INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES
Série des Documents de Travail du CREST
(Centre de Recherche en Economie et Statistique)

n° 2010-44

Using Parallel Computation
to Improve Independent
Metropolis-Hastings
Based Estimation

P. JACOB' - C. P. ROBERT"
M. H. SMITH’

Les documents de travail ne refletent pas la position de I'INSEE et n‘engagent que
leurs auteurs.

Working papers do not reflect the position of INSEE but only the views of the authors.

1 université Paris-Dauphine et CREST, Paris.
2 Université Paris-Dauphine, CEREMADE, France et CREST, Paris.
3 National Institute of Water and Atmospheric Research, Wellington

Using parallel computation to improve
Independent Metropolis—Hastings based
estimation

P. Jacob'?, C.P. Robert'2, M.H. Smith®
YUniversité Paris-Dauphine, 2CREST, Paris, and
3National Institute of Water and Atmospheric Research, Wellington

Abstract

In this paper, we consider the implications of the fact that parallel raw-power can
be exploited by a generic Metropolis—Hastings algorithm if the proposed values are
independent. In particular, we present improvements to the independent Metropolis—
Hastings algorithm that significantly decrease the variance of any estimator derived
from the MCMC output, for a null computing cost since those improvements are
based on a fixed number of target density evaluations. Furthermore, the techniques
developed in this paper do not jeopardize the Markovian convergence properties of the
algorithm, since they are based on the Rao—Blackwell principles of |Gelfand and Smith
(1990)), already exploited in [Casella and Robert| (1996), |Atchadé and Perron| (2005)
and Douc and Robert| (2010). We illustrate those improvement both on a toy normal
example and on a classical probit regression model but insist on the fact that they are
universally applicable.

Keywords: MCMC algorithm, independent Metropolis—Hastings, parallel computa-
tion, Rao—Blackwellization.

1 Introduction

The Metropolis—Hastings (MH) algorithm provides an iterative and converging
algorithm to sample from a target distribution 7. Each iteration of the algorithm
generates a new value of the resulting Markov chain and relies on the result of
the previous iteration. The underlying Markovian principle is well understood
and leads to a most universal convergence principle as described, e.g., in|Robert
and Casellal (2004). However, due to its Markovian nature, this algorithm is
not straightforward to parallelize, which creates difficulties in slower languages
like R (R Development Core Team), 2006)). Nevertheless, the increasing number
of parallel cores available at very low cost drives more and more interest in
“parallel-friendly” algorithms, that is, algorithms that can benefit from the
number p of available processing units on standard computers (Holmes et al.,
2011J).

Different techniques have already been used to enhance some degree of par-
allelism in generic Metropolis—Hastings algorithms, beside the basic scheme of
running p MCMC algorithms independently in parallel and merging the results.
For instance, a natural entry is to rely on renewal properties of the Markov

2 Improving the IMH algorithm 2

chain (Mykland et al., 1995, Robert} [1995| [Hobert et al.,|2002)), waiting for all p
chains to exhibit a renewal event and then using the blocks as iid, but the jam-
ming block of Markovianity cannot be removed. |[Rosenthal| (2000) also points
out the difficult issue of accounting for the burn-in time: while, for a single
MCMC run, the burn-in time is essentially negligible, it does create a bias when
running parallel chains (unless perfect sampling can be implemented). |Craiu
and Meng (2005) mix antithetic coupling and stratification with perfect sam-
pling. Using a different approach, |Craiu et al| (2009) exploit p parallel chains
to build an adaptive MCMC algorithm, considering in essence that the product
of the target densities over the chains is their target, which obviously impacts
the convergence properties of the multiple chain. |Corander et al.| (2006) take
advantage of parallelization to build a non-reversible algorithm that can avoid
the scaling effect of specific neighborhood structures, hence focussing on a very
special type of problem.

A particular case of MH algorithm is the Independent Metropolis—Hastings
(IMH) algorithm, where the proposal distribution (and hence the proposed
value) does not depend on the current state of the Markov chain. For this
very reason, this particular algorithm is easier to parallelize, and can therefore
be considered as a good building block toward efficient parallel Markov Chain
Monte Carlo algorithms, as will be explained in Section[2] The fundamental idea
in the current paper is that one can take advantage of the parallel abilities of ar-
bitrary computing machinery, from cloud computing to graphical cards (GPU),
in the case of the generic IMH algorithm, producing an output that corresponds
to a much improved Monte Carlo approximation machine at the same com-
putational cost. The techniques presented here are similar to those explained
in [Perron| (1999) and more closely in |Atchadé and Perron| (2005 Section 3.1),
since those authors condition upon the order statistic of the proposed values of
the IMH, although in those earlier papers the links with parallel computation
were not established and hence the implementation of the Rao-Blackwellization
became problematic for long chains.

The plan of the paper is as follows: the standard IMH algorithm is recalled
in Section [2] followed by a description of our improvement scheme, called here
“block Independent Metropolis—Hastings” (block IMH). This improvement is
based on the choice of permutations on {1,...,p} that are described in details
in Section Bl We demonstrate the connections between block IMH and Rao—
Blackwellization in Section[d Results for a toy example are presented through-
out the paper and finally a realistic probit regression example is described in
Section [l as an illustration of the method.

2 Improving the IMH algorithm

2.1 Standard IMH algorithm

We recall here the notations for the (classical) IMH algorithm. Assume the
availability of a “proposal” distribution p from which we can sample, and which
probability density is known up to a normalization constant. The independent
Metropolis—Hastings algorithm, as proposed in Algorithm [I] generates a Markov
chain with invariant distribution 7, the target distribution of interest.

