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Abstract

Asset Pricing with Second Order Esscher Transforms

The purpose of the paper is to introduce, in the class of discrete time no-arbitrage asset pricing models, a
wider bridge between the historical and the risk-neutral state vector dynamics and to preserve, at the same time,
its tractability and flexibility. This goal is achieved by introducing the notion of Exponential-Quadratic stochastic
discount factor (SDF) or, equivalently, the notion of Second-Order Esscher Transform. Then, focusing on security
market models, this approach is developed in three important multivariate stochastic frameworks: the conditionally
Gaussian framework, the conditionally Mixed-Normal and the conditionally Gaussian Switching Regimes framework.

In the conditionally multivariate Gaussian case, our approach determines a risk-neutral mean as a function of
(the short rate and of) the risk-neutral variance-covariance matrix which is different from the historical one. The
conditionally mixed-normal Gaussian case provides a first generalization of the Gaussian setting, in which the risk-
neutral variance-covariance matrices and mixing weights of all components (in the finite mixture) can be different
from the historical ones. The Gaussian switching regime case introduces further flexibility given the serial dependence
of regimes and the introduction of the regime indicator function in the exponential-quadratic SDF. We also develop
switching regime models which include (in the factor’s conditional mean and conditional variance) additive impacts
of the present and past regimes and we stress their interpretation in terms of general ”discrete-time jump-diffusion”
models in which the risk included in the first and second moment of jumps is priced.

Even if we focus on security market models, we do not make any particular assumption about the state vector
and therefore this approach could be used not only in option pricing models, but also for instance in interest rate
and credit risk models.
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1 Introduction

Discrete time asset pricing models are now widespread in the economic and financial literature
and they are successfully used in many research fields, like bond and option pricing, longevity risk,
liquidity and credit risk modelling, as well as exchange rate and macro-finance modelling. This large
class of models contains two important families following two different (in general) asset pricing
modelling principles : the first one is built on the notion of stochastic discount factor (SDF), while
the second one is based on the concept of (local) risk-neutral valuation relationship (RNVR or
LRNVR).

The first set of models invokes the absence of arbitrage opportunity in order to typically intro-
duce an exponential-affine (in the factor) SDF which provides a bridge between the historical world
and the risk-neutral one [see Gourieroux and Monfort (2007)]. Since the three mathematical ob-
jects specifying the models, namely the historical and the risk-neutral (R.N.) dynamics of the state
vector and the one-period SDF, are linked together, three modelling strategies naturally appear
(the so-called Direct Modelling, Risk-Neutral Constrained Direct Modelling and Back Modelling
strategies). In each of them two objects are specified (and, possibly, the short rate if it is not
assumed to be exogenous or a known function of the state vector) and the third one is obtained as
a byproduct. This general discrete time no-arbitrage asset pricing setting, formalized by Bertholon,
Monfort and Pegoraro (2008) [BMP (2008), hereafter], has shown its large flexibility in various con-
texts [see Monfort and Pegoraro (2007b) for an application to yield curve modelling, Gourieroux,
Monfort and Polimenis (2006) for an application to credit risk analysis, Gourieroux and Monfort
(2008) for longevity risk, and Gourieroux, Monfort and Sufana (2010) for exchange rate risk].

In the second set of no-arbitrage models the vector of state variables is made only of asset returns
and a RNVR or LRNVR is introduced imposing that: i) the historical and risk-neutral dynamics
belong to the same parametric families; ii) the R.N. expectation of the (arithmetic) returns of
the basic assets are equal to the risk-less (arithmetic) returns; iii) the historical and risk-neutral
variance-covariance matrix of the state-vector, conditional to the past, are the same functions of
the past. Then, this RNVR or LRNVR are usually justified by a combination of assumptions on
agents preferences and on probability distributions [see Rubinstein (1976), Brennan (1979), Duan
(1995), Camara (1999, 2003)].

The assumptions made in both approaches obviously reduce the set of possible admissible pairs
of historical and risk-neutral dynamics. For instance, in the first approach, even if the assumption
of an exponential-affine SDF is well justified in the literature, in particular in consumption-based
asset pricing models, in terms of minimal entropy martingale measure, in terms of discretization of
continuous time security market models and for tractability of the pricing formula3, it is not imposed
by the absence of arbitrage opportunity principle which only requires the positivity of the pricing
kernel and some internal consistency conditions. Among the consequences of this assumption let us
mention the fact that, in conditionally Gaussian models, the historical and risk-neutral conditional
variance-covariance matrices of the state vector are the same function of the past, like in the
LRNVR approach.

3See, among others, Bansal and Yaron (2004), Bertholon, Monfort and Pegoraro (2006), Campbell and Cochrane
(1999), Darolles, Gourieroux and Jasiak (2006), Föllmer and Schied (2004), Garcia, Meddahi and Tedongap (2006),
Gourieroux, Jasiak and Sufana (2004), Gourieroux, Monfort and Polimenis (2003, 2006), Monfort and Pegoraro
(2007b), Pegoraro (2006), Polimenis (2001), Stutzer (1995).
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In this paper we adopt the first kind of approach and we introduce a wider bridge between the
historical and the risk-neutral probability. More precisely, we first recall that the assumption of
an exponential-affine SDF can also be viewed as the assumption that the R.N. dynamics is a con-
ditional Esscher transform of the historical dynamics and vice versa [see Gerber and Shiu (1994),
Buhlmann, Delbaen, Embrechts and Shiryaev (1996, 1998), Siu, Tong and Yang (2004), Christof-
fersen, Jacobs and Ornthanalai (2008)]. Then, we introduce the notion of Exponential-Quadratic
SDF or, equivalently, the notion of Second-Order Esscher Transform. Then, focusing on security
market models, this approach is developed in three important multivariate stochastic frameworks:
the conditionally Gaussian framework, the conditionally mixed-normal and the conditionally Gaus-
sian Switching Regimes framework.

In the conditionally multivariate Gaussian case, our approach determines a risk-neutral mean
as a function of (the short rate and of) the risk-neutral variance-covariance matrix which is, at the
same time, different from the historical one because of the second-order stochastic risk-sensitivity
vector appearing in the SDF. In this way, we extend to a general multivariate asset pricing (SDF-
based) framework the results of Christoffersen, Elkhami, Feunou and Jacobs (2009) proposed in a
scalar setting and based on the particular LRNVR principle. In order to provide a more precise
interpretation of the first-order and second-order stochastic risk-sensitivity vectors specifying the
exponential-quadratic SDF, we calculate (in this Gaussian setting) the one-period risk premium
and we compare it to the first-order risk premium generated by the exponential-affine SDF. We also
calculate the Second-Order Black and Scholes pricing formula for European Call options and we find
that it is a generalization of the classical Black and Scholes one in which the historical conditional
variance is now replaced by the risk-neutral conditional one, function of the (constant) second-
order risk-sensitivity parameter. The above mentioned results clearly generalize the widely known
continuous time (Girsanov-based) and discrete time no-arbitrage asset pricing concepts established
since the papers of Black and Scholes (1973), Merton (1973, 1976) and Vasicek (1977).

The conditionally mixed-normal Gaussian case provides a first generalization of the Gaussian
setting, in which the risk-neutral variance-covariance matrices and mixing weights of all compo-
nents (in the finite mixture) can be different from the historical ones. The Gaussian switching
regime case introduces, first, further flexibility in the historical dynamics of the factor, given the
serial dependence of the regimes. Second, the introduction of the regime indicator function in the
exponential-quadratic SDF leads to an explicit pricing of regime-shift risk. Moreover, this mod-
elling allows, for instance, to use in a pricing context various kinds of switching GARCH models
which have been successfully used in the historical world [see Hamilton and Susmel (1994), Gray
(1996), Klaassen (2002), Hass, Mittnick and Paolella (2004)].

We also develop switching regime models which include (in the factor’s conditional mean and
conditional variance) additive impacts of the present and past regimes and we stress their inter-
pretation in terms of general “discrete-time jump-diffusion” models. More precisely, we specify
a regime-switching security market model with serially dependent (contemporaneous and lagged)
jumps able to replicate clusters with time-varying persistence. In addition, the introduction of the
quadratic term in the SDF gives the possibility to price the risk provided by the first and second
moment of jumps with Gaussian stochastic amplitude.

It is worth noting that, even if the paper focus on security market models, we do not make any
particular assumption about the state vector and therefore this SDF-based approach (contrary to
the RNVR and LRNVR ones) could be used not only in option pricing models, but also for instance
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in interest rate and credit risk models.

The paper is organized as follows. In Section 2 we define the Second Order Esscher Transform of
a probability density function and we show, thanks to some example, how it generalizes the family
of probability distributions generated by the classical (First-Order) Esscher Transform. Section 3
presents the Exponential-Quadratic Stochastic Discount Factor modelling principle in a multivariate
setting, and shows how the associated change of probability measure is given by a conditional
Second-Order Esscher Transform. Section 4 and 5 deal with, respectively, multivariate conditionally
Gaussian and Mixed-Normal economies both specified following the Direct and Back Modelling
strategy. In Section 6 we focus on General Switching Regime economies. First, in Section 6.1
we determine the conditional Second Order Esscher Transform of a general conditionally Gaussian
switching regime process. Second, in Section 6.2, we apply this result to security market models,
following the Direct and Back Modelling strategies defined in BMP (2008). Finally, in Section
6.3 we focus on the Additive Regime Switching Economy and we show that a particular Additive
Regime Switching model can be re-parametrized as an observationally equivalent generalization of
the continuous-time jump-diffusion model. Section 7 concludes and Appendices gather the proofs.

2 Esscher Transforms

Let us consider a probability P defined on Rn, and f its probability density function (p.d.f.) with
respect to some measure ν. For sake of completeness we briefly recall the definition of the Esscher
Transform (called here First-Order Esscher Transform) and we give some examples [see Gerber and
Shiu (1994)].

