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1. Introduction

Though already strong before the recent financial crisis, the case for including regime shifts
within term-structure models for defaultable bonds is obviously stronger now (see, amongst
many others, Christensen, Lopez and Rudebusch, 2009 [16]). This paper proposes a general
affine term-structure framework aimed at jointly modeling several yield curves associated
with different obligors, in the presence of regime switching.

Motivated by derivative-pricing or credit-risk-management objectives, a large strand of
the literature related to fixed-income securities has focused on the joint modeling of sev-
eral yield curves. In this context, Jarrow, Lando, Turnbull (1997) [42], Lando (1998) [47]
or Duffie and Singleton (1999) [27] have highlighted the potential of affine term-structure
frameworks to jointly model yield curves associated with various obligors subject to default
risk. Their intensity-based –or reduced-form– approaches used to model defaults differ from
the more structural approaches originating in Black and Scholes (1973) [10] and Merton
(1974) [52].1 Whereas the intensity-based framework was originally designed to account for
default risk, it is also appropriate to model liquidity-pricing effects and it can accomodate
time-varying recovery rates as well (see Duffie and Singleton (1999) [27]). Numerous fur-
ther developments have illustrated the flexibility and tractability of affine-term structure
models to capture the comovements of different yield curves (see e.g. Duffee, 1999 [25] or
Gourieroux, Monfort and Polimenis, 2006 [36]).

There is strong evidence of regime switching in the dynamics of interest rates (see, e.g.,
Hamilton, 1988 [39] or Cai, 1994 [11]). Regime shifts have been successfully introduced in
term-structure models of risk-free interest rates by, amongst others, Bansal and Zhou (2002)
[5], Monfort and Pegoraro (2007) [55], Dai, Singleton and Yang (2007) [19] or Ang Bekaert
and Wei (2008) [3]. Whereas these contributions put forward the importance of modeling
regime switching in yield-curve models, a few has been done to integrate such a feature
in term-structure models of defaultable bonds. However, empirical studies point to the
existence of different regimes in the default risk valuation (see, e.g., Davies, 2004 [22] and
2008 [23] or Alexander and Kaeck, 2008 [1]). From a theoretical point of view, Hackbarth,
Miao and Morellec (2006) [38] provide a theoretical model to explain the dependence of
credit spread on business-cycle regimes. In the same vein, Bhamra, Kuehn and Strebulaev
(2007) [8] and David (2008) [21] adopt structural models including regime switching to
assess the influence of different states of the economic cycles on the credit-risk premia.

In our framework, the state variables follow discrete-time conditionally Gaussian pro-
cesses.2 Extending the work of Gourieroux, Monfort and Polimenis (2006) [36], the Gaus-
sian processes present drifts and variance-covariance matrices that are subject to regime
shifts. The latter are described by a Markov chain with (historical) non-homogenous trans-
ition probabilities. Particular attention is paid to the tractability of the model and its
estimation. Tractability is notably obtained through an extensive use of Car’s –Compound
autoregressive processes– properties (see, e.g. Darolles, Gourieroux and Jasiak, 2006 [20]),
which leads to quasi-explicit fomulas for bond prices. Both historical and risk-neutral dy-
namics are explicitly modeled, which is helpful for choosing appropriate specifications under
the historical measure, for dealing simultaneously with pricing and forecasting or also for

1Cathcart and El-Jahel, 2006 [13]) have shown that the two approaches (reduced-form and structural) are
somewhat reconcilable.

2While most of the earliest affine defaultable-bond term-struture models are in continuous-time form (see
e.g. Duffie and Singleton (1999) [27]), Gourieroux, Monfort and Polimenis (2006) [36] have shown that
discrete-time affine models are well-suited to credit-risk modeling and that they present higher flexibility
than their continuous-time counterparts. In particular, the discrete-time framework makes it easier to
properly specifiy the dynamics of the observable risk factors under the historical probability measure.
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Value-at-Risk calculations. We propose a sequential estimation strategy, which is inten-
ded to facilitate the estimation of unobservable factors (including latent risk factors and
regimes).

The modeling of defaults is based on the so-called “doubly-stochastic” assumption: correl-
ations between default events arise solely through dependence on some common underlying
stochastic factors –also termed with “risk factors”– which influence the default probabilities
of every single loans.3 Some of the factors may be unobserved. In this sense, our model
accomodates frailty. This feature is advocated by recent papers suggesting that includ-
ing only observable covariates in default-intensity specifications results in poorly-estimated
conditional probabilities of default (see e.g. Lando and Nielsen, 2008 [48] or Duffie et al.,
2009 [26]).

Including regime shifts in a discrete-time term-structure model may affect pricing through
several channels: (i) regimes affect the historical and risk-neutral dynamics of the risk
factors, (ii) regimes appear in the stochastic discount factor (s.d.f.) –which implies that
regime-transition risk is priced– and (iii) regimes appear in the default-intensity functions.
This results in a large degree of flexibility in the model specifications, which is illustrated
by several numerical examples in the paper. In particular, since default intensitites can
be affected by the regime variable, our model is appropriate to capture default clustering.
Indeed, if one regime implies dramatic increases in the default probabilities of all or part
of the debtors, numerous defaults will simultaneously take place during this regime.

Beyond the enrichment of the specifications of the risk factors and those of the default
intensities by introducing nonlinearities, the regime-switching feature can be exploited to
handle specific forms of contagions. Contagion effects, whose consequences are cascades
of subsequent spread changes, is explained by the existence of close ties between firms
(see, e.g., Jarrow and Yu, 2001 [44], Davies and Lo, 2001 [24] or Giesecke, 2004 [34]).
Contagion takes place when the default probability of any debtor can be affected by the
default event of another one. Given that our baseline model relies on the doubly-stochastic
or conditional-dependence assumption –which states that, conditional to the underlying
factors and regimes, the default events of the firms in a portfolio are independent– direct
contagion effects can not be captured. Nevertheless, we can model specific contagion effects
in two distinct ways. First, our framework can accomodate the specific contagion case where
one entity –or, for the sake of tractability, a small number of them– affects the default
probability of the others: it suffices to make one of the regimes corresponds to the default
state of this entity. Second, the regime-switching feature can be exploited in order to capture
“sector-contagion” phenomena. The sectors can represent different industries or different
geographical areas. Each sector can be “infected” or not. When a sector gets infected, the
default intensities of its constituents (the debtors) shift upwards. In this context, sector
contagion stems from the parameterizations of the matrix of regime-transition probabilities.
For instance, you can easily model infection probabilities that depend positively on the
number of sectors already infected.

Our baseline model considers only one credit event: the default of the debtor. However,
credit events include more generally the changes in credit ratings like these attributed by
agencies like Moody’s, Standard & Poor’s or Fitch. There are several reasons why it may be
desirable to model not only default events but also rating transitions (see Cantor, 2004 [12]
or Gagliardini and Gourieroux, 2001 [33]).4 It turns out that our framework can be adapted

3In our framework, these shocks include both Gaussian shocks and regime-shift shocks.
4Several of the main credit models currently being used in the industry, such as J.P. Morgan’s CreditMetrics

(1997) [45], draw on the credit-migration approach. For presentation, comparison and evaluation of these
models, see e.g. Gordy (2000) [35].
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to accomodate time-varying credit-rating migrations along the lines of Lando (1998) [47]
while keeping quasi-explicit bond-pricing formulas.5

The remainder of the paper is organized as follows. Sections 2 and 3 respectively present
the historical and risk-neutral dynamics of the variables. Section 4 gives the bond-pricing
formulas with zero or non-zero recovery rates. Section 4 also provides numerical examples.
Section 5 deals with internal-consistency restrictions that arise when yields or asset returns
are included amongst the risk factors. In Section 6, we propose an estimation strategy.
Section 7 shows how the model accomodates the pricing of liquidity. Section 8 investigates
possible extensions of the framework: Subsection 8.1 deals with multi-lag dynamics of
the risk factors; Subsection 8.2 deals with the specific case where one of the Markov chains
coincides with the default state of a given entity and Subsection 8.4 shows how to introduce
rating-migration modeling in the framework. Section 9 concludes.

2. Information and historical dynamics

2.1. Information

The new information of the investors at date t is w′t = (z′t, y
′
t, x

′
t, d

′
t) where zt is a regime

variable that can take a finite number J of values, yt is a multivariate macroeconomic factor,
x
′
t = (x′

1,t, . . . , x
′
N,t) is a set of specific multivariate factors xn,t associated with debtor n,

and d
′
t = (d1,t, . . . , dN,t) is a set of binary variables indicating the default (dn,t = 1) or the

non-default (dn,t = 0) state of entity n. The whole information set of the investors at date t
is w′t = (w′

1, . . . , w
′
t). At this stage, we do not make any assumption about the observability

of these variables by the econometrician (this is done below in Section 6). These regimes
influence bond pricing through different channels (they will appear in the dynamics of
the risk factors yt and xn,t’s, in the stochastic discount factor and in the default-intensity
functions). In the baseline framework, the regimes are viewed as transitory: none of these
regimes is absorbing but this restriction is relaxed in a specific case presented in Subsection
8.2.

2.2. Historical dynamics

It is convenient to make the regime variable zt valued in {e1, . . . , eJ}, the set of column vec-
tors of the identity matrix IJ .6 The conditional distribution of zt given wt−1 is characterized
by the probabilities:

p
(
zt | wt−1

)
= π (zt | zt−1, yt−1) . (1)

The probability π(ej | ei, yt−1) that zt shifts from regime i to regime j between period
t − 1 and t, conditional on yt−1, is also denoted by πij,t−1. These specifications allow for
state-dependent transition probabilities, as in Gray (1996) [37], Ang and Bekaert (2002) [2]
or Dai, Singleton and Yang (2007) [19].

The conditional distribution of yt given zt and wt−1 is Gaussian and given by:

yt = µ (zt, zt−1) + Φyt−1 + Ω (zt, zt−1) εt (2)

where the εt are independently and identically N(0, I) distributed. Specifications (1) and
(2) imply that, in the universe (zt, yt), zt Granger-causes yt, yt causes zt and there is

5Other examples of term-structure models allowing for time-varying rating-migration probabilities include
Bielecki and Rutkowski (2000) [9] and Wei (2003) [58].

6Indeed, this implies that any function of the regimes taking the value fj in the jth regime, say, is the
linear function of zt: f ′zt with f ′ = (f1 . . . fJ).
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instantaneous causality between zt and yt. Moreover, in the universe wt = (zt, yt, xt, dt),
(xt, dt) does not cause (zt, yt). As noted by Ang, Bekaert and Wei (2008) [3], instantaneous
causality between zt and yt implies that the variances of the factors yt, conditional on wt−1,
embed a jump term reflecting the difference in drifts µ accross regimes. Such a feature,
that allows for conditional heteroskedasticity, is absent from the Dai, Singleton and Yang
(2007) [19] setting. However, it should be noted that our framework nests the case where
there is no instantaneous causality between zt and yt in the historical dynamics.7 Contrary
to Bansal and Zhou (2002) [5], matrix Φ is not regime-dependent: this is for the sake of
tractability when it comes to bond pricing.8

The xn,t’s, n = 1, . . . , N are assumed to be independent conditionally to (zt, yt, wt−1).
The conditional distribution of xn,t is Gaussian and defined by:

xn,t = q1n (zt, zt−1) + Q2nyt + Q3nyt−1 + Q4nxn,t−1 + Q5n (zt, zt−1) ηn,t (3)

where the shocks ηn,t are IIN(0, I). Specifications(1), (2) and (3) imply that, in the uni-
verse (zt, yt, xn,t), (zt, yt) causes xn,t, xn,t does not cause (zt, yt) and there is instantaneous
causality between (zt, yt) and xn,t. Moreover, denoting by xn,t the vector xt excluding xn,t,
(xn,t, dt) does not cause (zt, yt, xn,t) in the whole universe wt.