2 Improving the IMH algorithm 3

Algorithm 1 IMH algorithm

1: Set xp to an arbitrary value
2: fort=1to T do
3: Generate y; ~
4: Compute the ratio:

: m(yt) p(xe—1)

p(xt—la Z/t) = min {1a
(ye) 7(we—1)

5. Set xy = y; with probability p(z:—1, y:); otherwise set z; = x4

6: end for

An important feature of this algorithm with regard to parallelism is that it
works only in an iterative manner, since the outcome of step ¢, namely the value
x4, is required to compute the acceptance ratio at step t + 1. This sequential
construction is compulsory for the validation of the algorithm given the Markov
property at the core of this validation (Robert and Casellal |[2004)). However since
the proposed values (y;) are generated independently from the current states
of the Markov chain (x¢), it is altogether possible to envision the generation
of T proposed values first and the computation of the ratios w; = 7(y;)/1(ye)
at an early stage. Once this computation is concluded, only the acceptance
steps need to be considered iteratively. This may make for a huge saving in
computing time if the simulation and the derivation of the w;’s can be done
in parallel since the remaining computation of the ratios p(zi—1,y:) given the
wy’s and their subsequent comparison with uniform draws are typically orders
of magnitude faster.

In this respect the IMH algorithm strongly differs from the Random Walk
Metropolis—Hastings (RWMH) algorithm, for which the acceptance ratios can-
not be processed beforehand because the proposed values depend on the value
of the Markov chain generated up to the current step. The universal availability
of parallel processing schemes may then lead a new surge of popularity for the
IMH algorithm. Indeed, when taking advantage of p parallel processing units,
an IMH can be run for p times as many iterations as a RWMH, at almost exactly
the same computing cost.

In order to describe this increased computing power, we note that, once
T successive values of the Markov chain have been produced, the sequence is
usually processed as a regular Monte Carlo sample to obtain an approximation
of an expectation under the target distribution, E. [h(X)] say, for some arbitrary
functions h. We propose in this paper a technique that improves the precision
of the estimation of this expectation by taking advantage of parallel processing
units without jeopardizing the validity of the Markov property.

Before presenting our improvement scheme, we introduce the notation V
(read “or”) for the operator that represents a single step of the IMH. Using this
notation, given z; and p proposed values yi,...,yp ~ u, the IMH algorithm
goes from step ¢ to step ¢ + p according to the diagram of Figure [I]

Ty — Ty = VYT —> T2 =Ty VYo —> 0 — Tpyp = Tppp-1 VY

Fig. 1: IMH steps between iteration ¢ and iteration ¢ + p.

2 Improving the IMH algorithm 4

2.2 Block IMH algorithm

Whether or not parallel processing units are available, we propose to take ad-
vantage as much as possible of the simulated proposed values and of the compu-
tation of their corresponding w ratios, since either the simulations or the density
derivations may possibly be hard to obtain. To this effect, we propose what we
call the block IMH algorithm, which is made of successive simulation blocks of
size p X p. In this alternative, the number of blocks b is such that the number
of desired iterations T is equal to b * p, in order to make the comparison with a
standard IMH output fair. Usually p needs not be calibrated since it represents
the number of parallel processing units that can be exploited by the program.
However this number p can as well be set arbitrarily high; in this paper, we take
p varying from 4 to 100. We first explain how one block is built, and then how
to go from one block to the next.

A p x p block consists in the generation of p steps of p parallel Markov
chains, all starting at time ¢ from the current state x; and all based on the same
proposed values y1,...,y, but including them in possibly different orders. For
instance, these orders may be the p circular permutations of y1, ..., y,, or they
may be instead random permutations, as discussed in detail (and compared) in
Section [3] The block IMH algorithm is illustrated in Figure [2}

(1) (1) (1) 20 (1)

Tyiy =z VY1 — Ty :::vH]\/yg — . > Ty, :=:rt+p71Vy,,
(2) . _ 2 ._ .2 2) ._ ,.(2)
Ty =T VY2 — Ty =2 VY3 — s — T =, Vi

I

v, o D 1 , o1 D)
o = a Vg iy = el vy, el =l Vo
(P) ®) ._ ()
IETL =z VY — 155’32 = zg’r)l Vyr — o — al = Vg

p x p block

Fig. 2: Block from step t 4+ 1 to step ¢ + p. Here, circular permutations of the
proposed values are used for illustration purposes.

Obviously, each of the p parallel chains found in this block is a valid MCMC
sequence when taken separately. As such, it can be processed as a regular
MCMC output. In particular, if x; is simulated from the stationary distribution,
any of the subsequent xii_)t is also simulated from the stationary distribution.
However, the point of the p parallel implementations is double:

e it aims at (partly) integrating out the (ancillary) randomness resulting
from the order in which the y;’s are chosen, getting close to the condi-
tioning on the order statistics of the yx’s advocated by [Perron! (1999);

e it also aims at (partly) integrating out the randomness resulting from the
generation of uniform variables in the selection process, since the block
implementation results in drawing p? uniform realizations instead of p
uniform realizations for a standard IMH setting.

2 Improving the IMH algorithm 5

Both points are essentially implementing a type of Rao—Blackwellization tech-
niques (a more precise connection is drawn in Section . In an independent
setting, each of the y;’s occurs a number n; > 0 of times across the p steps
of the p parallel chains, i.e. for a number p? of realizations. Therefore, when
considering the standard estimator 71 of E [h(X)], based on a single MCMC

chain,
P

(ﬂCu Yi: p Z $t+k

k

this estimator necessarily has a larger variance than the double average

p p
Ta(2t, Y1) = %Zzh i) = 72 Z”kh (yx)

p j=1k=1

where yo := x; and ng is the number of times x; is repeated. (The proof for the
reduction of the variance from 77 to 7y easily follows from a double integration
argument.)

