.
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Figure 4. Power functions: model with five instruments: heteroscedastic cases.
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9. Application: schooling returns

In this section, we apply the method proposed above to study the effect of education on earnings

[Angrist and Krueger (1991), Angrist and Krueger (1995), Bound, Jaeger, and Baker (1995), Staiger

and Stock (1997), Dufour and Jasiak (2001), Kleibergen (2002, 2005, 2007), etc.].14 Angrist and

Krueger (1991) consider an earning equation where the log weekly wage (yt) is explained by the

year number of schooling (xt) and other covariates (such as the year of birth, age, age squared,

race, metropolitan statistical area...). They propose several specifications depending on the included

covariates. Further, they use the interactions between the quarter of birth and the year of birth as

instruments for correcting the education endogeneity. However, the relation between the instruments

and the endogenous variable is apparently weak.

We restrict here on the Angrist and Krueger (1991)’s model specification with dummies for the

year of birth as explanatory variables. The data set comes from the 1980 census 5% public-use

sample and is composed of n = 329500 men born 1930-39.

yi = β0xi +

10∑
k=1

βkdki + εi, i = 1, . . . , n, (9.1)

where dk are dummies for the year of birth. Further, the 30 interactions between the quarter and the

year of birth constitute the available "excluded" instruments to correct for the schooling endogene-

ity. F -statistic for instrument relevance equals 1.573 (with asymptotic p-val= .024), which is low

enough to suspect the presence of weak instruments.

We apply split-sample sign-based inference method and compute valid confidence intervals for

the education parameter. More precisely, the sample is divided into two parts (1) and (2). With

the first part of the sample, we choose the form of quasi-optimal instruments: the year number of

schooling is regressed on instruments by OLS. With the second subsample, we construct sign-based

statistic using a fitted education. The split-sample sign-based statistics rely on the 11 following

moment equations:

E[s(y
(2)
i − β0x

(2)
i −

10∑
k=1

βkdki)× z̃
(2)
ji ] = 0, for i = 1, . . . , n2, j = 1, . . . , 11; (9.2)

where z̃(2)ji = dji, j = 1, . . . , 10 and z̃(2)11i is the fitted education. We follow Dufour and Jasiak

(2001), and use 10% of the sample for the first stage and 90% for the second one. Two split-

sample sign-based statistics are considered. The first one combines moment equations in a classical

quadratic GMM form (SSS90). In the second one (TSS90), moment equations are combined fol-

lowing Tippett (1931). Then, Bonferroni-type induced tests are performed using αm = α/p. The

idea behind is that quadratic combination of orthogonality conditions refers to some local optimal-
14Other questions raised by these data include, for example, the impossibility of a punctual nonparametric identification

with discrete instruments [Chesher (2005)] and the problem of many instruments [Hansen, Hausman, and Newey (2005)].
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Table 2. Confidence intervals for schooling returns.

CI 95% 90% 80%

Wald OLS [.070, .072] [.071, .072] [.071, .071]

Wald 2SLS [.058, .120] [.063, .115] [.069, .110]

Wald 2SLAD* [-.002, .079] [.004, .073] [.012, .065]

AR [.014, .180] [.022, .169] [.033, .157]

K [.054, .133] [.060, .126] [.068, .119]

TSS90 [.034, .045] [.036, .044] [.037, .043]

SSS90 [.035, .045] [.036, .041] [.038, .039]
* W2SLAD CI are obtained by design matrix bootstrap, with 99 replicates [Buchinsky (1998)].

ity around the true value of the parameter. In a badly identified setup such as here, other type of

combinations like the Tippett’s one, may provide better overall properties and smaller confidence

intervals.

Table 2 contains 95%−confidence intervals obtained with SSS90 and TSS90 but also the

Anderson and Rubin statistic (AR), Kleibergen score statistic (K) and Wald (non reliable) CI based

on the OLS and the 2SLS estimators. We also report in Table 3 OLS, 2SLS, LIML, SSIV and sign

estimates for the return to education.15

Projection sign-based confidence intervals obtained using the SSS90 and the TSS90 statistics

have smaller spreads than the asymptotic ones based on the AR and K statistics and they are

theoretically valid. Moreover, they tend to accept smaller values of the return to education. Table

3 on estimates confirms that point. Sign-based estimates that are very close to 2SLAD estimates,

suggest a return to schooling around 4% which is smaller than usually admitted. Such a figure is in

adequation with a positive ability bias as expected by the theory.