2.1 First-Order Esscher Transform

Definition 1 [First-Order Esscher Transform] : The First-Order Esscher Transform of P
associated with θ1, denoted by F(θ1)(P), is given by the family of probability distributions defined
by the p.d.f.:

g(y; θ1) =
f(y) exp(θ′1y)∫

Rn f(y) exp(θ′1y)dν(y)
(1)

or, denoting ϕ(θ1) =
∫
Rn f(y) exp(θ′1y)dν(y) the Laplace transform of P :

g(y; θ1) =
f(y) exp(θ′1y)

ϕ(θ1)
(2)

with θ1 ∈ Θ1, Θ1 denoting the definition set of the Laplace transform. Let us consider some
examples of First-Order Esscher Transform.

i) Discrete distributions

Let us assume that ν is a counting measure on a (possibly infinite) discrete space D ⊂ Rn defined
by the point masses {pd, d ∈ D}. The Esscher Transform is the family of probability distributions
on D with probability masses:

pd exp(θ′1d)∑

d∈D

pd exp(θ′1d)
, d ∈ D ,

(3)
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whenever
∑

d∈D

pd exp(θ′1d) < ∞.

ii) Univariate Gaussian distribution

Here ν is the Lebesgue measure on R, and we consider the p.d.f. and the Laplace transform of a
Gaussian random variable N(µ, σ2):

f(y) =
1√

2πσ2
exp

[
− 1

2σ2
(y − µ)2

]
,

ϕ(θ1) = exp(θ1µ + θ2
1σ

2/2) , θ1 ∈ R .

(4)

The associated Esscher Transform is :

g(y; θ1) =
1√

2πσ2
exp

[
− 1

2σ2

(
y − (µ + θ1σ

2)
)2

]
, (5)

that is the p.d.f. of the family of univariate Gaussian random variables N(µ + θ1σ
2, σ2) with

different means but the same variance as the one defined in (4).

iii) Multivariate Gaussian distribution

Here ν is the Lebesgue measure on Rn, and we assume the following p.d.f. and associated Laplace
transform:

f(y) =
1

(2π)n/2
√

detΣ
exp

[
−1

2
(y − µ)′Σ−1(y − µ)

]
,

ϕ(θ1) = exp(θ′1µ + θ′1Σθ1/2) , θ1 ∈ Rn .

(6)

In that case, the Esscher Transform is :

g(y; θ1) =
1

(2π)n/2
√

detΣ
exp

[
−1

2
(y − (µ + Σθ1))′Σ−1(y − (µ + Σθ1))

]
, (7)

that is the p.d.f. of the family of n-dimensional Gaussian random variable N(µ + Σθ1, Σ) having
different means but the same variance-covariance matrix as the starting Gaussian random variable
associated to (6).

iv) Finite Mixture of Multivariate Gaussian distributions

Let us consider again, as in the previous example iii), that ν is the Lebesgue measure on Rn, and
let us consider the following p.d.f.:

f(y) =
∑J

j=1 λj n(y; µj , Σj) ,

with n(y;µj ,Σj) =
1

(2π)n/2
√

detΣj

exp
[
−1

2
(y − µj)′Σ−1

j (y − µj)
]

,

0 ≤ λj ≤ 1,
∑J

j=1 λj = 1 ,

(8)
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and the associated Laplace transform :

ϕ(θ1) =
∑J

j=1 λj exp(θ′1µj + θ′1Σjθ1/2) , θ1 ∈ Rn . (9)

In that case, the Esscher Transform is given by :

g(y; θ1) =
∑J

j=1 λ∗j n(y; µj + Σjθ1, Σj) ,

with λ∗j =
λj exp(θ′1µj + θ′1Σjθ1/2)∑J

j=1 λj exp(θ′1µj + θ′1Σjθ1/2)
,

0 ≤ λ∗j ≤ 1,
∑J

j=1 λ∗j = 1 ,

(10)

that is the p.d.f. of the family of n-dimensional Finite Mixtures of J Gaussian random variables
N(µj +Σjθ1, Σj), j ∈ {1, . . . , J}, in which, as in the previous example, each component has (for any
given θ1) a different mean but the same variance-covariance matrix as the Gaussian components
characterizing the mixture in (8) and, moreover, the weights λ∗j are different from the initial ones
λj .

2.2 Second-Order Esscher Transform

The purpose of this section is to introduce a new family of probability distributions, associated with
the p.d.f. f , having the (First-Order) Esscher Transform as a subset. This new family, that we call
Second-Order Esscher Transforms and which is built upon the concept of Second-Order Laplace
Transform, gives the possibility, for instance, to modify not only the mean but also the variance-
covariance matrix of a multivariate Gaussian distribution or the mean and the variance-covariance
matrix of the components of a mixture of multivariate Gaussian distributions (see examples below).
Many other examples, including switching regimes models, will be also considered.

Definition 2 [Second-Order Laplace Transform] : The Second-Order Laplace Transform of
the p.d.f. f(y) is :

ϕS(θ1, θ2) =
∫
Rn f(y) exp(θ

′
1y + y′θ2y)dν(y) (11)

with θ1 ∈ Rn, θ2 ∈ Sn(R) an (n × n) real symmetric matrix4 and θ = (θ1, θ2) ∈ Θ, Θ being the
definition set {(θ1, θ2) ∈ Rn × Sn(R) :

∫
Rn f(y) exp(θ

′
1y + y′θ2y)dν(y) < ∞}.

Definition 3 [Second-Order Esscher Transform] : The Second-Order Esscher Transform of
P associated with (θ1, θ2), denoted by S(θ1,θ2)(P), is given by the family of probability distributions
defined by the p.d.f.:

g(y; θ1, θ2) =
f(y) exp(θ

′
1y + y′θ2y)

ϕS(θ1, θ2)
. (12)

Let us now present examples of Second-Order Esscher Transforms [the proofs of examples from vi)
to viii) are given in Appendix 1].

v) Discrete distributions (example i) continued)
4Observe that the assumption θ2 ∈ Sn(R) is not a restriction since any square matrix A (say) is the sum of a

symmetric matrix (A + A′)/2 and of an antisymmetric matrix (A− A′)/2, and since a quadratic form associated to
an antisymmetric matrix is equal to zero.
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Let us first consider the case of the discrete distributions introduced in example i). The associated
Second-Order Esscher transform is the family of probability distributions on D with probability
masses:

pd exp(θ′1d + d′θ2d)∑

d∈D

pd exp(θ′1d + d′θ2d)
, d ∈ D ,

(13)

assuming
∑

d∈D

pd exp(θ′1d + d′θ2d) < ∞.

vi) Univariate Gaussian distribution (example ii) continued)

The Second-Order Esscher transform of the p.d.f. of a univariate (n = 1) Gaussian random variable
N(µ, σ2) is given by:

g(y; θ1, θ2) =
1√

2π σ2

1−2θ2σ2

exp

[
−

(
1− 2θ2σ

2

2σ2

)(
y − (µ + θ1σ

2)
1− 2θ2σ2

)2
]

, (14)

which is, under the condition θ2 < 1
2σ2 , the p.d.f. of the family of the Gaussian random variables

N

(
(µ + θ1σ

2)
1− 2θ2σ2

,
σ2

1− 2θ2σ2

)
. Compared with N(µ, σ2), this family has, in general, not only different

means (driven by the two parameters (θ1, θ2)) but also different variances (driven by θ2). Observe
that any Gaussian distribution can be reached when θ = (θ1, θ2) varies in Θ = R× ]−∞, 1

2σ2

[
.

vii) Multivariate Gaussian distribution (example iii) continued)

The Second-Order Esscher transform of the p.d.f. of a n-dimensional Gaussian random variable
N(µ,Σ) is [see Appendix 1]:

g(y; θ1, θ2) =
1

(2π)n/2
√

det [(Σ−1 − 2θ2)−1]
×

exp
[
−1

2
(y − (I − 2Σθ2)−1(µ + Σθ1))′(Σ−1 − 2θ2)(y − (I − 2Σθ2)−1(µ + Σθ1))

]
,

(15)

that is the p.d.f. of the family of the n-dimensional Gaussian random variable N((I − 2Σθ2)−1(µ+
Σθ1), (Σ−1 − 2θ2)−1) if (Σ−1 − 2θ2) is assumed to be a symmetric positive definite matrix, that
is (Σ−1 − 2θ2) ∈ S+

n (R) or, equivalently, if the eigenvalues of θ2Σ are smaller than 1
2 that is, if

θ2 = Σ−1/2ADA′Σ−1/2, where D is a diagonal matrix with diagonal terms smaller than 1
2 and A is

an orthogonal matrix. Like in the previous example, for any given (θ1, θ2), the Gaussian random
variable generated by (12) has a different mean as well as a different variance-covariance matrix
compared to (6) and any n-dimensional Gaussian distribution can be reached. When we assume
θ2 = 0, the conditional mean (I − 2Σθ2)−1(µ + Σθ1) and variance-covariance matrix (Σ−1− 2θ2)−1

degenerate to those of example iii).

viii) Finite Mixture of Multivariate Gaussian distributions (example iv) continued)

Given a finite mixture of n-dimensional Gaussian random variables [see example iv)] with p.d.f.
f(y) =

∑J
j=1 λj n(y; µj , Σj), the associated family of probability density functions generated by the
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Second-Order Esscher Transform is:

g(y; θ1, θ2) =
∑J

j=1 λ∗j n(y; (I − 2Σjθ2)−1(µj + Σjθ1), (Σ−1
j − 2θ2)−1) ,

with λ∗j =
λjϕS,j(θ1, θ2)∑J

j=1 λjϕS,j(θ1, θ2)
,

ϕS,j(θ1, θ2) =
∫
Rn exp(θ1y + y′θ2y)n(y; µj , Σj)dy

= exp
[
−1

2
log det (I − 2Σjθ2)− 1

2
µ′jΣ

−1
j µj +

1
2
(Σ−1

j µj + θ1)′(Σ−1
j − 2θ2)−1(Σ−1

j µj + θ1)
]

,

and 0 ≤ λ∗j ≤ 1,
∑J

j=1 λ∗j = 1 .

(16)
This is the family of p.d.f. of a n-dimensional Finite Mixture of J Gaussian random variables
N((I−2Σjθ2)−1(µj+Σjθ1), (Σ−1

j −2θ2)−1), j ∈ {1, . . . , J}, having a mean and a variance-covariance
matrix different from the corresponding components in (8), as well as different mixing weights.

3 The Exponential-Quadratic Stochastic Discount Factor
Modelling Principle

3.1 Information and Historical Distribution

In what follows, we consider an economy between dates 0 and T . The new information in the
economy at date t is denoted by wt, while wt = (wt, wt−1, ..., w0) is the entire information between
0 and t. The random variable wt is called a factor or a state vector and its dimension is n.