Tt

- g K
- \ u
I I,

time t+1 t+p+1 t+2p+1

p % p block

Fig. 3: The block IMH algorithm runs p parallel chains during p steps, then
picks one of the final values (represented by the black squares) and iter-
ates. Another transition mechanism is described in Section [2.21

In order to preserve its Markovian validation, the algorithm must be con-
tinued after time ¢ + p. An obvious choice is to pick one of the p sequences at
random and to take the corresponding x,gi)p as the value of x;,, starting point of
the next parallel block. This mechanism is represented in Figure [3] While valid
from a Markovian perspective, since the sequences are marginally produced by a
regular IMH algorithm, this proposal means that the underlying chain deduced
from the block IMH algorithm is converging at exactly the same speed as the
original IMH algorithm. An alternative construction of the sequence of blocks is
to take advantage of the weights ny on the y;’s that are computed via the block
structure. Indeed, those weights essentially act as importance weights and they
allow for a selection of any of the p? mg_)i’s as the starting point of the incoming
block, which corresponds to choosing one of the proposed yi’s with probability
proportional to ng. While this proposal may sound counter-productive because
it seems to impose a “backward” step away from convergence by going back in

2 Improving the IMH algorithm 6

time, it does not impact the estimation aspects (which involve the p? values)
and it should on the contrary improve convergence, given that the weighted yx’s
behave like a discretized version of a sample from the target distribution 7.

The original version of the block IMH algorithm is described in Algorithm
[the modification stressed above involving a switch of line [I2] to the selection
of one of the y(;_1)sp4;’s With weight n¢;_1y.p1j-

Algorithm 2 block IMH algorithm
: Set xg to an arbitrary value, compute wy
: Set Tstart = L0, Wstart = W0
: Set a block size p, and a number of blocks b, such that bxp =T
: Generate all proposed values y1,...,yr ~
: Compute all ratios wy,...,wr
: Choose p permutations o1, ..., 0,
:fori=1tobdo
for k=1topdo
Run p steps of an IMH given:

© 0N U W N e

. ($start7 Wstart)

° p proposed values y(;_1)«p41; - - - » Yixp shuffled with the permuta-
tion oy,
° the p corresponding ratios w;’s
(k) (k)
10: Save as T 1o Linp
11: end for '
12: Draw an index j uniformly in {1,...,p}, set Zstart = :cz(-i;,
the corresponding ratio w.
13: end for

the resulting chain

set Wgtart as

The algorithm is now made of a loop on the b blocks and an inner loop on
the p parallel chains of each block. The p steps of this inner loop are actually
meant to be computed in parallel. The output of Algorithm [2|is double:

e a standard Markov chain of length T', which is made of b chains of length
p, each of which is chosen among p chains at line [12| of Algorithm

e apxT array (mf)f;l%, on which the estimator 73 is based.

As mentioned above, the point-wise evaluation of the target density m(yyx) is
usually the most computer-intensive part of the algorithm. Therefore, the cost
of sampling uniform variables is supposed to have a negligible impact here, as
are other costs related with the storage of larger vectors than in the original
IMH, especially given the fact that the multiple chains do not need to be stored
further than during a single block execution time. That is why, although we
sample p times more uniforms in the block IMH algorithm, we still consider it to
be roughly of the same cost as the original algorithm, since the number of target
density evaluations is the same (and can obviously take advantage of the parallel
processing abilities of the machine to improve computing time compared with
the original IMH algorithm.). Besides pseudo-random generation of uniforms
can also benefit from parallel processors, see e.g |L’Ecuyer et al.| (2001)).

3 Permutations 7

The method is presented here for square blocks of dimension (p,p), but
blocks could be rectangular as well: the algorithm is equally valid when using
r # p permutations, leading to (r,p) blocks. We focus here on square blocks
because when the machine at hand provides p parallel processing units, then it
is most efficient to compute the target densities and the acceptance ratios at the
p proposed values in parallel. Once again, the block IMH algorithm with p x p
square blocks has at worst the same cost as the original IMH algorithm, because
computing target densities and acceptance ratios does more than compensate
for the cost of randomly picking an index at the end of each block. This amounts
to say that line |4| of Algorithm (1| and line 5| of Algorithm [2|are (by far) the most
computationally demanding ones in the respective algorithms. The proposed
algorithm also involves storing r times more values in the memory, so in a
context where memory is an issue, choosing r» < p can make sense. Alternatively,
if the quantities of interest are known in advance, the approximations to the
estimators can be updated at each block end and the storage problem would
thus be completely eliminated. If a complete Markov chain is needed, it can be
randomly selected among the p parallel sequences at the end of each block and
stored along with the p weighted proposals, thus requiring only twice as much
storage as the regular IMH algorithm.

2.3 Toy example

We now introduce a toy example that we will follow throughout the paper. The
target 7 is the standard N (0,1) normal distribution and the proposal u is the
C(0,1) Cauchy distribution. Hence

m(x

o) = T o (1 4+ 0% exp (—1a?)

()

We only consider the integral [zm(dz), the expectation of 7. The acceptance
rate of the IMH algorithm for this example is around 70%.

In all results related to the toy example presented thereafter, 10,000 inde-
pendent runs are used to compute the variance of the estimates. The value of
p represents the number of parallel processing units that are available, ranging
from 4 for a desktop computer to 100 for a cluster or a graphics processing unit
(GPU) (this value could even be larger for computers equipped with multiple
GPUs).

The results of the simulation experiments are presented as barplots, which
indicate the percentage of variance decrease associated with the estimators un-
der comparison, the reference estimator being always plotted as the first bar
on the left-hand side. In agreement with the block sampling perspective, the
same proposed values and uniform draws were used for all the estimators that
are plotted on the same graphs, so that the comparison is not perturbed by an
additional noise coming from the drawing.

