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Abstract

A stationary Gaussian process is said to be long-range dependent (resp. anti-persistent)
if its spectral density f(λ) can be written as f(λ) = |λ|−2dg(|λ|), where 0 < d < 1/2
(resp. −1/2 < d < 0), and g is continuous. We propose a novel Bayesian nonparametric
approach for the estimation of the spectral density of such processes. Within this approach,
we prove posterior consistency for both d and g, under appropriate conditions on the prior
distribution. We establish the rate of convergence for a general class of priors, and apply
our results to the family of fractionally exponential priors. Our approach is based on the
true likelihood function, and does not resort to Whittle’s approximation, which is not valid
in a long memory set-up.

Key-words: Bayesian nonparametric; consistency; FEXP priors; Gaussian long memory
processes; rates of convergence

1 Introduction

Let X = {Xt, t = 1, 2, . . .} be a real-valued stationary zero-mean Gaussian random process,
with spectral density f , and covariance function γf (τ) = E(XtXt+τ ), so that

γf (τ) =

∫ π

−π

f(λ)eiτλdλ (τ = 0,±1,±2, . . . ). (1.1)

This process is long-range dependent (resp. anti-persistent) if there exist C > 0 and a value
d, 0 < d < 1/2 (resp. −1/2 < d < 0), such that f(λ)|λ|2d → C when λ → 0. This may be
conveniently rewritten as f(λ) = λ−2dg(|λ|), where g : [0, π] → R

+ is a continuous function.
Interest in long-range dependent and anti-persistent time series has increased steadily in the

last fifteen years; see Beran (1994) for a comprehensive introduction and Doukhan et al. (2003)
for a review of theoretical aspects and fields of applications, including telecommunications, eco-
nomics, finance, astrophysics, medicine and hydrology. Research in parametric inference for long
and intermediate memory processes have been pioneered by Mandelbrot and Van Ness (1968),
Mandelbrot and Wallis (1969), and continued by Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and Taqqu
(1999), Geweke and Porter-Hudak (1983), and Beran (1993), among others. Unfortunately, para-
metric inference can be highly biased under mis-specification of the true model. This limitation
makes semiparametric approaches particularly appealing (Robinson, 1995).
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For instance, under the representation f(λ) = |λ|−2dg(|λ|), one would like to estimate d
as a measure of long-range dependence, without resorting to parametric assumptions on the
nuisance parameter g; see Liseo et al. (2001) for a Bayesian approach to this problem, and
Bardet et al. (2003) for an exhaustive review of classical approaches. However, practically all
the existing procedures either exploit the regression structure of the log-spectral density in a
small neighborhood of the origin (Robinson, 1995), or use an approximate likelihood function
based onWhittle’s approximation (Whittle, 1962), where the original vector of observationsXn =
(X1, X2, . . . , Xn) gets transformed into the periodogram I(λ) computed at the Fourier frequencies
λj = 2π j/n, j = 1, 2, . . . , n, and the artificial observations I(λ1), . . . , I(λn) are, under short
range dependence, approximately independent. Unfortunately, Whittle’s approximation is not
valid in in the presence of long range dependence, at least for the smallest Fourier frequencies.

We propose a Bayesian nonparametric approach to the estimation of the spectral density
of the stationary Gaussian process based on the true likelihood, without resorting to Whittle’s
approximation. We study the asymptotic properties of our procedure, including consistency
and rates of convergence. Our study is based on standard tools for an asymptotic analysis of
Bayesian approaches, e.g. Ghosal et al. (2000), i.e. quantities of interest are the prior probability
of a small neighborhood around the true spectral density, and some kind of entropy measure for
the prior distribution. Most technical details differ however, as the observed process is long-range
dependent.

The paper is organised as follows. In Section 2, we introduce the model and the notations.
In Section 3, we provide a general theorem that states sufficient conditions to ensure consistency
of the posterior distribution, and of several Bayes estimators. We also introduce the class of
FEXP (Fractional Exponential) priors, based on the FEXP representation of Robinson (1991),
and show that such prior distributions fulfil these sufficient conditions for posterior consistency.
In Section 4, we study the rate of convergence of the posterior in the general case, and specialise
our results for the FEXP class. Section 5 gives the proofs of the main theorems of the two
previous Sections. Section 6 discusses further research. The Appendix contains several technical
lemmas.

2 Model and notations

The model consists of an observed vector Xn = (X1, . . . , Xn) of n consecutive realizations from
a zero-mean Gaussian stationary process, with spectral density f , which is either long-range
dependent, short-range dependent, or anti-persistent. The likelihood function is

ϕ(Xn; f) = (2π)−n/2|Tn(f)|
−1/2 exp{−

1

2
Xt

nTn(f)
−1Xn} (2.1)

where Tn(f) is the Toeplitz matrix associated to γf , see (1.1), i.e. Tn(f) = [γf (j − k)]1≤j,k≤n.
This model is parametrised by the pair (d, g), which defines f = F (d, g) through the factori-

sation

F : (−1/2, 1/2)× C0[0, π] → F

(d, g) → f : f(λ) = |λ|−2dg(|λ|),

where C0[0, π] is the set of continuous functions over [0, π], and F denotes the set of spectral
densities, that is, the set of even functions f : [−π, π] → R

+ such that
∫ π

−π
|f(λ)| dλ < +∞.

The model is completed with a nonparametric prior distribution π for (d, g) ∈ (−1/2, 1/2)×
C0[0, π]. (There should be no confusion whether π refers to either the constant or the prior
distribution in the rest of the paper.) All our results will assume that the model is valid for
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some true’ parameter (d0, g0), associated to some ‘true’ spectral density f0 = F (d0, g0), where
d0 ∈ (−1/2, 1/2); conditions on g0 are detailed in the next section.

We introduce several pseudo-distances on F . The Kullback-Leibler divergence for finite n is
defined as

KLn(f0; f) =
1

n

∫

Rn

ϕ(Xn; f0) {logϕ(Xn; f0)− logϕ(Xn; f)} dXn

=
1

2n

{
tr
[
Tn(f0)T

−1
n (f)− In

]
− log det(Tn(f0)T

−1
n (f))

}

where In represents the identity matrix of order n. Letting n→ ∞, we can define, when it exists,
the quantity

KL∞(f0; f) =
1

4π

∫ π

−π

[
f0(λ)

f(λ)
− 1− log

f0(λ)

f(λ)

]
dλ.

We also define a symmetrised version of KLn, i.e.

hn(f0, f) = KLn(f0; f) +KLn(f ; f0);

and its limit as n→ ∞:

h(f0, f) =
1

4π

∫ π

−π

[
f0(λ)

f(λ)
+
f(λ)

f0(λ)
− 2

]
dλ =

1

2π

∫ π

0

(
f0(λ)

f(λ)
− 1

)2
f(λ)

f0(λ)
dλ.

For technical reasons, we define also the pseudo-distance

bn(f0, f) =
1

n
tr
[(
Tn(f)

−1Tn(f0 − f)
)2]

and its limit as n→ +∞,

b(f0, f) =
1

4π

∫ π

−π

(
f0(λ)

f(λ)
− 1

)2

dλ.

Finally, we consider the L2 distance between the spectral log-densities (Moulines and Soulier,
2003),

ℓ(f0, f) =

∫ π

−π

{log f0(λ) − log f(λ)}2 dλ. (2.2)

For the models considered in this paper, this distance always exists, whereas the L2 distance
may not.

3 Consistency

We first state and prove the strong consistency of the posterior distribution under very general
conditions on both π and f0 = F (d0, g0), i.e. as n→ ∞, and for ε > 0 small enough,

P π[Aε|Xn] → 1, a.s.,

where P π[.|Xn] denotes posterior probabilities associated with the prior π, and

Aε = {(d, g) ∈ (−1/2, 1/2)× C0[0, π] : h(f0, F (d, g)) ≤ ε}.

From this, we shall deduce the consistency of Bayes estimators of f and d. Finally, we shall
introduce the class of FEXP priors, and show that they allow for posterior consistency.
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3.1 Main result

Consider the following sets:

G(m,M) =
{
g ∈ C0[0, π] : m ≤ g ≤M

}

G(m,M,L, ρ) = {g ∈ G(m,M) : |g(λ)− g(λ′)| ≤ L|λ− λ′|ρ}

G(t,m,M,L, ρ) = [−1/2 + t, 1/2− t]× G(m,M,L, ρ)

for ρ ∈ (0, 1], L > 0, m ≤ M , t ∈ (0, 1/2). Restricting the parameter space to such sets makes
the model identifiable (boundedness of g, provided m > 0), and ensures that normalized traces
of products of Toeplitz matrices that appear in the distances defined in the previous section
converge (Hölder inequality).

We now state our main consistency result.

Theorem 3.1. For ε > 0 small enough

P π [Aε|Xn] → 1, a.s.

provided the following conditions are fulfilled:

1. There exist t,m,M,L > 0, ρ ∈ (0, 1], such that the set G(t,m,M,L, ρ) contains both the
pair (d0, g0) that defines the true spectral density f0 = F (d0, g0) and the support of the
prior distribution π.