Then we redo the same experiment on subsamples of 10000 and 2000 observations drawn from

the initial sample. We wonder what happens when the sample size gets smaller. Confidence intervals

results are reported in Table 4 and estimates in Table 5. We only consider procedures that are robust

to weak instruments: K, AR, SSS90 (with 999 replicates) and TSS90 (with 879 replicates).

15The CI are smaller than those found by Chernozhukov, Hansen, and Jansson (2009) who exploited a GMM statistic
based on the 40 moment equations and included in their model more explanatory variables. We use simulated annealing
with different starting points. They used a MCMC algorithm with different starting points.
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Table 3. Estimates for schooling returns.

OLS 2SLS LAD 2SLAD

β0 .071 .089 .066 .039

LIML SSIV90 SSS90

β0 .093 .018 .039
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Table 4. Confidence intervals for schooling returns: subsamples n=10000 and n=2000.

CI 95% 90% 80%

n=10000

K [-1,1] [-1,.222]∪[.239,1] [-1, -.300]∪[-.012,.145]∪[.404,1]*

AR [-1,1] [-.636,.664] [-.291,.395]

TSS90 [-.190,.109] [-.110,.083] [-.034,.049]

SSS90 [-1,1] [-1,1] [-1,.236]
n=2000

K [-1,1] [-1,.073]∪[.106,1] [-.563, .016]∪[.160,.541]*

AR [-1,1] [-1,1] [-1,.154]∪[.562,1]

TSS90 [-.392,.135] [-.216,.075] [-.130,.043]

SSS90 [-1,1] [-1,1] [-1,1]
* CIs can be reduced by combining with a J test [Kleibergen (2007)].

Table 5. Estimates for schooling returns: subsamples n=10000 and n=2000.

n=10000

β0 OLS 2SLS LAD 2SLAD LIML SSIV90 SSS90

.072 .076 .065 .022 .067 -.012 .022
n=2000

β0 OLS 2SLS LAD 2SLAD LIML SSIV90 SSS90

.071 .014 .067 .022 -.119 -.013 .023
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The Mincer equation (9.1) sets that the education coefficient has an elasticity form. Conse-

quently, this parameter is constrained in the programs to rely between -1 and 1. Then, a confidence

interval of [−1, 1] may refer to an (unconditional) "unbounded" confidence interval. Such a confi-

dence interval indicates a badly identified setup and is in accord with the fact that valid confidence

intervals have positive probability to be unbounded in nonidentified setups [Dufour (1997)].

The CI spread based on SSS90 and AR statistics increases as the number of observations de-

creases. 90%-CI based on the AR statistic is bounded for n = 10000 whereas for n = 2000, the

90%-CI is [−1, 1]. The same occurs with 95%-CI based on the SSS90 statistic. The behavior of

the K statistic is less clear. As it is a quadratic form of the score of the concentrated log-likelihood,

it basically contains information on a slope. Its use is locally justified around the LIML estimator

but may follow a somewhat odd behavior outside that neighborhood. The Tippett-sign-based statis-

tic provides the smaller CIs for both subsamples, which indicates that quadratic combinations of

orthogonality conditions are not optimal in small subsamples.

Concerning estimates (Table 5), our findings are similar to the whole sample ones. Sign-based

estimates are very close to 2SLAD estimates and suggest returns to schooling around 2% in both

subsamples which is in adequation with the theoretically expected ability bias.