3 Permutations

The choice of the permutations in line [6] of Algorithm [2]is obviously having an
impact on the improvement brought by block sampling. The idea of testing
various orders of the proposed values in a IMH algorithm appeared in |Atchadé

3 Permutations 8

and Perron| (2005)) where the permutations were chosen to be circular. We first
list some permutations and their justification, and then we compare them on
the toy example.

3.1 Five choices of permutations

Let S be the set of permutations of {1,...,p}. The size of S is p! and it is
therefore too large to allow for an averaging over all permutations, although
this solution would be ideal. We consider the simpler problem of finding p
efficient permutations in S, denoted by (o1,...,0,), the goal being a choice
favoring a decrease the variance of the estimator 75 defined in Section @

3.1.1 Fixed order

The most basic choice is to pick the same permutation on each of the p chains:
01 =02=...=0p

This selection sounds useless since it does not actually average on the orders
but we actually notice a significant decrease in the variance of 75 using this set
of permutations, compared to 7;. The reason is that p times more uniforms are
used in 7, than in 71, leading to a natural Rao-Blackwellization phenomenon that
is studied in details in Section[4] Nonetheless this simplistic set of permutations
is certainly not the best choice since it does not integrate out the (ancillary)
randomness resulting from the ordering of the proposed values.

3.1.2 Circular permutations

Another simple choice is to use circular permutations. For 1 < ¢ < pm we define
oi(l) =1,0:(2) =i+1,....06(p—i+1)=poilp—i+2)=1,...,0i(p) =11

An appealing property of the circular permutations is that each proposed value
yr is proposed and evaluated at a different step for each chain. However, a
disadvantage is that the order is not deeply changed: for instance yi_; will
always be proposed one step before y; except for one of the p chains (the one
for which yy, is proposed first).

3.1.3 Random permutations

A third choice is to use random orders, that is random shuffling of the sequence
{1,...,p}. We can either draw those random permutations with or without
replacement in the set S, but considering the cardinality of the set S it does
not make a large difference. Indeed, it is unlikely to draw twice the same
permutation, except for very small values of p.

3.1.4 Half random half reversed permutations

A slightly different choice of permutations consists in drawing p/2 permutations
at random. Then, denoting the first p/2 permutations by o1, ..., 0, /2, we define
for 1 <k <p/2:

Optp/2(1) = 0k(D), Okgpy2(2) = ok(p — 1), ... Opyp/2(p) = on(1).

3 Permutations 9

The motivation for this inversion of the orders is that, in the second half of the
permutations, the opposition with the “reversed” first half is maximal. This
choice, suggestion of Art Owen (personal communication), aims at minimizing
the possible common history among the p parallel chains. Indeed two chains
with the same proposed values in reverse order cannot have a common path of
length more than 1.

3.1.5 Stratified random permutations

Finally we can try to draw permutations that are far from one another in the set
S. For instance we can define the lexicographic order on S, draw indices from
a low discrepancy sequence on the set {1,...,p!} and select the permutations
corresponding to these indices. In a simpler manner, we do use here a stratified
sampling scheme: we first draw a random permutation conditionally on its first
element being 1, then another permutation beginning with 2, and so forth until
the last permutation which begins with p.

3.2 A Monte Carlo comparison

We compare the five described types of permutation on the toy example. Figure
shows the results for p = 4,10, 50, 100, displaying the variance of 75 associ-
ated with each of the permutation orders when taking as reference variance the
variance of the original IMH estimator 7;. For each of the 10,000 independent
replications, the block IMH algorithm was launched on one single p x p block,
e.g. with b = 1 using the notation of Section [2 since b plays no role in this
comparison.

3 Permutations 10

0.0
0.0

0%

-0.1

-0.2
I
-0.2
I

III D%

-19.4 %
~21.03% -20.52 % ° o103 %
-22.84% -2315% -

-17.78 %

-2927% -295% -29.79%

-0.4
I
0.4
I

L3 Same order Circular Random Half Random Stratified) Same order Circular ~ Random Half Random Stratified

p =50 p =100

01
01

0.0
I

0.0
I

0%

-0.1

-0.2
I
-0.2
I

o -
3 - 24.02% _246%

-0.3

D% I
- -24.73% -24.73%

-36.69% -36.66% ~36.34%

-37.75% -37.58% -37.69%

-0.5
L
0.5
L

LY Same order Circular ~ Random Half Random Stratified % Same order Circular ~ Random Half Random Stratified

Fig. 4: Variance comparison between the basic estimator 7y and the various
block estimators 7o associated with each permutation scheme for p =
4,10, 50, 100.

As mentioned above, using the same order in the y;’s for each of the p paral-
lel chains already produces a significant decrease of about 20% in the variance of
the estimators. This simulation experiment shows that the three random permu-
tations (random, half-random half-reversed and stratified) are quite equivalent
in terms of variance improvement and that they are significantly better than
the circular permutation proposal, which only slightly improves over the “same
order” scheme. Therefore, in the following Monte Carlo experiments, we will
use only the random order solution, given that it is the simplest of the random
schemes. The amount of improvement of 35% when p = 50 is quite impres-
sive when considering that it is cost-less for a computer with parallel abilities
(Holmes et al., 2011)).

4 Rao—Blackwellization 11

4 Rao—Blackwellization

Another generic improvement that can be brought over classical MH algorithms
is Rao—Blackwellization (Gelfand and Smith} [1990} |Casella and Robert, |1996)).
In this section, two Rao-Blackwellization methods are presented, one that is
computationally free and one that, on the contrary, is computationally expen-
sive. We then implement those solutions within the block IMH algorithm and
explain why the “same order” scheme already improves the IMH algorithm.