2. For all ε > 0, π(Bε) > 0, where Bε is defined by

Bε = {(d, g) ∈ G(t,m,M,L, ρ) : h(f0, F (d, g)) ≤ ε, 16|d0 − d| < ρ+ 1− t} .

3. For ε > 0 small enough, there exists a sequence Fn such that π(Fn) ≥ 1 − e−nr, r > 0,
and a net (i.e. a finite collection)

Hn ⊂ {(d, g) ∈ [−1/2 + t, 1/2− t]× G(m,M,L, ρ) : h(f0;F (d, g)) > ε/2}

such that, for n large enough, for all (d, g) ∈ Fn∩Ac
ε, f = F (d, g), there exists (di, gi) ∈ Hn,

fi = F (di, gi), such that 8(di − d) ≤ ρ+ 1− t, f ≤ fi, and:

(a) if 8|di − d0| ≤ ρ+ 1− t,

1

2π

∫ π

−π

(fi − f)(λ)

f0(λ)
dλ ≤ h(f0, fi)/4;

(b) if 8(di − d0) > ρ+ 1− t,

b(fi, f) ≤ b(f0, fi)| log ε|
−1;

(c) otherwise, if 8(d0 − di) > ρ+ 1− t,

1

2π

∫ π

−π

(fi − f)(λ)

fi(λ)
dλ ≤ b(fi, f0)| log ε|

−1.

4. The cardinality Cn of the net Hn defined above is such that log Cn ≤ nε/log(ε).

A proof is given in Section 5.1. Note that, in the above definition of the net Hn, the | log ε|
terms are here only to avoid writing inequalities in terms of awkward constants in the formm/M .
If need be, we can replace the | log ε| by the correct constants as expressed in Appendix B. The
definition of the above entropy is non-standard. The interest in expressing it in this general but
non-standard form lies in the difficulty in dealing with spectral densities which diverge at 0. In
practise, the way one constructs the net Hn should vary according to the form of the prior on
the short memory part g.
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3.2 Consistency of point estimates

As explained in §2, we focus on the quadratic loss function ℓ with respect to the logarithm of
the spectral density. The corresponding Bayes estimator is

d̂ = Eπ[d|Xn], ĝ : λ→ exp {Eπ[log g(λ)|Xn]} , f̂ = F (d̂, ĝ).

Often, the real parameter of interest is d, and g is a nuisance parameter. Consistency for d̂ can
be deduced from Theorem 3.1.

Corollary 1. Under the assumptions of Theorem 3.1, for ε > 0 small enough,

P π [{|d− d0| > ε}|Xn] → 0

and d̂→ d0 as n→ ∞.

Proof. Lemma 10, see Appendix D, implies that

P π[Ac
ε|Xn] ≥ P π [{|d− d0| > ε′} |Xn] → 0 a.s.

as n→ +∞, for some ε′ > 0 and, by Jensen’s inequality,

(d̂− d0)
2 ≤ Eπ [(d− d0)

2|Xn] → 0, a.s.

Consistency results for a point estimate of f can also be deduced:

Corollary 2. Under the assumptions of Theorem 3.1, one has, as n→ ∞,

ℓ(f0, f̂) → 0, a.s.

Proof. For f = F (d, g), f0 = F (d0, g0), one has ℓ(f0, f) ≤ h(f0, f), since x
2 ≤ ex + e−x − 2 for

all x, and ℓ(f0, f) ≤ C for some well chosen constant C, provided g, g0 ∈ G(m,M). Thus, by
Jensen inequality, and for all ε > 0,

ℓ(f0, f̂) ≤ Eπ[ℓ(f0, f)|Xn] ≤ ε+ CP π[Ac
ε|Xn].

3.3 The FEXP prior

Following Hurvich et al. (2002), we consider the FEXP parameterisation of spectral densities,

i.e. f = F̃ (d, k, θ), where

F̃ : T → F

(d, k, θ) → f : f(λ) = |1− eiλ|−2d exp






k∑

j=0

θj cos(jλ)




 . (3.1)

and T = (−1/2 + t, 1/2 − t) ×
{
∪+∞
k=0{k} × R

k+1
}
, for some fixed t ∈ (0, 1/2). This FEXP

representation is equivalent to our previous representation f = F (d, g), provided g = ψ−dew,

w(λ) =
{∑k

j=0 θj cos(jλ)
}

and ψ(λ) = |1 − eiλ|2/λ2 = 2(1 − cosλ)/λ2 for λ 6= 0, ψ(0) = 1.
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The function ψ is bounded, infinitely differentiable and positive for λ ∈ [0, π]. Thus g and w
share the same regularity properties, i.e. w is bounded and Hölder with exponent ρ implies that
g is bounded and Hölder with exponent ρ, and vice versa. Under this parameterisation, the
prior distribution π is expressed as a trans-dimensional prior distribution on the random vector
(d, k, θ), which, for convenience, factorises as πd(d)πk(k)πθ(θ|k).

We assume that π puts mass one on the following Sobolev set:

S(β, L) =



(d, k, θ) ∈ T :

k∑

j=0

θ2j (j + 1)2β ≤ L



 (3.2)

for some β > 1/2, L > 0. This ensures that the Fourier sum w, and thus the short-memory
component g of the spectral density f , as explained above, belong to some set G(m,M,L′, ρ),
i.e., both w and g are bounded and Hölder, for ρ < β − 1/2. To see this, note that, for
(d, k, θ) ∈ S(β, L):

k∑

j=0

|θj | j
r ≤

k∑

j=0

θ2j (j + 1)2β +

k∑

j=0

|θj | j
r1l
(
|θj |j

r ≥ θ2j (j + 1)2β
)

≤ L+

+∞∑

j=0

(j + 1)2r−2β < +∞, (3.3)

provided 2r − 2β < −1. By taking r = 0, one sees that w is bounded, and by taking r = ρ, for
any ρ, 0 < ρ < β − 1/2, one sees that w is Hölder, with coefficient ρ, since, for λ, λ′ ∈ [−π, π],

|w(λ) − w(λ′)| ≤ 2

k∑

j=0

|θj | × |{cos(λj)− cos(λ′j)} /2|
ρ

≤ 21−ρ




k∑

j=0

|θj |j
ρ


 |λ− λ′|

ρ
.

Finally, we assume that π assigns positive prior probability to the intersection of S(β, L) with
any rectangle set of the form

(ad, bd)× {k} ×
k∏

j=1

(aθj , bθj).

Alternatively, one could assume that the support of π is included in a set of the form
{(d, k, θ) ∈ T :

∑k
j=0 |θj |j

ρ ≤ L}. However Sobolev sets are more natural when dealing with
rates of convergence, see Section 4.2, and are often considered in the non parametric literature,
so we restrict our attention to these sets.

In the same spirit, we assume that the true spectral density admits a FEXP representation
associated to an infinite Fourier series,

f0(λ) = |1− eiλ|−2d0 exp






+∞∑

j=0

θ0j cos(jλ)




 ,

i.e., f0 = F (d0, g0) with g0 = ψ−d0ew0 and w0(λ) =
{∑+∞

j=0 θ0j cos(jλ)
}
. In addition, we assume

that w0 satisfies the same type of Sobolev inequality, namely

L0 =

+∞∑

j=0

θ20j(j + 1)2β < L < +∞, (3.4)
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which, as explained above, implies that g0 ∈ G(m,M,L, ρ), for some well chosen constants
m,M,L, ρ. Note that it is essential to have a strict inequality in (3.4), i.e. L0 < L.

Theorem 3.2. Let π be a prior distribution πd(d)πk(k)πθ(θ|k) which fulfils the above conditions,
and, in addition, such that πk(k) ≤ exp(−Ck log k) for some C > 0 and k large enough. Then
the conditions of Theorem 3.1 are fulfilled, and the posterior distribution is consistent.

Proof. Condition 1 of Theorem 3.1 is a simple consequence of (3.4) and (3.2), as explained above.
For Condition 2, we noted, see (3.3), that

∑+∞
j=0 θ

2
0j(j+1)2β ≤ L implies that

∑+∞
j=0 |θ0j | ≤ L′ <

+∞. Let k such that
∑∞

j=k+1 |θ0j | ≤ ε/14, θ = (θ0, ..., θk) such that
∑k

j=0 |θ0j − θj | ≤ ε/14,

d such that |d− d0| ≤ ε/7, and let f = F̃ (d, k, θ). Using Lemma 14, see Appendix D, one has
h(f, f0) ≤ ε. Note that it is sufficient to prove that π(Bε) > 0 for ε small enough, hence we
assume that ε/7 < (ρ + 1 − t)/16. Thus, Condition 2 is verified as soon as the intersection of
S(β, L) and the rectangle set

[d0 − ε/7, d0 + ε/7]× {k} ×
k∏

j=1

[θ0j − ε/14k, θ0j − ε/14k]

is assigned positive prior probability. Now consider Condition 3. Let ε > 0 and take

Fn = {(d, k, θ) ∈ S(β, L) : k ≤ kn} ,

where kn = ⌊αn/ logn⌋, for some α > 0, so that, for some r depending on α, π(Fc
n) ≤ πk(k >

kn) ≤ e−nr. Let f = F̃ (d, k, θ), fi = (2e)cεF̃ (di, k, θi), such that k ≤ kn, di − cε ≤ d ≤ di, and∑k
j=0 |θj − θij | ≤ cε, for some c > 0, then

f(λ)

fi(λ)
= (2e)−cε [2(1− cosλ)]

di−d
exp





k∑

j=0

(θj − θij) cos(jλ)



 ≤ 1,

and

f(λ)

fi(λ)
≥ (1− cosλ)cε2−cεe−2cε.