The historical dynamics of wt is defined by the conditional distribution of wt+1 given wt, denoted
by Pt+1 (say) and characterized either by the p.d.f. ft(wt+1|wt) or the Laplace transform ϕt(u|wt),
or the Log-Laplace transform ψt(u|wt) = log[ϕt(u|wt)].

3.2 The Exponential-Affine Stochastic Discount Factor

Assuming existence, linearity and continuity of the pricing function, and under the absence of
arbitrage opportunity principle, Hansen and Richard (1987) and Bertholon, Monfort and Pegoraro
(2008) show the existence of a positive Stochastic Discount Factor (SDF) Mt,t+1(wt+1), for each
t ∈ {0, . . . , T − 1}, such that the price at date t of the payoff g(ws) delivered at s > t is given by
pt [g(ws)] = Et [Mt,t+1...Ms−1,sg(ws)] [see also Cochrane (2005)].

The asset pricing literature has in general derived or specified Mt,t+1(wt+1) as an exponential-
affine function of wt+1. Indeed, this form naturally stands out in equilibrium models like CCAPM
[see e.g. Cochrane (2005)], consumption-based asset pricing models with habit formation or with
Epstein-Zin preferences [see, among others, Bansal and Yaron (2004), Campbell and Cochrane
(1999), Garcia, Meddahi and Tedongap (2006), Garcia, Renault and Semenov (2006)]. Moreover,
in general continuous-time security market models the discretized version of the SDF is exponential-
affine [see Gourieroux and Monfort (2007)]. Finally, the exponential-affine specification is partic-
ularly well adapted to the Laplace Transform which is a central tool in discrete-time asset pricing
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theory [see e.g. Bertholon, Monfort and Pegoraro (2006), Darolles, Gourieroux and Jasiak (2006),
Gourieroux, Jasiak and Sufana (2009), Gourieroux, Monfort and Polimenis (2003, 2006), Monfort
and Pegoraro (2007a, 2007b), Pegoraro (2006), Polimenis (2001)].

More precisely, under the no-arbitrage restriction on the (predetermined) risk-free short rate
rt+1 for the period (t, t + 1), one assumes :

Mt,t+1 = exp
[−rt+1(wt) + α′1,t(wt)wt+1 − ψt(α1,t|wt)

]
. (17)

where α1,t(wt) is the n-dimensional ”factor loading” or ”risk-sensitivity” vector, also called the
”market price” of factor risk.

If the SDF has the exponential-affine form (17), it is well known that the Risk-Neutral (R.N.)
conditional distribution of wt+1, given wt and denoted by Qt+1, has an exponential-affine (in wt+1)
p.d.f. with respect to Pt+1 given by:

dQt (wt+1|wt) =
Mt,t+1(wt+1)

Et

[
Mt,t+1(wt+1)

] =
exp

(
α′1,twt+1

)

ϕt(α1,t)
,

= exp
[
α′1,twt+1 − ψt(α1,t)

]
.

(18)

The R.N. conditional p.d.f. of wt+1 given wt (with respect to the same measure as the corre-
sponding conditional historical probability) is fQt (wt+1|wt) = ft(wt+1|wt)d

Q
t (wt+1|wt) and the R.N.

conditional Log-Laplace transform is ψQt (u1) = ψt(u1 + α1,t)− ψt(α1,t) (u1 ∈ Rn).
Conversely, the p.d.f. of the conditional historical distribution with respect to the R.N. one is

given by :

dPt (wt+1|wt) =
1

dQt (wt+1|wt)
= exp

[−α′1,twt+1 + ψt(α1,t)
]

,

= exp
[
−α′1,twt+1 − ψQt (−α1,t)

]
,

(19)

since ψQt (−α1,t) = −ψt(α1,t). From Definition 1, relations (18) and (19) we have the following:

Proposition 1 : If we consider the exponential-affine stochastic discount factor Mt,t+1, the risk-
neutral conditional distribution Qt+1 of wt+1, conditionally to wt, is the conditional First-Order
Esscher Transform of Pt+1 associated with α1,t, that is Qt+1 = F(α1,t)(Pt+1). Conversely, the
historical conditional distribution Pt+1 is the conditional First-Order Esscher Transform of Qt+1

associated with −α1,t, that is Pt+1 = F(−α1,t)(Qt+1).

3.3 The Exponential-Quadratic Stochastic Discount Factor

The purpose of this section is to generalize the classical exponential-affine SDF change of probability
(i.e., the conditional First-Order Esscher Transform) presented in the previous section by means of
the conditional Second-Order Esscher Transform that is, by introducing the following exponential-
quadratic SDF:

M
(S)
t,t+1 = exp

[−rt+1(wt) + α′1,t(wt)wt+1 + w′t+1α2,t(wt)wt+1 − ψS,t(α1,t, α2,t|wt)
]

, (20)

with ψS,t(α1,t, α2,t|wt) = log ϕS,t(α1,t, α2,t|wt), ϕS,t(α1,t, α2,t|wt) = Et[exp(α′1,twt+1+w′t+1α2,twt+1)]
the conditional second-order Log-Laplace transform and where α2,t is a (time-varying) (n × n)
symmetric matrix (α2,t ∈ Sn(R)). The functions α1,t and α2,t are called risk-sensitivity coefficients.
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In that case, the Risk-Neutral (R.N.) conditional distribution Qt+1 of wt+1 given wt, has an
exponential-quadratic (in wt+1) p.d.f. with respect to Pt+1 given by:

dQ,S
t (wt+1|wt) =

M
(S)
t,t+1(wt+1)

Et

[
M

(S)
t,t+1(wt+1)

] = exp
[
α′1,twt+1 + w′t+1α2,twt+1 − ψS,t(α1,t, α2,t)

]
, (21)

and, therefore, the R.N. conditional p.d.f. (with respect to the same measure as the correspond-
ing conditional historical probability) is fQ,S

t (wt+1|wt) = ft(wt+1|wt)d
Q,S
t (wt+1|wt) and the R.N.

conditional second-order Log-Laplace transform is:

ψQS,t(u1, u2) = ψS,t(u1 + α1,t, u2 + α2,t)− ψS,t(α1,t, α2,t) , u1 ∈ Rn , u2 ∈ Sn(R) . (22)

Conversely, the p.d.f. of the conditional historical distribution with respect to the R.N. one is
given by :

dP,St (wt+1|wt) =
1

dQ,S
t (wt+1|wt)

= exp
[−α′1,twt+1 − w′t+1α2,twt+1 + ψS,t(α1,t, α2,t)

]

= exp
[
−α′1,twt+1 − w′t+1α2,twt+1 − ψQS,t(−α1,t,−α2,t)

]
,

(23)
since ψQS,t(−α1,t,−α2,t) = −ψS,t(α1,t, α2,t). We get the following :

Proposition 2 : If we consider the exponential-quadratic stochastic discount factor M
(S)
t,t+1, the

risk-neutral conditional distribution Qt+1 of wt+1, conditionally to wt, is the conditional Second-
Order Esscher Transform of Pt+1 associated with (α1,t, α2,t), that is Qt+1 = S(α1,t,α2,t)(Pt+1).
Conversely, the historical conditional distribution Pt+1 is the conditional Second-Order Esscher
Transform of Qt+1 associated with (−α1,t,−α2,t), that is Pt+1 = S(−α1,t,−α2,t)(Qt+1).

3.4 Internal Consistency Conditions

The no-arbitrage discrete-time asset pricing setting based on an exponential-affine SDF Mt,t+1,
conveniently provides explicit conditions, through the historical and R.N. Log-Laplace transforms
ψt and ψQt , to guarantee the internal consistency of the model [see BMP (2008) for details]. These
Internal Consistency Conditions (ICC) are easily extended to the case of an exponential-quadratic
SDF M

(S)
t,t+1(wt+1). Let us consider, for instance, the situation in which the factor wt+1 contains (at

least) a geometric stock return and in which the short rate rt+1 is exogenous. If wj,t+1 = e′jwt+1 is
a scalar geometric return (ej being the jth column of the identity matrix In×n) we must have:

exp(−rt+1)E
Q
t [exp(wj,t+1)] = 1

⇐⇒ rt+1 = ψQS,t(ej , 0)

⇐⇒ rt+1 = ψS,t(α1,t + ej , α2,t)− ψS,t(α1,t, α2,t) .

(24)

4 Conditionally Gaussian Economies

4.1 Direct Modelling

Let us assume that the factor wt is a n-dimensional vector of geometric stock returns of risky assets,
that is wi,t+1 = log(Si,t+1/Si,t) for each i ∈ {1, . . . , n}, where Si,t is the price at t of asset i. If we
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follow the Direct Modelling strategy formalized by Bertholon, Monfort and Pegoraro (2008), we
first have to specify the historical dynamics (Pt+1) of wt+1. Assuming conditional normality, that
is:

wt+1|wt
P∼ N (µt, Σt) , (25)

we have to choose µt and Σt (including, for instance, VAR and VARMA models with GARCH-type
noise). Second, we have to specify α1,t and α2,t and to impose the ICC (24) :

rt+1 = ψS,t(ei + α1,t, α2,t)− ψS,t(α1,t, α2,t) , (26)

where

ψS,t(u1, u2) = −1
2 log det (I − 2Σtu2)− 1

2µ′tΣ
−1
t µt + 1

2(Σ−1
t µt + u1)′(Σ−1

t − 2u2)−1(Σ−1
t µt + u1)

(27)
which implies :

rt+1 = 1
2(Σ−1

t µt + ei + α1,t)′(Σ−1
t − 2α2,t)−1(Σ−1

t µt + ei + α1,t)

−1
2(Σ−1

t µt + α1,t)′(Σ−1
t − 2α2,t)−1(Σ−1

t µt + α1,t)

= 1
2e′i(Σ

−1
t − 2α2,t)−1ei + e′i(I − 2Σtα2,t)−1(µt + Σtα1,t) ∀ i ∈ {1, . . . , n} ,

(28)

that is :
1
2 vdiag [(Σ−1

t − 2α2,t)−1] + (I − 2Σtα2,t)−1(µt + Σtα1,t) = rt+1e , (29)

where e denotes the n-dimensional unitary vector. The specification of the historical dynamics (25)
and of the exponential-quadratic SDF (20) implies the following R.N. dynamics (Qt+1):

wt+1|wt
Q∼ N

[
(I − 2Σtα2,t)−1(µt + Σtα1,t), (Σ−1

t − 2α2,t)−1
]

, (30)

that is, Qt+1 = S(α1,t,α2,t)(Pt+1). If we impose to (30) the ICC (29), we find that the R.N. dynamics
compatible with no-arbitrage restrictions is:

N
[
rt+1e− 1

2 vdiag ((Σ−1
t − 2α2,t)−1), (Σ−1

t − 2α2,t)−1
]

. (31)

It is important to stress that this new exponential-quadratic SDF change of probability measure
induces (with respect to the exponential-affine one) a different R.N. conditional mean µQt = rt+1e−
1
2 vdiag ((Σ−1

t −2α2,t)−1) (observe that µt disappears like in the classical exponential-affine setting)
and a different R.N. conditional variance-covariance matrix ΣQt = (Σ−1

t − 2α2,t)−1 because of the
second-order risk-sensitivity function α2,t. We also find that the risk-sensitivity vectors α1,t and
α2,t, characterizing the SDF, are given by :

α2,t =
Σ−1

t − (ΣQt )−1

2
,

and α1,t = (ΣQt )−1µQt − Σ−1
t µt .