Finally, the dn,t’s, n = 1, . . . , N , are independent conditionally to(zt, yt, xt, wt−1) and the
conditional distribution of dn,t is such that:

p
(
dn,t = 1 | zt, yt, xt, wt−1

)
=

{
1 if dn,t−1 = 1,
1− exp (−λn,t) otherwise,

(4)

with λn,t = α
′
nzt + β

′
nyt + γ

′
nxn,t.

In other words, state 1 of dn,t is an absorbing state and exp (−λn,t) is the survival
probability. Since the default probability 1 − exp (−λn,t) is close to λn,t if λn,t is small,
λn,t is called the default intensity. The default intensity is expected to be postive, which is
not necessarily the case since the εt’s are Gaussian. However, the parameterization of the
model may make this extremely unfrequent.

So, in the universe (zt, yt, xn,t, dn,t), (zt, yt, xn,t) causes dn,t whereas dn,t does not causes
(zt, yt, xn,t) and there is instantaneous causality. In the whole universe wt, (xn,t, dn,t) does
not cause (zt, yt, xn,t, dn,t). The causality scheme is summarized in Figure 1.

Finally, let us consider the conditional Laplace transform of the distribution of (zt, yt)
given wt−1:

ϕt−1(u, v) = Et−1
[
exp

(
u′zt + v′yt

)]
.

Proposition 1. The conditional Laplace transform of (zt, yt) given wt−1 is:

ϕt−1 (u, v) = exp
(
v′Φyt−1 + [l1, . . . , lJ ] zt−1

)
, (5)

where li = log
∑J

j=1 πij,t−1 exp
{
uj + v′µ(ej , ei) + 1

2v′Ω (ej , ei) Ω′ (ej , ei) v
}
.

7Formally, this corresponds to µ (zt, zt−1) = µ (zt−1) and Ω(zt, zt−1) = Ω (zt−1).
8Indeed, the model of Bansal and Zhou (2002) [5] does not admit a closed-form exponential affine solution

(they proceed by linearizing the discrete-time Euler equations and by solving the resulting linear relations
for prices).
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Figure 1: Causality scheme

! !

!
"
! #

"
! $

%&"
!

$
'&"
!

$
(&"
!

)
'&"
!

)
%&"
!

)
(&"
!

!
"
"!#$%&'()*+,-./,01!2#*3!%41,54

#
"
"!#$.%'4.'0'5,.!%,6&!7$.-'%6

$
*&"
"!89:,1'%)6;4.,<.!%,6&!7$.-'%6

=%$014%!>$?6$:,-@

A06-$0-$04'?6!>$?6$:,-@

Proof. We have

ϕt−1 (u, v) = Et−1
(
exp

[
u′zt + v′yt

])

= Et−1
(
exp

[
u′zt + v′µ (zt, zt−1) + v′Φyt−1 + v′Ω (zt, zt−1) εt

])

= E
(
E{exp

[
u′zt + v′µ (zt, zt−1) + v′Φyt−1+

v′Ω (zt, zt−1) εt
]
| wt−1, zt} | wt−1

)

= exp(v′Φyt−1)E
(
exp

{
u′zt + v′µ (zt, zt−1)

}
×

E
(
exp

{
v′Ω (zt, zt−1) εt | wt−1, zt

})
| wt−1

)

= exp(v′Φyt−1)E
(
exp

{
u′zt + v′µ (zt, zt−1)

}
×

1
2
v′Ω (zt, zt−1) Ω′ (zt, zt−1) v | wt−1

)

= exp
(
v′Φyt−1 + [l1, . . . , lJ ] zt−1

)
.

Using the expression given for the li’s leads to the result.

This Laplace transform is not, in general, exponential affine in (zt−1, yt−1), since yt−1

appears in the πij,t’s. However, this is the case if the πij,t’s do not depend on yt−1 and then
(zt, yt) is Car(1) (see Darolles, Gourieroux and Jasiak, 2006[20] or Bertholon, Monfort and
Pegoraro (2008) [7] for in-depth presentations of Car processes).

3. Stochastic discount factor and risk-neutral dynamics

3.1. Stochastic discount factor

We complete the model by specifying the stochastic discount factor Mt−1,t between t − 1
and t:

Mt−1,t = exp
[
−a

′
1zt−1 − b

′
1yt−1 −

1
2
ν
′
(zt, zt−1, yt−1) ν (zt, zt−1, yt−1) +

+ν
′
(zt, zt−1, yt−1) εt + δ

′
(zt−1, yt−1) zt

]
, (6)

with the constraints:
J∑

j=1

πij,t−1 exp [δj (ei, yt−1)] = 1, ∀i, yt−1, (7)
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where δj is the jth component of δ. Using Equation (7), it is easily seen that Et−1(Mt−1,t) =
exp(−a

′
1zt−1 − b

′
1yt−1). Therefore, the riskless short rate between t− 1 and t is:

rt = a
′
1zt−1 + b

′
1yt−1. (8)

In our framework, the variables (xn,t, dn,t), specific to entity n, do not appear in the
stochastic discount factor. This means that these entities have no impact at the macroeco-
nomic level.9 This can be formalised in the following way. Let us assume that the N entities
appearing in the modeling belong to a large population of size Ñ . This large population
could appear in Mt−1,t, for instance through a term of the form

Gt(Ñ) =
1
Ñ

Ñ∑

n=1

(
ν
′
nxn,t + ν

′
0ndn,t

)
.

Since the (xn,t, dn,t), i = 1, . . . , Ñ are independent conditonally to zt, yt
, we have, denoting

respectively by Et and Vt the conditional expectation and variance (or variance-covariance
matrix) given zt, yt

:

Vt

(
Gt

(
Ñ

))
=

1
Ñ2

Ñ∑

n=1

[
ν
′
n, ν0,n

]
Vt

(
x
′
n,t, dn,t

) [
ν
′
n, ν0,n

]
′
.

Assuming that the terms in the sum are bounded when Ñ goes to infinity, which means
that all the entities have a bounded weight in the infinite population, Vt(Gt(Ñ)) goes to
zero, when Ñ goes to infinity and Gt(Ñ) converges in mean square to limÑ→∞Et(Gt(Ñ))
(which is assumed to exist). Therefore, Gt(Ñ) asymptotically depends only on (zt, yt

).
which already appears in Mt−1,t. In some sense, the impact of these entities has been
diversified away.

So the framework of this paper can be used in the context described above, the entities
appearing in the modeling are those of specific interest, and the sequential inference method
proposed in section 6 shows that these entities can be incorporated progressively in the
model.

3.2. Risk-neutral dynamics

3.2.1. The conditional risk-neutral distribution of (zt, yt) given wt−1

Let us now consider the conditional risk-neutral Laplace transform of (zt, yt) given wt−1,
ϕQ

t−1 (u, v) := EQ
t−1 (exp [u′zt + v′yt]), and let us introduce the simplified notations:

µt = µ (zt, zt−1)
Ωt = Ω (zt, zt−1) , Σ(zt, zt−1) = ΩtΩ′t = Σt

νt = ν (zt, zt−1, yt−1)
δt−1 = δ (zt−1, yt−1) .

9Diversifiability assumptions and the implied restrictions on default risk premia are studied in details by
Jarrow, Lando and Yu (2005) [43] (in a continuous-time setting).
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Proposition 2. The conditional risk-neutral Laplace transform of (zt, yt) given wt−1 is:

ϕQ
t−1 (u, v) = exp

[
v′Φyt−1 +

(
A1,t−1(u, v) . . . AJ,t−1(u, v)

)
zt−1

]
, (9)

where

Ai,t−1(u, v) = log(
J∑

j=1

πij,t−1 exp
{

v′Ω (ej , ei) ν (ej , ei, yt−1) +
1
2
v′Σ (ej , ei) v+

v′µ (ej , ei) + uj + δj (ei, yt−1)
})

.

Proof. See Appendix A.1.

We immediately deduce the following Corollary.

Corollary 1. The risk-neutral dynamics of (zt, yt) is Car(1) if the s.d.f. satisfies the
constraints (for any i, j and t):

{
π (ej | ei, yt−1) exp [δj (ei, yt−1)] = π∗ij
Ω (ej , ei) ν (ej , ei, yt−1) = Φ∗yt−1 + µ∗ (ej , ei) ,

(10)

where π∗ij = π∗(ej | ei) does not depend on yt−1, Φ∗ is any matrix and µ∗ is any function.

If such constraints are satisfied, the risk-neutral conditional Laplace transform becomes:

ϕQ
t−1 (u, v) = exp

[
v′ (Φ + Φ∗) yt−1 +

(
A∗1(u, v) . . . A∗J(u, v)

)
zt−1

]
, (11)

with A∗i (u, v) = log
(∑J

j=1 π∗ij exp
{
uj + v′ [µ (ej , ei) + µ∗ (ej , ei)] + 1

2v′Σ (ej , ei) v
})

.

Comparing with equation (5), we deduce that the risk-neutral dynamics of (zt, yt) is then
defined by:

yt = µ (zt, zt−1) + µ∗ (zt, zt−1) + (Φ + Φ∗) yt−1 + Ω (zt, zt−1) ε∗t , (12)

where, under Q, zt is an homogenous Markov chain defined by the transition matrix {π∗ij},
and ε∗t –defined by ε∗t = εt − Ω−1 (zt, zt−1) [µ∗ (zt, zt−1) + Φ∗yt−1]– is IIN (0, I).

The previous results show that an appropriate choice of the s.d.f., that is an appropriate
choice of the risk sensitivity vectors ν and δ pricing respectively the (standardized) innov-
ations εt of yt and the regimes zt, allows to obtain a joint risk-neutral dynamics of (zt, yt)
defined by any transition matrix {π∗ij} and any equation:

yt = µ̃ (zt, zt−1) + Φ̃yt−1 + Ω (zt, zt−1) ε∗t ,

where ε∗t is IIN (0, I). Note that the Ω function is the same in the historical and risk-neutral
worlds.
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3.2.2. The risk-neutral distribution of (xt, dt) given (zt, yt, wt−1)

Lemma 1. Let us consider a partition of wt =
(
w

′
1,t, w

′
2,t

)′

. If Mt−1,t is a function of
(
w1,t, wt−1

)
, the risk-neutral probability density function, or p.d.f. , of w1,t given wt−1 is:

fQ
(
w1,t | wt−1

)
= f

(
w1,t | wt−1

)
Mt−1,t exp (−rt)

(where f is the historical conditional p.d.f. of w1,t given wt−1) and the conditional risk-
neutral distribution of w2,t given

(
w1,t, wt−1

)
is the same as the corresponding historical

distribution.

Proof. See Appendix A.2.

Since Mt−1,t is a function of (zt, yt) but not of (xt, dt), the previous lemma shows that
the risk-neutral distribution of (xt, dt) given

(
zt, yt, wt−1

)
is the same as the historical one

and it is given by equations (3) and (4). In particular, the functional forms of the default
intensities λn,t are the same as in the historical world. Of course, since the dynamics of
(zt, yt) are different in the two worlds, the same is true for the xn,t’s and the λn,t’s.

In addition, it can be shown that (zt, yt, xn,t) is Car(1) under the risk-neutral measure
(see Appendix A.3). However, it is not the case for (zt, yt, xn,t, dn,t).