If c is small enough, fi − f verifies the three inequalities considered in Condition 3. The number
Cn of functions fi necessary to ensure that, for any f in the support of π, at least one of them
verify the above inequalities, can be bounded by, for n large enough, and some well chosen
constant C,

Cn ≤ kn(Ckn/ε)
kn+2 ≤ k3kn

n

≤ exp {3αn [1 + (logα− log logn) / logn]}

≤ exp {6αn}

so Condition 4 is satisfied, provided one takes α = ε/6 log ε.

A convenient default choice for π is as follows: πd is uniform over (−1/2 + t, 1/2 − t), πk
is Poisson, and πθ|k has the following structure: the sum S =

∑k
j=0 θ

2
j (j + 1)2β has a Gamma

distribution truncated to interval [0, L], independently of S, the vector (θ20 , θ
2
12

2β , . . . , θ2k(k +
1)2β)/S is Dirichlet with some coefficients α1,k, . . . , αk,k, and the signs of θ0, . . . , θk have equal
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probabilities. In particular one may take αj,k = 1 for all j ≤ k, or, if one needs to generate
more regular spectral densities, αj,k = j−κ, for some fixed or random κ > 0. Another interesting
choice for the prior on θ is the following truncated Gaussian process: for each k, and each j ≤ k,
θj ∼ N (0, τ20 (1 + j)−2β) independently apart from the constraint, for some fixed, large L > 0:

k∑

j=1

(1 + j)2βθ2j ≤ L.

Note that we can easily restrict ourselves to the important case d ≥ 0, i.e. processes having
long or short memory but not intermediate memory.

4 Rates of convergence

In this section we first provide a general theorem relating rates of convergence of the posterior
distribution to conditions on the prior. These conditions are, in essence, similar to the conditions
obtained in the i.i.d. case (e.g. Ghosal et al., 2000): i.e. a condition on the prior mass of Kullback-
Leibler neighborhoods of the true spectral density, and an entropy condition on the support of
the prior. We then present results specialised to the FEXP prior case.

4.1 Main result

Theorem 4.1. Let (un) be a sequence of positive numbers such that un → 0, nun → +∞, and
B̄n a sequence of balls belonging to G(t,m,M,L, ρ), and defined as

B̄n = {(d, g) : KLn(f0;F (d, g)) ≤ un/4, bn(f0, F (d, g)) ≤ un, d0 ≤ d ≤ d0 + δ} ,

for some δ, L > 0, 0 < m ≤ M , ρ ∈ (0, 1]. Let π be a prior which satisfies all the conditions of
Theorem 3.1, and, in addition, such that:

1. For n large enough, π(B̄n) ≥ exp(−nun/2).

2. There exists ε > 0 and a sequence of sets F̄n ⊂ {(d, g) : h(F (d, g), f0) ≤ ε}, such that, for
n large enough,

π
(
F̄c

n ∩ {(d, g) : h(F (d, g), f0) ≤ ε}
)
≤ exp(−2nun).

3. There exists a positive sequence (εn), ε
2
n ≥ un, ε

2
n → 0, nε2n ≥ C logn, for some C > 0,

satisfying the following conditions. Let

Vn,l = {(d, g) ∈ F̄n; ε
2
nl ≤ hn(f0, F (d, g)) ≤ ε2n(l + 1)},

with l0 ≤ l ≤ ln, with fixed l0 ≥ 2 and ln = ⌈ε2/ε2n⌉ − 1. For each l = l0, · · · , ln, there
exists a net (i.e. a finite collection) H̄n,l ⊂ Vn,l, with cardinality C̄n,l, such that for all
f = F (d, g), (d, g) ∈ Vn,l, there exists fi,l = F (di,l, gi,l) ∈ H̄n,l such that fi,l ≥ f and

0 ≤ gi,l(x) − g(x) ≤ lε2ngi,l/32 0 ≤ di,l − d ≤ lε2n(logn)
−1,

where
log C̄n,l ≤ nε2nl

α, with α < 1.
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Then, there exist C,C′ > 0 such that, for n large enough,

En
0

[
P π

(
hn(f0, F (d, g)) ≥ l0ε

2
n

∣∣Xn

)]
≤ Cn−3 + 2e−C′nε2n + e−nun/16. (4.1)

A proof is given in Section 5.2.
The conditions given in Theorem 4.1 are similar in spirit to those considered for rates of

convergence of the posterior distribution in the i.i.d. case. The first condition is a condition on
the prior mass of Kullback-Leibler neighborhoods of the true spectral density, the second one is
necessary to allow for sets with infinite entropy (some kind of non compactness) and the third
one is an entropy condition. The inequality (4.1) obtained in Theorem 4.1 is non asymptotic,
in the sense that it is valid for all n. However, the distances considered in Theorem 4.1 heavily
depend on n and, although they express the impact of the differences between f and f0 on the
observations, they are not of great practical use. For these reasons, the entropy condition is
awkward and cannot be directly transformed into some more common entropy conditions. To
state a result involving distances between spectral densities that might be more useful, we need
to consider some specific class of priors. In the next section, we obtain rates of convergence in
terms of the ℓ distance for the class of FEXP priors introduced in Section 3.3. The rates obtained
are the optimal rates up to a (logn) term, at least on certain classes of spectral densities. It is
to be noted that the calculations used when working on these classes of priors are actually more
involved than those used to prove Theorem 4.1. This is quite usual when dealing with rates of
convergence of posterior distributions, however this is emphasized here by the fact that distances
involved in Theorem 4.1 are strongly dependent on n. The method used in the case of the FEXP
prior can be extended to other types of priors.

4.2 Rates of convergence for the FEXP prior

We apply Theorem 4.1 to the class of FEXP priors introduced in Section 3.3. Recall that under
such a prior a spectral density f is parametrised as f = F̃ (d, k, θ), see (3.1). We make the same
assumptions as in Section 3.3. In particular, the prior π(d, k, θ) factorises as πd(d)πk(k)πθ(θ|k),
the right tail of πk is such that

exp {−Ck log k} ≤ πk(k) ≤ exp{−C′k log k},

for some C, C′ > 0, and for k large enough, and there exists β > 1/2 such that the Sobolev set

S(β, L) contains the support of π. The last condition means that S =
∑k

j=0 θ
2
j (j + 1)2β ∈ [0, L]

with prior probability one. In addition, we assume that the support of πd is [−1/2 + t, 1/2− t],
and, for d ∈ [−1/2 + t, 1/2 − t], πd(d) ≥ cd > 0. Similarly, we assume that πθ|k is such that

the random variable S =
∑k

j=0 θ
2
j (j+1)2β is independent of k, and admits a probability density

πS(s) with support [0, L], and such that πS(s) ≥ cs > 0 for s ∈ [0, L].

Theorem 4.2. For the FEXP prior described above, there exist C,C′ > 0 such that, for n large
enough

En
0

{
P π

[
ℓ(f, f0) >

C logn

n2β/(2β+1)

∣∣∣∣Xn

]}
≤
C

n2
(4.2)

where f = F̃ (d, k, θ) and

En
0

[
ℓ(f̂ , f0)

]
≤

C′(log n)

n2β/(2β+1)
, (4.3)

where log f̂(λ) = Eπ [log f(λ)|Xn].

A proof is given in Appendix C.
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5 Proofs of Theorems 3.1 and 4.1

5.1 Proof of Theorem 3.1

For the sake of conciseness, we introduce the following notations: for any pair (f, f0) of spectral
densities,

A(f0, f) = Tn(f)
−1Tn(f0),

B(f0, f) = Tn(f0)
1/2[Tn(f)

−1 − Tn(f0)
−1]Tn(f0)

1/2.

The proof borrows ideas from Ghosal et al. (2000). The main difficulty is to formulate con-
straints on quantities such as hn(f, f0) or KLn(f, f0) in terms of distances between f, f0, inde-
pendent on n, and uniformly over f . One has

P π [Ac
ε|Xn] =

∫
1lAc

ε
(f)ϕ(Xn; f)/ϕ(Xn; f0)dπ(f)∫
ϕ(Xn; f)/ϕ(Xn; f0)dπ(f)

∆
=
Nn

Dn
.

Let δ ∈ (0, ε) and Pn
0 be a generic notation for probabilities associated to the distribution of Xn,

under the true spectral density f0 = F (d0, g0). One has

Pn
0

{
P π [Ac

ε|Xn] ≥ e−nδ
}
≤ Pn

0

[
Dn ≤ e−nδ

]
+ Pn

0

[
Nn ≥ e−2nδ

]
(5.1)

The following Lemma bounds the first term.

