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RESUME

Lorsqu’une information auxiliaire est disponible à l’étape du plan de sondage, il est
possible de sélectionner un échantillon par tirage équilibré à l’aide de la méthode du Cube
(Deville et Tillé, 2004). Nous nous intéressons ici à un cas particulier de cet algorithme,
appelé la méthode du pivot (Deville et Tillé, 1998). Nous montrons que cet algorithme est
équivalent à la méthode systématique de Deville, au sens où les deux algorithmes mettent
en oeuvre le même plan de sondage. Cette caractérisation permet le calcul des probabilités
d’inclusion doubles. Nous montrons également que la méthode du pivot permet d’utiliser
un tri préalable des unités afin d’obtenir une réduction de variance, tout en limitant la
perte d’efficacité si la variable de tri n’est pas explicative de la variable d’intérêt.

ABSTRACT

When auxiliary information is available at the design stage, samples may be selected by
means of balanced sampling. Deville and Tillé proposed in 2004 a general algorithm to
perform balanced sampling, named the cube method. In this paper, we are interested in a
particular case of the cube method named pivotal sampling, and first described by Deville
and Tillé in 1998. We show that this sampling algorithm, when applied to units ranked in
a fixed order, is equivalent to Deville’s systematic sampling, in the sense that both algo-
rithms lead to the same sampling design. This characterization enables the computation
of the second-order inclusion probabilities for pivotal sampling. We show that the piv-
otal sampling enables to take account of an appropriate ordering of the units to achieve a
variance reduction, while limiting the loss of efficiency if the ordering is not appropriate.

Keywords: Balanced sampling; Cube method; Design Effect; Sampling Algorithm; Sec-
ond order inclusion probabilities; Unequal Probabilities.
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1 Introduction

When auxiliary information is available at the design stage, samples may be se-

lected by means of balanced sampling. The variance of the Horvitz-Thompson

(HT) estimator is then reduced, since it is approximately given by that of the resid-

uals of the variable of interest on the balancing variables. Deville and Tillé (2004)

proposed a general algorithm for balanced sampling, named the cube method.

This sampling algorithm enables the selection of balanced samples with any num-

ber of balancing variables, and any prescribed set of inclusion probabilities.

In order to measure the gain in efficiency provided by the cube method, Dev-

ille and Tillé (2005) proposed several variance approximations. They suppose

that the sampling design is exactly balanced, and performed with maximum en-

tropy among sampling designs balanced on the same balancing variables, with the

same inclusion probabilities. Then, under an additional assumption of asymptotic

normality of the multivariate HT-estimator under Poisson sampling, the variance

approximations are derived. The assumption of exact balancing may be closely

respected, if the number of balancing variables remains small with regard to the

sample size; otherwise, the balancing error must be taken into account in vari-

ance estimation, see Breidt and Chauvet (2011). The second assumption is related

to the entropy of the sampling design: the variance approximations proposed by

Deville and Tillé (2005) are unlikely to hold if this assumption is not satisfied.

A practical way to increase the entropy of a sampling design is to sort the pop-

ulation randomly before the sampling. However, this preliminary randomization

step is not systematically included in the sampling process. This is a common

practice to sort the population with respect to some auxiliary variable before the

sampling, so as to benefit from a stratification effect. In France, Census surveys
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are conducted annually; the detailed methodology is described in Godinot (2005).

Each large municipality (10 000 inhabitants or more in 1999) is the subject of

an independent sampling design and is stratified according to the type of address

(large addresses, new addresses, or other addresses). In each stratum the addresses

are divided into 5 rotation groups. Each year, all the addresses within one rotation

group (for the strata of large addresses and new addresses) or within a sub-sample

(for the stratum of other addresses) are surveyed. In the stratum of other ad-

dresses, the sub-sample is obtained by first, sorting the addresses with respect to

the descending number of dwellings, and then, applying the cube method. In such

cases, the conditions for the variance approximations proposed by Deville and

Tillé (2005) to hold are clearly not respected.