It is also clear that the causality structure of the risk-neutral dynamics is similar to
the historical one, the only difference being the non-causality from yt to zt implied by the
homogeneity of the matrix {π∗ij}.

3.3. Discussion of the constraints on the SDF

Constraints (10) can be written:
{

δj (zt−1, yt−1) = log
(

π∗(ej |zt−1)
π(ej |zt−1,yt−1)

)

ν (zt, zt−1, yt−1) = Ω−1 (zt, zt−1) [Φ∗yt−1 + µ∗ (zt, zt−1)] ,
(13)

where the transition matrix {π∗ij}, the matrix Φ∗ and the vectors µ∗ (ej , ei) are arbitrary.
Note that constraints (7) imposed on δ are automatically satisfied by the parameterization
(13). Recall that constraints (10) are imposed so as to obtain a Car dynamics of the
state variable under the risk-neutral measure. These constraints could be relaxed, but at
the cost of losing the analytical tractability in the bond pricing (as will be shown below).
Even if we impose a Car risk-neutral dynamics, we still have a large number of degrees of
freedom in the specification of the s.d.f. since Φ∗, µ∗(zt, zt−1) and the π∗ij ’s are then chosen
arbitrarily. However, we may wish to parameterize more parsimoniously the s.d.f. and,
therefore, impose stronger constraints on the risk-neutral dynamics. Let us illustrate this
point by a simple bivariate example.

The historical dynamics is defined by:
[

y1,t

y2,t

]
=

[
µ1

µ′2zt

]
+

[
ϕ11 ϕ12

ϕ21 ϕ22

] [
y1,t−1

y2,t−1

]
+

[
σ1ε1,t

(σ′2zt) ε2,t

]

and by some πij,t’s. Moreover, let us assume that we impose an additive risk-sensitivity
vector ν:

ν(zt, zt−1, yt−1) =
(

b′1yt−1 + ν ′1zt

b′2yt−1 + ν ′2zt

)
.

9



We get:

Ω(zt, zt−1)ν(zt, zt−1, yt−1) =
[

σ1b′1yt−1 + σ1ν ′1zt

σ′2zt (b′2yt−1 + ν ′2zt)

]
,

which must be additive of the form Φ∗yt−1 + µ∗(zt, zt−1). It is only possible if b2 = 0 and
in this case we get:

Φ∗ =
[

σ1b′1
0

]
and µ∗(zt, zt−1) =

[
σ1ν ′1zt

(σ2 % ν2)′zt

]
,

where % denotes the Hadamard (element by element) product. In other words Φ∗ =[
ϕ∗

′
1

0

]
, µ∗(zt, zt−1) =

[
µ∗

′
1 zt

µ∗
′

2 zt

]
where ϕ∗1, µ∗1 and µ∗2 are arbitrary. Finally, the risk-

neutral dynamics is given by:
[

y1,t

y2,t

]
=

[
µ̃′1zt

µ̃′2zt

]
+

[
ϕ̃11 ϕ̃12

ϕ21 ϕ22

] [
y1,t−1

y2,t−1

]
+

[
σ1ε∗1,t

(σ′2zt) ε∗2,t

]

and by {π*
ij} where ϕ̃11, ϕ̃12, µ̃1, µ̃2 and the π*

ij ’s are arbitrary, but the autoregressive
coefficients of the second equations are the same as in the historical dynamics.

4. Pricing

4.1. Pricing of riskless zero-coupon bonds

It is well-known that the existence of a positive stochastic discount factor is equivalent to
the absence of arbitrage opportunities (see Hansen and Richard, 1987 [41] and Berholon,
Monfort and Pegoraro, 2007 [7]) and that the price at t of a zero-coupon bond with residual
maturity h is given by:

B (t, h) = EQ
t [exp (−rt+1 − . . .− rt+h)] , (14)

where rt+i = a
′
1zt+i−1 + b

′
1yt+i−1, i = 1, . . . , h. Since (zt, yt) is Car(1) under Q, B(t, h) is

easily computed using the following lemma:

Lemma 2. Let us consider a multivariate Car(1) process Zt and its conditional Laplace
transform given by exp [a′(s)Zt + b(s)]. Let us further denote by Lt,h(ω) its multi-horizon
Laplace transform given by:

Lt,h(ω) = Et
[
exp

(
ω′H−h+1Zt+1 + . . . + ω′HZt+h

)]
, t = 1, . . . , T, h = 1, . . . ,H,

where ω = (ω′1, . . . , ω′H) is a given sequence of vectors. We have, for any t,

Lt,h(ω) = exp
(
A′hZt + Bh

)
, h = 1, . . . ,H,

where the sequences Ah, Bh, h = 1, . . . ,H are obtained recursively by:

Ah = a(ωH−h+1 + Ah−1)
Bh = b(ωH−h+1 + Ah−1) + Bh−1,

with the initial conditions A0 = 0 and B0 = 0.

10



Proof. See Appendix A.4.

From Equation (11) we know that (zt, yt) is risk-neutral Car(1) and that its conditional
Laplace transform is based on the functions:

a′(u, v) =
[
(A∗1(u, v), . . . , A∗J(u, v)), v′(Φ + Φ∗)

]
and

b(u, v) = 0.

so we have the following proposition:

Proposition 3. We have:

B (t, h) = exp
(
−a

′
hzt − b

′
hyt

)
, (15)

and the yield of residual maturity h, R(t, h) is given by:

R(t, h) =
1
h

(
a′hzt + b

′
hyt

)
, (16)

where ah and bh are computed recursively, for h = 1, . . . ,H, by (with a0 = a1 and b0 = b1):

(a′h, b′h) = (a′1, b
′
1)− a′

(
ωH−h+1 −

(
a′h−1 − a′1, b

′
h−1 − b′1

)′)
,

where the sequence ωh, h = 1, . . . ,H is defined by ωH = 0, ω1 = ω2 = . . . = ωH−1 =
(−a′1,−b′1)′ and where a′(u, v) = [(A∗1(u, v), . . . , A∗J(u, v)), v′(Φ + Φ∗)].

Proof. See Appendix A.5.

4.2. Pricing of (zero-recovery-rate) defaultable bonds

A defaultable zero-coupon bond providing one money unit at t + h if entity n is still alive
at t + h and zero otherwise has a price at t given by:

BD
n (t, h) = EQ

t

[
exp (−rt+1 − . . .− rt+h) I{dn,t+h=0}

]
(17)

if dn,t = 0 and 0 otherwise.

Proposition 4. The price of a zero-recovery-rate zero-coupon defaultable bond issued by
debtor n is such that:

BD
n (t, h) = EQ

t

[
exp

(
−rt+1 − . . .− rt+h − α

′
nzt+1 − β

′
nyt+1 − γ

′
nxn,t+1 − . . .

− . . .− α
′
nzt+h − β

′
nyt+h − γ

′
nxn,t+h

)]
. (18)

11



Proof. Equation (17) can be rewritten:

BD
n (t, h) = EQ

t

[
EQ

(
exp (−rt+1 − . . .− rt+h) I{dn,t+h=0} | zt+h, y

t+h
, xn,t+h, dn,t = 0

)]

= EQ
t

[
exp (−rt+1 − . . .− rt+h) Q

(
dn,t+h = 0 | zt+h, y

t+h
, xn,t+h, dn,t = 0

)]
.

Moreover,

Q
(
dn,t+h = 0 | zt+h, y

t+h
, xn,t+h, dn,t = 0

)

=
∏h

i=1 Q
(
dn,t+i = 0 | zt+h, y

t+h
, xn,t+h, dn,t+i−1 = 0

)

and, since dn,t does not Q-cause (zt, yt, xn,t) in the Granger’s or Sims’ sense, we have:10

Q
(
dn,t+i = 0 | zt+h, y

t+h
, xn,t+h, dn,t+i−1 = 0

)

= Q
(
dn,t+i = 0 | zt+i, yt+i

, xn,t+i, dn,t+i−1 = 0
)

= exp (−λn,t+i) .

where the last equality comes from the fact that the conditional historical and risk-neutral
distributions of dn,t are the same (see Subsection 3.2.2).

It can be shown (see Appendix A.3) that (zt, yt, xn,t) is Car(1) under Q, with a conditional
Laplace transform of the type exp[a′(u, v, w)(z′t, y′t, x′n,t)] where a(u, v, w) = [(Ã1, . . . , ÃJ), (v′+
w′Q2n)(Φ + Φ∗) + w′Q3n, w′Q4n], where

Ãi(u, v, w) = log(
J∑

j=1

π∗ij exp{uj + (v′ + w′Q2n) [µ (ej , ei) + µ∗ (ej , ei)] + w′q1n (ej , ei) +

1
2
(v′ + w′Q2n)Σ (ej , ei) (v + Q′

2nw) +
1
2
w′Q5n (ej , ei)Q′

5n (ej , ei)w}).

Therefore we have the following result:

Proposition 5. The price of a zero-recovery-rate zero-coupon defaultable bond issued by
debtor n is given by:

BD
n (t, h) = exp

(
−c

′
n,hzt − f

′
n,hyt − g

′
n,hxn,t

)
(19)

and the defaultable yields are:

RD
n (t, h) =

1
h

(
c
′
n,hzt + f

′
n,hyt + g

′
n,hxn,t

)
, (20)

where (c′n,h, f ′n,h, g′n,h) is computed recursively by:
(
c′n,h, f ′n,h, g′n,h

)
=

(
a′1, b

′
1, 0

)
− a

(
ωH−h+1 −

(
c′n,h−1 − a′1, f

′
n,h−1 − b′1,−g′n,h−1

)′)

where the sequence ωh, h = 1, . . . ,H is defined by ωH = (−α′n,−β′n,−γ′n) and ωh = (−α′n−
a′1,−β′n − b′1,−γ′n) for h = 1, . . . ,H − 1, with cn,0 = a1, fn,0 = b1, gn,0 = 0.
10A process Xt does not cause Yt in Granger’s sense if and only if, for any t, Yt is independent of

(Xt−1, . . . , X1) conditionally on (Yt−1, . . . , Y1). This is equivalent to the non-causality in Sims’ sense
(Xt does not cause the stochastic process Yt in Sims’ sense iff Xt is independent from(Yt+1, Yt+2, . . . , YT )
conditionally on (Yt, Xt−1,Yt−1, . . . , X1, Y1)).
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Proof. See Appendix A.6.

In this setting, credit spreads are given by:

sn(t, h) = RD
n (t, h)−Rn(t, h)

=
1
h

[
(cn,h − ah)

′
zt + (fn,h − bh)

′
yt + g

′
hxn,t

]
. (21)

4.3. Pricing of non-zero-recovery-rate defaultable bonds

Formula (18), which can read

BD
n (t, h) = EQ

t [exp (−rt+1 − . . .− rt+h − λn,t+1 − . . .− λn,t+h)] , (22)

has been obtained under the assumption of zero recovery rate. This formula can be extended
to the case with non-zero recovery rates, providing that the λn,t’s are interpreted as risk-
neutral “recovery-adjusted” default intensities. More precisely, we have the following result
(dropping the subscript n for the sake of clarity):

Proposition 6. If, for any bond issued by debtor n before t, the recovery payoff –that is
assumed to be paid at time t in case of default between t−1 and t of debtor n– is equal to the
product of a function ζn,t of the information available at time t by the survival-contingent
market value of the bond at t, the price at t of a bond with residual maturity h is:

BDR
n (t, h) = EQ

t

[
exp(−rt+h − . . .− rt+h − λ̃n,t+1 − . . .− λ̃n,t+h)

]
, (23)

where λ̃n,s is defined by (for any s):

exp(−λ̃n,s) = exp(−λn,s) + (1− exp(−λn,s)) ζn,s.