Lemma 1. There exists C > 0 such that

Pn
0

[
Dn ≤ e−nδ

]
≤ Cn−3. (5.2)

Proof. Lemma 4 implies that, when n is large enough, B̃n ⊃ Bδ/8, where

B̃n = {(d, g) ∈ [−1/2 + t, 1/2− t]× G(m,M,L, ρ) : KLn(f0, F (d, g)) ≤ δ/4}.

and Condition 2 implies that, for n large enough, π(B̃n) ≥ π(Bδ/8) ≥ 2e−nδ/2. Consider the
indicator function

Ωn = 1l
[
−Xt

n

{
Tn(f)

−1 − Tn(f0)
−1
}
Xn + log detA(f0, f) > −nδ

]
,

with implicit arguments (f,Xn), then, following Ghosal et al. (2000),

Pn
0

[
Dn ≤ e−nδ

]
≤ Pn

0

(∫
Ωn1lB̃n

(f)
ϕ(Xn; f)

ϕ(Xn; f0)
dπ(f) ≤ e−nδ/2π(B̃n)

2

)

≤ Pn
0

(
Eπ
{
Ωn1lB̃n

(f)
}
≤ π(B̃n)/2

)

≤ Pn
0

(
Eπ
{
(1 − Ωn)1lB̃n

(f)
}
≥ π(B̃n)/2

)

≤
2

π(B̃n)

∫

B̃n

En
0 {1− Ωn} dπ(f).

by Markov inequality. Besides,

En
0 {1− Ωn} = Pn

0

{
Xt

n

{
Tn(f)

−1 − Tn(f0)
−1
}
Xn − log detA(f0, f) > nδ

}

= PY

{
YtB(f0, f)Y − tr [B(f0, f)] > D(f0, f)

}

10



where Y ∼ Nn(0n, In), and, for f ∈ B̃n

D(f0, f)
∆
= nδ + log detA(f0, f)− tr [B(f0, f)] > nδ/2

thus

En
0 [1− Ωn] ≤ PY

{
YtB(f0, f)Y − tr[B(f0, f)] > nδ/2

}

≤
16

n4δ4
EY

[{
YtB(f0, f)Y − tr[B(f0, f)]

}4]

≤
C

n3δ4
,

which concludes the proof.

A bound for the second term in (5.1) is obtained as follows:

Pn
0

[
Nn ≥ e−2nδ

]
≤ 2e2nδπ(Fc

n) + p

≤ 2e−n(r−2δ) + p (5.3)

using Condition 3, where

p
∆
= Pn

0

[∫
1l(Ac

ε ∩ Fn)
ϕ(Xn; f)

ϕ(Xn; f0)
dπ(f) ≥ e−2nδ/2

]
.

Assuming 2δ < r, we consider the following likelihood ratio tests for each fi ∈ Hn, and for
some arbitrary values ρi,

φi = 1l
{
Xt

n

[
T−1
n (f0)− T−1

n (fi)
]
Xn ≥ nρi

}
.

Lemmas 7, 8 and 9 given in Appendix B prove that, for each of the three cases in Condition
3 of Theorem 3.1, and well-chosen values of ρi, one has

En
0 [φi] ≤ e−nC1ε, En

f [1− φi] ≤ e−nC1ε, (5.4)

for all fi, for f close to fi (in the sense defined in cases a,b, and c in Condition 3), where C1 > 0
is a constant that does not depend on fi, and En

f stands for the expectation with respect to

the likelihood ϕ(Xn; f). Then one concludes easily as follows. Let φ(n) = maxi φi, then, using
Markov inequality, for n large enough,

p ≤ En
0

[
φ(n)

]
+ 2e2nδ

∫

Ac
ε∩Fn

Ef

[
1− φ(n)

]
dπ(f)

≤ Cne
−nC1ε + 2e2nδ−nC1ε

≤ e−nC1ε/2, (5.5)

provided δ < C1ε/4. Combining (5.2), (5.3) and (5.5), there exists δ > 0 such that

Pn
0

[
P π[Ac

ε|Xn] > e−nδ
]
≤ Cn−3

for n large enough, which implies that P π[Ac
ε|Xn] → 0 a.s.

11



5.2 Proof of Theorem 4.1

This proof uses the same notations as the previous Section, e.g. C, C′ denote generic constants, f ,
dπ(f) are short-hands for f = F (d, g), dπ(d, g), respectively, A(f, f0) and B(f, f0) have the same
definition, and so on. In the proof of Theorem 3.1, we showed that En

0 [P π(h(f, f0) ≥ ε|Xn)] ≤
Cn−3 for ε small enough, n large enough. Thanks to the uniform convergence Lemmas 3 and
4 in Appendix A, one sees that the same inequality holds if h is replaced by hn. Therefore,
to obtain inequality (4.1), it is sufficient to bound the expectation of the sum of the following
probabilities:

P π ((d, g) ∈ Wn,l|Xn) =

∫
1lWn,l

(d, g) ϕ(Xn;f)
ϕ(Xn;f0)

dπ(f)
∫ ϕ(Xn;f)

ϕ(Xn;f0)
dπ(f)

=
Nn,l

Dn
,

for l0 ≤ l ≤ ln, where

Wn,l =
{
(d, g) : h(f, f0) ≤ ε, ε2nl ≤ hn(f0, f) ≤ ε2n(l + 1)

}
,

and Vn,l = Wn,l ∩ F̄n. Following the same lines as in Section 5.1, one has

En
0

[
ln∑

l=l0

Nn,l

Dn

]
≤ Pn

0

(
Dn ≤ e−nun/2

)

+En
0

[
ln∑

l=l0

Nn,l

Dn
1l
(
Dn ≥ e−nun/2

)
]
. (5.6)

The first term is bounded as in Lemma 1, see Section 5.1:

Pn
0

(
Dn ≤ e−nun/2

)
≤ Pn

0

(
Dn ≤

e−nun/2π(B̄n)

2

)

≤
2
∫
Bn
En

0 [(1− Ωn(f))] dπ(f)

π(B̄n)
,

where Ωn is the indicator function of

{
(Xn, f);X

t
n(T

−1
n (f)− T−1

n (f0))Xn − log det[A(f0, f)] ≤ nun
}
,

and, for f ∈ B̄n, using Chernoff-type inequalities as in Lemma 7, together with the fact that
there exists s0 > 0 fixed such that for all s ≤ s0

In(1 + 2s)− 2sTn(f0)
1/2Tn(f)

−1Tn(f0)
1/2 ≥ In/2,

for f = F (d, g), d ≥ d0, g > 0, we have for all 0 < s ≤ s0

En
0 [1− Ωn]

≤ exp
{
− snun − s log |Tn(f0)Tn(f)

−1|

−
1

2
log
∣∣∣In(1 + 2s)− 2sTn(f0)

1/2Tn(f)
−1Tn(f0)

1/2
∣∣∣
}

≤ exp
{
−snun + 2snKLn(f0, f) + 4s2nbn(f0, f)

}

≤ exp
{
−
snun
2

(1− 8s)
}

≤ e−Cnun ,
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where the second inequality comes from a Taylor expansion in s of log |In+2s(In−Tn(f0)1/2Tn(f)−1Tn(f0)
1/2)|,

the third from the definition of B̄n and the last from choosing s = min(s0, 1/16). Note that
s0 ≥ m/(Mπ) and that the constant C in the above inequality can be chosen as C = m/(32Mπ).
The second term of (5.6) equals

En
0

[
ln∑

l=l0

Nn,l

Dn
1l
(
Dn ≥ e−nun/2

)
(φ̄l + 1− φ̄l)

]

≤
ln∑

l=l0

En
0

[
φ̄l
]
+ 2enun

ln∑

l=l0

En
0

[
Nn,l(1− φ̄l)

]
(5.7)

where φ̄l = maxi:fi,l∈H̄n,l
φi,l, φi,l is a test function defined as in Section 5.1,

φi,l = 1l
{
X′

n(T
−1
n (f0)− T−1

n (fi,l))Xn ≥ tr
[
In − Tn(f0)T

−1
n (fi,l)

]
+ nhn(f0, fi,l)/4

}
.