We are interested in a particular case of the cube method, called pivotal sam-

pling (Deville and Tillé, 1998), obtained when the only balancing condition is

given by the variable of inclusion probabilities. That is, the cube method with the

sole fixed-size constraint amounts to pivotal sampling. This algorithm is an ex-

act sampling procedure, which respects a prescribed set of inclusion probabilities,

is strictly without replacement and leads to fixed-size designs. In this paper, we

show that the pivotal sampling algorithm, when applied to units ranked in a fixed

order, is equivalent to an algorithm proposed in Deville (1998), and known in the

literature as Deville’s systematic sampling (Tillé, 2006). The two algorithms are

equivalent, in the sense that both lead to the same sampling design. In particular,

the computation of the second-order inclusion probabilities developed in Dev-

ille (1998) may be readily applied to pivotal sampling. This provides an answer to

a problem raised by Bondesson and Grafström (2010, p. 7). Deville’s systematic

sampling has found uses in the context of longitudinal surveys, see Nedyalkova et

al. (2009).
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The paper is organized as follows. In section 2, the notation is defined. Or-

dered pivotal sampling and Deville’s systematic sampling are presented in sections

3 and 4, respectively, and some useful results are derived. The second-order inclu-

sion probabilities for ordered pivotal sampling are given in section 5. Some results

which illustrate the practical interest of ordered pivotal sampling are presented in

section 6.

2 Notation

Consider a finite population U consisting of N sampling units that may be rep-

resented by integers k = 1, . . . , N . We assume that the order of the units in the

population is fixed prior to sampling, and may be confounded with the natural

order of their indexes. A sample s, defined as a subset of U , is selected with inclu-

sion probabilities π = (π1, . . . , πN)′ . We assume without loss of generality that

0 < πk < 1 for any unit k in U , with n =
∑

k∈U πk the sample size. Let πkl

denote the probability that units k and l are selected jointly in the sample.

We define Vk =
∑k

l=1 πl for any unit k ∈ U , with V0 = 0. A unit k is said

to be cross-border if Vk−1 ≤ i and Vk > i for some non-negative integer i. The

cross-border units are denoted as ki, i = 1, . . . , n− 1, and we note ai = i−Vki−1

and bi = Vki − i. The microstratum Ui, i = 1, . . . , n, is defined as

Ui = {k ∈ U ; ki−1 ≤ k ≤ ki}, (1)

with k0 = 0 and kn = N + 1. The microstrata are generally overlapping, since

one cross-border unit may belong to two adjacent microstrata. In the particular

case when Vki = i, which implies that bi = 0, we consider equivalently that the

cross-border unit ki only belongs to the microstratum Ui, or that it belongs also
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to the microstratum Ui+1 as a phantom unit. To fix ideas, useful quantities for

population U are presented in Fig. 1.

i− 1 i

Vki−1−1 Vki−1 Vki−1+1 . . . Vki−2 Vki−1 Vki
Vki+1
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πki−1
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πki+1

Ui−1

Ui

Ui+1

Figure 1: Inclusion probabilities and cross-border units in microstratum Ui, for
population U

TheN sampling units are grouped to obtain a populationUc = {u1, . . . , u2n−1}

of clusters as follows: for i = 1, . . . , n, we define

u2i−1 = {ki−1 + 1, . . . , ki − 1} (2)

to which is associated the probability φ2i−1 = Vki−1 − Vki−1
. In the particular

case when Vki−1 = Vki−1
, we consider u2i−1 as a phantom cluster with probability

φ2i−1 = 0. For i = 1, . . . , n− 1, we define

u2i = {ki} (3)

to which is associated the probability φ2i = Vki − Vki−1 = πki . We note ψ =

(φ1, . . . , φ2n−1)
′. To fix ideas, useful quantities for population Uc are presented in

Fig. 2.
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Figure 2: Inclusion probabilities and cross-border units in microstrata Ui and Ui+1

for population Uc

3 Ordered pivotal sampling

A general algorithm for pivotal sampling is described in Deville and Tillé (1998).

In the version presented in Algorithm 1, the order of the sampling units is explic-

itly taken into account. We call it ordered pivotal sampling to avoid confusion. At

each step, one or more coordinates of π(t) are randomly rounded to 0 or 1, and

remain there forever. In at most N steps, the final sample is obtained. Roughly

speaking, the algorithm may be summarized as follows. Let J0 = 1. In micro-

stratum Ui, the first unit ki−1 is replaced with the unit Ji−1 which jumps from

the microstratum Ui−1. The units Ji−1 and ki−1 + 1 fight, the loser is definitely

eliminated while the survivor gets the sum of their probabilities and then faces the

next unit. The fights go on until the accumulated probability exceeds 1, which

occurs when the cross-border unit ki is involved. One of the two remaining units,

denoted as Wi, wins and is then definitely selected in the sample while the other

one, denoted as Ji, jumps to the following microstratum. Lemma 1 states that Al-

gorithm 1 may alternatively be seen as a two-stage procedure. The proof follows

from definition, and is thus omitted.
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Algorithm 1 Ordered Pivotal Sampling with parameter π

1. We initialize with π(0) = π.

2. At step t:

(a) Let k < l be the two units in U with the smaller indexes such that
0 < πk(t− 1), πl(t− 1) < 1.