Proof. See Appendix A.7.

The assumption of Proposition 6 is similar to the “Recovery of Market Value” assumption
made by Duffie and Singleton (1999) [27] except that, in their discrete-time approach, they
assume that ζt is known at time t − 1, and that conditionally to the information at t − 1,
dn,t is independent of the recovery payoff at t.

4.4. Numerical example

This subsection proposes a simple numerical experiment to illustrate some properties of the
model.

Let us consider a model with two regimes. Whereas the first regime (zt = [1, 0]′) cor-
responds to “normal times”, the second (zt = [0, 1]′) is intended to capture crisis periods.
Table 1 defines the dynamics of macroeconomic and regime variables. A first macroeco-
nomic variable, denoted by yr,t, follows an AR(1) with innovation εt ∼ NIID(0, 1). A
second macroeconomic variables, denoted by yz,t, is deterministic conditionally to zt. This
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variable acts like a memory of past crisis periods. Intuitively, if it was infinitely persist-
ent (i.e., if we had yz,t =

[
0 1

]
zt + yz,t−1), yz,t would count the number of past crisis

periods. The crisis regime is far more persistent under the risk-neutral measure than under
the historical one: under the former measure, the life expectancy of the crisis regime is
4 periods while it is of 100 periods under the latter measure. The short rate is given by
rt+1 = 0.04 + yr,t.

Table 1 – Dynamics under both measures

Under P Under Q
Dynamics of yr,t = 0.6yr,t−1 + εt yr,t = 0.3 + 0.8yr,t−1 + εt

macro. variables yz,t =
[

0 1
]
zt + 0.8yz,t−1 yz,t =

[
0 1

]
zt + 0.9yz,t−1

Transition proba. {πi,j} =
[

0.98 0.02
0.25 0.75

] {
π∗i,j

}
=

[
0.98 0.02
0.01 0.99

]

Let us consider two firms. These firms are characterized by their respective default
intensitites λ1,t and λ2,t:





λ1,t =

[
0.01 0.03

]
zt +

[
0.002 0.000

]
[ yr,t yz,t ]′

λ2,t =
[

0.01 0.01
]
zt +

[
0.002 0.010

]
[ yr,t yz,t ]′.

Both types of firms are affected during crises but not in the same manner. Specifically,
whereas the default intensity of firm 1 depends directly on zt, the effect of the crisis on
the default intensity of firm 2 works through yz,t. The upper panel of Figure 2 displays a
simulated sample of (zt, yr,t, yz,t). The lower panel shows the implied default intensities. It
turns out that the default intensity of firm 2 reacts in a more progressive but also in a more
persistent manner to crisis events than the default intensity of firm 1.

Figure 2: Simulation of default intensities for the two types of firms
Notes: The figure displays simulated trajectories of the macroeconomic factors yr,t and yz,t (upper panel) and of the
associated default intensities for the two types of firms (lower panel). The grey-shaded areas indicate crisis periods (second
regime zt = [ 0 1 ]).
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Figure 3 shows the yield curves for both firms when yr,t is equal to its unconditional
mean (zero) and when yz,t−1 = 0. As expected, for all maturities, yields are higher in the
crisis regime (grey solid lines) than in the normal-times regime (black solid lines). The
plots also report the yield curves that would be observed if the representative investor were
risk-neutral or, equivalently, if the risk-neutral measure were identical to the historical one
(dashed lines). The yield differentials between solid lines and dashed lines correspond to
risk premia. These premia are particularly high in the crisis regime and for firm 2. Indeed,
recall that the crisis regime is very persistent under the risk-neutral measure. Accordingly,
there is a high risk-neutral probability –compared to the historical probability– that the
crisis regime continues in the next periods. Since the default intensity of firm 2 depends on
yz,t, that itself depends on the number of crisis periods, the risk-neutral expectations of the
default intensity increases with maturity. This generates the strong steepness of the yield
curve for firm 2 under the crisis regime (grey solid line).

Figure 3: Yield curves for both types of firms and under both regimes
Notes: The solid lines represent yield curves observed when yr,t = 0 and yz,t−1 = 0. If the representative investor were
risk neutral or, equivalently, if the risk-neutral dynamics were identical to the historical ones, the yield curves would be
given by the dashed lines.

With such a model, one can perform many exercises, one of them being the computation
the distribution of returns provided by various portfolios of defaultable and/or risk-free
bonds. Let us consider an investor that wants to invest a given amount over, say, the next
five years (between time t and time t+5). Assume that she wants to compare three specific
strategies:

• Strategy 0: Purchase of 5-year risk-free zero-coupon bonds (hold till maturity),

• Strategy 1: In period t, purchase of 10-year risk-free zero-coupon bonds and sale of
those bonds in t + 5,

• Strategy 2.a and 2.b: Purchase of 10-year defaultable bonds (issued by firm 1 in
Strategy 2.a and issued by firm 2 in Strategy 2.b) and sale of those bonds in t + 5.

Whereas the return provided by Strategy 0 is known ex ante (it is given by the 5-year
risk-free yields), the returns associated with the other strategies are uncertain. As regards
Strategy 1, uncertainty stems from the fact the price of a 5-year risk-free zero-coupon bond
in t + 5 years is not known at time t. For Strategies 2.a and 2.b, additional uncertainty
comes from the possible default of the indebted firms. Figure 4 displays the distributions of
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the returns of these strategies. It turns out that, conditionally on the absence of default of
firm 2, the return distribution is bi-modal: most of the lower returns (below 3%) correspond
to drawings for which the crisis regime prevails at time t + 5, implying low prices for the
bonds issued by firm 2 (as can be seen on Figure 3).

Figure 4: (Annualized) Returns provided by investment Strategies 0, 1, 2.a and 2.b
Notes: The return distributions are obtained by simulating 20.000 5-year scenrios. Initially, yr,t = 0, yz,t = 0 and
zt = [1, 0]′. The distribution of Strategy-0 returns is a Dirac mass at R(t, 5). The distribution of Strategy-1 returns is
represented in light grey (in black for those yielded by Strategy 2). Returns are logarithmic. Strategies-2 distributions do
not include defaults events (but the proportion of defaults is reported in brackets).

5. Internal consistency (IC) conditions

5.1. IC conditions based on riskless yields

If the short rate rt+1 is a component of yt, for instance the first one, we have to impose
an internal consistency condition implying that rt+1 = a

′
1zt + b

′
1yt is equal to the first

component of yt, that is:
a1 = 0, b1 = ẽ1,

where ẽi is the vector selecting the ith component of yt.
Moreover, if another component of yt, for instance the second one, is equal to a riskless

yield of maturity h0 –ie R(t, h0)– we have to impose that (1/h0)
(
a
′
h0

zt + b
′
h0

yt

)
is equal to

the second component of yt, that is
{

ah0 = 0
bh0 = h0ẽ2.

5.2. IC conditions based on defaultable yields

Similarly, if the first component of xn,t is a defaultable yield with residual maturity h0,
equation (19) implies that we have to impose:






cn,h0 = 0
fn,h0 = 0
gn,h0 = h0ê1.

where êi denotes the vector selecting the ith component of xn,t.
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5.3. IC conditions based on asset returns

If the first component of yt is the geometric return of a market index, we have to impose

exp (−rt+1) EQ
t (exp (y1,t+1)) = 1.

Using equation (11), this gives
(

A∗1,0 . . . A∗J,0

)
zt + (Φ1 + Φ∗1) yt = a

′
1zt + b

′
1yt,

with A∗i,0 = log
{∑J

j=1 π∗ij exp
[
µ1 (ej , ei) + µ∗1 (ej , ei) + 1

2σ2
1 (ej , ei)

]}
, µ1 and µ∗1 being the

first components of µ and µ∗ respectively, σ2
1 being the (1, 1) entry of Σ and Φ1 and Φ∗1 the

first rows of Φ and Φ∗ respectively. Then we get




a1 =

(
A∗1,0 . . . A∗J,0

)′

b1 = (Φ1 + Φ∗1)
′
.

Similarly, if the first component of xn,t is the return of a stock attached to entity n, we
must have:

exp (−rt+1) EQ
t (exp (x1,n,t+1)) = 1

or
rt+1 = log

[
EQ

t (exp (x1,n,t+1))
]
.

Using the fact that (zt, yt, xn,t) is Car(1) under Q (see Appendix A.3), it is readily seen
that log

[
EQ

t (exp (x1,n,t+1))
]

is linear in zt, yt, xn,t and the IC constraint follows.

6. Inference

6.1. Observability

We assume that zt, yt and the xn,t’s are partitioned into zt = (z′1t, z
′
2t)′, yt = (y′1t, y

′
2t)′ and

xt = (x′
1,n,t, x

′
2,n,t)′, that z1t, y1t, x1,n,t are observed by the econometrician and z2t, y2t and

x2,n,t are not. Typically, z1,t and z2,t will be two regime processes valued respectively in
E1 = {e1, . . . , eJ1} and E2 = {e1, . . . , eJ2} so zt will be equal to z1,t⊗ z2,t, where ⊗ denotes
the Kronecker product operator. The implementation of the following estimation strategy
requires that the transition probabilities do not depend on the unobserved vectors y2,t−1.11

Moreover, we assume that we observe at each date t a vector of risk-free yields denoted by
Rt and, for each obligor n, a vector of defaultable yields denoted by RD

n,t. Note that if some
yields are included in the vectors yt or xn,t, they do not enter the vectors Rt and RD

n,t (see
Section 5). The period of observation is {1, . . . , T}.

6.2. Decomposition of the joint p.d.f. and estimation strategy

Let us denote by θzy the vector of parameters defining the historical dynamics of (zt, yt), by
θx
n the vector of parameters defining the conditional p.d.f. of xn,t given zt, yt

, xn,t−1 and by
θd
n the vector of parameters defining the conditional p.d.f. of dn,t given zt, yt

, xn,t, dn,t−1.

11Formally, with the notation of Equation (1), p
“
zt | zt−1, yt−1

”
has to be equal to p

“
zt | zt−1, y1,t−1

”
.
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The joint p.d.f. of wT is:

f (wT , θ) =
T∏

t=1

f
(
zt, yt | zt−1, yt−1

; θzy
)

×
N∏

n=1

T∏

t=1

f
(
xn,t | zt, yt

, xn,t−1; θ
x
n

)

×
N∏

n=1

T∏

t=1

f
(
dn,t | zt, yt

, xn,t, dn,t−1; θ
d
n

)
.

The parameters appearing in Mt−1,t are denoted by θ∗. The theoretical values of Rt and
RD

tn given by the model are denoted by Rt (θzy, θ∗) and RD
nt

(
θzy, θx

n, θd
n, θ∗

)
respectively. A

sequential strategy of estimation is the following:

1. Estimate θzy and θ∗ from the osbervations of y1t, z1t, Rt, t = 1, . . . , T .

2. Estimate the θx
n’s and the θd

n’s from the observations of x1n,t and RD
n,t, t = 1, . . . , T ,

taking as given the values of θzy and θ∗, and the values of y2,t and z2,t being fixed at
the approximated values obtained from step 1.

The remaining of the current section details these two steps. The methodology that is
proposed builds on the so-called inversion technique developed by Chen and Scott (1993)
[15]. This technique is adapted in order to accomodate regime switching.

6.3. Estimation of the parameters (θzy, θ∗)

Using equation (16), we have, with obvious notations:

Rt (θzy, θ∗) = Azt + B1y1,t + B2y2,t.