Using inequality (B.2) in Lemma 7, one obtains:

logEn
0 [φi,l] ≤ −Cnhn(f0, fi)min

(
hn(f0, fi)

bn(f0, fi)
, 1

)
, (5.8)

for some universal constant C, and n large enough. In addition, one has

bn(f0, fi)

hn(f0, fi)
≤

∥∥∥Tn(f0)1/2Tn(fi)−1/2
∥∥∥
2

≤ C′n2max(d0−di),0),

where the first inequality comes from Lemma 2, see Appendix A.1, and the second inequality
comes from Lemma 3 in Lieberman et al. (2009). Hence for all C > 0, if 2|d0 − di| ≤ C/ logn,
bn(f0, fi) ≤ C′eChn(f0, fi). Moreover for all δ > 0, there exists Cδ > 0 such that if 2|d0 −
di| > Cδ(log n)

−1 then hn(f0, fi) ≥ n−δ. Indeed, equation (A.3) of Lemma 6 implies that if
hn(f0, fi) ≥ ε2n, then

hn(f0, fi) ≥
C

n
tr
[
Tn(f

−1
0 )Tn(fi − f0)Tn(f

−1
i )Tn(fi − f0)

]

and Lemma 5, see Appendix A.3, implies that, for all a > 0,
∣∣∣∣
1

n
tr
[
Tn(f

−1
0 )Tn(fi − f0)Tn(f

−1
i )Tn(fi − f0)

]
− (2π)3

∫ π

−π

(fi − f0)
2

fif0
dλ

∣∣∣∣ ≤ n−ρ+a.

Lemma 11, see Appendix D, implies that there exists a > 0 such that if 2|d0 − di| >
Cδ(logn)

−1, ∫ π

−π

(fi − f0)
2

fif0
dx ≥ Ce−a logn/Cδ ≥ n−δ

as soon as Cδ is large enough. Choosing δ < ρ we finally obtain that

hn(f0, fi) ≥ C′n−δ.

This and the definition of H̄n,l implies that l ≥ C′n−δε−2
n , and therefore ln−max(d0−di),0) ≥

2lα/C′, for all α < 1 as soon as |d0 − di| is small enough. (5.8) becomes

logEn
0 [φi,l] ≤ −clε2nn

1−max(d0−di,0) ≤ −2nε2nl
α.
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Condition 3 implies that

En
0

[
φ̄l
]
≤
∑

i

En
0 [φi,l] ≤ C̄n,l exp{−2nε2nl

α} ≤ exp{−nε2nl
α}

so that
∑

lE
n
0

[
φ̄l
]
≤ 2 exp{−nε2nl

α
0 } for n large enough.

For the second term of (5.7), since condition 3 on f, fi,l implies that

0 ≤ fi,l − f ≤ hn(f0, fi,l)fi,l

(
π2(di−d)

32
+

2| log |λ||

logn

)
,

when n is large enough, hence trA(fi,l − f, f0) ≤ nhn(f0, fi,l)/4 and we obtain the first part of
equation B.3:

logEn
f [1− φi,l] ≤ −

n

64
min

(
hn(f0, fi,l)

2

bn(f, f0)
, 4hn(f0, fi,l)

)
.

We also have

bn(f, f0) ≤ bn(fi,l, f0) +
h2n(fi,l, f0)

32
+ 2
√
bn(f0, fi,l)hn(fi,l, f0),

hence logEn
f [1− φi,l] ≤ −cnlαε2n, using the same arguments as before, and

ln∑

l=l0

En
0

[
(1− φ̄l)Nn,l

]
=

∫ { ln∑

l=l0

1lWn,l
(f)Ef (1− φ̄l)

}
dπ(f)

≤ P π(f ∈ Fc
n ∩ {h(f, f0) ≤ ε})

+

ln∑

l=l0

∫
1lVn,l

(f)En
f (1 − φ̄l) dπ(f)

≤ e−nε2n +

ln∑

l=l0

e−Cnε2nl
α

≤ 2e−nε2n .

6 Discussion

In this paper we have considered the theoretical properties of Bayesian non parametric estimates
of the spectral density for Gaussian long memory processes. Some general conditions on the
prior and on the true spectral density are provided to ensure consistency and to determine con-
centration rates of the posterior distributions in terms of the pseudo-metric hn(f0, f). To derive
a posterior concentration rate in terms of a more common metric such as l2, we have considered
a specific family of priors based of the FEXP models and also used in the frequentist literature.
Gaussian long memory processes lead to complex behaviours, which makes the derivation of con-
centration rates a difficult task. This paper is thus a step in the direction of better understanding
the asymptotic behaviour of the posterior distribution in such models and could be applied to
various types of priors on the short memory part - other than the FEXP priors.

The rates we have derived are optimal (up to a logn term) in Sobolev balls but not adaptive
since the estimation procedure depends on the smoothness β. Another constraint in the paper
is that the prior needs to be restricted to Sobolev balls with fixed though large radius, forbid-
ding the use of Gaussian distributions on the coefficients appearing in the FEXP representation.
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However, it is to be noted that even in the parametric framework existing results on the asymp-
totic behaviour of likelihood approaches, whether maximum likelihood estimators or Bayesian
estimators are all assuming that the parameter space is compact, for the same reason that we
have had to constraint the prior on fixed Sobolev balls in the FEXP example. The reason is that
the short memory part of the spectral density needs to be uniformly bounded.

A related and fundamental problem is the practical implementation of the model described
in the paper. Liseo and Rousseau (2006) adopted a Population MC algorithm which easily deals
with the trans-dimensional parameter space issue. We are currently working on alternative
computational approaches.
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A Technical Lemmas on convergence rates of products of

Toeplitz matrices

We first give a set of inequalities on norms of matrices that are useful throughout the proofs. We
then give three technical lemmas on the uniform convergence of traces of products of Toeplitz
matrices, in the spirit of Lieberman et al. (2003) and Lieberman et al. (2009), but extending
those previous results to functional classes instead of parametric classes.

A.1 Some matrix inequalities

Let A and B be n dimensional matrices. We consider the following two norms:

|A|2 = tr
[
AAt

]
, ‖A‖2 = sup

|x|=1

xtAAtx.

We first recall that:

|tr[AB]| ≤ |A||B|, |AB| ≤ ||A|||B|, |A| ≤ ||A||, ||AB|| ≤ ||A||||B||.

Using these inequalities we prove the following basic Lemma:

Lemma 2. Let f1, f2 be two spectral densities, then

2nbn(f1, f2) ≤ n‖Tn(f2)
−1/2Tn(f1)

1/2‖2hn(f1, f2)

Proof. One has

2nbn(f1, f2)

= tr

[
Tn(f1)

1/2Tn(f2)
−1Tn(f1)

1/2
(
Tn(f1)

−1/2Tn(f1 − f2)Tn(f2)
−1/2

)2]

=
∣∣∣Tn(f2)−1/2Tn(f1)

1/2
(
Tn(f1)

−1/2Tn(f1 − f2)Tn(f2)
−1/2

)∣∣∣
2

≤ ‖Tn(f2)
−1/2Tn(f1)

1/2‖2
∣∣∣Tn(f2)−1/2Tn(f1 − f2)Tn(f2)

−1/2
∣∣∣
2

= n‖Tn(f2)
−1/2Tn(f1)

1/2‖2hn(f1, f2).
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A.2 Uniform convergence: Lemmas 3 and 4

We state two technical lemmas, which are extensions of Lieberman et al. (2003) on uniform
convergence of traces of Toeplitz matrices, and which are repeatedly used in the paper.

Lemma 3. Let t > 0, M,L > 0 and ρ ∈ (0, 1], let p be a positive integer, we have, as n→ +∞:

sup
fi=F (d1,gi), f

′

i=F (d2,g
′

i)
2p(d1+d2)≤1−t
gi∈G(−M,M,L,ρ)
g′

i∈G(−M,M,L,ρ)

∣∣∣∣∣
1

n
tr

[
p∏

i=1

Tn(fi)Tn(f
′
i)

]
−

∫ π

−π

∏p
i=1 fi(λ)f

′
i(λ) dλ

(2π)1−2p

∣∣∣∣∣→ 0.

This lemma is a direct adaptation from Lieberman et al. (2003); the only non obvious part
is the change from the condition of continuous differentiability in that paper to the Lipschitz
condition of order ρ. This different assumption affects only equation (30) of Lieberman et al.
(2003), with ηn replaced by ηρn, which does not change the convergence results.

Lemma 4. Let t > 0, M,L,m > 0 and ρ1, ρ2 ∈ (0, 1], let p be a positive integer, we have, as
n→ +∞:

sup
fi=F (d1,gi) f

′

i=F (d2,g
′

i)
4p(d1−d2)≤ρ2+1−t
gi∈G(−M,M,L,ρ1)
g′

i∈G(m,M,L,ρ2)

∣∣∣∣∣
1

n
tr

[
p∏

i=1

Tn(fi)Tn(f
′
i)

−1

]
−

1

2π

∫ π

−π

p∏

i=1

fi(λ)

f ′
i(λ)

dλ

∣∣∣∣∣→ 0,

Proof. This result is a direct consequence of Lemma 3, as in Lieberman et al. (2003). The only
difference is in the proof of Lemma 5.2. of Dahlhaus (1989), i.e. in the study of terms in the
form

|In − Tn(f)
1/2Tn

(
(4π2f)−1

)
Tn(f)

1/2|,

with f = F (d2, g
′
i) for any i ≤ p. For simplicity’s sake we write f = F (d, g) in the following

calculations. Following Dahlhaus’s Dahlhaus (1989) proof, we obtain an upper bound of
∣∣∣∣
f(λ1)

f(λ2)
− 1

∣∣∣∣

which is different from Dahlhaus (1989). If g ∈ G(m,M,L, ρ2), the Lipschitz condition in ρ2
implies that ∣∣∣∣

f(λ1)

f(λ2)
− 1

∣∣∣∣ ≤ K

(
|λ1 − λ2|

ρ2 +
|λ1 − λ2|1−δ

|λ1|1−δ

)
.