(b) If m ∈ U \ {k, l}, then πm(t) = πm(t− 1).

(c) If πk(t− 1) + πl(t− 1) < 1, let

[πk(t), πl(t)] =

{
[πk(t− 1) + πl(t− 1), 0] with prob. λ1(t)
[0, πk(t− 1) + πl(t− 1)] with prob. 1− λ1(t)

where

λ1(t) =
πk(t− 1)

πk(t− 1) + πl(t− 1)
,

and otherwise, let

[πk(t), πl(t)] =

{
[1, πk(t− 1) + πl(t− 1)− 1] with prob. λ1(t)
[πk(t− 1) + πl(t− 1)− 1, 1] with prob. 1− λ1(t)

where

λ1(t) =
1− πl(t− 1)

2− πk(t− 1)− πl(t− 1)
.

3. The procedure ends at step T , when π(T ) has only integer (0-1) compo-
nents.
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Lemma 1 Ordered pivotal sampling with parameter π may be obtained by two-

stage sampling, where a sample sc of n clusters is first selected in Uc by means

of ordered pivotal sampling with parameter ψ, and one unit k is then selected in

each uj ∈ sc with a probability proportional to πk.

We assume that a sample Sop is selected in Uc by means of ordered pivotal

sampling with parameter ψ, and we let X1 < . . . < Xn denote the units selected

in the sample, ranked in ascending order. Lemma 2 states useful relations between

on the one hand, the sampled units Xi, and on the other hand, the winners Wi and

jumpers Ji. Lemma 3 gives the probabilities for the different outcomes in the case

of a non cross-border unit u2i−1.

Lemma 2 In case of ordered pivotal sampling with parameter ψ, we have

{Xi = u2i−2} ⇒ {Ji−1 ∈ {X1, . . . , Xi}}, (4)

{Xi = u2i−1} ⇒ {Wi = u2i−1} ∪ {Ji = u2i−1}, (5)

{Xi = u2i} ⇒ {Ji /∈ {X1, . . . , Xi}}. (6)

Proof of lemma. Assume that Xi = u2i−2. This implies that i units exactly are

selected in the i − 1 first microstrata U1, . . . , Ui−1. On the other hand, if Ji−1 /∈

{X1, . . . , Xi} the unit Ji−1 is not selected in the sample so that at most i− 1 units

are selected in U1, . . . , Ui−1. This proves (4), and by a similar argument we obtain

(6). It is easily seen that (5) holds, since the selection of u2i−1 implies that this

unit is either the winner Wi or the jumper Ji in the microstratum Ui.

Lemma 3 In case of ordered pivotal sampling with parameter ψ, we have

pr (Wi = u2i−1) =
(1− ai − bi−1)(1− ai − bi)

(1− ai)(1− bi)
, (7)

pr (Ji = u2i−1) =
ai(1− ai − bi−1)

(1− ai)(1− bi)
, (8)
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pr (Xi = u2i−1) = 1− ai − bi−1. (9)

Proof of lemma. The event

{Wi = u2i−1}

may be alternatively interpreted as follows: in the fight between Ji−1 and u2i−1,

the unit u2i−1 survives; then in the next fight, the unit u2i−1 is the selected unit Wi,

while the unit u2i is the jumping unit Ji. Consequently, we have :

pr (Wi = u2i−1) =
1− bi−1 − ai

1− ai
× 1− ai − bi

1− bi
,

which gives (7). Similarly, we obtain

pr (Ji = u2i−1) =
1− bi−1 − ai

1− ai
× ai

1− bi
,

which gives (8). We now consider equation (9). Since

{Xi = u2i−1} ⇒ {u2i−1 ∈ Sop}

and

pr (u2i−1 ∈ Sop) = 1− ai − bi−1,

it suffices to show that

{u2i−1 ∈ Sop} ⇒ {Xi = u2i−1}. (10)

Since {u2i−1 ∈ Sop} implies that u2i−1 survives in its duel against Ji−1, this in

turn implies that Ji−1 /∈ {X1, . . . , Xi}. In other words, {u2i−1 ∈ Sop} implies

that exactly i− 1 units smaller than u2i−1 were selected, which proves (10).
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Finally, let Uc,i = {u2i−2, . . . , u2n−1}, ψi = (bi−1, φ2i−1, . . . , φj, . . . , φ2n−1)
′,

and Sop,i be a random sample selected inUc,i by means of ordered pivotal sampling

with parameter ψi. Lemma 4 establishes some relations for conditional inclusion

probabilities in Sop,i of the first units in Uc,i.