If m is the dimension of y2t, let us partition Rt in
(
R

′
1,t, R

′
2,t

)′

where R2,t is of dimension
m. With obvious notations, we get:

R2,t (θzy, θ∗) = A2zt + B21y1,t + B22y2,t,

and denoting
(
y
′
1,t, R

′
2,t

)′

by ỹt we get:

ỹt =
(

I 0
B21 B22

)
yt +

(
0

A2

)
zt

or
ỹt = B̃yt + Ãzt

and
yt = B̃−1

(
ỹt − Ãzt

)

and from equation (2) we get:

B̃−1
(
ỹt − Ãzt

)
= µ (zt, zt−1) + Φ

[
B̃−1

(
ỹt−1 − Ãzt−1

)]
+ Ω (zt, zt−1) εt

or
ỹt = Ãzt + B̃µ (zt, zt−1) + B̃Φ

[
B̃−1

(
ỹt−1 − Ãzt−1

)]
+ B̃Ω (zt, zt−1) εt
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or
ỹt = µ̃ (zt, zt−1) + Φ̃ỹt−1 + Ω̃ (zt, zt−1) εt, (24)

with 




µ̃ (zt, zt−1) = Ãzt + B̃µ (zt, zt−1)− B̃ΦB̃−1Ãzt−1

Φ̃ = B̃ΦB̃−1

Ω̃ (zt, zt−1) = B̃Ω (zt, zt−1) .

The conditional distribution of ỹt given zt, ỹt−1
, is similar to that of yt given zt, ỹt−1,

and in particular is Gaussian, the difference being that ỹt is fully observable. Assuming
moreover that the R1,t are observed with Gaussian errors we get, with obvious notations:

R1,t = A1zt + B11y1,t + B12y2,t + ξt

= A1zt + B11y1,t

+B12B
−1
22 (R2t −A2zt −B21y1,t) + ξt, (25)

with ξt ∼ IIN
(
0, σ2I

)
.

Putting equations (24),(25) and (1) together, we have a dynamic model in which the only
latent variables are z2,t and which can be estimated by the maximum likelihood methods
using Hamilton’s approach (see Appendix B for the case when some regime variables are
observed).12 At this stage, IC constraints on (θzy, θ∗) must be taken into account.

6.4. Estimation of
(
θx

n, θ
d
n

)

From the inversion method of 6.3, we can get approximations of the y2,t’s and smoothing
algorithms provide approximations of the z2,t’s (see Kim, 1994 [46]).13 Then using equation
(20), we get:

RD
t,n = Cn

1 z1,t + Cn
2 z2,t + Dn

1 y1,t + Dn
2 y2,t + Fn

1 x1,n,t + Fn
2 x2,n,t. (26)

and using equations (2), (3) and (26) and replacing y2,t and z2,t by their approximations,
we get a system in which the only latent variables are the x2,n,t. Taking θzy and θ∗ as given,
the parameters θx

n and θd
n can be estimated either by an inversion technique or by Kalman

filtering, taking into account IC conditions.
Note that in this strategy, the observable variables dn,t’s have not been used. If the

recovery rate was effectively zero, λn,t would be the default intensity and the conditonal
p.d.f. of dn,t given zt, yt

, xn,t, dn,t−1 would be:

dn,tdn,t−1 + (1− dn,t−1) exp [− (1− dn,t) λn,t]× [1− exp (−λn,t)]dn,t .

This p.d.f. could be incorporated in the likelihood function. However, in the more realistic
case of non-zero recovery rate, we have seen that (see Subsection 4.3) the λn,t’s must be
interpreted as risk-neutral “recovery adjusted” default intensities and, therefore, they cannot
be used for describing the historical dynamics of the dn,t’s.

12Note that this algorithm can handle time-varying transition probabilities (which is required in the case
where the πij ’s depend on y1,t−1).

13Note that in the inversion method, the z2t are replaced by those states presenting the highest smoothed
probabilities.
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6.5. Possible adaptations of the estimation strategy

Mainly for the sake of presentation clarity, the first step of the sequential strategy presented
above involves only observations of macroeconomic factors and riskless yields. In particular,
no credit-spread data are used in the estimation of θ∗, the parameters appearing in the s.d.f.
Mt−1,t as well as in the estimation of the unobserved factors y2,t and of the unobserved
regimes z2,t. However, spread data may contain useful information for the estimation of
θzy and of θ∗. In that case, the strategy should be adapted in order to include credit-
spread data in the first step of the estimation. It can be seen that the main lines of the
estimation strategy are not affected when the vector Rt and y1,t considered in the first
step are respectively augmented with observed defaultable-bond yields and with observable
specific factor x1,n,t (that are associated with the additional yields).14

Another adaptation of the strategy would be the following. The first step presented
above implies a nesting of recursive computations of the theoretical formulas giving riskless
(or risky) rates and recursive computation of the Kitagawa-Hamilton algorithms, which
could be time-consuming. In order to alleviate the computational cost it is possible, for
instance, to estimate first system (24) –or an analogue system including risky rates– with
unconstrained parameters, using standard Kitagawa-Hamilton filter, and then to compute
smoothed estimates values of the zt’s. The latter values of zt would further be considered
as observations and the remaining steps would estimate all the parameters (except the ones
appearing in the πij,t’s) using either inversion techniques or the Kalman filter.

7. Liquidity risk

There is compelling evidence that yields and spreads contain components that are closely
linked to liquidity.15 The estimation of the liquidity premium is of concern for several
reasons. For instance, gauging the liquidity-risk premium provides policy makers –central
bankers in particular– with insights on the valuation of liquidity by the markets (see Taylor
and Williams, 2008 [57], Wu, 2008 [59] or Michaud and Upper, 2008 [53]). Furthermore, if
one wants to extract default probabilities from market data, one has to distinguish between
what is related to default and what is caused by the liquidity of the considered bonds.

However, the identification of the liquidity premium, that is, distinguishing between the
default-related and the liquidity-related components of yield spreads, remains a challenging
task. Empirical evidence points to the existence of commonality amongst the liquidity
components of prices of different bonds (see e.g. Fontaine and Garcia, 2009 [32]). Therefore,
the identification of the liquidity component relies on the ability to exhibit risk factors that
reflects liquidity valuation. Liu, Longstaff and Mandell (2006) [49] and Feldhütter and
Lando (2008) [29] develop affine term-structure models where a liquidity factor is latent
and the identification is based on assumptions regarding the relative liquidity of different
interest-rate instruments.16 Alternatively, the liquidity factor could be proxied by some
observable factors.17 One may resort to intermediate –or mixed– approach, where part

14Naturally, the dimension of R2t should still be equal to the number of unobserved macro-factors y2t.
15The influence of liquidity effects on bond pricing has been investigated, amongst others, by Longstaff

(2004) [50], Chen, Lesmond and Wei (2007) [14], Covitz and Downing (2007) [18].
16In both studies, the liquidity factor that is estimated corresponds to the so-called “convenience yield”,

that can be seen as a premium that one is willing to pay when holding Treasuries. This premium stems
from various features of Treasury securities, such as repo specialness (see Feldhütter and Lando, 2008).

17Amon which: bid-ask spreads, market-depth measures, bond supply, spread between bonds of the same
maturity but with different ages or spread between off-the-run and on-the -run Treasuries (see, e.g.,
Longstaff, 2004[50] or Beber, Brandt and Kavajecz, 2009 [6]). More generally, for credit spread determ-
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of the liquidity-factor dynamics is observable (through observed proxies) and part of it is
latent.

Let us come back to our modeling framework. We have seen in section 4 that incorpo-
rating default risk in the pricing methodology implies to replace the short rate rt+1 by a
“default-adjusted” short-rate rt+1 + λn,t+1. Besides, in order to take into account recovery-
rate effects, λn,t+1 can be seen as a “recovery adjusted” default intensity between t and t+1
(see Appendix A.7). So the price at t of a defaultable asset providing the payoff g

(
wt+h

)

at t + h in case of absence of default, is:

EQ
t

[
exp (−rt+1 − λn,t+1 − . . .− rt+h − λn,t+h) g

(
wt+h

)]
.

As suggested by Duffie and Singleton (1999) [27], intensity-based model can also account
for liquidity effects by introducing a stochastic process that is interpreted as the carrying
cost of non-liquid defaultable securities. This process then appears alongside the default
intensity in the spread between the “pure” –i.e. default and liquidity-adjusted– short rate
and the short rate associated with a defaultable bond. Accordingly, let us introduce an
“illiquidty intensity” between t and t + 1, denoted with λL

n,t+1. If λn,t+1 and λL
n,t+1 are

specified in an affine way,
{

λn,t+1 = α
′
nzt+1 + β

′
nyt+1 + γ

′
nxn,t+1

λL
n,t+1 = αL′

n zt+1 + βL′
n yt+1 + γL′

n xn,t+1,

we could price not only riskless bonds Bn (t, h) and defaultable bonds BD
n (t, h) as above,

but also bonds facing liquidity risk BL
n (t, h) and bonds facing both default and liquidity

risk BDL
n (t, h). We would have:






B (t, h) = EQ
t [exp (−rt+1 − . . .− rt+h)]

BD
n (t, h) = EQ

t [exp (−rt+1 − λn,t+1 − . . .− rt+h − λn,t+h)]
BL

n (t, h) = EQ
t

[
exp

(
−rt+1 − λL

n,t+1 − . . .− rt+h − λL
n,t+h

)]

BDL
n (t, h) = EQ

t

[
exp

(
−rt+1 − λn,t+1 − λL

n,t+1 − . . .− rt+h − λn,t+h − λL
n,t+h

)]
.

In the context of a Car(1) risk-neutral dynamics of (zt, yt, xn,t), these prices are expo-
nential linear in (zt, yt, xn,t) and the corresponding yields are linear in (zt, yt, xn,t).

If the obligors issue only bonds facing both default and liquidity risks, and if the same
factors affect both kinds of intensities, it is not possible to distinguish between the two
of them. In order to operate –or to gain some insights on– a decomposition between the
default intensity on the one hand and the liquidity intensity on the other, one has to rely
on additional assumptions. For instance, these assumptions may reflect some priors about
the relative effects of the risk factors on the different obligors or on the different types of
securities (as in Liu, Longstaff and Mandell (2006) [49] and Feldhütter and Lando (2008)
[29]).

8. Model extensions

8.1. Multi-lag dynamics for yt and xn,t processes

The model can easily be extended to allow for yt and xn,t dynamics that include several lags.
In particular, when observed data are used in the estimation process –the y1,t and x1,n,t

inants, see e.g., Elton (2001) [28] or Collin-Dufresne, Goldstein and Martin (2001) [17].
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defined in Section 6–, preliminary analysis of the data could point to the need of taking
different lags into account to model the historical dynamics of these variables. The flexibility
in the choice of the lag structure constitutes an advantage of working in discrete-time over
most continuous-time models (see, e.g., Monfort and Pegoraro, 2007 [54] or Gourieroux,
Monfort and Polimenis, 2006 [36]).

Equations (2) and (3) imply that the multivariate factors yt and xt follow auto-regressive
process of order one. However, to the extent that a VAR(p) amounts to a VAR(1) once the
last p lags of the endogenous variable are stacked in the same vector, the pricing techniques
of the bonds –namely equations (16) and (20)– are not affected if yt and xt follow VAR(p).
However, in order to make the estimation strategy presented in Section 6 still effective –in
particular regarding inversion techniques–, the unobserved vector variables y2,t and x2,n,t

should not enter equations (2) and (3) with lags larger than one. To the extent that this
restriction only applies to the unobserved factors –for which insights on the appropriate
distributions are a priori not readily available– such a constraint is not really restrictive.