Calculations as in Lemma 5.2 of Dahlhaus (1989) imply that

|I − Tn(f)
1/2Tn

(
(4π2f)−1

)
Tn(f)

1/2|2 = O(n1−ρ2 logn2) +O(nδ), ∀δ > 0.

From this we prove the Lemma following Lieberman et al. (2009) Lemma 7, the bounds being
uniform over the considered class of functions.

A.3 Order of approximation: Lemma 5

In this section we recall a result given in Kruijer and Rousseau (2010) which is a generalization
of Lieberman and Phillips (2004) concerning the convergence rate of

1

2

∣∣∣∣∣∣
tr




p∏

j=1

Tn(fj)Tn(gj)



 /n− (2π)−1

∫ π

−π

∏

j

fj(λ)gj(λ)dλ

∣∣∣∣∣∣
.
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Lemma 5. Let 1/2 > a > 0, L > 0, M > 0 and 0 < ρ ≤ 1, then for all δ > 0 there exists C > 0
such that for all n ∈ N

∗

sup
p(d1+d2)≤a

gj ,g
′

j∈G(−M,M,L,ρ)

∣∣∣∣∣
1

n
tr




p∏

j=1

Tn(F (d1, gj))Tn(F (d2, g
′
j))





−(2π)2p−1

∫ π

−π

p∏

j=1

F (d1, gj)F (d2, g
′
j)

∣∣∣∣∣ ≤ Cn−ρ+δ+2pa+ , (A.1)

where d1, d2 > −1/2 and a+ = max(a, 0).

A.4 Some other approximations: Lemma 6

Lemma 6. Let fj, j ∈ {1, 2} be such that fj(λ) = F (dj , gj), where dj ∈ (−1/2, 1/2), 0 < m ≤
gj ≤ M < +∞ for some positive constant m,M and consider b a bounded function on [−π, π].
Assume that |d1 − d2| < δ, with δ ∈ (0, 1/4), then, provided d1 > d2,

1

n
tr
[
Tn(f1)

−1Tn(f1b)Tn(f2)
−1Tn(f1b)

]
≤ C(log n)

[
|b|22 + δ|b|2∞

]
, (A.2)

and, without assuming d1 > d2,

1

n
tr
[
Tn(f

−1
1 )Tn(f1 − f2)Tn(f

−1
2 )Tn(f1 − f2)

]

≤ C
[
hn(f1, f2) + nδ−1/2

√
hn(f1, f2)

]
. (A.3)

Proof. Throughout the proof C denotes a generic constant. We first prove (A.2). To do so, we
first obtain an upper bound on the following quantity:

γ(b) =
1

n
tr
[
Tn(f

−1
1 )Tn(f1b)Tn(f

−1
2 )Tn(f1b)

]
. (A.4)

First note that b can be replaced by |b| so that we can assume that it is positive. Since the
functions gi are bounded from below and above, we can prove (A.2) by replacing fi by |λ|−2di .
Thus, without loss of generality, we assume that fi = |λ|−2di . Let ∆n(λ) =

∑n
j=1 exp(−iλj)

and Ln be the 2π-periodic function defined by Ln(λ) = n if |λ| ≤ 1/n and Ln(λ) = |λ|−1 if
1/n ≤ |λ| ≤ π. Then |∆n(λ)| ≤ CLn(λ),

∫ π

−π

∆n(λ1 − λ2)∆n(λ2 − λ3)dλ2 = 2π∆n(λ1 − λ3), (A.5)

and we can express traces of products of Toeplitz matrices in the following way. Let the symbol
dλ denote the quantity dλ1dλ2dλ3dλ4; the conditions on the gj ’s imply

γ(b) =
1

n

∫

[−π,π]4
b(λ1)b(λ3)

f1(λ1)f1(λ3)

f2(λ2)f1(λ4)
×

∆n(λ1 − λ2)∆n(λ2 − λ3)∆n(λ3 − λ4)∆n(λ4 − λ1)dλ

=
(2π)2

n

∫

[−π,π]2
b(λ1)b(λ3)|λ3|

−2δ∆n(λ1 − λ3)∆n(λ3 − λ1)dλ1dλ3

+
1

n

∫

[−π,π]4
b(λ1)b(λ3)|λ3|

−2δ

[∣∣∣∣
λ3
λ2

∣∣∣∣
−2d2

∣∣∣∣
λ1
λ4

∣∣∣∣
−2d1

− 1

]
dλ, (A.6)
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as d1 − d2 ≤ δ. We decompose the following factor in the integrand:

∣∣∣∣
λ3
λ2

∣∣∣∣
−2d2

∣∣∣∣
λ1
λ4

∣∣∣∣
−2d1

=

(∣∣∣∣
λ3
λ2

∣∣∣∣
−2d2

− 1

)(∣∣∣∣
λ1
λ4

∣∣∣∣
−2d1

− 1

)
(A.7)

+

(∣∣∣∣
λ3
λ2

∣∣∣∣
−2d2

− 1

)
+

(∣∣∣∣
λ1
λ4

∣∣∣∣
−2d1

− 1

)
+ 1

and treat each corresponding integral separately. Starting with the first term, replacing ∆n by
Ln, we obtain:

1

n

∫

[−π,π]4
b(λ1)b(λ3)|λ3|

−2δ∆n(λ1 − λ3)∆n(λ3 − λ1)dλ1dλ3

≤
1

n

∫

[−π,π]2
b(λ1)b(λ3)|λ3|

−2δL2
n(λ1 − λ3)dλ1dλ3

≤ C

∫

[−π,π]2
b(λ1)b(λ3)|λ3|

−2δLn(λ1 − λ3)dλ1dλ3

≤ C
{∫

{b(λ1)>b(λ3)|λ3|−2δ}

b2(λ1)Ln(λ1 − λ3)dλ1dλ3

+

∫

{b(λ1)≤b(λ3)|λ3|−2δ}

b2(λ3)|λ3|
−4δLn(λ1 − λ3)dλ1dλ3

}

≤ C
{∫

b2(λ1)Ln(λ1 − λ3)dλ1dλ3

+

∫
b2(λ3)

∣∣|λ3|−4δ − 1
∣∣Ln(λ1 − λ3)dλ1dλ3

}

≤ C(logn)
{
|b|22 + δ |b|2∞

}
,

using calculations similar to Dahlhaus (1989, Lemma 5.2).
For the integral corresponding to the second term in (A.6), we note first that for 0 < a <

1− d1 < 1− d2, ∣∣∣∣
λ1
λ4

∣∣∣∣
−2d1

− 1 ≤ C
|λ1 − λ4|1−a

|λ1|1−a
,

and the same inequality holds if λ1, λ4 and d1 are replaced, respectively, by λ3, λ2 and d2. Using
the same calculations as the proof of Lemma 5.2 in Dahlhaus (1989), one has

∫

[−π,π]4
b(λ1)b(λ3)|λ3|

−2δ

(∣∣∣∣
λ3
λ2

∣∣∣∣
−2d2

− 1

)(∣∣∣∣
λ1
λ4

∣∣∣∣
−2d1

− 1

)
×

Ln(λ1 − λ2)Ln(λ2 − λ3)Ln(λ3 − λ4)Ln(λ4 − λ1)dλ

≤ C|b|2∞

∫

[−π,π]4

Ln(λ1 − λ2)Ln(λ2 − λ3)
aLn(λ3 − λ4)Ln(λ4 − λ1)

a

|λ1|1−a|λ3|1−a+2δ
dλ

≤ C|b|2∞n
2a(logn)2,

provided a > 2δ. Taking a = 3δ < 1/2 and doing the same calculations for the integrals
corresponding to the two intermediate terms in (A.6), one eventually obtains, when n is large
enough

γ(b) ≤ C(log n)
{
|b|22 + δ |b|2∞

}
. (A.8)
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We now prove that, for large n and ∀a > 0,

1

n
tr
[
Tn(f1)

−1Tn(f1b)Tn(f2)
−1Tn(f1b)

]
≤ C

{
γ(b) + na−1

}
.

Let

δn = tr
[
Tn(f1b)T

−1
n (f2)Tn(f1b)T

−1
n (f1)

]

= tr
[
Tn(f1b)Tn(f

−1
2 /4π2)Tn(f1b)Tn(f

−1
1 /4π2)

]

+tr
[
Tn(f1b)T

−1
n (f2)Tn(f1b)T

−1/2
n (f1)R1T

−1/2
n (h1)

]

+tr
[
Tn(f1b)Tn(f2)

−1/2R2Tn(f2)
−1/2Tn(f1b)Tn(f

−1
1 /4π2)

]
,

where Ri = In − Tn(fi)
1/2Tn(f

−1
i /4π2)Tn(fi)

1/2, i = 1, 2. We bound the first term with (A.8):

1

n
tr
[
Tn(f1b)Tn(f

−1
2 )Tn(f1b)Tn(f

−1
1 )
]

≤ C(logn)3
{
|bn|

2
2 + δ|b|∞

}
.