10. Conclusion

In this paper, we presented a finite-sample sign-based inference system for the parameter of a struc-

tural possibly nonlinear model. We introduced a condition of instrument validity with respect to

the signs of the structural error. We showed that, under the instruments validity, the distribution

of the structural error sign vector is known and does not depend on any nuisance parameter. This

allowed us to conduct a Monte Carlo-based inference using on the exact distribution of IV sign-

based statistics. The derived joint tests are exact for any sample size and are robust to identification

failures. Tests of more general hypothesis and confidence sets are then constructed using projection

techniques. Our approach is in the spirit of Anderson and Rubin (1949). The IV sign-based statis-

tics we studied can be constructed from auxiliary regressions of the constrained signs on auxiliary

instruments. We also considered the problem of approaching the optimal set of instruments to in-

clude in the model in case of overidentification using two different optimality concepts (point and

local optimality). Finally, IV sign-based estimators are presented. They turn to be consistent and

asymptotically normal when identification holds under weaker assumptions than the ones required

in the 2SLAD asymptotic theory. Besides, they can directly be associated with previous sign-based

inference, which avoids one to use complicated methods such as the bootstrap. By construction, the

level of IV sign-based tests is controlled and simulations indicate that those tests perform better than

usual ones (including methods that are robust to weak instruments or identification failures) in finite

samples, when the data are heterogenous, heteroskedastic or when endogenous variables affect the
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structural error distribution without affecting its sign. Finally, sign-based inference is applied to the

Angrist and Krueger’s returns to schooling problem. Sign-based estimate of the return to schooling

is around 4% and projection-based confidence intervals, besides being more robust, are more precise

than those based on the AR or the K statistics. In small samples, it seems that Tippett-type combi-

nation of orthogonality conditions provides better properties than usual quadratic combination and

leads to more precise confidence intervals.
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Appendix

A. Proofs

A.1. Proof of Proposition 3.1

Consider the vector [s(u1), s(u2), . . . , s(un)]′ ≡ (s1, s2, . . . , sn)
′. From Assumption A1, we derive

the two following equalities:

P (ut > 0|Z) = E[P (ut > 0|ut−1, . . . , u1, Z))] = 1/2,

P (ut > 0|st−1, . . . , s1, Z) = P (ut > 0|ut−1, . . . , u1, Z) = 1/2,∀t = 2, . . . , n.

Further, the joint density of (s1, s2, . . . , sn)′ can be written:

l(s1, s2, . . . , sn|Z) =

n∏
t=1

l(st|st−1, . . . , s1, Z)

=
n∏
t=1

P (ut > 0|ut−1, . . . , u1, Z)(1−st)/2

×{1− P (ut > 0|ut−1, . . . , u1, Z)}(1+st)/2

=

n∏
t=1

(1/2)(1−st)/2[1− (1/2)](1+st)/2 = (1/2)n.

Hence, conditional on Z, s1, s2, . . . , sn are distributed like n i.i.d random variables with distribu-

tion:

P (st = 1) = P (st = −1) =
1

2
, t = 1, . . . , n.

A.2. Proof of Proposition 4.1

This is a direct application of Neyman-Pearson lemma. The likelihood function of S under H0 is

L0(s1, . . . , sn) =
n∏
t=1

p
(1+st)/2
0t p

(1−st)/2
0t

and under H1,

L1(s1, . . . , sn) =

n∏
t=1

p
(1+st)/2
1t p

(1−st)/2
1t .

Hence, after some computations, the loglikelihood ratio becomes

ln

(
L1

L0

)
=

n∑
t=1

(1/2)

[
ln

(
p1t(1− p1t)
p0t(1− p0t)

)
+ st ln

(
p1t(1− p0t)
p0t(1− p1t)

)]
, (A.1)
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and yields the optimal test for H0 versus H1. The most powerful test based on S rejects H0 when

n∑
t=1

st ln

(
p1t(1− p0t)
p0t(1− p1t)

)
> c(α,H1)

where c(α,H1) = c −
∑T

t=1(1/2)
[
ln
(
p1t(1−p1t)
p0t(1−p0t)

)]
with c derived from Neyman-Pearson condi-

tion. �

A.3. Proof of Corollary 4.2

In the regression framework, (p01, . . . , p0n) and (p11, . . . , p1n) are known. As Assumption A1

holds under H0, we have p0t = .5, and under H1, we can write for t = 1, . . . , n.,

p1t = PH1 [f(yt, xt, θ0) > 0] = PH1 [f(yt, xt, θ1) > f(yt, xt, θ1)− f(yt, xt, θ0)] = 1−G(ht),

where ht = f(yt, xt, θ0)− f(yt, xt, θ1). Hence, the point-optimal sign-based test of H0 versus H1

rejects H0 when
n∑
t=1

s(ut) ln

(
1−G(ht)
G(ht)

)
> c(α, θ1), (A.2)

where (h1, . . . , hn)
′ =

(
f(y1, x1, θ1) − f(y1, x1, θ0), . . . , f(yn, xn, θ1) − f(yn, xn, θ0)

)′ and

c(α, θ1) depending on the level.