4.1 First Rao—Blackwellization

When we consider the standard IMH algorithm of Section [2.1] a cost-free im-
provement can be obtained by a straightforward Rao—Blackwellization argu-
ment. Given that at step ¢+, y; is accepted with probability p(zy;—1,y;) and
rejected with probability 1 — p(x¢1;—1, i), the weight of y; can be updated by
p(xiyi—1,y;) and the weight of the proposed value y; corresponding to a¢y;—1
can be similarly updated by the probability 1 — p(z¢4i—1,y;). Considering in-
stead the block IMH algorithm, at the beginning of each block we can define p
weights, denoted by (wy)?_;, initialized at 0 and then, denoting by j the index
such that x¢4;—1 = y;, we update these weights at each time ¢ + ¢ as

wj =wj +1— p(Teri1,Y:)
w; = w; + P(Teqiz1,Yi)

This is obviously repeated for each of the p parallel chains, thus after the p steps
of the block, we have), wy = p2. This leads to a third estimator

. 1 ¢
TS(xtvyl:p> = 3 Zwkh(yk) .
p k=0

This estimator still depends on all uniform generations created within the block,
since those weights wy, depend upon the acceptances and rejections of the pro-
posed values made during the block update. However, along the steps of the
block, the wy’s are basically updated by the expectation of the acceptance indi-
cators conditionally upon the results of the previous iterations, whereas the ny
of Section [2] are directly updated according to the acceptance indicators. Hence,
the wy’s have a smaller variance than the ny’s by virtue of the Rao—Blackwell
theorem, leading to 75 having a smaller variance than 75.

We now discuss a more involved Rao-Blackwellization technique in the spirit
of |Casella and Robert| (1996) in the following section.

4.2 Block Rao—Blackwellization

Exploiting the Rao—Blackwellization technique of |Casella and Robert| (1996)
within each parallel chain does provide (by virtue of a conditioning argument)
an even more stable approximation of arbitrary posterior quantities. Given the
gain brought by parallelization, the additional computing time imposed by the
implementation of this Rao—Blackwellization technique is more than compen-
sated by the improvement in efficiency.

4 Rao—Blackwellization 12

As developed in|Casella and Robert|(1996]), for a single Markov chain (acgi), ey

a Rao—Blackwell weighting scheme on the proposed values y;, with weights ¢y,
is given by a recursive scheme

P
Sﬁgl) =0 Z &tj
j=t

where (¢ > 0)

J
do=1, =1, ftjz H(l—Ptu)

u=t+1

and

t—1
0y = Z(Sjgj(tq)Pjt)

Jj=0

the &;;’s being the occurrence survivals of the proposed value ¥, associated with
the Metropolis—Hastings ratio

Wy = W(yt)/ﬂ(yt)) Ptu = wu/wt AT,

The computation of the dys, of the py,’s and of the &,’s requires an O(p?)
computing time. Given that p is usually not very large, this additional cost is
not as redhibitory as in the original proposal of |Casella and Robert| (1996 who
were considering the application of this Rao—Blackwellization technique on the
whole chain, with a cost of O(T?) (see also [Perronl, [1999).

Therefore, starting from the estimator 7, the weight nj counting the number
of occurrences of y; in the p X p block can be replaced with the expected number
@k of times yi occurs in this block (given the p proposed values), which is the
sum of the expected numbers of times y;, occurs in each of the p parallel chain:

p .
o= o)
=1

Since the p parallel chains incorporate the proposed values with different orders,
the ¢’s may differ for each chain and must therefore be computed p times. Note
that the cost is still in O(p?) if this computation can be implemented in parallel.
Then, by a Rao-Blackwell argument, 75 is dominated by 74 defined as follows:

. 1 ¢
AT yip) = = > erh(yr)
p k=0

Note that, given this Rao—Blackwellization scheme, the uniform generations are
not used at all in the computation of 7. Hence the randomness coming from
these uniforms is completely integrated out.

The four estimators defined up to now can be summarized as follows:

e 71 is the basic IMH estimator of E, [h(X)],

e 75 improves 71 by averaging over permutations of the proposed values, and
by using p times more uniforms than 71,

zy),

4 Rao—Blackwellization 13

e 73 improves upon 7 by a basic Rao-Blackwell argument,

e 7, improves upon 72 by a further Rao-Blackwell argument, integrating out
the ancillary uniform variables, but at a cost of O(p?).

Note that these four estimators all involve the same number p of target density
evaluations.

4.3 A numerical evaluation

Figure[5] gives a comparison between the variances of the three improved estima-
tors and the variance of the basic IMH estimator. The permutations are random
in this case. As was already apparent on Figure[4] the block estimator 7 is sig-
nificantly better than 71 for any value of p. Moreover, both Rao-Blackwellization
modifications seem to improve only very slightly the estimation when compared
with 7. This is more and more the case when p increases.

p=4 p=10

01
0.1

0.0
I

0.0

0% 0%

-0.1
I
-0.1
I

-0.2
I
-0.2
I

-22.84%

-0.3
I
-0.3
I

-27.65%
-2027% -2027%
-31.24% -31.74%

-0.4
I
-0.4
I

-05
L
-05
L

p=50 p =100

0.1
|
0.1

0.0
I

0.0

0% 0%

-0.2 -0.1
I I
-0.2 -0.1
I I

I
-0.3
I

0.

I
-0.4

I

~36.69 % -37.03% ~37.06 % -37.75% -37.92% -37.92%

0.

L
-05

L

Fig. 5: Variance comparison between the basic estimator 77 and three improved
block IMH estimators.