8.2. Interpretation of a regime as the default state of an entity

In this subsection, we consider the specific case where one the Markov chain included in
zt corresponds to the default state of a given entity.18 The specificity of that situation
lies in the fact that the default of this entity then enters the s.d.f.. Therefore, we leave
the framework described in Subsection 3.1 where all defaultable entities were small enough
to have no impact at the macroeconomic level. As a consequence, the “zero” entity may
represent a whole industry or a very big institution. This could be extended to a few major
entities but one has to bear in mind that increasing their number results in an exponential
growth in the dimension of zt.

The fact that this default enter the s.d.f. results in a new component in bond prices: a
compensation for investors risk-aversion towards the default event of entity zero. As pointed
out by Yu (2002) [60] and Jarrow, Lando and Yu (2005) [43], such components arise only
when the default-event risk is not diversifiable.

As mentioned in Section 1, this interpretation is also linked with previous studies at-
tempting to introduce contagion effects in affine term-structure models. Indeed, the default
of entity zero may lead to a simultaneous increase in the default intensities of any other
debtor (through the regime variable zt that may enter all default intensities).

For sake of simplicity, let us assume that such a crisis variable is the only regime captured
by zt, which can be observable or not. In this case, assuming that the state e2 = (0, 1)′ is
the absorbing crisis state, we have:

π (e2 | e2, yt−1) = 1
π (e1 | e2, yt−1) = 0.

Moreover, we could specify:

π (e1 | e1, yt−1) = exp (−λ0,t−1) ,

with λ0,t−1 = α0 + β′0y1,t−1. In this case, λ0,t−1 can be interpreted as a systemic-risk
intensity. Conditions (10) {π (ej | ei, yt−1) exp [δj (ei, yt−1)] = π∗ij} imply the followings:

• π∗21 = 0, π∗22=1, δ1 (e2, yt−1) is undefined, δ2 (e2, yt−1) = 0 and, therefore, δ′ (e2, yt−1) zt =
0.

18We can deal with several Markov chains by writing vector zt as a Kronecker product of several chains.
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• exp [δ1 (e1, yt−1)] = π∗11 exp (λ0,t−1) or δ1 (e1, yt−1) = log π∗11 + α0 + β′0yt−1.

• exp [δ2 (e1, yt−1)] = (1− π∗11) [1− exp (−λ0,t−1)]−1, or δ2 (e1, yt−1) = log (1− π∗11) −
log [1− exp (−α0 − β′0yt−1)].

Denoting π∗11 = exp (−λ∗0), λ∗0 being the systemic-risk intensity in the risk-neutral world,
we get:

δ1 (e1, yt−1) = λ0,t−1 − λ∗0
δ2 (e1, yt−1) = log [1− exp (−λ∗0)]− log [1− exp (−λ0,t−1)]

( log (λ∗0)− log (λ0,t−1) if λ∗0, λ0,t−1 are small.

In particular, the risk-neutral intensity λ∗0 and the historical intensityλ0,t−1 are different
functions, contrary to what happened in the previous sections. Both the riskless yields:

R (t, h) =
1
h

(
a′hzt + b′hyt

)

and the defaultable yields:

RD
n (t, h) =

1
h

(
c′n,hzt + f ′n,hyt + g′n,hxn,t

)

will be different functions of yt (and of xnt for RD
n (t, h)) before and after the systemic crisis.

The term structure of the impact of the systemic crisis will be:
{

a2,h − a1,h for the riskless yield of residual maturity h,

c2,n,h − c1,n,h for the defaultable yield of residual maturity h, for the nthentity.

8.3. A sector-contagion model

8.3.1. General approach

In this subsection, we propose another specific use of the regimes that makes it possible
to model sector-contagion phenomena. As explained in the introduction, our assumptions
prevent us from making the default intensity of any entity depend on the default event of
other entitities. In other words, the baseline framework does not allow us to account for
contagion at the debtor level (except in the specific case presented in 8.2). Nevertheless, as
shown here, this can be done at a sector level, the sectors representing for instance different
industries or different geographical areas.

Specifically, in this model, each debtor belongs to one of the sectors. At each period, a
sector is either “infected” or not infected. When a sector is infected, the default intensities
of its consituent entities tend to be higher. Let us denote by Si,t the state the ith sector
at time t: Si,t is equal to [1, 0]′ if the ith sector is infected at time t, and is equal to [0, 1]′

otherwise. If we have NS sectors, then we have to consider 2NS regimes, the regime variable
zt being given by:

zt = S1,t ⊗ S2,t ⊗ . . .⊗ SNS ,t

where ⊗ denotes the Kronecker product. In such a model, one can make the default
intensity of any firm depend on the state of the sectors (and, in particular, on the state
of its own sector). Further, the sector-contagion phenomena can be obtained through the
specifications of the regime-transition matrix. Indeed, this matrix contains the probabilities
that any sector gets infected (or cured) given the states of the other sectors.
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8.3.2. Numerical example

In this example, the risk-free short-term rate rt+1 has the same historical and risk-neutral
dynamics of as in 4.4. We consider three homogeneous sectors. The probability that a sector
gets cured/infected at time t depends on the number of infected sectors at the previous
period. In that case, the regime-transition matrix is defined by a set of probabilities like
the one reported in Table 2. In our example, the probability of getting infected is far higher
when at least one sector is already infected than when none of them is infected.

Table 2 – Probabilities of getting infected/cured

Number of infected sectors (
∑

i[0, 1]× Si,t) 0 1 2 3
Probability of getting infected (in t + 1) 0.25% 10% 10% NA
Probability of getting cured (in t + 1) NA 10% 10% 10%

The default intensities of sector-i firms are given by:

λi,t = 0.01 + 0.02× I{Si
t=1} + 0.02× I{S1

t =1}I{S2
t =1}I{S3

t =1} + 0.002yr,t,

which implies that the default intensity of a Sector-i entity increases by two percentage
points when Sector i gets infected and increases by an additional two percentage points if
all sectors become infected simultaneously.

Figure 5: Simulated sample of the sector-contagion model
Notes: Each panel corresponds to one sector. There are 600 debtors in the portfolio (200 per sector). The vertical bars
represent the number of firms that have defaulted during the considered period. At the end of each period, defaulted firms
are replaced by new ones (of the same sector). Grey-shaded areas indicate periods during which the considered sector is
in distress. Darker areas indicate periods when all three sectors are in distress.

24



Let us now consider a portfolio of 600 debtors, with 200 debtors in each sector. Figure
5 shows a simulation of the timing of defaults for this portfolio. Each panel corresponds
to one of the three sectors. At one point, Sector 1 gets infected (see the grey area in the
first panel of Figure5). While the default intensities of Sector-2 and Sector-3 firms are not
contemporaneously impacted by the infection of the first sector, 5-year default probabilities
of Sector-2 and Sector-3 firms shift upwards. This is accounted for by the fact that once
Sector 1 is infected, the probability that Sector 2 and Sector 3 get infected over the next
periods is higher. A few periods later, Sector 3 and then Sector 2 get infected.

8.4. Modeling credit-rating transitions

In their seminal study of credit spread, Jarrow, Lando and Turnbull (1997) [42] model
rating transitions as a time-homogenous Markov chain. That is, in their model, whether
a firm’s rating will change in the next period depends on its current rating only and the
probability of changing from one rating to the other remains the same over time. Different
studies suggest however that –per-period– transition probabilities are time-varying (see e.g.
Lucas and Lonski, 1992 [51] or Feng, Gourieroux and Jasiak, 2008 [30]).

In the present subsection, we show how our framework can be adapted in order to account
explicitly for rating migration. Building on Lando’s (1998) [47] approach (see also Feld-
hütter and Lando, 2008 [29]), the structure accomodates a time-varying rating-migration
matrix while allowing different ratings to respond in a correlated yet different fashion to
the same change in the general economic conditions. The time variability of the rating-
migration probabilities results from Gaussian shocks as well as from regime shifts.

8.4.1. Adaptation of the framework

While most of the previous framework is still valid, some changes regard the modeling of
the default intensity. Specifically, the historical dynamics of (zt, yt, xn,t), as well as the s.d.f.
specifications are still given by equations (1), (2), (3) and (6). However, in this adapted
framework, each firm n is also characterized by a credit-rating process, denoted by τn,t. For
any firm n and period t, τn,t can take one of K values: the first K − 1 values correspond
to credit ratings and the Kth corresponds to the default state.19 Like the dn,t’s, the τn,t’s,
n = 1, . . . , N , are independent conditionally to(zt, yt, xt, wt−1). In addition, we assume
that the rating transition probabilities, for firm n and from period t − 1 to period t, is a
function of (zt, yt, xn,t). Accordingly, this transition matrix is denoted with Π(zt, yt, xn,t)
and we have:

P (τn,t = j | τn,t−1 = i) = Πi,j(zt, yt, xn,t),

where Πi,j(zt, yt, xn,t), the (i, j) entry of Π(zt, yt, xn,t), represents the actual probability of
going from state i to state j in one time step. Each of these entries must be in [0, 1] and
for each line, the sum of the entries must sum to one. In other words,

[
1 · · · 1

]′ is an
eigenvector of Π(zt, yt, xn,t) associated with the eigenvalue 1. In addition, the default state
being absorbing, the bottom row of Π(zt, yt, xn,t) is equal to

[
0 · · · 0 1

]
.

In this context, a defaultable zero-coupon bond providing one money unit at t + h if
entity n is still alive in t + h and zero otherwise has a price, in period t, that is given by
(assuming that entity n has not defaulted before t):

BD
n (t, h) = EQ

t

[
exp (−rt+1 − . . .− rt+h) I{τn,t+h<K}

]
. (27)

19For instance, rating 1 can be the highest (Aaa in Moody’s rankings) and K−1 can be the lowest (C in
Moody’s rankings). In addition, we have, dn,t = I (τn,t = K) .
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In order to keep a quasi-explicit formula for defaultable zero-coupon bonds, we assume
that Π(zt, yt, xn,t) admits the diagonal representation:

Π(zt, yt, xn,t) = V.Ψ(zt, yt, xn,t).V −1,

where the columns of V are the eigenvectors of Π(zt, yt, xn,t) and constitute a basis in RK

and Ψ(zt, yt, xn,t) is a diagonal matrix of eigenvalues that are positive and smaller than
one.20 Given that 1 is an eigenvalue of Π(zt, yt, xn,t) , Ψ(zt, yt, xn,t) can be written in the
following manner:

Ψ(zt, yt, xn,t) =





exp [−ψ1 (wt)] 0 · · · 0

0 . . . . . . ...
... . . . exp [−ψK−1 (wt)] 0
0 · · · 0 1




,

with, for any i < K, ψi (wt) ≥ 0. Then, it is easily seen that, conditionally on
(
zt+h, y

t+h
,

xn,t+h, τn,t = i
)

the probability of defaulting before t+h corresponds to the entry (i, K) of
the matrix that is given by:

V.Ψ(zt+1, yt+1, xn,t+1) . . .Ψ(zt+h, yt+h, xn,t+h).V −1.