(32)

So α2t is a measure of the variance-covariance rise when moving from the historical to the risk-
neutral world, while α1t is a measure of the increase of the weighted expected mean. It is important
to highlight that relation (29) makes α1,t a function of α2,t and the latter can be any function of
the date t information such that ΣQt ∈ S+

n (R).
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4.2 Risk Premium and Second-Order Black and Scholes Pricing Formula

In order to provide a more precise interpretation of the risk-sensitivity functions α1,t and α2,t, let
us first consider the scalar case (n = 1), studied by Christoffersen, Elkhami, Feunou and Jacobs
(2009) in the RNVR setting. Under the risk-neutral probability we have:

wt+1|wt
Q∼ N

[
µQt (α2,t), (σ

Q
t )2(α2,t)

]
,

where µQt (α2,t) = rt+1 − 1
2 (σQt )2(α2,t), (σQt )2(α2,t) =

σ2
t

(1− 2σ2
t α2,t)

,

(33)

and thus, if we define the risk premium between t and t + 1 in the following way:

λt,t+1 = log Et[exp(yt,t+1)]− rt+1 ,

then, from (29), we can write:

λt,t+1 = µt + 1
2σ2

t − rt+1

=
[
µt − µQt (α2,t)

]
+ 1

2

[
σ2

t − (σQt (α2,t))2
]

= λF
t,t+1 +

[
µQt (0)− µQt (α2,t)

]
+ 1

2

[
σ2

t − (σQt (α2,t))2
]

,

(34)

where λF
t,t+1 := µt − µQt (0) = −α1,t σ2

t denotes the (first-order) risk premium associated to an
exponential-affine SDF (α2,t = 0). Relation (34) shows the role played by α2,t, that is, the conse-
quences on the asset risk premium played by the introduction of a quadratic term in the SDF:

i) if we assume α2,t = 0 (an exponential-affine SDF) we find λt,t+1 = λF
t,t+1, that is, the risk

premium is (classically) determined comparing only historical and risk-neutral factor condi-
tional means and −α1,t can be interpreted as a first moment-based risk premium per unit of
conditional variance;

ii) if α2,t 6= 0, relation (34) tell us that the size of λt,t+1 differs from λF
t,t+1 because of σ2

t 6=
(σQt (α2,t))2 and µQt (α2,t) 6= µQt (0). This means that α2,t introduces in the risk premium not
only a second moment-based source of risk information but it also modifies, at the same time,
the role played by the first moment-based source of risk.

This result is easily generalized to the multivariate case and we get:

λt,t+1 = µt + 1
2 vdiag Σt − rt+1 e

= µt − µQt (α2,t) + 1
2 vdiag (Σt − ΣQt (α2,t))

= λF
t,t+1 +

[
µQt (0)− µQt (α2,t)

]
+ 1

2 vdiag
[
Σt − (ΣQt (α2,t))

]
,

(35)

with λF
t,t+1 := (µt − µQt (0)) = −Σt α1,t denoting now the n-dimensional (first-order) risk premium

we have when α2,t = 0.
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It is also relevant to observe from relation (33) that, when considering the particular static case
(rt+1 = r, σt = σ, α2,t = α2), we immediately find a (discrete-time) generalization of the Black and
Scholes (1973) setting and an associated European Call option pricing formula CBS(t, h; K, St, r, σ

2)
(say), where K is the strike price and h denotes the residual maturity. Indeed, the Gaussian stock
return risk-neutral dynamics, namely IIN

[
r − (σQ)2(α2)/2, (σQ)2(α2)

]
, immediately delivers the

following explicit Second-Order Black and Scholes pricing formula (for European Call options):

C
(S)
BS (t, h; K, St, r, σ

2, α2) = CBS(t, h; K,St, r, (σQ)2(α2)) , (36)

in which α2 is an additional degree of freedom with respect to the classical Black and Scholes one
(α2 = 0 implies C

(S)
BS (t, h; K,St, r, σ

2, 0) = CBS(t, h; K, St, r, σ
2)). Moreover, this source of flexibility

can be further exploited by specifying α2,t as a deterministic function of time, still leading to an
explicit pricing formula.

It is also clear that we can easily propose, in a dynamic setting, richer Call option pricing formulas
once we assume σ2

t and α2,t functions of the date t information. In that case, the pricing formula
has no longer a closed form but it can be easily determined by simulation for any residual maturity
h.

4.3 Back Modelling

Let us maintain the conditionally Gaussian setting of the previous section, but let us now adopt the
Back Modelling strategy of Bertholon, Monfort and Pegoraro (2008). More precisely, we assume
that the R.N. dynamics (Qt+1) of wt+1 is given by:

wt+1|wt
Q∼ N

(
µQt , ΣQt

)
, (37)

with the associated conditional second-order Log-Laplace transform

ψQS,t(u1, u2) = −1
2 log det (I − 2ΣQt u2)− 1

2µQt
′(ΣQt )−1µQt

+1
2 [(ΣQt )−1µQt + u1]′[(ΣQt )−1 − 2u2]−1[(ΣQt )−1µQt + u1] ,

(38)

and we impose the ICC ψQS,t(ei, 0) = rt+1 for all i ∈ {1, . . . , n}, that is:

rt+1 = −1
2µQt

′(ΣQt )−1µQt + 1
2 [(ΣQt )−1µQt + ei]′ΣQt [(ΣQt )−1µQt + ei]

= 1
2e′iΣ

Q
t ei + e′iµ

Q
t ∀ i ∈ {1, . . . , n} .

(39)

From (39) we have µQt = rt+1e − 1
2vdiagΣQt and, therefore, we find the no-arbitrage risk-neutral

dynamics:
N

[
rt+1e− 1

2 vdiag ΣQt , ΣQt
]

. (40)

The associated historical dynamics Pt+1 is given, for any (α1,t, α2,t), by Pt+1 = S(−α1,t,−α2,t)(Qt+1)
and we have:

wt+1|wt
P∼ N

[
(I + 2ΣQt α2,t)−1(rt+1e− 1

2 vdiag ΣQt − ΣQt α1,t), ((Σ
Q
t )−1 + 2α2,t)−1

]
. (41)

So, for any given R.N. dynamics, the historical dynamics is also conditionally Gaussian and any
conditional mean and any conditional variance-covariance matrix can be reached5.

5It is important to highlight that our class of Gaussian security market models can be easily extended to a general
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5 Conditionally Mixed-Normal Economies

The purpose of this section is to extend the results of the previous section, based on a Gaussian dis-
tributed n-dimensional factor, to the case of a finite mixture of conditionally multivariate Gaussian
processes. We first follow the Direct Modelling strategy and then the Back Modelling one.

5.1 Direct Modelling

Let us assume that the historical p.d.f. of wt+1, conditionally to wt, is:

ft(wt+1|wt) =
∑J

j=1 λj,t n(wt+1|wt; µj,t, Σj,t) ,

with n(wt+1|wt;µj,t, Σj,t) =
1

(2π)n/2
√

det Σj,t

exp
[
−1

2
(wt+1 − µj,t)′Σ−1

j,t (wt+1 − µj,t)
]

,

(42)
where λj,t is a function of wt satisfying:

0 ≤ λj,t ≤ 1,
∑J

j=1 λj,t = 1 . (43)

This family of historical dynamics contains all univariate AR, ARMA and GARCH models with
mixed-normal distributed innovations able, therefore, to completely span the skewness-kurtosis
domain of maximal size [see Bertholon, Monfort and Pegoraro (2006) for a formal proof] as well
as their multivariate analogues. The conditional second-order historical Laplace transform is given
by:

ϕS,t(u1, u2) =
J∑

j=1

λj,t

∫
exp(u′1wt+1 + w′t+1u2wt+1)n(wt+1|wt;µj,t, Σj,t)dwt+1

=
J∑

j=1

λj,tϕj,S,t(u1, u2)

with ϕj,S,t(u1, u2) = exp
[
−1

2 log det (I − 2Σj,tu2)− 1
2µ′j,tΣ

−1
j,t µj,t

+
1
2
(Σ−1

j,t µj,t + u1)′(Σ−1
j,t − 2u2)−1(Σ−1

j,t µj,t + u1)
]

(44)
and given the exponential-quadratic (in the factor wt+1) stochastic discount factor:

M
(S)
t,t+1 = exp

[−rt+1 + α′1,twt+1 + w′t+1α2,twt+1 − ψS,t(α1,t, α2,t)
]

,

the ICC associated with the ith geometric return wi,t+1 is given by:

ϕS,t(α1,t + ei, α2,t) = exp(rt+1)ϕS,t(α1,t, α2,t) , i ∈ {1, . . . , n} . (45)

class of Gaussian asset pricing models, in which the risk driven by any (observable and/or latent) Gaussian-distributed
factor wt+1 is priced by means of an exponential-quadratic SDF. In the case of interest rate models, for instance, it
could be relevant to study the relationships with the class of affine-quadratic yield curve models proposed by Chen,
Filipovic and Poor (2004), Cheng and Scaillet (2007), Gourieroux, Jasiak and Sufana (2009), Gourieroux and Sufana
(2003) and Leippold and Wu (2002, 2003). This is the object of ongoing and future research works.
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Thus, the risk-neutral dynamics Qt+1 of wt+1, generated by the conditional Second-Order Esscher
transform of Pt+1 associated with (α1,t, α2,t) [Qt+1 = S(α1,t,α2,t)(Pt+1)], is characterized by the
following p.d.f.:

fQt (wt+1|wt) =
∑J

j=1 λ∗j,t(α1,t, α2,t) n
[
wt+1|wt ; (Σ−1

j,t − 2α2,t)−1(Σ−1
j,t µj,t + α1,t), (Σ−1

j,t − 2α2,t)−1
]

,

with λ∗j,t(α1,t, α2,t) =
λj,tϕj,S,t(α1,t, α2,t)∑J

j=1 λj,tϕj,S,t(α1,t, α2,t)
,

0 ≤ λ∗j,t(α1,t, α2,t) ≤ 1,
∑J

j=1 λ∗j,t(α1,t, α2,t) = 1 .