Lemma 4

pr (u2i ∈ Sop,i, u2i−1 /∈ Sop,i | u2i−2 ∈ Sop,i)

=
bi

1− ai
, (11)

pr (u2i+1 ∈ Sop,i, u2i /∈ Sop,i, u2i−1 /∈ Sop,i | u2i−2 ∈ Sop,i)

=
(1− ai − bi)(1− bi − ai+1)

(1− ai)(1− bi)
, (12)

pr (u2i+2 ∈ Sop,i, u2i+1 /∈ Sop,i, u2i /∈ Sop,i, u2i−1 /∈ Sop,i | u2i−2 ∈ Sop,i)

=
(1− ai − bi)ai+1

(1− ai)(1− bi)
. (13)

Proof of lemma. To fix ideas, the first units in population Uc,i and related quan-

tities are presented in Fig. 3.

We first consider equation (11). Since bi−1 is the first-order inclusion proba-

bility of unit u2i−2 in sample Sop,i, we have

pr (u2i−2 ∈ Sop,i) = bi−1. (14)

On the other hand, the event

{u2i ∈ Sop,i, u2i−1 /∈ Sop,i, u2i−2 ∈ Sop,i}
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Figure 3: Inclusion probabilities and cross-border units in the two first microstrata
of population Uc,i

may be alternatively interpreted as follows: in the first fight, the unit u2i−2 survives

against the unit u2i−1; in the second fight, any of the two units u2i−2 or u2i is the

selected unit W1, while the other is the jumping unit J1; then, the jumping unit J1

is selected during one of the following fights. Consequently, we have:

pr (u2i ∈ Sop,i, u2i−1 /∈ Sop,i, u2i−2 ∈ Sop,i)

=
bi−1

1− ai
× 1× bi, (15)

and equation (11) follows from (14) and (15). We now consider equation (12).

The event

{u2i+1 ∈ Sop,i, u2i /∈ Sop,i, u2i−1 /∈ Sop,i, u2i−2 ∈ Sop,i}

may be interpreted as follows: in the first fight, the unit u2i−2 survives against

the unit u2i−1; in the second fight, u2i−2 is the selected unit W1, while u2i is the

jumping unit J1; in the third fight, the unit u2i+1 survives against the unit u2i;

then, the unit u2i+1 is selected during one of the following fights. Consequently,
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we have:

pr (u2i+1 ∈ Sop,i, u2i /∈ Sop,i, u2i−1 /∈ Sop,i, u2i−2 ∈ Sop,i)

=
bi−1

1− ai
× 1− ai − bi

1− bi
× 1− bi − ai+1

1− ai+1

× (1− ai+1), (16)

=
bi−1(1− ai − bi)(1− bi − ai+1)

(1− ai)(1− bi)
,

which, together with (14), leads to (12). Finally, we consider equation (13). The

event

{u2i+2 ∈ Sop,i, u2i+1 /∈ Sop,i, u2i /∈ Sop,i, u2i−1 /∈ Sop,i, u2i−2 ∈ Sop,i}

may be interpreted as follows: in the first fight, the unit u2i−2 survives against

the unit u2i−1; in the second fight, u2i−2 is the selected unit W1, while u2i is

the jumping unit J1; in the third fight, any of the two units Ji = u2i or u2i+1

survives; in the fourth fight, u2i+2 is the selected unit W2, while the other unit is

the jumper J2; then, the unit J2 is not selected during one of the following fights.

Consequently, we have:

pr (u2i+2 ∈ Sop,i, u2i+1 /∈ Sop,i, u2i /∈ Sop,i, u2i−1 /∈ Sop,i, u2i−2 ∈ Sop,i)

=
bi−1

1− ai
× 1− ai − bi

1− bi
× 1× ai+1

1− bi+1

× (1− bi+1), (17)

=
bi−1(1− ai − bi)ai+1

(1− ai)(1− bi)
,

which gives (13).
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4 Deville’s systematic sampling

The sampling algorithm known in the literature as Deville’s systematic sampling

(Deville, 1998; Tillé, 2006) is presented in Algorithm 2. This algorithm proceeds

in n sub-samplings of size 1 in the microstrata U1, . . . , Un, and the random vari-

ables wi which indicate the sampled units are generated so that a cross-border unit

ki−1 may not be selected twice in the sample: at step i, one unit denoted as Yi is

drawn in Ui if ki−1 was not selected at step i − 1, and in Ui \ {ki−1} otherwise.