Recall that the “same order” scheme already provided a significant decrease
in the variance of the estimation. In the light of our results, our interpretation

4 Rao—Blackwellization 14

is that using p parallel chains with the same proposed values acts like a ”poor
man” Rao—Blackwellization technique since p times more uniforms are used.
Specifically, each of the p proposed values is proposed p times instead of once,
thus reducing the impact of each single uniform draw on the overall estimation.

When we use Rao—Blackwellization on top of the block IMH, in the esti-
mators 73 and 74, we try indeed to integrate out a randomness that is already
partly gone. This explains why, although Rao-Blackwellization techniques pro-
vide a significant improvement over standard IMH, the improvement is much
lower and thus rather unappealing when used in the block IMH setting. This
outcome was at first frustrating since Rao—Blackwellization is indeed affordable
at a cost of only O(p?). However, this shows in fine that the improvement
brought by the block IMH algorithm roughly provides the same improvement
as the Rao—Blackwell solution, at a much lower cost.

4.4 Comparison with Importance Sampling

The proposal distribution p may also be used to construct directly an impor-
tance sampling (IS) estimator

R RN ()
TIS = T ;h(yt)ﬂ(yt))

where the values y; are drawn from the proposal distribution p. It therefore
makes sense to compare the IMH algorithm with an IS approximation because
IS is similarly easy to parallelize. Furthermore, since the IS estimator does not
involve ancillary uniform variables, it is comparable to the Rao—Blackwellized
version of IMH, and hence to the block IMH. Obviously, IS cannot necessarily
be used in the settings when IMH algorithms are used, because the latter are
also considered for approximating simulations from the target distribution 7.
In particular, when considering Metropolis-within-Gibbs algorithms, IS cannot
be used in a straightforward manner, even for approximating integrals.

Before showing the results of a comparison run on the toy example, we now
explain why in this comparison we take the number of blocks to be larger than
1. As mentioned above, the results from the previous sections were computed
with b = 1, i.e. on a single p x p block and for a large number of independent
runs. The choice of b was then irrelevant since we were comparing methods that
were exploiting in different ways the p proposed values generated in each block.
When considering the block IMH algorithm as a whole, as explained in Section
[2] the end of each block sees a new starting value chosen from the current block.
This ensures that the algorithm produces a valid Markov chain. However, our
construction also implies that the successive blocks produced by the algorithm
are correlated, which should lead to lesser performance than the IS estimator.

In the comparison between IMH and IS, we therefore need to take into
account this correlation between successive blocks. To this effect, we produce
the variance reductions for several values of b. Those reductions are presented
in Figure [6] for p = 10 and different values of b = 1,10, 100, 1000. Once again,
the permutations in the block IMH algorithm are chosen to be random.

5 A probit regression illustration 15

0.1

0% 0%

-0.1
I
-0.1
I

-0.2
I

-0.3
I
-0.3
I

-25.62 %

-29.27%

“3124% 3174% -31.79%
-3388% _3439%

-0.4
I
-0.4
I

-37.89 %

0.5
L
-0.5
L

p=10 p=10

01

0.0

0.0

0% 0%

-0.1
I

-0.2
I
-0.2
I

-0.3
I
-0.3
I

-31.36 %

-324% -33.44% _34199

3 -34.08% -3464%

-0.4
I

-37.99 % -38.35%

0.

L
-0.5

L

T T T T Ts T T T T Ts

(c) b= 100 (d) b= 1000

Fig. 6: Variance comparison between the basic estimator 77, three improved
block IMH estimators, and the IS estimator 75.

Figure[6] shows the a priori surprising result that, when selecting b = 1 in the
experiment, the variance results are in favor of the block IMH solutions over the
IS estimator, but, for any realistic application, b is (much) larger than 1. For all
b > 10, the IS estimator has a smaller variance than the three alternative block
IMH estimators, if by a small margin. (Note that the variance improvement over
the original MCMC estimator is slightly increasing with b despite the correlation
between blocks, given that the correlation between the p? terms involved in the
block IMH estimators is lower than the correlation in the original MCMC chain.)
This experiment thus shows that the block IMH solution gets very close to the IS
estimator, while keeping the Markovian features of the original IMH algorithm.

5 A probit regression illustration

In order to evaluate the performances of the parallel processing methods pre-
sented in this paper on a realistic example, we examine their implementation

5 A probit regression illustration 16

the probit model already analyzed in Marin and Robert| (2010)) for the compari-
son of model choice techniques because the “plug-in” normal distribution based
on MLE estimates of the first two moments works quite well as an independent

proposal.
A probit model can be represented as a natural latent variable model in that,
if we consider a sample z1,..., 2, of n independent latent variables associated

with a standard regression model, i.e. such that z;|0 ~ N (x?-:& 1), where the
x;’s are p-dimensional covariates and 6 is the vector of regression coefficients,
then y,...,y, such that

yi =50

is a probit sample. Indeed, given 6, the y;’s are independent Bernoulli rv’s with
P(y; = 1|0) = @ (2]0) where ® is the standard normal cdf. The choice of a prior
distribution for the probit model is open to debate, but the above connection
with the latent regression model induced Marin and Robert| (2007) to suggest
a g-prior model, 8 ~ N (0,,n(XTX)™!), with n as the g factor and X as the
regressor matrix.

While a Gibbs sampler taking advantage of the latent variable structure is
implemented in [Marin and Robert| (2010) and earlier references (Albert and
Chib, [1993)), a straightforward Metropolis—Hastings algorithm may be used as
well, based on an independent proposal A/ (é, ci), where 6 is the MLE estimator,
S its asymptotic variance, and c¢ a scaling factor.