Moreover
∣∣∣tr
[
Tn(f1b)T

−1
n (f2)Tn(f1b)T

−1/2
n (f1)R1T

−1/2
n (f1)

]∣∣∣

≤ |R1||T
−1/2
n (g1)Tn(f1b)T

−1
n (f2)Tn(f1b)T

−1/2
n (f1)|

≤ δ1/2n |R1|‖T
−1/2
n (f2)Tn(f1b)

1/2‖‖Tn(f1b)
1/2T−1/2

n (f1)‖

Lemmas 5.2 and 5.3 in Dahlhaus (1989) lead to, ∀a > 0,

∣∣∣tr
[
Tn(f1b)T

−1
n (f2)Tn(f1b)T

−1/2
n (f1)R1T

−1/2
n (f1)

]∣∣∣ ≤ Cna+(d1−d2)|b|∞δ
1/2
n

≤ Cn2δ|b|∞δ
1/2
n

Similarly,

∣∣∣tr
[
Tn(f1b)Tn(f2)

−1/2R2Tn(f2)
−1/2Tn(f1b)Tn(f

−1
1 /(4π2))

]∣∣∣

≤ |R2|δ
1/2
n ‖Tn(f2)

−1/2Tn(f1b)
1/2‖2

≤ na+2δ|b|∞δ
1/2
n

for all a > 0. Finally we obtain, when n is large enough

δn ≤ Cn3δ|b|∞δ
1/2
n + C(log n)3

{
|bn|

2
2 + δ|b|∞

}
,

which ends the proof of (A.2).
We now prove (A.3). Since fj ≥ mhj := m|λ|−2di , T−1

n (fj) ≤ T−1
n (hj), i.e. T

−1
n (hj)−T−1

n (fj)
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is positive semidefinite, and

hn(f1, f2) (A.9)

=
1

2n
tr
[
Tn(f1 − f2)T

−1
n (f2)Tn(f1 − f2)T

−1
n (f1)

]

≥
1

2n
tr
[
Tn(f1 − f2)T

−1
n (h2)Tn(f1 − f2)T

−1
n (h1)

]

≥
1

2n
tr
[
Tn(f1 − f2)T

−1
n (h2)Tn(f1 − f2)T

−1/2
n (h1)R1T

−1/2
n (h1)

]

+
1

2n
tr

[
Tn(f1 − f2)T

−1
n (h2)Tn(f1 − f2)Tn

(
h−1
1

4π2

)]

=
1

n(8π2)
tr
[
Tn(f1 − f2)T

−1/2
n (h2)R2T

−1/2
n (h2)Tn(f1 − f2)Tn

(
h−1
1

)]

+
1

2n
tr
[
Tn(f1 − f2)T

−1
n (h2)Tn(f1 − f2)T

−1/2
n (h1)R1T

−1/2
n (h1)

]

+
1

n(32π4)
tr
[
Tn(f1 − f2)Tn(h

−1
2 )Tn(f1 − f2)Tn

(
h−1
1

)]
(A.10)

where Rj = In − T
1/2
n (hj)Tn(h

−1
j /(4π2))T

1/2
n (hj). We first bound the second term of the r.h.s.

of (A.9). Let δ > 0 and ε < ε0 such that |d− d0| ≤ δ (Corollary 1 implies that there exists such
a value ε0). Then using Lemmas 5.2 and 5.3 of Dahlhaus (1989)

∣∣∣tr
[
Tn(f1 − f2)T

−1
n (h2)Tn(f1 − f2)T

−1/2
n (h1)R1T

−1/2
n (h1)

]∣∣∣

≤ 2|R1||T
−1/2
n (h1)Tn(f1−f2)T

−1/2
n (h2)|‖Tn(|f1−f2|)

1/2T−1/2
n (h2)‖

× ‖Tn(|f1−f2|)
1/2T−1/2

n (h1)‖

≤ Cn3δ|T−1/2
n (h1)Tn(f1−f2)T

−1/2
n (h2)|.

Since hi ≤ Cfi,

|T−1/2
n (h1)Tn(f1−f2)T

−1/2
n (f2)|

2 = tr
[
T−1
n (h1)Tn(f1−f2)T

−1
n (f2)Tn(f1−f2)

]

≤ Ctr
[
T−1
n (f1)Tn(f1−f2)T

−1
n (f2)Tn(f1−f2)

]

= Cnhn(f1, f2),

and

1

n

∣∣∣tr
[
Tn(f1−f2)T

−1
n (f2)Tn(f1−f2)T

−1/2
n (g1)R1T

−1/2
n (g1)

]∣∣∣ ≤ Cn3δ−1/2
√
hn(f1, f2).

We now bound the first term of the r.h.s. of (A.9).

=

∣∣∣∣
1

n
tr
[
Tn(f1−f2)T

−1/2
n (h2)R2T

−1/2
n (h2)Tn(f1−f2)Tn(h

−1
1 )
]∣∣∣∣

≤
1

n
|R2||T

−1/2
n (h2)Tn(f1−f2)Tn(h1)

−1/2|‖Tn(h1)
1/2Tn(h

−1
1 )Tn(|f1−f2|)T

−1/2
n (h2)‖

≤
Cnδ

√
nhn(f2, f1)

n
‖Tn(h1)

1/2Tn(h
−1
1 )Tn(|f1−f2|)T

−1/2
n (f2)‖

≤
Cnδ+1/2

√
hn(f2, f1)

n
‖Tn(h1)

1/2Tn(h
−1
1 )1/2‖2

×‖Tn(h1)
−1/2Tn(|f1−f2|)

1/2‖‖Tn(|f1−f2|)
1/2T−1/2

n (f2)‖

≤ Cn3δ−1/2
√
hn(f1, f2),
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Where the latter inequality comes from Lemma 5.3 of Dahlhaus (1989) and from the fact that

‖Tn(h1)
1/2Tn(h

−1
1 )1/2‖2 = 4π2‖Tn(h1)

1/2Tn(h
−1
1 /(4π2))Tn(h1)

1/2‖ ≤ |R1|+ 1

Therefore,

1

n
tr
[
Tn(f1−f2)Tn(h

−1
2 )Tn(f1−f2)Tn(h

−1
1 )
]
≤ C

[
hn(f1, f2) + n−1/2+3δ

√
hn(f1, f2)

]
,

and, using the fact that C gj > fj, for j = 1, 2 this proves (A.9).

B Construction of tests: Lemmas 7, 8 and 9

Lemma 7. If 8|d0 − di| ≤ ρ+1− t (case a of Condition 1), the inequalities in (5.4) are verified
provided ρi = tr

[
In − Tn(f0)T

−1
n (fi)

]
/n+ hn(f0, fi), f ≤ fi and

1

2π

∫ π

0

fi(λ)− f(λ)

f0(λ)
dλ ≤ h(f0, fi)/4. (B.1)

Proof. For all s ∈ (0, 1/4), using Markov inequality,

En
0 [φi] ≤ exp {−snρi}E

n
0

[
exp

{
−sXt

n

{
T−1
n (fi)− T−1

n (f0)
}
Xn

}]

= exp

{
−snρi −

1

2
log det [In + 2sB(f0, fi)]

}

≤ exp
{
−snρi − str [B(f0, fi)] + s2tr

[
((In + 2sτB(f0, fi))

−2B(f0, fi))
2
]}

≤ exp
{
−snρi − str [B(f0, fi)] + 4s2tr

[
B(f0, fi)

2
]}
,

where τ ∈ (0, 1), using a Taylor expansion of the log-determinant around s = 0, and the following
inequality:

In + 2sτB(f0, fi) = (1− 2sτ)In + 2sτTn(f0)
1/2Tn(f)

−1Tn(f0) ≥
1

2
In,

since sτ < 1/4. Substituting ρi with its expression, the polynomial above is minimal for
smin = hn(f0, fi)/8bn(f0, fi). According to smin ∈ (0, 1/4) or not, that is, whether hn(f0, fi) <
2bn(f0, fi) or not, one has:

1

n
logEn

0 [φi] ≤ −
hn(f0, fi)

2

16bn(f0, fi)
1l {hn(f0, fi) < 2bn(f0, fi)}

−
hn(f0, fi)− bn(f0, fi)

4
1l {hn(f0, fi) ≥ 2bn(f0, fi)} ,

≤ −
hn(f0, fi)

16
min

{
hn(f0, fi)

bn(f0, fi)
, 2

}
. (B.2)

Since 8|d0 − di| ≤ ρ+1− t, the convergences bn(f0, fi) → b(f0, fi) and hn(f0, fi) → h(f0, fi) are
unifom on the support of the prior π, see Lemma 2. One deduces that, for any a > 0 and n large
enough,

1

n
logEn

0 [φi] ≤ −
n

16
min

{
h(f0, fi)

2 − a

b(f0, fi) + a
, 2h(f0, fi)− a

}
.
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Since fi ∈ Ac
ε, h(f0, fi) > ε, and one may take a = ε2/2 to obtain

1

n
logEn

0 [φi] ≤ −
nh(f0, fi)

32
min

{
h(f0, fi)

b(f0, fi) + ε2/2
, 2

}
.