This sampling algorithm may be particularly useful in the context of business sur-

veys, when a fine stratification is used leading to small and possibly non-integer

sample size inside (micro)strata. Deville’s systematic sampling directly handles

the rounding problem, since any unit for which the sampling outcome is still un-

decided is moved to the next stratum, where the final sampling decision is then

obtained. Lemma 5 follows from the definition of Algorithm 2.

Lemma 5 Deville’s systematic sampling with parameter π may be obtained by

two-stage sampling, where a sample sc of n clusters is first selected in Uc by

means of Deville’s systematic sampling with parameter ψ, and one unit k is then

selected in each uj ∈ sc with a probability proportional to πk.

Assume that a sample is selected in Uc by means of Deville’s systematic sam-

pling with parameter ψ. The random variable Yi+1 which gives the result of the

sampling in the microstratum Ui+1 only depends on the outcome of step i, so that

pr (Yi+1 = uj | Y1, . . . , Yi) = pr (Yi+1 = uj | Yi) . (18)

The different cases for the transition probabilities in (18) easily follow from the

definition of Algorithm 2, and are given below:
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Algorithm 2 Deville’s Systematic Sampling with parameter π

At step 1:

1. A distributed Uniform(0, 1) random variable w1 is generated.

2. The unit k is selected if Vk−1 ≤ w1 < Vk.

At step i:

1. A random variable wi is generated.

(a) if unit ki−1 was selected at step i − 1, then wi is generated according
to a distributed Uniform(bi−1, 1) random variable.

(b) otherwise, wi is generated:

• according to a distributed Uniform(0, bi−1) random variable with
probability ai−1bi−1 {(1− ai−1)(1− bi−1)}−1,
• according to a distributed Uniform(0, 1) random variable with

probability 1− ai−1bi−1 {(1− ai−1)(1− bi−1)}−1.

2. The unit k is selected if Vk−1 ≤ wi + (i− 1) < Vk.

pr (Yi+1 = uj | Y1, . . . , Yi−1, Yi = u2i−2)

=


bi

1−ai (j = 2i),
(1−bi−ai+1)(1−ai−bi)

(1−ai)(1−bi) (j = 2i+ 1),
ai+1(1−ai−bi)
(1−ai)(1−bi) (j = 2i+ 2).

(19)

pr (Yi+1 = uj | Y1, . . . , Yi−1, Yi = u2i−1)

=


bi

1−ai (j = 2i),
(1−bi−ai+1)(1−ai−bi)

(1−ai)(1−bi) (j = 2i+ 1),
ai+1(1−ai−bi)
(1−ai)(1−bi) (j = 2i+ 2).

(20)
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pr (Yi+1 = uj | Y1, . . . , Yi−1, Yi = u2i)

=

{ (1−bi−ai+1)
(1−bi) (j = 2i+ 1),

ai+1

(1−bi) (j = 2i+ 2).
(21)

5 Second-order inclusion probabilities

We can now formulate our main result.

Theorem 1 Ordered pivotal sampling and Deville’s systematic sampling with the

same parameter π induce the same sampling design.

Proof of theorem. From Lemmas 1 and 5, it is sufficient to prove the result in

case of ordered systematic sampling and Deville’s systematic sampling with pa-

rameter ψ in the population Uc. We only need to show that equations (19)-(21)

hold in case of ordered pivotal sampling. Recall that we note

Uc,i = {u2i−2, . . . , u2n−1},

ψi = (bi−1, φ2i−1, . . . , φj, . . . , φ2n−1)
′ ,

and that Sop,i denotes a random sample selected in Uc,i by means of ordered piv-

otal sampling with parameter ψi (see Section 3).