(46)
and where (α1,t, α2,t) satisfy (45). We observe that, as indicated in example viii), the exponential-
quadratic change of probability measure, applied to (42), modifies not only each conditional mean
but also each conditional variance-covariance matrix of the Gaussian components. Moreover, the
risk-neutral mixing weights λ∗j,t(α1,t, α2,t) are different from the historical ones (λj,t).

5.2 Back Modelling

Let us follow now the Back Modelling strategy and let us assume, first, a risk-neutral dynamics
Qt+1 described by the following p.d.f.:

fQt (wt+1|wt) =
∑J

j=1 λQj,t n
(
wt+1|wt ;µQjt, Σ

Q
j,t

)
,

with 0 ≤ λQj,t ≤ 1,
∑J

j=1 λQj,t = 1 .

(47)

The conditional second-order risk-neutral Laplace transform is given by:

ϕQS,t(u1, u2) =
J∑

j=1

λQj,tϕ
Q
j,S,t(u1, u2)

=
J∑

j=1

λQj,t exp
[
−1

2
log det (I − 2ΣQj,tu2)− 1

2
µQj,t

′(ΣQj,t)
−1µQj,t

+
1
2
((ΣQj,t)

−1µQj,t + u1)′((ΣQj,t)
−1 − 2u2)−1((ΣQj,t)

−1µQj,t + u1)
]

(48)
and the internal consistency conditions are:

exp(rt+1) = ϕQS,t(ei, 0)

=
J∑

j=1

λQj,t exp
[
−1

2
µQj,t

′(ΣQj,t)
−1µQj,t +

1
2
((ΣQj,t)

−1µQj,t + ei)′ΣQj,t((Σ
Q
j,t)

−1µQj,t + ei)
]

=
J∑

j=1

λQj,t exp
[
1
2
e′iΣ

Q
j,tei + e′iµ

Q
j,t

]
, i ∈ {1, . . . , n} .

(49)
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In the univariate case, restriction (49) reduces to:

1 =
J∑

j=1

λQj,t exp
(

1
2
(σQj,t)

2 + µQj,t − rt+1

)
, i ∈ {1, . . . , n} .

The historical factor dynamics Pt+1, given by Pt+1 = S(−α1,t,−α2,t)(Qt+1), is again for any (α1,t, α2,t)
a finite mixture of conditionally multivariate Gaussian processes with p.d.f. given by:

ft(wt+1|wt) =
∑J

j=1 λj,t(−α1,t,−α2,t)×

n
[
wt+1|wt ; (I + 2 ΣQj,t α2,t)−1(µQj,t − ΣQj,tα1,t), ((Σ

Q
j,t)

−1 + 2α2,t)−1
]

,

with λj,t(−α1,t,−α2,t) =
λQj,tϕ

Q
j,S,t(−α1,t,−α2,t)∑J

j=1 λQj,tϕ
Q
j,S,t(−α1,t,−α2,t)

,

0 ≤ λj,t(−α1,t,−α2,t) ≤ 1,
∑J

j=1 λj,t(−α1,t,−α2,t) = 1 ,

(50)
and again each Gaussian p.d.f. has a conditional mean and conditional variance-covariance matrix
which are different from the R.N. ones.

6 Conditionally Gaussian Switching Regime Economies

6.1 Conditional Second-Order Esscher Transform of a General Conditionally
Gaussian Switching Regime Process

Let us consider the (J +1)-dimensional factor wt+1 = (yt+1, z
′
t+1)

′, where yt+1 is a scalar geometric
return between t and t+1 and zt+1 is a J-state variable valued in E = {e1, . . . , eJ}, where ej is the jth

column of a (J×J) identity matrix (the generalization to a vector of returns is straightforward). We
assume that the historical dynamics of wt+1 is described by the following general regime-switching
model:

yt+1 = µt(yt, zt, zt+1) + σt(yt, zt, zt+1)εt+1

εt+1|zt+1, zt, yt
P∼ N(0, 1)

P(zt+1 = ej |zt = ei, zt−1, yt) = πi,j(yt) = πi,j,t ∀(ei, ej) ∈ E × E .

(51)

This family contains, for instance, the regime-switching ARCH and GARCH specifications pro-
posed, respectively, by Hamilton and Susmel (1994), Gray (1996), Klaassen (2002) and Hass, Mit-
tnik and Paolella (2004). The historical distribution Pi,t+1 (say) of (yt+1, z

′
t+1)

′, conditionally to yt

and zt = ei, has a p.d.f. given by:

ft(yt+1, ej |yt, zt = ei) = n
[
yt+1; µt(yt, ei, ej), σ2

t (yt, ei, ej)
]

πi,j,t . (52)

Now, let us determine the second-order Laplace transform of wt+1 = (yt+1, z
′
t+1)

′, conditionally to
(yt, zt). By definition, we have:

ϕS,t(ũ1, ũ2) = E
[
exp

(
ũ′1wt+1 + w′t+1ũ2wt+1

) |wt

]
, (53)
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where ũ1 ∈ RJ+1 and ũ2 is a (J + 1)× (J + 1) symmetric matrix. However, given the very specific
range of zt+1, i.e. E = {e1, . . . , eJ}, the parametrization ũ1 and ũ2 is redundant. First, for any
(J×J) matrix a quadratic term of the type z′t+1Azt+1 is linear in zt+1 (and equal to vdiag(A)′zt+1)
and, therefore, we can ignore the quadratic term in zt+1 included in w′t+1ũ2wt+1. Second, any
linear term of the form ayt+1 can be incorporated into a cross-product term of the form b′zt+1yt+1

and, therefore, we can ignore the linear term in yt+1 included in ũ′1wt+1. Finally, the second-order
Laplace transform of wt+1 = (yt+1, z

′
t+1)

′ is:

ϕS,t(u1, u2) = E
[
exp

(
u′1zt+1 + u′2,1zt+1yt+1 + u2,2y

2
t+1

) | yt, zt

]
, (54)

where u2 = (u′2,1, u
′
2,2)

′. Using the notation µi,j,t = µt(yt, ei, ej) and σi,j,t = σt(yt, ei, ej), we obtain
from (54):

ϕS,t (u1, u2) = ϕ̃S,t (u1, u2)
′ zt ,

with ϕ̃S,t (u1, u2) = [ϕ̃S,t,1 (u1, u2) , . . . , ϕ̃S,t,J (u1, u2)]
′ ,

and ϕ̃S,t,i (u1, u2) = E
[
exp

(
u′1zt+1 + u′2,1zt+1yt+1 + u2,2y

2
t+1

) | zt = ei, zt−1, yt

]

=
J∑

j=1

πi,j(yt) exp(u′1ej)ϕ̃S,t,i,j

(
u′2,1ej , u2,2

)
,

(55)

and where :

ϕ̃S,t,i,j

(
u′2,1ej , u2,2

)
= E

[
exp

(
u2,2y

2
t+1 + u′2,1ejyt+1

) | zt+1 = ej , zt = ei, zt−1, yt

]

=
∫

R
n(yt+1; µi,j,t, σ

2
i,j,t) exp

[
(u′2,1ej)yt+1 + u2,2y

2
t+1

]
dyt+1 .

(56)

The p.d.f. of the conditional Second-Order Esscher transform Sθ1,θ2(Pi,t+1) is obtained, first, by
multiplying the p.d.f. (52) by exp(θ′1zt+1 + θ′2,1zt+1yt+1 + θ2,2y

2
t+1) and then, this product is nor-

malized by ϕS,t(θ1, θ2). So, we obtain the following result:

Proposition 3 : The p.d.f. of the family of probability distributions P∗i,t+1 (say) generated by the
conditional Second-Order Esscher transform S(θ1,θ2)(Pi,t+1) applied to the p.d.f. (52) is given by:

gt(yt+1, ej |zt = ei, zt−1, yt)

=
πi,j,t exp

(
θ′1ej + θ′2,1ejyt+1 + θ2,2y

2
t+1

)
n(yt+1;µi,j,t, σ

2
i,j,t)

ϕS,t(θ1, θ2)

= π∗i,j,t n

(
yt+1;

µi,j,t + σ2
i,j,tθ

′
2,1ej

1− 2σ2
i,j,tθ2,2

,
σ2

i,j,t

1− 2σ2
i,j,tθ2,2

)
,

(57)
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where

π∗i,j,t = π∗i,j(yt) =
πi,j,t exp(θ′1ej)ϕ̃S,t,i,j(θ′2,1ej , θ2,2)

J∑

j=1

πi,j,t exp(θ′1ej)ϕ̃S,t,i,j(θ′2,1ej , θ2,2)

,

with ϕ̃S,t,i,j(u1, u2) = exp

[
−1

2
log

(
1− 2σ2

i,j,tu1

)− 1
2

µ2
i,j,t

σ2
i,j,t

+
1
2

(µi,j,t + σ2
i,j,tu1)2

(σ2
i,j,t − 2σ4

i,j,tu2)

]
.

[Proof : see Appendix 2].