A.4. Proof of Proposition 5.1

First, we prove the following lemma.

Lemma A.1 Let {Gn}n be a sequence of real functions tending uniformly towardsG on a compact

set K ⊂ R and 0 ∈ int(K). Suppose further that Gn and G are differentiable with continuous

derivative on K for all n and satisfy n(Gn(0)−G(0))→ 0 and G′n(0)−G′(0)→ 0. Then,

sup
y∈B(0, 1

n
)

||Gn(y)−G(y)|| = o(1/n).

Proof of Lemma A.1. Taylor expansions gives

Gn(x) = Gn(0) + xG′n(0) + o(|x|), ∀x ∈ B(0, 1/n) ∩K, (A.3)

and

G(x) = G(0) + xG′(0) + o(|x|),∀x ∈ B(0, 1/n) ∩K. (A.4)

We can write

|Gn(x)−G(x)| = |Gn(0)−G(0) + x(G′n(0)−G′(0)) + o(1/n)|. (A.5)
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Hence,

|Gn(x)−G(x)| ≤ |Gn(0)−G(0)|+
1

n
|G′n(0)−G′(0)|+ o(1/n) (A.6)

by majoring |x| by 1/n. That entails

|Gn(x)−G(x)| = o(1/n).� (A.7)

Let us now consider the problem of testing H0 : θ = θ0 versus H1 : θ = θ1. The power function of

a sign-based test T conditional on Z is

β(θ1) = Pθ1
[
T
(
s(f(y, x, θ0)), Z

)
> 1− cT (Z,α)|Z

]
= Pθ1 [S ∈Wα|Z] (A.8)

where S is the random variable of the constrained signs and Wα the critical region of the test

with level α. In the sequel, we omit to write that all results are conditional on Z. To identify the

instruments which maximize the power function in the neighborhood of θ0, we first derive the sign

distribution underH1. The independence assumption implies that the sign distribution is the product

of terms of the form

Pθ1 [st = s] = Pθ1 [f(yt, xt, θ0) ≥ 0]
1+s
2 Pθ1 [f(yt, xt, θ0) < 0]

1−s
2 . (A.9)

As f is continuously differentiable, the mean value theorem entails

f(yt, xt, θ1) = f(yt, xt, θ0) +
∂f(yt, xt, θ)

∂θ′

∣∣∣∣
θ=θt

(θ1 − θ0), t = 1, . . . , n, (A.10)

where θt = ptθ0 + (1− pt)θ1 with pt = pt(yt, xt, θ0, θ1) ∈ [0, 1], t = 1, . . . , n. Let us denote

Ht(θt) =
∂f(yt, xt, θ)

∂θ′

∣∣∣∣
θ=θt

, t = 1, . . . , n. (A.11)

We can rewrite

f(yt, xt, θ0) = f(yt, xt, θ1)− [Ht(θt)− EHt(θt)](θ1 − θ0)− EHt(θt)(θ1 − θ0). (A.12)

This yields, using equation (A.9)

Pθ1 [st = s] = Pθ1
[
ut −

(
Ht(θt)− EHt(θt)

)
(θ1 − θ0) > EHt(θt)(θ1 − θ0)

] 1+s
2

× Pθ1
[
ut −

(
Ht(θt)− EHt(θt)

)
(θ1 − θ0) ≤ EHt(θt)(θ1 − θ0)

] 1−s
2 .

As the observations are i.i.d., we will not write the subscript t. Let us denote

Gθnn (x) = Pθn
[
u−

(
H(θn)− EH(θn)

)
(θn − θ0) ≤ x

]
(A.13)

41



where the real random variable u ∼ G. Equation (A.13) can alternatively be written

Pθn [s = sa] =

[
1

2
−Gθnn

(
EH(θn)(θn − θ0)

)]
sa +

1

2
(A.14)

where again s stands for a real random variable and not for a vector.