We first consider equation (19). From (4), we obtain:

pr (Xi+1 = u2i | X1, . . . , Xi−1, Xi = u2i−2)

= pr (Xi+1 = u2i | X1, . . . , Xi−1, Xi = u2i−2, Ji−1 ∈ {X1, . . . , Xi}) ,

which is equivalent to pr (u2i ∈ Sop,i, u2i−1 /∈ Sop,i | u2i−2 ∈ Sop,i), so that the re-

sult follows from equation (11).
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Similarly, we obtain

pr (Xi+1 = u2i+1 | X1, . . . , Xi−1, Xi = u2i−2)

= pr (Xi+1 = u2i+1 | X1, . . . , Xi−1, Xi = u2i−2, Ji−1 ∈ {X1, . . . , Xi})

≡ pr (u2i+1 ∈ Sop,i, u2i /∈ Sop,i, u2i−1 /∈ Sop,i | u2i−2 ∈ Sop,i)

=
(1− ai − bi)(1− bi − ai+1)

(1− ai)(1− bi)

where the last line follows from (12), and

pr (Xi+1 = u2i+2 | X1, . . . , Xi−1, Xi = u2i−2)

= pr (Xi+1 = u2i+2 | X1, . . . , Xi−1, Xi = u2i−2, Ji−1 ∈ {X1, . . . , Xi})

≡ pr (u2i+2 ∈ Sop,i, u2i+1 /∈ Sop,i, u2i /∈ Sop,i, u2i−1 /∈ Sop,i | u2i−2 ∈ Sop,i)

=
(1− ai − bi)ai+1

(1− ai)(1− bi)
,

where the last line follows from (13). This proves equation (19). The proof for

equation (21) is similar, and is thus omitted.

We now turn to equation (20). We introduce some further notation. Let

Uc,i+1 = {u2i, . . . , u2n−1},

ψi+1 = (bi, φ2i+1, . . . , φj, . . . , φ2n−1)
′ ,

and let Sop,i+1 be a random sample selected in Uc,i+1 by means of ordered pivotal

sampling with parameter ψi+1. We have

pr (Xi+1 = u2i | X1, . . . , Xi−1, Xi = u2i−1,Wi = u2i−1)

= pr (Xi+1 = u2i | X1, . . . , Xi−1, Xi = u2i−1, Ji = u2i)
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≡ pr (u2i ∈ Sop,i+1) = bi, (22)

where the second line in (22) comes from

{Xi = u2i−1,Wi = u2i−1} ⇔ {Xi = u2i−1, Ji = u2i}.

Also,

pr (Xi+1 = u2i | X1, . . . , Xi−1, Xi = u2i−1, Ji = u2i−1) = 1, (23)

since

{Xi = u2i−1, Ji = u2i−1} ⇒ {Xi = u2i−1,Wi = u2i}

⇒ {Xi+1 = u2i}.

Further,

pr (Wi = u2i−1 | X1, . . . , Xi−1, Xi = u2i−1)

= pr (Wi = u2i−1 | Xi = u2i−1)

= pr (Xi = u2i−1 | Wi = u2i−1)
pr (Wi = u2i−1)

pr (Xi = u2i−1)
(24)

= 1× (1− ai − bi−1)(1− ai − bi) {(1− ai)(1− bi)}−1

1− ai − bi−1

=
1− ai − bi

(1− ai)(1− bi)
,

the fourth line in (24) being a consequence of Lemma 3. The same reasoning leads

to

pr (Ji = u2i−1 | X1, . . . , Xi−1, Xi = u2i−1)
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= pr (Ji = u2i−1 | Xi = u2i−1)

= pr (Xi = u2i−1 | Ji = u2i−1)
pr (Ji = u2i−1)

pr (Xi = u2i−1)
(25)

= bi ×
ai(1− ai − bi−1) {(1− ai)(1− bi)}−1

1− ai − bi−1

=
aibi

(1− ai)(1− bi)
.

From equations (22)-(25), we obtain that

pr (Xi+1 = u2i | X1, . . . , Xi−1, Xi = u2i−1)

= bi ×
1− ai − bi

(1− ai)(1− bi)
+ 1× aibi

(1− ai)(1− bi)

=
bi

1− ai
.

Similar computations lead to

pr (Xi+1 = u2i+1 | X1, . . . , Xi−1, Xi = u2i−1) =
(1− bi − ai+1)(1− ai − bi)

(1− ai)(1− bi)

and

pr (Xi+1 = u2i+2 | X1, . . . , Xi−1, Xi = u2i−1) =
ai+1(1− ai − bi)
(1− ai)(1− bi)

,

which proves (20).

Theorem 1 implies that ordered pivotal sampling shares the same second-order

inclusion probabilities as Deville’s systematic sampling. The computation of these

probabilities is developed in Deville (1998), and is reminded below.