From Proposition 3 we see that the joint P∗-distribution of (yt+1, z
′
t+1)

′, conditionally to yt, zt, is:

yt+1 = µ∗t (yt, zt, zt+1) + σ∗t (yt, zt, zt+1)ξt+1 , (58)

where µ∗t (yt, ei, ej) and σ∗t (yt, ei, ej) are respectively given by:

µ∗i,j,t =
µi,j,t + σ2

i,j,tθ
′
2,1ej

1− 2σ2
i,j,tθ2,2

and σ∗i,j,t =

(
σ2

i,j,t

1− 2σ2
i,j,tθ2,2

)1/2

, (59)

and where:

P∗(zt+1 = ej |zt = ei, zt−1, yt) = π∗i,j(yt) = π∗i,j,t , ∀(ei, ej) ∈ E × E

ξt+1|zt+1, zt, yt
P∗∼ N(0, 1) .

(60)

6.2 Asset Pricing Modelling Strategies

6.2.1 Direct Modelling

The purpose of this section and the following one is to deal with the specification of a security market
model when the investor’s information at each date t is the (J +1)-dimensional factor wt = (yt, z

′
t)
′

introduced in the previous section, and when the SDF M
(S)
t,t+1 is an exponential-quadratic function

of the stock return yt+1 and of the Markov chain zt+1, that is:

M
(S)
t,t+1 = exp

[
−rt+1 + α′1,tzt+1 + α′2,1,tzt+1yt+1 + α2,2,ty

2
t+1 − ψ̃S,t(α1,t, α2,t)′zt

]
, (61)

where ψ̃S,t(α1,t, α2,t) = log ϕ̃S,t(α1,t, α2,t), and denoting α2,t = (α′2,1,t, α2,2,t)′. This means that a
conditional Second-Order Esscher transform is used to move from the historical to the risk-neutral
world and vice versa.

It is important to highlight that this asset pricing setting provides two important generalizations
with respect to the model presented in Section 5: i) the regime indicator function zt+1 is a Markov
chain and not an i.i.d. process and ii) zt+1 is introduced in M

(S)
t,t+1 and thus regime-shift risk is

priced (via α1,t and α2,1,t). Note that this second generalization is also easily introduced in the
Mixed-Normal economy by simply assuming a SDF as in (61) (instead of the pricing kernel (20)
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with wt+1 = yt+1) in which zt+1 is such that for all i ∈ {1, . . . , J}, and for any given j ∈ {1, . . . , J},
πij,t = πj,t. In this section we consider the case where the Direct Modelling strategy is adopted,
while in the following section we will derive the model on the basis of the Back Modelling strategy.

First, the historical dynamics (Pt+1) of (yt+1, z
′
t+1)

′, conditionally to (yt, zt), is given by (51) and,
second, the SDF is assumed to be (61). The ICC requires the following constraint on model
parameters and risk-sensitivity vectors:

[
ψ̃S,t(α1,t, α2,1,t + e, α2,2,t)− ψ̃S,t(α1,t, α2,1,t, α2,2,t)

]′
zt = rt+1 , ∀(yt, zt) , (62)

where e is the J-dimensional vector whose components are equal to 1. The R.N. dynamics (Qt+1) of
(yt+1, z

′
t+1)

′, conditionally to (yt, zt), is defined by the family of probability distributions generated
by the conditional Second-Order Esscher transform of Pt+1 associated with (α1,t, α2,t)′ [Qt+1 =
S(α1,t,α2,t)(Pt+1)], and it is given by:

yt+1 = µQt (yt, zt, zt+1) + σQt (yt, zt, zt+1)ξt+1 ,

with µQt (yt, ei, ej) =
µi,j,t + σ2

i,j,tα
′
2,1,tej

1− 2σ2
i,j,tα2,2,t

, σQt (yt, ei, ej) =

(
σ2

i,j,t

1− 2σ2
i,j,tα2,2,t

)1/2

,

ξt+1|zt+1, zt, yt
Q∼ N(0, 1) ,

Q(zt+1 = ej |zt = ei, zt−1, yt) = πQi,j(yt) = πQi,j,t , ∀(ei, ej) ∈ E × E

(63)

and where

πQi,j,t =
πi,j,t exp(α′1,tej)ϕ̃S,t,i,j(α′2,1,tej , α2,t)

J∑

j=1

πi,j,t exp(α′1,tej)ϕ̃S,t,i,j(α′2,1,tej , α2,t)

.
(64)

6.2.2 Back Modelling

Following the Back Modelling strategy, we first assume that the R.N. dynamics (Qt+1) of (yt+1, z
′
t+1)

′,
conditionally to (yt, zt), be given by:

yt+1 = µQt (yt, zt, zt+1) + σQt (yt, zt, zt+1)ξt+1 ,

Q(zt+1 = ej |zt = ei, zt−1, yt) = πQi,j(yt) = πQi,j,t , ∀(ei, ej) ∈ E × E

ξt+1|zt+1, zt, yt
Q∼ N(0, 1) .

(65)

Second, we impose the ICC
ψ̃QS,t(0, e, 0)′zt = rt+1 , (66)

where ψ̃QS,t(u1, u2,1, u2,2) = log ϕ̃QS,t(u1, u2,1, u2,2). Once risk-neutral parameters are constrained
in order to satisfy (66), we can apply the change of probability measure associated with the
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exponential-quadratic SDF (61), with the important difference (with respect to the Direct Mod-
elling) that now the risk-sensitivity vectors (α′1,t, α

′
2,1,t, α2,2,t)′ can be specified, without any con-

straint, as any non-linear function of the information.
The historical dynamics (Pt+1) of (yt+1, z

′
t+1)

′, conditionally to (yt, zt), is the family of probabil-
ity distributions generated by the conditional Second-Order Esscher transform of Qt+1 associated
with (−α′1,t,−α′2,t)

′ [Pt+1 = S(−α1,t,−α2,t)(Qt+1)], and it is given by:

yt+1 = µt(yt, zt, zt+1) + σt(yt, zt, zt+1)εt+1

with µt(yt, ei, ej) =
µQi,j,t − (σQi,j,t)

2 α′2,1,tej

1 + 2(σQi,j,t)2 α2,2,t

, σt(yt, ei, ej) =

(
(σQi,j,t)

2

1 + 2(σQi,j,t)2 α2,2,t

)1/2

,

εt+1|zt+1, zt, yt
P∼ N(0, 1) ,

P(zt+1 = ej |zt = ei, zt−1, yt) = πi,j(yt) = πi,j,t ∀(ei, ej) ∈ E × E
(67)

and where

πi,j,t =
πQi,j,t exp(−α′1,tej)ϕ̃

Q
S,t,i,j(−α′2,1,tej ,−α2,t)

J∑

j=1

πQi,j,t exp(−α′1,tej)ϕ̃
Q
S,t,i,j(−α′2,1,tej ,−α2,t)

.
(68)

6.3 The Additive Regime Switching Economy

6.3.1 The Conditionally Gaussian Additive Regime Switching Model

The general regime-switching historical dynamics of wt+1 = (yt+1, z
′
t+1)

′, introduced in Section 6.1,
was given by:

yt+1 = µt(yt, zt, zt+1) + σt(yt, zt, zt+1)εt+1

εt+1|zt+1, zt, yt
P∼ N(0, 1)

P(zt+1 = ej |zt = ei, zt−1, yt) = πi,j(yt) = πi,j,t ∀(ei, ej) ∈ E × E .

(69)

Now, let us assume that µt(yt, zt, zt+1) and σ2
t (yt, zt, zt+1) are additive in zt and zt+1, i.e., they are

of the form: 



µt(yt, zt, zt+1) = µ0,t + µ′1,tzt + µ′2,tzt+1 ,

σ2
t (yt, zt, zt+1) = σ2

0,t + σ2
1,t
′zt + σ2

2,t
′zt+1 ,

(70)

where µi,t and σ2
i,t may be functions of yt, for all i ∈ {0, 1, 2}. With obvious notation we can also

write: 



µt(yt, ei, ej) = µ0,t + µ1,t,i + µ2,t,j ,

σ2
t (yt, ei, ej) = σ2

0,t + σ2
1,t,i + σ2

2,t,j .
(71)
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Applying the general result of Section 6.1, we immediately find that the joint P∗-distribution of
(yt+1, z

′
t+1)

′, conditionally to yt, zt, is:

yt+1 = µ∗t (yt, zt, zt+1) + σ∗t (yt, zt, zt+1)ξt+1 ,

P∗(zt+1 = ej |zt = ei, zt−1, yt) = π∗i,j(yt) = π∗i,j,t ∀(ei, ej) ∈ E × E ,

εt+1|zt+1, zt, yt
P∗∼ N(0, 1) ,

(72)

where

π∗i,j,t = π∗i,j(yt) =
πi,j,t exp(θ′1ej)ϕ̃

(a)
S,t,i,j(θ

′
2,1ej , θ2,2)

J∑

j=1

πi,j,t exp(θ′1ej)ϕ̃
(a)
S,t,i,j(θ

′
2,1ej , θ2,2)

,

with ϕ̃
(a)
S,t,i,j obtained from ϕ̃S,t,i,j in Proposition 3 by replacing µi,j,t and σ2

i,j,t by their expressions
in (71), and where µ∗t (yt, ei, ej) and σ∗t (yt, ei, ej) are respectively given by:

µ∗i,j,t =
µ0,t + µ1,t,i + µ2,t,j + (σ2

0,t + σ2
1,t,i + σ2

2,t,j)θ
′
2,1ej

1− 2(σ2
0,t + σ2

1,t,i + σ2
2,t,j)θ2,2

,

σ∗i,j,t =

(
σ2

0,t + σ2
1,t,i + σ2

2,t,j

1− 2(σ2
0,t + σ2

1,t,i + σ2
2,t,j)θ2,2

)1/2

,

(73)

which are no longer additive in (zt, zt+1). Observe that, if θ2,2 = 0, (σ∗i,j,t)
2 is additive while µ∗i,j,t

is not, except the case in which we also have θ2,1 = 0.