This probability is therefore given by:

P (τn,t+h = K | zt+h, y
t+h

, xn,t+h, τn,t = i) =
K∑

j=1

Vi,jV
−1
j,K exp



−
h∑

p=1

ψj (wt+p)



 ,

where Vi,j and V −1
i,j are the entries (i, j) of , respectively,V and V −1. Since Vi,KV −1

K,K = 1
(see Appendix C) using ψK ≡ 0, we get:

P (τn,t+h < K | zt+h, y
t+h

, xn,t+h, τn,t = i) = −
K−1∑

j=1

Vi,jV
−1
j,K exp



−
h∑

p=1

ψj (wt+p)



 . (28)

If the eigenvalues ψj are some linear combinations of (zt, yt, xn,t), Equations (27) and
(28) imply that the price of a bond is a sum of K − 1 multi-horizon Laplace tranforms. As
a consequence, the bond prices can be obtained using the algorithm presented in Lemma 2.
However, it should be noted that in this context, the prices are no longer exponential affine
in the factors, which implies in particular that the Kalman filter has to be adapted so as to
accomodate the nonlinearity of the state-space measurement equations. In such a context,
Feldhütter and Lando (2008) [29] use the extended Kalman filter. As an alternative, the
unscented Kalman filter can be implemented.

8.4.2. Numerical example

Let us consider again the processes rt and zt as specified in 4.4. In the present model, the
credit-migration matrices are of the form:

Π(zt, yt, xn,t) = V.





exp [−α1zt − β1yr,t] 0 · · · 0

0 . . . . . . ...
... . . . exp [−αK−1zt − βK−1yr,t] 0
0 · · · 0 1




.V −1

20The fact that the eigenvalues have a modulus smaller than one is necessary in the case of time-homogenous
Markov chain processes.
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In order to get plausible plausible matrices, the first-regime calibration –that involves the
αi,1’s– is based on the one-year-average rating-migration matrix for European corporates
provided by Moody’s (Moody’s, 2010 [56]). This matrix is reported in Table 3. The spectral
decomposition of this matrix provides us with the matrix of eigenvectors V . The eigenvalues
are real and comprised between 0 and 1. Accordingly, they are of the form exp(−αi,1). The
αi,1 are reported in Table 4. The definition of the second regime requires a second set of
αi’s, denoted by {αi,2}i=1...K−1. We calibrate the latter in order to have 5-year default
probabilities that are higher than those obtained with the first-regime transition matrix
(see Table 4).21 Finally, the βi’s are given by (αi,1 − αi,2)/5.

Table 3 – Baseline matrix of rating-migration probabilities

Notes: This matrix is based on Moody’s (2010) [56] (Exhibit 12: One-year average ratings-transition
for European corporates 1985-2009). According to the industry standard, the probability of transitions
to the “not rated” state is distributed among all states in proportion to their values (see Bangia et al.,
2002 [4]).

Aaa Aa A Baa Ba B Caa-C Default
Aaa 0.911 0.084 0.004 0.000 0.001 0.000 0.000 0.000
Aa 0.009 0.902 0.083 0.005 0.000 0.000 0.000 0.000
A 0.000 0.042 0.898 0.055 0.003 0.000 0.000 0.001
Baa 0.000 0.004 0.072 0.868 0.041 0.009 0.003 0.001
Ba 0.000 0.000 0.007 0.074 0.788 0.107 0.012 0.011
B 0.000 0.000 0.004 0.004 0.073 0.794 0.092 0.033
Caa-C 0.000 0.003 0.001 0.000 0.007 0.106 0.706 0.177

Table 4 – Eigenvalues of the transition matrix under both regimes

Notes: “Regime 1” is consistent with the transition matrix reported in Table 3. Regime 2 is intended
to depict a “crisis” regime. The αi,j ’s (i = 1, . . . , 7, j = 1, 2) are such that the exp(−αi,j)’s are
the eigenvalues –those different from 1– of the rating-transition matrix obtained under regime j (when
yr,t = 0).

5-yr default prob. Aaa Aa A Baa Ba B Caa-C
Regime 1 0.057% 0.24% 0.80% 1.91 % 8.72% 21.8% 52.0%
Regime 2 0.774 % 1.79 % 3.01% 6.40% 16.74% 32.6% 63.2%
-log(eigenvalues) 1st 2nd 3rd 4th 5th 6th 7th

αi,1 (i = 1, . . . ,K − 1) 0.009 0.069 0.097 0.143 0.213 0.311 0.464
αi,2 (i = 1, . . . ,K − 1) 0.017 0.110 0.146 0.205 0.294 0.463 0.807

Figure 6 displays yield curves for selected ratings under both regimes (for yr,t = 0).
Figure 7 presents some simulation results. The upper panel shows the time fluctuations of
downgrade probabilities for two different ratings. The lower panel displays yield spreads
between 10-year zero-coupon bonds issued by A-rated or Baa-rated firms and 10-year zero-
coupon bonds issued by Aaa-rated firms.

21The 5-year default probabilities are computed conditionally on the absence of regime switching (i.e. as
if the current regime is to last 5 years).
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Figure 6: Yield curves for selected ratings (with impact of regimes)
Notes: The left plot shows yield curves for selected ratings, with yr,t = 0 and zt = [1, 0]′ (solid lines) or zt = [0, 1]′

(dashed lines). The right plot shows the term structure of spreads vs. Aaa-rated bonds.

Figure 7: Simulated downgrade probabilities and spreads
Notes: The lower plot shows simulated downgrade probabilities for two ratings (the downgrade can be of one or more
notches). Formally, for rating j, the upper panel plots P (τn,t > τn,t−1 | zt, yt

, xn,t, τn,t−1 = j). The grey-shaded areas
indicate “crisis” periods. The lower plot shows the yield spreads between 10-year zero-coupon bonds issued by A-rated or
Baa-rated debtors and zero-coupon bonds issued by Aaa-rated issuers.

9. Conclusion

In this paper, we have proposed an econometric framework aimed at jointly modeling
yield curves associated with different defaultable issuers. Default intensities an yields are
affine functions of a multivariate process which is Compound autoregressive (Car) in the
risk-neutral world and thus provides us with quasi-explicit (recursive) formulas for both
risk-free and defaultable bond prices.

The risk factors follow discrete-time conditionally Gaussian processes, with drifts and
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variance-covariance matrices that are subject to regime shifts described by a Markov chain
with (historical) non-homogenous transition probabilities. The regime-switching feature is
relevant for credit models in several respects. First, it makes it possible to capture non-linear
behaviors of yields and spreads, which is consistent with empirical evidence. Second, it is
appropriate to capture default clusters. Third, it offers some ways of dealing with specific
forms of contagion. To that respect, we show how the framework can be used to capture
sector-contagion phenomena. An other extension accomodates credit-rating migrations.
While flexible, the model remains tractable and amenable to empirical estimation. To that
end, a sequential estimation strategy is proposed in the paper.
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A. Proofs of Sections 3 and 4

A.1. Proof of Proposition 2

ϕQ
t−1 (u, v) = EQ

t−1 (exp [u′zt + v′yt])

= Et−1
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exp

[
−1

2
ν
′

tνt + ν
′

tεt + δ
′

t−1zt + u′zt + v′yt

])

= exp (v′Φyt−1)×
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(
exp

[
−1

2
ν
′
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′

tεt + δ
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t−1zt + u′zt + v′µt + v
′
Ωtεt

])

= exp (v′Φyt−1)×

Et−1

(
exp

[
−1

2
ν
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1
2

(
ν
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′
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) (
ν
′

t + v
′
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)′

+ v′µt + u′zt + δ
′

t−1zt

])

= exp (v′Φyt−1) Et−1

(
exp

[
v′Ωtνt +

1
2
v′Σtv + v′µt + u′zt + δ

′

t−1zt

])
.

Using the expression given for Ai,t−1(u, v) leads to the result.

A.2. P.d.f. under the risk-neutral world (Proof of Lemma 1)
Let us consider a couple (X, Y ) of multivariate random vectors. Let denote with fH(X, Y ) and
fQ(X, Y ) their respective joint p.d.f. under the probability measure H and Q and assume that the
Radon-Nikodym derivative thate relates H and Q depends on X only and is proportional to M(X).
We have:

fQ(X, Y ) =
fH(X, Y )M(X)

´

fH(X, Y )M(X)dXdY

=
fH(X)fH(Y | X)M(X)

˜

fH(X)fH(Y | X)M(X)dXdY

=
fH(X)fH(Y | X)M(X)

´

fH(X)M(X)
[´

fH(Y | X)dY
]
dX

=
fH(X)M(X)

´

fH(X)M(X)dX
fH(Y | X)

= fQ(X)fH(Y | X).

A.3. The risk-neutral Laplace transform of (zt, yt, xn,t)

In this appendix, we compute EQ
t−1 (exp [u′zt + v′yt + w′xn,t]) and show that it is exponential affine

in (zt−1, yt−1, xn,t−1), that is, we show that (zt, yt, xn,t) is Car(1) (see Darolles, Gourieroux and
Jasiak, 2006 [20]).
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EQ
t−1 (exp [u′zt + v′yt + w′xn,t]) = EQ

t−1 (exp [u′zt + v′yt + w′ (q1n (zt, zt−1) +
Q2nyt + Q3nyt−1 + Q4nxn,t−1 + Q5n (zt, zt−1) ηn,t)])

= exp (w′Q3nyt−1 + w′Q4nxn,t−1)×
EQ

t−1 (exp [u′zt + (v′ + w′Q2n)yt+
w′q1n (zt, zt−1) + w′Q5n (zt, zt−1) ηn,t])

= exp (w′Q3nyt−1 + w′Q4nxn,t−1)×
EQ

t−1 (exp [u′zt + w′q1n (zt, zt−1) + w′Q5n (zt, zt−1) ηn,t+
(v′ + w′Q2n) ((µt + µ∗t ) + (Φ + Φ∗) yt−1 + Ωtε

∗
t )])

= exp [{(v′ + w′Q2n) (Φ + Φ∗) + w′Q3n} yt−1+
w′Q4nxn,t−1 +

(
Ã1(u, v, w) . . . ÃJ(u, v, w)

)
zt−1

]

with

Ãi(u, v, w) = log(
J∑

j=1

π∗ij exp{uj + (v′ + w′Q2n) [µ (ej , ei) + µ∗ (ej , ei)] + w′q1n (ej , ei) +

1
2
(v′ + w′Q2n)Σ (ej , ei) (v + Q′

2nw) +
1
2
w′Q5n (ej , ei) Q′

5n (ej , ei) w}).

The fact that(zt, yt, xn,t, dn,t) is not Car(1) is obtained by noting that (for dn,t−1 = 0):

EQ
t−1 (exp [u′zt + v′yt + w′xn,t + sdn,t]) =

EQ
t−1 (E (exp [u′zt + v′yt + w′xn,t + sdn,t] | zt, yt, xn,t, dn,t−1 = 0)) =

EQ
t−1 (exp [u′zt + v′yt + w′xn,t]E (exp [sdn,t] | zt, yt, xn,t, dn,t−1 = 0)) =

EQ
t−1 (exp [u′zt + v′yt + w′xn,t] (exp (−λn,t) + [1− exp (−λn,t)] exp(s)))

This shows that EQ
t−1 (exp [u′zt + v′yt + w′xn,t + sdn,t]) will be only a sum of two terms that are

exponential affine in (zt−1, yt−1, xn,t−1, dn,t−1). Consequently, (zt, yt, xn,t, dn,t) is not Car(1).

A.4. Proof of Lemma 2
The formula is true for h = 1 since:

Lt,1(ω) = Et (ω′
HZt+1) = exp [a′(ωH)Zt + b(ωH)]

and therefore A1 = a(ωH) and B1 = b(ωH).
if it is true for h− 1, we get:

Lt,h(ω) = Et

[
exp

(
ω′

H−h+1Zt+1

)
Et+1

(
ω′

H−h+2Zt+2 + . . . + ω′
HZt+H

)]

= Et

[
exp

(
ω′

H−h+1Zt+1

)
Lt+1,h−1(ω)

]

= Et

[
exp

(
ω′
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)]

= exp
[
a(ω′

H−h+1 + Ah−1)Zt + b(ω′
H−h+1 + Ah−1) + Bh−1

]

and the result follows.