Theorem 2 (Deville, 1998) Let k and l be two distinct units in U . If k and l are
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two non cross-border units that belong to the same microstratum Ui, then

πkl = 0,

if k and l are two non cross-border units that belong to distinct microstrata Ui and

Uj , respectively, where i < j, then

πkl = πkπl {1− c(i, j)} ,

if k = ki−1 and l is a non cross-border unit that belongs to the microstratum Uj

where i ≤ j, then

πkl = πkπl
[
1− bi−1(1− πk) {πk(1− bi−1)}−1 c(i, j)

]
,

if l = kj−1 and k is a non cross-border unit that belongs to the microstratum Ui

where i < j, then

πkl = πkπl
{
1− (1− πl)(1− bj−1)(πlbj−1)

−1c(i, j)
}
,

if k = pi−1 and l = pj−1, where i < j, then

πkl = πkπl
[
1− bi−1(1− bj−1)(1− πk)(1− πl) {πkπlbj−1(1− bi−1)}−1 c(i, j)

]
,

where c(i, j) =
∏j−1

l=i cl, cl = albl {(1− al)(1− bl)}−1 and with c(i, i) = 1.

As noticed by Deville (1998), it follows from Theorem 2 that many of the

second-order inclusion probabilities are zero. As a result, no unbiased variance

estimator may be found for the Horvitz-Thompson estimator. The search for vari-

ance estimators under reasonable model assumptions for the variable of interest y

is a matter for further research.
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6 Interest of ordered pivotal sampling

This is clear from Theorems 1 and 2 that ordered pivotal sampling induces a sam-

pling design with a rather small entropy, since the second-order inclusion prob-

abilities heavily depend on the order of the units in the population. If the maxi-

mization of entropy is a major concern, randomized pivotal sampling, where the

list of the units in the population is randomly ordered before applying the piv-

otal method, should certainly be preferred. The main interest of ordered pivotal

sampling lies in the gain of precision obtained from a stratification effect, if the

ranking of the units in the population is well correlated to the variable of interest.

In this sense, ordered pivotal sampling is similar in spirit to classical, ordered sys-

tematic sampling. However, systematic sampling can be particularly inefficient if

the ordering is unappropriate, with regard to the variable of interest. Ordered piv-

otal sampling introduces more randomization in the sampling process, and should

be more robust, in some sense, than systematic sampling.

To fix ideas, we consider the case of (i) equal inclusion probabilities πk =

n/N , such that (ii) the population size N is an integer multiple of the sample size

n, and we note N = n p. In this case, the microstrata Ui, i = 1, . . . , n, are non

overlapping with the same size Ni = p. We have

Ui = {(i− 1)p+ 1, . . . , (i− 1)p+ p}, (26)

and ordered pivotal sampling amounts to stratified simple random sampling of

size ni = 1 inside each microstratum Ui. Let y denote some variable of interest,

and let

t̂yπ =
∑
k∈S

yk
πk

(27)
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denote the Horvitz-Thompson (HT) estimator of the total ty =
∑

k∈U yk.

This is a standard fact that the variance of the HT-estimator under without-

replacement simple random sampling is given by

Vsrs
(
t̂yπ
)

= N2 1− f
n

S2
y , (28)

where f = n/N , S2
y = 1

N−1

∑
k∈U (yk − µy)2 and µy = 1

N

∑
k∈U yk. On the

other hand, the variance of the HT-estimator under ordered pivotal sampling and

assumptions (i) and (ii) may be written as

Vops
(
t̂yπ
)

= N2 1− f
n

1

n

n∑
i=1

S2
yi, (29)

where S2
yi = 1

Ni−1

∑
k∈Ui (yk − µyi)

2 and µyi = 1
Ni

∑
k∈Ui yk. Finally, it is well-

known that under the same assumptions (i) and (ii), systematic sampling amounts

to simple random sampling of size m = 1 in the population Gc = {g1, . . . , gp} of

M = p clusters, where each cluster

gj = {j, j + p, . . . , j + (n− 1)p} (30)

contains Mj = n units. The variance of the HT-estimator under systematic sam-

pling is then given by

Vsys
(
t̂yπ
)

= N2 1− f
n

1

n
S2
Y , (31)

where

S2
Y =

1

M − 1

p∑
j=1

(
tyj −

ty
M

)2
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=
n2

p− 1

p∑
j=1

(myj − µy)2 ,

with tyj =
∑

k∈Gj yk and myj = tyj/n.