6.3.2 The Generalized Discrete-Time ”Jump-Diffusion” Case

The purpose of this section is to show that a particular Additive Regime Switching model can be
re-parametrized as a discrete-time generalization of the well known continuous-time jump-diffusion
model. Let us impose to the conditional mean and variance in (70) the following specification:

µt(yt, zt, zt+1) = µ0,1 + µ0,2yt + µ′2zt+1 ,

σ2
t (yt, zt, zt+1) = σ2

1 + σ2
2
′zt+1 ,

(74)

and let us assume for instance, for identification reasons, that the first component of µ2 and σ2
2 are

equal to zero (i.e., µ2,1 = σ2
2,1 = 0). Then, model (69) can be written in the following observationally

equivalent way:

yt+1 = µ0,1 + µ0,2yt + x′t+1zt+1 + σ1εt+1 ,

P(zt+1 = ej |zt = ei, zt−1, yt) = πi,j(yt) = πi,j,t ∀(ei, ej) ∈ E × E ,

εt+1|zt+1, zt, yt
P∼ N(0, 1) ,

(75)
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where:
xt+1 = µ2 + Σ2ηt+1 ,

with xt+1 = (x1,t+1, . . . , xJ,t+1)′ ,

and Σ2 = diag(σ2,1, . . . , σ2,J) , ηt+1 ∼ IIN(0, IJ) ,

(76)

that is,
xj,t+1 | yt+1, zt+1

P∼ N(µ2,j , σ
2
2,j) ∀j ∈ {1, . . . , J} , independently . (77)

The process xt+1 introduces, within regimes, stochastic Gaussian components selected by the regime
indicator function zt+1. In other words, the process xt+1 introduces discrete-time “jumps” in the
level of the stock return, and the Markov chain zt+1 makes the time series of that jumps serially
dependent. Moreover, it is easy to verify that, under the probability measure P∗ induced by the
conditional Second-Order Esscher transform, the process xt+1 is characterized, conditionally to
yt+1, zt+1, by the following distribution:

xj,t+1 | yt+1, zt+1
P∗∼ N

(
µ∗j , (σ

∗
j )

2
)
∀j ∈ {1, . . . , J} , independently ,

where µ∗j =
µ2,j + σ2

2,jθ
′
2,1ej

1− 2
(
(σ2

1 + σ2
2,j

)
θ2,2

,

σ∗j =


 σ2

2,j

1− 2
(
σ2

1 + σ2
2,j

)
θ2,2




1/2

,

(78)

and
P∗(zt+1 = ej |zt = ei, zt−1, yt) = π∗i,j(yt) = π∗i,j,t ∀(ei, ej) ∈ E × E ,

π∗i,j,t = π∗i,j(yt) =
πi,j,t exp(θ′1ej)ϕ̃

(a)
S,t,i,j(θ

′
2,1ej , θ2,2)

J∑

j=1

πi,j,t exp(θ′1ej)ϕ̃
(a)
S,t,i,j(θ

′
2,1ej , θ2,2)

.

This means that, when we move from P to P∗, the Gaussian-type stochastic amplitude xt+1 is
characterized not only by a different mean but also by a different variance as proposed, in the
continuous-time setting, by Broadie, Chernov and Johannes (2007) [see also, in an i.i.d. scalar
setting, Backus, Chernov and Martin (2009)]. It is also important to observe that, conditionally to
(yt, zt = ei, zt−1), the stochastic process x′t+1zt+1 follows, under P, a mixture of J Gaussian random
variables N(µ2,j , σ

2
2,j) each with mixing weight πi,j,t, for j ∈ {1, . . . , J}. Under P∗, the J Gaussian

components of the mixture are N(µ∗j , (σ
∗
j )

2) with mixing weights π∗i,j,t, for j ∈ {1, . . . , J}.
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6.3.3 General Discrete-Time Serial Dependent Additive Jumps

In Section 6.3.1 we have introduced the conditionally Gaussian Additive Regime Switching model
characterized by additive conditional mean and conditional variance :





µt(yt, zt, zt+1) = µ0,t + µ′1,tzt + µ′2,tzt+1 ,

σ2
t (yt, zt, zt+1) = σ2

0,t + σ2
1,t
′zt + σ2

2,t
′zt+1 .

(79)

In Section 6.3.2 we have seen that a particular specification of (79), characterized by the following
constraints: 




µ0,t(yt) = µ0,1 + µ0,2yt , µ1,t = 0 , µ2,t = µ2 ,

σ2
0,t = 0 , σ2

2,t = σ2
2 , σ2

1,t,i = σ2
1 ∀i ∈ {1, . . . , J} ,

(80)

induces discrete-time jumps with the following important features, not generally shared by continuous-
time jump-diffusion models: i) the time series of jumps is serially dependent since the Gaussian
stochastic amplitude xj,t+1 is selected, at each date t+1, by the Markov chain zt+1; ii) the transition
probability of zt+1 can be non-homogeneous, as assumed in (75), giving therefore the possibility to
describe clusters in jumps with time-varying persistence; iii) the distribution of x′t+1zt+1, condition-
ally to (yt, zt), is a mixture of J Gaussian distributions while, when the typical compound Poisson
structure for jump innovations is used, the number of jumps per period is a Poisson distribution,
with potentially time-varying intensity, and therefore the jump component is a particular infi-
nite mixture of conditionally Gaussian processes [see Maheu and McCurdy (2004), Christoffersen,
Jacobs and Ornthanalai (2008)].

Now, if we assume the additive specification (79) without constraints (80), the associated regime
switching model will be able to generate serially dependent contemporaneous and lagged discrete-
time shifts, in the stock return level and variance, respectively selected by zt+1 and zt. More
precisely, the additional features are the following: iv) once the J-dimensional vectors µ2,t and σ2

2,t

are specified as function of the information at date t, the conditional mean and variance of the
Gaussian stochastic amplitude, selected by zt+1, may be functions of yt (in particular, switching
GARCH effects might be introduced); v) if we assume, in addition, that also the J-dimensional
vectors µ1,t(6= 0) and σ2

1,t (with σ2
1,t,i 6= σ2

1,t,j∀i 6= j, i, j ∈ {1, . . . J}) are functions of the information
at date t, then the mean and variance of yt+1, conditionally to (yt, zt), will be affected by an
additional source of time variation and of serial dependence (induced by zt).

6.3.4 A Risk-Neutral Affine Additive Regime Switching Pricing Model with Non-
Linear Market Price of Risks

The purpose of this section is to present a security market model able to propose at the same time a
tractable (explicit or quasi explicit) pricing formula and non-linear risk-sensitivity coefficients and,
thus, a flexible historical dynamics. We follow the Back Modelling strategy, outlined in Section 6.2.2,
starting from the following Compound Autoregressive of order 1 [Car(1)] dynamics for (yt+1, z

′
t+1)

′
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satisfying the internal consistency condition EQt [exp(yt+1)] = exp(rt+1) [see Appendix 3 for a proof]:

yt+1 = rt+1 −
[
λ(µQ2 , σQ1 , σQ2 , πQ) + 1

2(σQ1 )2
]
′zt + µQ2

′zt+1 + [(σQ1 ) ′zt + (σQ2 ) ′zt+1]ξt+1 ,

ξt+1|zt+1, zt, yt
Q∼ N(0, 1) ,

Q(zt+1 = ej |zt = ei, zt−1, yt) = Q(zt+1 = ej |zt = ei) = πQi,j ,

(81)
where λi(µ

Q
2 , σQ1 , σQ2 , πQ) = log

∑J
j=1 πQi,j exp

(
µQ2,j + 1

2(σQ2,j)
2 + σQ1,iσ

Q
2,j

)
. It is well known that this

risk-neutral Car(1) dynamics provides quasi explicit formulas for many derivatives prices.

We specify the following exponential-quadratic SDF:

M
(S)
t,t+1 = exp

[
−rt+1 + α′1,tzt+1 + α′2,1,tzt+1yt+1 + α2,2,ty

2
t+1 − ψ̃S,t(α1,t, α2,t)′zt

]
, (82)

and the historical dynamics (Pt+1) of (yt+1, z
′
t+1)

′, conditionally to (yt, zt) is the family of probability
distributions generated by the conditional Second-Order Esscher Transform of Qt+1 associated
with the non-linear risk-sensitivity coefficients (−α′1,t,−α′2,t)

′ [ Pt+1 = S(−α1,t,−α2,t)(Qt+1) ]. More
precisely, the historical dynamics (67) takes the following particular form:

yt+1 = µt(yt, zt, zt+1) + σt(yt, zt, zt+1)εt+1

εt+1|zt+1, zt, yt
P∼ N(0, 1) ,

(83)

with

µt(yt, ei, ej) =
rt+1 −

[
λi(µ

Q
2 , σQ1 , σQ2 , πQ) + 1

2(σQ1,i)
2
]

+ µQ2,j − [(σQ1,i)
2 + (σQ2,j)

2]α′2,1,tej

1 + 2[(σQ1,i)2 + (σQ2,j)2]α2,2,t

σt(yt, ei, ej) =

(
(σQ1,i)

2 + (σQ2,j)
2

1 + 2[(σQ1,i)2 + (σQ2,j)2]α2,2,t

)1/2

,

(84)

where
P(zt+1 = ej |zt = ei, zt−1, yt) = πi,j(yt) = πi,j,t ∀(ei, ej) ∈ E × E

πi,j,t =
πQi,j,t exp(−α′1,tej)ϕ̃

Q
S,t,i,j(−α′2,1,tej ,−α2,2,t)

J∑

j=1

πQi,j,t exp(−α′1,tej)ϕ̃
Q
S,t,i,j(−α′2,1,tej ,−α2,2,t)

. (85)
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and where

ϕ̃QS,t,i,j(−α′2,1,tej ,−α2,2,t) = exp
{
−1

2
log

[
1 + 2 [(σQ1,i)

2 + (σQ2,j)
2] (α′2,1,tej)

]

−1
2

(
rt+1 −

[
λi(µ

Q
2 , σQ1 , σQ2 , πQ) + 1

2(σQ1,i)
2
]

+ µQ2,j

)2

[(σQ1,i)2 + (σQ2,j)2]

+
1
2

(
rt+1 −

[
λi(µ

Q
2 , σQ1 , σQ2 , πQ) + 1

2(σQ1,i)
2
]

+ µQ2,j − [(σQ1,i)
2 + (σQ2,j)

2]α′2,1,tej

)2

[(σQ1,i)2 + (σQ2,j)2] + 2[(σQ1,i)2 + (σQ2,j)2]2α2,2,t





.

Thus, it is clear from relations (84) and (85) that, since the sensitivity factors α1,t, α2,1,t and α2,2,t

can be specified as any functions of the information at time t, we obtain a very large set of historical
dynamics.