A.5. Proof of Proposition 3
We have:

B(t, h) = exp (−a′1zt − b′1yt) EQ
t (−a′1zt+1 − b′1yt+1 − . . .− a′1zt+h−1 − b′1yt+h−1) .
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Using Lemma 2 with ωH = 0, ω′
h = (−a′1,−b′1) for h = 1, . . . ,H − 1, we get:

B(t, h) = exp
(
−a′1zt − b′1yt + ã′hzt + b̃′hyt

)
,

where (ã′h, b̃′h) = a′(ωH−h+1 + (ã′h−1, b̃
′
h−1)), ã0 = 0 and b̃0 = 0.
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)
.

A.6. Proof of Proposition 5
From Proposition 4, we have:

BD
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Using Lemma 2 with ωH = (−α′
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and c̃n,0 = 0, f̃n,0 = 0 and g̃n,0 =

0.
Taking cn,h = a1 − c̃n,h, fn,h = b1 − f̃n,h and gn,h = −g̃n,h, with

(
c′n,h, f ′n,h, g′n,h

)
= (a′1, b′1, 0)−

a

(
ωH−h+1 −

(
c′n,h−1 − a′1, f

′
n,h−1 − b′1, g

′
n,h−1

)′)
and cn,0 = a1, fn,0 = b1, gn,0 = 0, we get

BD
n (t, h) = exp(−c
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A.7. Proof of Proposition 6 (Pricing of defaultable bonds with nonzero
recovery rates)

Section 4 gives quasi-explicit formulas for the pricing of bonds with zero recovery rates. In the
current appendix, we present conditions under which one can derive formulas for nonzero-recovery-
rate bond pricing. Figure 8 presents the payoff schedule considered here. As shown in this figure,
if a debtor n defaults between t − 1 and t (with t < T , where T denotes the contractual maturity
of a bond issued by this debtor), recovery is assumed to take place at time t. In addition, we
assume that the recovery payoff –i.e. one minus the loss-given-default– depends on (zt, yt, xt). This
recovery payoff is denoted by RT−t

n,t := R(zt, yt, xt, T − t).
Let us consider the price BDR

n (T − 1, 1), in period T − 1, of a one-period nonzero-recovery-rate
bond issued by a given debtor (before T − 1). We distinguish three cases:

1. The debtor had defaulted before T − 2, then: BDR
n (T − 1, 1) = 0.

2. The debtor defaulted between T − 2 and T − 1, then: BDR
n (T − 1, 1) = R1

n,T−1.

3. The debtor has not defaulted before T − 1, then:

BDR
n (T − 1, 1) = exp(−rT )EQ

[
I{dn,T =0} + I{dn,T =1}R

0
n,T | zT−1, yT−1

, xn,T−1, dn,T−1 = 0
]

= exp(−rT )EQ
[
EQ

(
I{dn,T =0} + I{dn,T =1}R

0
n,T | zT , y

T
, xn,T , dn,T−1 = 0

)

| zT−1, yT−1
, xn,T−1, dn,T−1 = 0

]

= exp(−rT )EQ
[
exp(−λn,T ) + (1− exp(−λn,T ))R0

n,T | zT−1, yT−1
, xn,T−1, dn,T−1 = 0

]

= exp(−rT )EQ
[
exp(−λn,T ) + (1− exp(−λn,T ))R0

n,T | zT−1, yT−1
, xn,T−1

]
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Figure 8: Payoffs stemming from a defaultable bond (issued before t− 1)
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and, defining the random variable λ̃0
n,T by exp(−λ̃0

n,T ) = exp(−λn,T ) + (1− exp(−λn,T ))R0
n,T , we

have (still in case 3):

BDR
n (T − 1, 1) = EQ

[
exp(−rT − λ̃0

n,T ) | zT−1, yT−1
, xn,T−1

]
.

Further, let us consider the price of the same bond in period T − 2. Assuming that there was no
default before T − 2:

BDR
n (T − 2, 2) = exp(−rT−1)×

EQ
[
I{dn,T−1=0}

(
EQ

[
exp(−rT − λ̃0
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+I{dn,T−1=1}R
1
n,T−1 | zT−2, yT−2

, xn,T−2, dn,T−2 = 0
]

(29)

Let us introduce a random variable ζ1
n,T−1 that is defined through:
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]
.

With this notation, Equation (29) reads:
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, xn,T−1, dn,T−2 = 0

}
| zT−2, yT−2

, xn,T−2, dn,T−2 = 0
]

= EQ
[
exp(−rT−1 − rT − λ̃0

n,T )
(
exp(−λn,T−1) + ζ1

n,T−1 (1− exp(−λn,T−1))
)

| zT−2, yT−2
, xn,T−2

]
.

Then, defining the random variable λ̃1
n,T−1 by:

exp(−λ̃1
n,T−1) = exp(−λn,T−1) + (1− exp(−λn,T−1)) ζ1

n,T−1,
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we get (conditionally on dn,T−2 = 0):

BDR
n (T − 2, 2) = EQ

[
exp(−rT − rT−1 − λ̃0

n,T − λ̃1
n,T−1) | zT−2, yT−2

, xn,T−2

]
.

Applying this methodology recursively, it is easily seen that the price of a nonzero-recovery-rate
defaultable bond of maturity h is given by (assuming no default before t, i.e. conditionally on
dn,t = 0):

BDR
n (t, h) = EQ

[
exp(−rt+h − . . .− rt+1 − λ̃0

n,t+h − . . .− λ̃h−1
n,t+1) | zt, yt

, xn,t

]
(30)

where the λ̃h−i
n,t+i’s are defined recursively in i by the backward equation:

exp(−λ̃h−i
n,t+i) = exp(−λn,t+i) + (1− exp(−λn,t+i)) ζh−i

n,t+i

where

ζh−i
n,t+i =






Rh−i
n,t+i

EQ
h
exp(−rt+h−...−rt+i+1−λ̃0

n,t+h−...−λ̃h−i−1
n,t+i+1)|zt+i,yt+i

,xn,t+i

i if i < h

Rt+h,0 if i = h.

Looking at Equation (30), it is tempting to interpret the λ̃h−i
n,t+i’s as “recovery-adjusted” hazard

rates for debtor n. However, the dependency of these intensities on the maturity h of the considered
bond is problematic. Indeed, by analogy with the standard default intensities λn,t, one would like
to have, at each period, only one adjusted intensity by debtor (and not a collection of adjusted
intensities associated with the different bonds that have been issued by the considered debtor). To
that end, Duffie and Singleton (1999) [27] propose a “recovery of market value” assumption. Under
this assumption, the variable Rm

n,s –that is, the recovery at time s of a bond with residual maturity
m, in the event of default between s − 1 and s– is equal to the product of a factor common to all
maturities with the survival-contingent market value at time s. In the same spirit, let us assume
that the ζm

n,s’s do no longer depend on m. Then, the λ̃m
n,s do not depend on the maturity any longer

and are simply given by:

exp(−λ̃n,s) = exp(−λn,s) + (1− exp(−λn,s)) ζn,s.

Actually, this formulation is more general than the one considered by Duffie and Singleton (1999)
when they expose a discrete-time motivation. Indeed, in the latter case, they assume that ζn,s is
known at time s− 1, which is not necessarily the case in the framework described above.

B. Kitagawa-Hamilton algorithm for partially-hidden Markov
chains

In this appendix, we describe how to use the Hamilton’s (1990) [40] algorithm within the estimation
strategy presented in Section 6, when the Markov chain is partially observed. While the algorithm
was originally presented in a model with fixed transition probabilities, it readily generalizes to
processes in which transition probabilities depend on a vector of observed variables.22

Let us denote with ŷt the vector of observed variables (ỹ′t, R1t, z′1t)′. The Hamilton’s algorithm
consists in computing recursively the probabilities p(z2t | ŷ

t
). As a by product, the algorithm

provides the conditional densities f(ŷt | ŷ
t−1

), which makes it possible to estimate the model
parameters by maximization of the log-likelihood. The algorithm is based on the iterative imple-
mentation of the following steps (the input being p(z2t−1 | ŷ

t−1
)):

22See e.g. Filardo (1994) [31] for implementation examples of Hamilton’s algorithm in models with time-
varying transition probabilities.
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1. The joint probability p (z2t, z2t−1 | ŷt−1) is computed using:

p
(
z2t, z2t−1 | ŷ

t−1

)
= p

(
z2t | z2t−1, ŷt−1

)
× p

(
z2t−1 | ŷ

t−1

)

where the first term of the right-hand side is a sum of entries of the transition matrix {πij,t−1}
and the second term is the input.

2. The joint conditional density f(ŷt, z2t, z2t−1 | ŷ
t−1

) is then given by:

f(ŷt, z2t, z2t−1 | ŷ
t−1

) = f(ŷt | z2t, z2t−1, ŷt−1
)× p

(
z2t, z2t−1 | ŷ

t−1

)

where

f(ŷt | z2t, z2t−1, ŷt−1
) = f(ỹt, R1t, z1t | z2t, z2t−1, ŷt−1

)

= f(ỹt, R1t | z1t, z2t, z2t−1, ŷt−1
)× p(z1t | z2t, z2t−1, ŷt−1

)

with

p(z1t | z2t, z2t−1, ŷt−1
) =

p(z1t, z2t | z2t−1, ŷt−1
)

p(z2t | z2t−1, ŷt−1
)

and all the terms can be computed.

3. The conditional densityf(ŷt | ŷ
t−1

) is given by:

f(ŷt | ŷ
t−1

) =
∑

z2,t

∑

z2,t−1

f(ŷt, z2t, z2t−1 | ŷ
t−1

).

4. The joint density p
(
z2t, z2t−1 | ŷ

t

)
comes from:

p
(
z2t, z2t−1 | ŷ

t

)
=

f(ŷt, z2t, z2t−1 | ŷ
t−1

)

f(ŷt | ŷ
t−1

)
.

5. And eventually:
p

(
z2t | ŷ

t

)
=

∑

z2,t−1

p
(
z2t, z2t−1 | ŷ

t

)
.

C. About the eigenvectors of the rating-migration matrix Π

In this appendix, using the notations presented in Subsection 8.4, we outline some properties of
matrices Π and V . For notational simplicity, we drop arguments and time subscripts associated
with these matrices.

• As the sum of the entries of each line of Π is equal to 1, the vector
[

1 · · · 1
]′ is an

eigenvector of Π associated with the eigenvalue 1. Consequently, since this eigenvalue is
supposed to be the last one appearing in Ψ, the last column of V –that collects the eigevectors
of Π– is proportional to

[
1 · · · 1

]′.

• The fact that default is an absorbing state implies that the last row of Π is
[

0 · · · 0 1
]
.

Since we have ΠV = V Ψ, it comes (considering the last line of this equation):

∀j VK,j = VK,j exp (−ψj) ,

which implies: ∀j < K, VK,j = 0.
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• The two previous points imply that the matrix V admits the following form:

V =





V1,1 · · · V1,K−1 γ
...

. . .
...

...
VK−1,1 · · · VK−1,K−1 γ

0 · · · 0 γ





Since V V −1 = I, we have (considering the last line and using the notation V −1
i,j for the entry

(i, j) of V −1) [
V −1

K,1 · · · V −1
K,,K−1 V −1

K,K

]
=

[
0 · · · 0 1

γ

]

and, therefore, for i = 1, . . . ,K, we have Vi,KV −1
K,K = 1.

38