As a measure of risk of a strategy combining a sampling design p(·) and HT-

estimation, we use the maximum design-effect

DMAX(p) = max
y∈C

Vp
(
t̂yπ
)

Vsrs
(
t̂yπ
) , (32)

where C denotes the set of non-constant variables of interest (that is, containing

all variables y such that S2
y 6= 0).

Theorem 3 Assume that conditions (i) and (ii) are satisfied. Then we have for

ordered pivotal sampling

DMAX(ops) =
N − 1

N − n
(33)

and for ordered systematic sampling

DMAX(sys) = n
N − 1

N − n
. (34)

Proof of theorem. For any variable y, it follows from a standard analysis of

variance that

S2
y =

n∑
i=1

p− 1

N − 1
S2
yi +

n∑
i=1

p

N − 1
(µyi − µy)2 ,

so that
n∑
i=1

S2
yi ≤

N − 1

p− 1
S2
y
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and the equality occurs if all the stratum means µyi are equal. A joint application

of (28) and (29) leads to

Vops
(
t̂yπ
)

Vsrs
(
t̂yπ
) ≤ N−1

n(p−1)
S2
y

S2
y

=
N − 1

N − n
,

which gives (33). The use of an alternative analysis of variance leads to

S2
y =

p∑
j=1

n− 1

N − 1
σ2
yj +

p∑
j=1

n

N − 1
(myj − µy)2 ,

where σ2
yj = 1

n−1

∑
k∈Gj (yk −myj)

2. This leads to

S2
Y ≤

n2

p− 1

N − 1

n
S2
y ,

and the equality occurs if the variable y is constant inside any cluster gj . By a

joint application of (28) and (31), we have

Vsys
(
t̂yπ
)

Vsrs
(
t̂yπ
) ≤ n2

p−1
N−1
n2 S

2
y

S2
y

= n
N − 1

N − n
,

which gives (33).

If the sample size n remains small to moderate, equation (33) implies that

DMAX tends to 1 in case of ordered pivotal sampling, if N is sufficiently large.

Even in the worst cases, ordered pivotal sampling will thus be competitive to

simple random sampling. On the other hand, equation (34) implies that a strategy

involving systematic sampling may be considerably more risky in some situations.

To investigate on the properties of considered sampling algorithms, we con-

sidered a small example. We first generated a finite population of size N = 12,

containing three variables of interest, y1, y2 and y3. Table 1 shows the values for
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the three variables of interest. The variable y1 is highly correlated to the order of

the units in the population, on the contrary to variable y2. The variable y3 exhibits

a particularly unfavorable case for systematic sampling.

Table 1: Values of three variables of interest in the generated population

Unit 1 2 3 4 5 6 7 8 9 10 11 12

y1 10 10 10 15 45 45 50 50 60 60 60 65
y2 15 45 10 60 60 50 45 65 10 50 10 60
y3 10 45 60 15 50 65 10 50 60 10 45 60

We considered equal probability sampling of size n = 2 (respectively, n = 4)

by means of (i) simple random sampling without replacement (SRS), (ii) ordered

pivotal sampling (OPS), and (iii) ordered systematic sampling (SYS). As a mea-

sure of variability of the HT-estimator t̂yπ for a sampling design p(·), we consid-

ered the design-effect (DEFF) given by

DEFF =
Vp
(
t̂yπ
)

Vsrs
(
t̂yπ
) , (35)

where the variances are computed by means of formulas (28), (29) and (31). Table

2 shows DEFF for strategies OPS and SYS. It is clear from Table 2 that both

OPS and SYS lead to a subsequent reduction of variance for variable y1, with

DEFF ranging from 0.17 to 0.50 and OPS performing significantly better. The

OPS strategy is essentially similar to SRS for the variable y2 which is poorly

correlated to the order of the units in the population, while SYS may be much

worse (DEFF = 1.39 for n = 2) or far much better (DEFF = 0.36 for n = 4).

Finally, we obtain for the variable y3 a considerable loss for SYS, while the loss

is far much limited for OPS with DEFF = 1.10 for n = 2 and DEFF = 1.36

for n = 4.
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Table 2: Design-effect for three variables of interest and two strategies in the
generated population

Sample size n = 2 Sample size n = 4
y1 y2 y3 y1 y2 y3

OPS 0.35 1.10 1.10 0.17 0.95 1.36
SYS 0.50 1.39 2.18 0.27 0.36 5.44
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