7 Conclusions and Further Developments

In this paper we have proposed, working with discrete time no-arbitrage asset pricing models, to
widen the bridge between the historical and the risk-neutral factor distribution, while keeping,
respectively, flexible and tractable the modelling of both dynamics. The key tools behind this more
general change of probability measure are the Second-Order Esscher Transform and the Second-
Order Laplace Transform. The associated change of probability measure is thus generated by
an Exponential-Quadratic Stochastic Discount Factor, specified by first-order and second-order
stochastic risk-sensitivity vectors.

We have shown the large flexibility of this new approach in the case of conditionally Gaussian
dynamics, conditionally Mixed-Normal dynamics and conditionally Gaussian Switching Regime
dynamics. These classes provide a large variety of security market models. In particular, Gaussian
switching regime models show several degrees of flexibility both under the historical and risk-
neutral probability, given the serial dependence of regimes and the introduction of the regime
indicator function in the linear and quadratic term of the SDF.

Our approach can be coupled with a Back Modelling strategy assuming a Car risk-neutral factor
dynamics and then obtaining an historical dynamics by means of a Second-Order Esscher Transform
with risk-sensitivity coefficients specified as any functions of the state vector. In this case we have
at the same time explicit or quasi explicit pricing formulas for several derivative assets and a very
large set of possible historical dynamics.

Although we have illustrated our approach using security market models, our results are much
more general that the RNVR or LRNVR ones, since they could be applied in many other asset
pricing contexts like yield curve and credit risk models, longevity risk and exchange rate models.
We leave these developments to future research.
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Appendix 1
Computation of Second-Order Esscher Transforms

Computation of the Second-Order Esscher Transform of a Gaussian distribution

The proofs of the examples presented in Section 2.2 are based on the following result. If we consider
the p.d.f. of a n-dimensional Gaussian random variable N(µ,Σ):

f(y) =
1

(2π)n/2
√

det Σ
exp

[
−1

2
(y − µ)′Σ−1(y − µ)

]
,

∝ exp
[−1

2y′Σ−1y + µ′Σ−1y
]

(A.1)

then, from Definition 3 we have :

g(y; θ1, θ2) ∝ exp
[−1

2y′Σ−1y + µ′Σ−1y + θ1y + y′θ2y
]

,

∝ exp
[
−1

2y′
(
Σ−1 − 2θ2

)
y +

(
Σ−1µ + θ1

)′
y
]

,

∝ exp
[
−1

2y′
(
Σ−1 − 2θ2

)
y +

(
Σ−1µ + θ1

)′ (Σ−1 − 2θ2

)−1 (
Σ−1 − 2θ2

)
y
]

,

(A.2)

and, therefore, g(y; θ1, θ2) is the p.d.f. of the n-dimensional Gaussian random variable

N
[(

Σ−1 − 2θ2

)−1 (
Σ−1µ + θ1

)
,
(
Σ−1 − 2θ2

)−1
]

(A.3)

proving relation (15) of example vii), and relation (14) of example vi) when n = 1.

Computation of the Second-Order Laplace Transform of a Gaussian distribution

From relations (12) and (15) we see that the Second-Order Laplace Transform of the Gaussian
random vector y ∼ N(µ,Σ) is given by:

ϕS(θ1, θ2) =
∫

Rn

f(y) exp(θ
′
1y + y′θ2y)dy

=
f(y) exp(θ′1y + y′θ2y)

g(y; θ1, θ2)

= det (I − 2Σθ2)
− 1

2 exp
[−1

2µ′Σ−1µ + 1
2(Σ−1µ + θ1)′(Σ−1 − 2θ2)−1(Σ−1µ + θ1)

]
.

(A.4)
If we consider the case of a scalar (n = 1) Gaussian random variable N(µ, σ2), the Second-Order
Gaussian Laplace Transform (A.4) takes the following particular form:

ϕS(θ1, θ2) =
∫

R
f(y) exp(θ1y + θ2y

2)dy

= (1− 2σ2θ2)−
1
2 exp

[
−1

2
µ2

σ2
+

1
2

(
σ2

1− 2σ2θ2

) ( µ

σ2
+ θ1

)2
]

.

(A.5)

25



Computation of the Second-Order Esscher Transform of a mixture of Gaussian distributions

Denoting by n(y; µj , Σj) the p.d.f. of the Gaussian random vector y ∼ N(µj ,Σj), we want to find
the Second-Order Esscher Transform of the density:

J∑

j=1

λj n(y;µj ,Σj) , (A.6)

which is given, following Definition 3, by the family of probability distributions with p.d.f.:

g(y; θ1, θ2) =

J∑

j=1

λj exp(θ′1y + y′ θ2 y)n(y; µj , Σj)

J∑

j=1

λj ϕS,j(θ1, θ2)

, (A.7)

where ϕS,j(θ1, θ2) is the Second-Order Laplace Transform of y ∼ N(µj , Σj) given by (A.4) with
µ = µj and Σ = Σj . From the results proved above we obtain:

g(y; θ1, θ2) =
J∑

j=1

λ∗j n

[
y;

(
Σ−1

j − 2θ2

)−1 (
Σ−1

j µj + θ1

)
,
(
Σ−1

j − 2θ2

)−1
]

,

with λ∗j =
λj ϕS,j(θ1, θ2)

J∑

j=1

λj ϕS,j(θ1, θ2)

(A.8)

proving relation (16) of example viii).
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Appendix 2
Proof of Proposition 3

The purpose of this appendix is to derive the p.d.f. of the family of probability distributions
generated by the conditional Second-Order Esscher transform Sθ1,θ2(Pi,t+1) applied to the p.d.f.
(52). Following Definition 3, we have:

gt(yt+1, ej |yt, zt = ei)

=
πi,j,t exp

(
θ′1ej + θ′2,1ejyt+1 + θ2,2y

2
t+1

)
n(yt+1; µi,j,t, σ

2
i,j,t)

J∑

j=1

∫

R
πi,j,t exp

(
θ′1ej + θ′2,1ejyt+1 + θ2,2y

2
t+1

)
n(yt+1; µi,j,t, σ

2
i,j,t) dyt+1

=
πi,j,t exp(θ′1ej) n(yt+1; µi,j,t, σ

2
i,j,t) exp

(
θ′2,1ejyt+1 + θ2,2y

2
t+1

)
J∑

j=1

πi,j,t exp(θ′1ej)
[∫

R
n(yt+1; µi,j,t, σ

2
i,j,t) exp

(
θ′2,1ejyt+1 + θ2,2y

2
t+1

)
dyt+1

] .

(A.9)

Now, given the result presented in example vi) and in Appendix 1, the Second-Order Laplace
transform (56) is given by:

ϕ̃S,t,i,j

(
θ′2,1ej , θ2,2

)
= exp

[
−1

2
log (1− 2σ2

i,j,tθ2,2)− 1
2

µ2
i,j,t

σ2
i,j,t

+
1
2

(µi,j,t + σ2
i,j,tθ

′
2,1ej)2

(σ2
i,j,t − 2σ4

i,j,tθ2,2)

]
, (A.10)

and, therefore, relation (A.9) can be written as follows:

gt(yt+1, ej |yt, zt = ei)

=

πi,j,t exp (θ′1ej) ϕ̃S,t,i,j

(
θ′2,1ej , θ2,2

)
n

(
yt+1;

µi,j,t + σ2
i,j,tθ

′
2,1ej

1− 2σ2
i,j,tθ2,2

,
σ2

i,j,t

1− 2σ2
i,j,tθ2,2

)

J∑

j=1

πi,j,t exp
(
θ′1ej

)
ϕ̃S,t,i,j

(
θ′2,1ej , θ2,2

)

= π∗i,j,t n

(
yt+1;

µi,j,t + σ2
i,j,tθ

′
2,1ej

1− 2σ2
i,j,tθ2,2

,
σ2

i,j,t

1− 2σ2
i,j,tθ2,2

)

(A.11)

and Proposition 3 is proved.
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Appendix 3
Deriving the no-arbitrage dynamics of the affine additive regime switching model

Let us assume the following Compound Autoregressive of order 1 [Car(1)]Q-dynamics for (yt+1, z
′
t+1)

′:

yt+1 = µQ0,1,t + µQ0,2yt + µQ1
′zt + µQ2

′zt+1 + [(σQ1 ) ′zt + (σQ2 ) ′zt+1]ξt+1

ξt+1|zt+1, zt, yt
Q∼ N(0, 1)

Q(zt+1 = ej |zt = ei, zt−1, yt) = Q(zt+1 = ej |zt = ei) = πQi,j .

(A.12)

where µQ0,1,t denotes a deterministic function of t. It is easy to verify that the Laplace transform of
(yt+1, z

′
t+1)

′, conditionally to (yt, zt), is:

ϕQt (u, v) = Et[exp(uyt+1 + v′zt+1)]

= exp[aQ(u, v)yt + bQ(u, v)′zt + cQt (u, v)]
(A.13)

with:
aQ(u, v) = u µQ0,2 yt

bQ(u, v)′ =
[
uµQ1

′ + 1
2u2(σQ1 )2 ′ + Λ′(u, v, µQ2 , σQ1 , σQ2 , πQ) ]

cQt (u, v) = u µQ0,1,t ,

(A.14)

and where the ith component of Λ(u, v, µQ2 , σQ1 , σQ2 , πQ) is given by:

Λi(u, v, µQ2 , σQ1 , σQ2 , πQ) = log
J∑

j=1

πQi,j exp
[
uµQ2,j + vj +

1
2
u2(σQ2,j)

2 + u2σQ1,iσ
Q
2,j

]
, ∀i ∈ {1, . . . , J} .

(A.15)
Once we impose the ICC ψQt (1, 0) = log ϕQt (1, 0) = rt+1, the risk-neutral (pricing) affine dynamics
takes the following form:

yt+1 = rt+1 −
[
λ(µQ2 , σQ1 , σQ2 , πQ) + 1

2(σQ1 )2
]
′zt + µQ2

′zt+1 + [(σQ1 ) ′zt + (σQ2 ) ′zt+1]ξt+1 ,

ξt+1|zt+1, zt, yt
Q∼ N(0, 1) ,

Q(zt+1 = ej |zt = ei, zt−1, yt) = Q(zt+1 = ej |zt = ei) = πQi,j ,

(A.16)
where λi(µ

Q
2 , σQ1 , σQ2 , πQ) = log

∑J
j=1 πQi,j exp

(
µQ2,j + 1

2(σQ2,j)
2 + σQ1,iσ

Q
2,j

)
, and the result is proved.
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