As in Marin and Robert| (2010)) and |Girolami and Calderhead| (2010)), we
use the R Pima Indian benchmark dataset (R Development Core Team) 2006)),
which contains medical information about 332 Pima Indian women with seven
covariates and one explained binary diabetes variable.

For the purpose of illustrating the implementation of the block IMH algo-
rithm, we only consider here three covariates, namely plasma glucose concen-
tration (with coefficient 61), diastolic blood pressure (with coefficient 65) and
diabetes pedigree function (with coefficient #3). We are interested in the pos-
terior mean of those three regression parameters. In our experiment, we ran
10.000 independent replications of our algorithm to produce a reliable evalua-
tion of the variance of the estimators under comparison. We present the variance
comparison of the four estimators described in Section [4f for p = 10 (Figure
and p = 50 (Figure , for each of the three regression parameters. In the in-
dependent proposal, the scale factor is chosen to be 3 since pilot runs showed
that it led to an acceptance rate around 37%.

5 A probit regression illustration 17

p=10 p=10
o &
3 3
o o
3 3
0% 0%
N o
S S
7 7
< 5
S S
7 7
o @
T -58.56 % o559 7 -58.37 % I
’ ~64.78 % ’ ~64.61%
© @
3 3
7 7
% %, 3 % 1 t % A
(a) p =10, 61 (b) p =10, 62
p=10

N _

S

s |

S

0%

o

8

7

<

s

7

o

7 -50.19%

62% -64.6 %

©

2 |

7

% % 3 B
(¢) p=10, 63

Fig. 7: Variance comparison between the basic estimator 7; and the three im-
proved block IMH estimators for p = 10 and each of the parameters.

5 A probit regression illustration 18

0.2
|
0.2

0.0

0% 0%

0.

I
-0.2

I

-0.4
I
-0.4
I

-0.6
I
-06
I

-58.94 % -59.33 % ~59.56 % -58.81 % -59.15 % -59.38 %

-0.8
L
-0.8
L

0%

7 -57.26 % -57.6% -57.89 %

(c) p =50, 63

Fig. 8: Variance comparison between the basic estimator 7; and the three im-
proved block IMH estimators for p = 50 and each of the parameters.

The results shown in Figures [7] and [§] confirm the huge decrease in variance
previously observed in the toy example. The gains represented in those figures
indicate that the block estimator 7 is nearly as good (in terms of variance im-
provement) as the Rao—Blackwellized block estimators 75 and 74, especially when
p moves from 10 to 50. This confirms the previous interpretation given in Sec-
tion [that the block IMH algorithm provides a cost-free Rao-Blackwellization
as well as a partial averaging over the order of the proposed values.

The fact that the toy example showed decreases in the variance that were
around 35% whereas the probit regression shows decreases around 60% is worth
discussing. Indeed the amount of decrease in the variance obviously differs from
one example to the other, but it is more importantly depending on the accep-
tance rate of the Metropolis—Hastings algorithm. In fact, Rao—Blackwellization
and permutations of the proposed values are useless steps if the acceptance rate
is exactly 1. On the opposite, it may result in a significant improvement when
the acceptance rate is low (since the part of the variance due to the uniform

6 Conclusion 19

draws would then be much more important).

To illustrate the connection between the observed improvement and the ac-
ceptance rate, we propose in Figure [J] a variance comparison for two scaling
factors ¢ of the proposal covariance matrix in the probit regression model. In
this figure, we have only represented the variances of the estimators of the first
parameter 1, the results being very similar for the other two estimators. In
the previous experiment, we have used ¢ = 3, which leads to an acceptance
ratio around 37%. Here, if we take ¢ = 1, the acceptance ratio rises to 96%,
and hence almost all the proposed values are accepted. In this case permuting
the proposed values and using Rao—Blackwellization techniques does not bring
much of a variance decrease (Figure [J] left). On the other hand, if we take
¢ = 10, the acceptance ratio drops down to 8% and the observed decrease in
variance is huge. In this second case using all the proposed values gives much
better results than relying on the standard IMH estimator, which is only based
on 8% of the proposed values that were accepted (Figure [9] right).

— °
o% T 0%
-6.44%

@ o
$ - ?- “r4.21% ~76.49 %

-81.63 %

(a) Proposal variance = 1 x 5 (b) Proposal variance = 10 x &

Fig. 9: Variance comparison for two scaling factors: ¢ = 1, with an associated
acceptance rate of 96% (left) and ¢ = 10, with an associated acceptance
rate of 8% (right).

The difference observed with this range of scaling factor is thus in agreement
with the larger decrease in variance observed for the probit regression model.
Note that this is a positive feature of the block IMH method, since in a complex
model, the target distribution is most often poorly approximated by the proposal
and thus the acceptance rate of the IMH algorithm is quite likely to be low.

6 Conclusion

The Monte Carlo experiments produced in this paper have shown that the
proposed method improves significantly the precision of the estimation, when
compared with the standard IMH algorithm. We emphasize once again that
the block IMH method is close to being 100% parallel (except for the random
draw of an index at the end of each block) and that, since parallel computing is

6 Conclusion 20

getting more and more easy to use, this free improvement could be available for
all implementations of the IMH algorithm. Furthermore, without even consid-
ering parallel computing, since we have shown that the method uses the most
of each target density evaluation, it brings significant improvement in settings
where computing the target density is very costly. In such settings, the cost of
drawing p? instead of p uniform variates will be negligible, and the block IMH
algorithm will therefore run in about the same time as the standard IMH algo-
rithm. We also note that the time required to complete a block in the algorithm
is essentially the maximum of the p times required to calculate the density ratios
w;. Therefore, if there is a lot of variation in these times there could be a dimin-
ishing saving in computation time through parallel as p increases for both the
standard IMH and the block IMH algorithms. But even in those extreme cases,
the block IMH algorithm would bring a variance improvement at essentially no
additional cost.