Let us now examine

R = Gθnn
(
EH(θn)

′(θn − θ0)
)
−G

(
EH(θn)

′(θn − θ0)
)

(A.15)

+ G
(
EH(θn)

′(θn − θ0)
)
−G(0)−G′(0)EH(θn)

′(θn − θ0)

− 1

2
G′′(0)(θn − θ0)′EH(θn)EH(θn)

′(θn − θ0). (A.16)

When θn → θ0, we want to show that R is o(||θ0 − θn||2). For this, we denote:

A = Gθnn
(
EH(θn)

′(θn − θ0)
)
−G

(
EH(θn)

′(θn − θ0)
)
,

B = G
(
EH(θn)

′(θn − θ0)
)
−G(0)−G′(0)EH(θn)

′(θn − θ0)

− 1

2
G′′(0)(θn − θ0)′EH(θn)EH(θn)

′(θn − θ0).

We first consider B. We easily have

||B|| = o(||θn − θ0||2) (A.17)

using a Taylor expansion of G in the vicinity of zero, because EH(θn) is uniformly bounded by

M1 around θ0 (condition c). Let us consider now A. We can major ||A|| by

||A|| ≤M1||θn − θ0|| sup
y∈B(0,M1||θ0−θn||)

||G(y)−Gn(y)||. (A.18)

Moreover, as {Gn}n∈N are increasing continuous functions that converge everywhere to G, a Dini-

type theorem implies the convergence is uniform. Hence, Lemma A.1 applies. Finally

sup
y∈B(0,M1||θ0−θn||)

||G(y)−Gn(y)|| = o(||θn − θ0||). (A.19)

Finally

||A|| = o(||θn − θ0||2). (A.20)

Consequently, inequalities (A.20) and (A.17) with condition d entail:

Pθn [st = s]− 1

2
= s
[
−G′(0)

(
EHt(θn)

′(θn − θ0)
)
+ o(||θn − θ0||2)

]
. (A.21)

As (s1, . . . , sn) are i.i.d., it follows

Pθn [S = (s1, . . . , sn)] =

(
1

2

)n
−
(
1

2

)n−1 n∑
t=1

st
[
G′(0)

(
EHt(θn)

′(θn − θ0)
)]
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−
(
1

2

)n−2∑
t≤l

stsl[G
′(0)2(θn − θ0)(EHt(θn)

′)(EHl(θn))(θn − θ′0)]

+ o(||θn − θ0||2)]. (A.22)

The remainder follows the proof of Proposition 4.1 in Coudin and Dufour (2009) and Boldin, Si-

monova, and Tyurin (1997). We consider sign-based tests that maximize the mean curvature around

θ0. It is trivial to see that the locally optimal test with critical region Wα is locally unbiased (assum-

ing the opposite goes to a contradiction), i.e.

dPθ[Wα]

dθ

∣∣∣∣
θ=θ0

= 0. (A.23)

The behavior of the power function around zero is then totally defined by the quadratic term of

its Taylor expansion which can be identified thanks to equation (A.22). The mean curvature is

by definition proportional to the trace of d2Pθ[W ]

dθ2
at θ = θ0 [see Boldin, Simonova, and Tyurin

(1997), p. 41, Dubrovin, Fomenko, and Novikov (1984), Chapter 2, pp. 76-86 or Gray (1998),

Chapter 21, pp. 373-380]. Taking the trace in the expression of equation (A.22), we find (after

some computations) it is proportional to

∑
1≤t6=

∑
l≤n

G′(0)2stslEHt(θ0)EHl(θ0)
′. (A.24)

By adding the quantity
∑n

t=1

(
EHt(θn)EHt(θn)

′) to (A.24), we find the locally optimal sign-based

test in the sense proposed by Boldin, Simonova, and Tyurin (1997) is

W =
{
s : s′(y)

[
EH(θ0)EH(θ0)

]′
s(y) > c′α

}
. (A.25)