We also stress that a straightforward reason for not conducting a comparison
with a plain parallel algorithm based on p independent parallel chains is that
it does not make sense cost-wise. Indeed, running p parallel chains of the same
length T would cost p times more because of the target density evaluations.
Obviously, if one wants to run p independent chains, for instance to initialize
an MCMC algorithm from several well-dispersed starting points, each of those
chains can benefit from our stabilizing method, which will improve the resulting
estimation.

Acknowledgements

The work of the second author (CPR) was partly supported by the Agence Na-
tionale de la Recherche (ANR, 212, rue de Bercy 75012 Paris) through the 2009
project ANR-08-BLAN-0218 Big'MC and the 2009 project ANR-09-BLAN-01
EMILE. Pierre Jacob is supported by a PhD fellowship from the AXA Research
Fund. Since this research was initiated during the Valencia 9 Bayesian Statistics
conference, the paper is dedicated to José Miguel Bernardo for the organisation
of this series of unique meetings since 1979. Discussions of the second au-
thor with participants during a seminar in Stanford University in August 2010
were quite helpful, in particular the suggestion made by Art Owen to include
the “half-inversed half-random” permutations. The authors are also grateful
to Julien Cornebise for helpful discussions, in particular those leading to the
stratified strategy.

References

ALBERT, J. and CHIB, S. (1993). Bayesian analysis of binary and polychoto-
mous response data. J. American Statist. Assoc., 88 669—679.

ArcHADE, Y. and PERRON, F. (2005). Improving on the independent
metropolis—hastings algorithm. Statistica Sinica, 15 3—-18.

CaseLLa, G. and ROBERT, C. (1996). Rao-Blackwellisation of sampling
schemes. Biometrika, 83 81-94.

6 Conclusion 21

CORANDER, J., GYLLENBERG, M. and Koski, T. (2006). Bayesian model
learning based on a parallel MCMC strategy. Statistics and Computing, 16
355-362.

CraAlu, R., ROSENTHAL, J. and YANG, C. (2009). Learn from thy neighbour:
Parallel-chain and regional adaptive MCMC. J. American Statist. Assoc.,
104.

Cralu, R. V. and MENG, X.-L. (2005). Multiprocess parallel antithetic cou-
pling for backward and forward Markov chain Monte Carlo. Ann. Statist., 33
661-697.

Douc, R. and ROBERT, C. (2010). A vanilla variance importance sampling via
population Monte Carlo. Ann. Statist. To appear.

GELFAND, A. and SMITH, A. (1990). Sampling based approaches to calculating
marginal densities. J. American Statist. Assoc., 85 398—-409.

GirorAMI, M. and CALDERHEAD, B. (2010). An object-oriented random-
number package with many long streams and substreams. J. Royal Statist.
Society Series B, T3 1-37.

HoBerT, J., JONES, G., PRESNEL, B. and ROSENTHAL, J. (2002). On
the applicability of regenerative simulation in Markov chain Monte Carlo.
Biometrika, 89 731-743.

HoLMmEs, C., DOUCET, A., LEE, A., GILES, M. and YAu, C. (2011). Bayesian
computation on graphics cards. In Bayesian Statistics 9: Proceedings of the
Ninth Valencia International Meeting, June 3-8, 2010 (J. Bernardo, M. Ba-
yarri, J. Degroot, A. Dawid, D. Heckerman, A. Smith and M. West, eds.).
Oxford University Press.

L’ECUYER, P., SIMARD, R., CHEN, E. J. and KeLToNn, W. D. (2001). An
object-oriented random-number package with many long streams and sub-
streams. Operations Research, 50 1073-1075.

MARIN, J. and ROBERT, C. (2010). Importance sampling methods for Bayesian
discrimination between embedded models. In Frontiers of Statistical Decision
Making and Bayesian Analysis (M.-H. Chen, D. Dey, P. Miiller, D. Sun and
K. Ye, eds.). Springer-Verlag, New York, 513-527.

MARIN, J.-M. and ROBERT, C. (2007). Bayesian Core. Springer-Verlag, New
York.

MYKLAND, P., TIERNEY, L. and Yu, B. (1995). Regeneration in Markov chain
samplers. J. American Statist. Assoc., 90 233-241.

PERRON, F. (1999). Beyond accept-—reject sampling. Biometrika, 86 803-813.

R DEVELOPMENT CORE TEAM (2006). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. URL http://www.R-project.org.

ROBERT, C. (1995). Convergence control techniques for MCMC algorithms.
Statis. Science, 10 231-253.

http://www.R-project.org

6 Conclusion 29

ROBERT, C. and CASELLA, G. (2004). Monte Carlo Statistical Methods. 2nd
ed. Springer-Verlag, New York.

ROSENTHAL, J. (2000). Parallel computing and Monte Carlo algorithms. Far
FEast J. Theoretical Statistics, 4 207-236.

	1 Introduction
	2 Improving the IMH algorithm
	2.1 Standard IMH algorithm
	2.2 Block IMH algorithm
	2.3 Toy example

	3 Permutations
	3.1 Five choices of permutations
	3.1.1 Fixed order
	3.1.2 Circular permutations
	3.1.3 Random permutations
	3.1.4 Half random half reversed permutations
	3.1.5 Stratified random permutations

	3.2 A Monte Carlo comparison

	4 Rao–Blackwellization
	4.1 First Rao–Blackwellization
	4.2 Block Rao–Blackwellization
	4.3 A numerical evaluation
	4.4 Comparison with Importance Sampling

	5 A probit regression illustration
	6 Conclusion