Standardizing by EH(θ0)
′EH(θ0) then leads to

W = {s : s′(y)EH(θ0)[EH(θ0)
′EH(θ0)]

−1EH(θ0)
′s(y) > c′α} . (A.26)

A.5. Proof of Theorem 7.1 (Consistency)

Consistency of IV sign-estimators is an extension of consistency of classical sign estimators [The-

orem 5.9 in Coudin and Dufour (2008)]. Both proofs follow the same classical 4 steps (pointwise

convergence, weak uniform convergence, consistency and identification). Here, we indicate only

points that differ. The stochastic process considered here is W v = {W v
t = (yt, x

′
t, v

′
t)}t=1,2,... :

Ω → Rp+k+l, and we denote

qt(wt, θ) = s
(
f(yt, xt, θ)

)
⊗ ht(vt, θ), t = 1, . . . , n, (A.27)

which satisfies the same mixing condition. Similarly to Theorem 5.9 in Coudin and Dufour (2008),

pointwise convergence for any θ is implied by assumptions A7, A9 (boundedness point) and Corol-

lary 3.48 of White (2001).
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Uniform convergence and continuity of the limiting function are implied by the generic law of large

number of Andrews (1987). Andrew’s conditions B1, B2 and A1 are fulfilled by assumptions A7,

A8, A9 and A10. Furthermore, we use his comment 3 to conclude on the weak continuity condition

(A6). Condition A6(a) allows qt(w, θ) to have isolated discontinuities provided qt(w, θ)pt(w) is

continuous in θ uniformly in t a.e.[µ], where µ is a σ-finite measure, that dominates each of the

marginal distribution of Wt, t = 1, 2 . . . and pt(w) is the density of Wt w.r.t. µ. Condition A6(b)

states that
∫
supt≥1|qt(w, θ)|pt(w)dµ(w) <∞.

Here, we consider µ = P , qt(w, θ)pt(w) is continuous in θ a.e. w.r.t. P , as pt does not depend on

θ and qt is a continuous function everywhere except at {f(yt, xt, θ) = 0} which is a P -negligible

set: P [{w : f(yt, xt, θ) = 0}] = 0 (no tie assumption A8). Furthermore, qt is L1-bounded and

uniformly integrable. Then, condition A6 is fulfilled. The consistency part applies without further

modifications. Finally, the identification conditions A11 and A12 allow to conclude on consistency.

A.6. Proof of Theorem 7.2 (Asymptotic Normality)

If zt = ht(θ, vt), Assumptions A9, A17, A14 and A15 allow to differentiate below the integral.

∂

∂θ′
E[ht(θ, vt)s(f(yt, xt, θ))] = E

[
ht(θ, vt)

∂f(yt, xt, θ)

∂θ′
gt
(
f(yt, xt, θ)|z1, . . . , zn

)]
+E

[
∂ht(θ, vt)

∂θ′

]
s (f(yt, xt, θ)) . (A.28)

By uniform convergence (shown in the consistency part), it follows that the limiting objective func-

tion, limn
1
n

∑n
t=0E

[
zt(θ)s

(
f(yt, xt, θ)

)]
, is differentiable with derivative L(θ):

L(θ) = lim
n→∞

1

n

∑
t

E

[
ht(θ, vt)

∂f(yt, xt, θ)

∂θ′
gt
(
f(yt, xt, θ)|z1, . . . , zn

)]
+
1

n

∑
t

E

[
∂ht
∂θ′

s
(
f(yt, xt, θ)

)]
.

Theorem 7.2 in Newey and McFadden (1994) may then be applied. Their condition (i), which states

that 0 is attained at the limit by θ0, is fulfilled by the moment condition A3. Their condition (ii)

states that the limit objective function is differentiable at θ0 and positive definite. This is fulfilled by

the first part of our proof and condition A19. Then, their condition (iii) (interior) is implied by A10.

Using the mixing specification A16 of {w} and conditions A3, A9, A13 and A18, we apply a White-

Domowitz central limit theorem [see White (2001), Theorem 5.20]. This fulfills condition (iv) of

Theorem 7.2 in Newey and McFadden (1994). Finally, condition v (stochastic equicontinuity) is

implied by uniform convergence (see the consistency part) which completes the proof.
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