Since |d0 − di| ≤ (ρ+ 1− t) /8 ≤ 1/4, Lemma 12, see Appendix D, implies that there exists
C1 > 0 such that

En
0 [φi] ≤ exp (−nC1ε)

for ε small enough.
If f is in the support of π and satisfies f ≤ fi, and 8(di − d) ≤ ρ+1− t, using the same kind

of calculations and the fact that

In − 2sT 1/2
n (f)

{
T−1
n (fi)− T−1

n (f0)
}
T 1/2
n (f) ≥ In + 2sB(f, f0),

as Tn(f) ≤ Tn(fi), we obtain for s ∈ (0, 1/4),

En
f [1− φi] ≤ exp

{
nsρi − str [B(f, f0)] + 4s2tr

[
B(f, f0)

2
]}

≤ exp
{
−nshn(f0, fi) + str [A(fi − f, f0)] + 4s2tr

[
B(f, f0)

2
]}

≤ exp
{
−nshn(f0, fi)/2 + 4s2tr

[
B(f, f0)

2
]}

where the last inequality comes from (B.1), which implies tr [A(fi − f, f0)] /n ≤ hn(f0, fi)/2 for
n large enough, uniformly in f , using Lemma 2. Doing the same calculations as above, for n
large enough

1

n
logEn

f [1− φi] ≤ −
1

64
min

{
hn(f0, fi)

2

bn(f, f0)
, 4hn(f0, fi)

}

≤ −
1

64
min

{
h(f0, fi)

2/2

b(f, f0) + ε2/2
, 2h(f0, fi)

}
. (B.3)

To conclude, note that f ≤ fi and (B.1) implies that

b(f, f0) =
1

2π

∫ π

−π

{
f2

f2
0

+ 1− 2
f

f0

}
dλ

≤ b(fi, f0) + h(f0, fi)/2

≤ (C + 1/2)h(f0, fi)

according to Lemma 12. One concludes that there exists C1 > 0 such that En
f [1− φi] ≤ e−nC1ε.

Lemma 8. If 8(di − d0) > ρ + 1 − t (case b of Condition 3), the inequalities (5.4) are verified
provided ρi = tr

[
In − Tn(f0)T

−1
n (fi)

]
/n+ 2KLn(f0; fi), for any f such that f ≤ fi and

1

2π

∫ π

−π

(
fi
f

− 1

)
dλ ≤

(
M

π2m

)4
b(f0, fi)

64
, b(fi, f) ≤ b(f0, fi) (B.4)

Note that for ε small enough, if b(fi, f) ≤ b(f0, fi)| log ε|−1, (B.4) is satisfied.

22



Proof. The upper bound of En
0 [φi] is computed similarly to (B.2) so that

1

n
logEn

0 [φi] ≤ −
1

4
min

{
KLn(f0, fi)

2

bn(f0, fi)
,KLn(f0, fi)

}
.

According to Lemma 11 and since 8(di−d0) ≥ ρ+1−t, there exists C > 0, such that b(f0, fi) ≥ C.
Using the uniform convergence results of Appendix A, this means that bn(f0, fi) ≥ C/2, for n
large enough, independently of fi. Using Lemma 13, there exists a constant C1 ≤ 1 such that
KLn(f0, fi) ≥ C1bn(f0, fi). Thus, there exists C2 > 0 such that

1

n
logEn

0 [φi] ≤ −nC2b(f0, fi),

and, for ε small enough, and some C3 > 0,

En
0 [φi] ≤ exp{−nC3ε}.

As in the previous Lemma, let h ∈ (0, 1):

logEn
f [1− φi] ≤ (1 − h)nρi/2

−
1

2
log det

[
In − (1− h)Tn(f)

1/2
{
T−1
n (fi)− T−1

n (f0)
}
Tn(f)

1/2
]

≤ (1 − h)nρi/2−
1

2
log det [In + (1− h)B(f, f0)]

= (1 − h)nρi/2− log det[A(f, f0)]/2

−
1

2
log det

[
In(1− h) + hT−1/2

n (f)Tn(f0)T
−1/2
n (f)

]
.

Substituting ρi with its expression, i.e. nρi − log detA(f, f0) = log detA(fi, f) and using the
same kind of expansions as in the previous lemma, one obtains

1

n
logEn

f [1− φi] ≤
1

n
log det[A(fi, f)] + (h/2)tr

[
Tn(f0)

{
T−1
n (fi)− T−1

n (f)
}]

−hnLKn(f0; fi) + h2tr
[{

In − T−1
n (f)Tn(f0)

}2]

≤
1

n
log det[A(fi, f)]

−hnLKn(f0; fi) + h2tr
[{

In − T−1
n (f)Tn(f0)

}2]

≤ −
1

n
log det[A(fi, f)] +

−nmin

(
KLn(f0, fi)

2

4trB(f0, f)2/n
,
KLn(f0, fi)

4

)
.

Note that we use the fact f ≤ fi in the second line.
Since log detA(fi, f) = log det

{
In + Tn(fi − f)Tn(f)

−1
}
, using a Taylor expansion of log det

around In, we obtain that for n large enough

1

n
log detA(fi, f) ≤

1

2π

∫ π

−π

fi − f

f
dλ+ a

where a can be chosen as small as necessary. In addition, we use Lemma 13 and the uniform
convergence results of Lemmas 3, 4 to obtain that:
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(nKLn(f0, fi))
2

tr[B(f0, f)2]
≥

nm4(b(f0, fi)
2 − a)2

16π8M4(b(f0, f) + a)

and, since d ≥ d0 and (B.4),

b(f0, f) =
1

2π

∫ π

−π

(
f0
f

− 1

)2

dλ

≤ 2

(
b(f0, fi) +

M2π4

m2
b(fi, f)

)
,

≤ 2b(f0, fi)

(
1 +

M2π4

m2

)
.

hence, under the constraint (B.4), there exists C1 > 0 such that, for n large enough, ε small
enough,

En
f [1− φi] ≤ exp {−nC1b(f0, fi)} ≤ e−nε.

Lemma 9. If 8(d0 − di) > ρ + 1 − t (case c of Condition 3), the inequalities (5.4) are verified
provided ρi = log det[Tn(fi)Tn(f0)

−1]/n if

1

2π

∫ π

−π

fi − f

f0
(λ)dλ ≤

m2

4M2π4
b(fi, f0), b(f, fi) ≤ b(fi, f0) (B.5)

Note that for ε > 0 small enough if
∫
(fi − f)f−1

i dλ ≤ b(fi, f0)| log ε|−1, (B.5) is satisfied.

Proof. For 0 < h < 1, following the same calculations as in the two previous lemmas, we obtain

1

n
logEn

0 [φi] ≤ −(1− h)nρi/2 + log det[A(f0, fi)]/2

−
1

2
log det

[
In(1 − h) + hT−1/2

n (f0)Tn(fi)T
−1/2
n (f0)

]

≤ −nhKLn(fi, f0) + h2tr[B(fi, f0)
2] ≤ −ε.

Moreover, for all f ≤ fi, satisfying 8(di − d) ≤ ρ + 1 − t, using the same calculations as in the
proof of Lemma 7, we bound logEn

f [1− φi] by the maximum of

−
{nKLn(fi, f0)− tr[A(fi − f, f0)]/2}

2

4n{b(f, f0) + a}

and

−
n

4
KLn(fi, f0) +

1

8
tr[A(fi − f, f0)],

where a is any positive constant and n is large enough. Using Lemma 13, one has

nKLn(fi, f0) ≥
nm2

2π4M2
b(fi, f0)

and the constraints (B.5) we finally obtain that there exists constant c1, C1 > 0 such that

En
f [1− φi] ≤ exp{−2n(KLn(fi, f0)− tr[A(fi − f, f)]/2n) + 4s2nbn(f, f0)}

≤ e−nc1b(fi,f0) ≤ e−nC1ε

for ε small enough.
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C Proof of Theorem 4.2

We re-use some of the notations of Section 5.1; in particular, C, C′ denote generic constants.
The proof of the theorem is divided in two parts. First, we show that

En
0

[
P π

{
f : hn(f, f0) ≥

logn

n2β/(2β+1)

∣∣∣∣Xn

}]
≤
C

n2
. (C.1)

Second, we show that, for f ∈ F̄n, and n large enough,

hn(f, f0) ≤ Cn− 2β
2β+1 logn⇒ h(f, f0) ≤ C′n− 2β

2β+1 log n. (C.2)

Since ℓ(f, f0) ≤ h(f, f0), see the proof of Corollary 2 in Section 3, the right-hand side in-
equality of (C.2) implies that

En
0 {Eπ [ℓ(f, f0)|Xn]} ≤ C

logn

n2β/(2β+1)

+ℓ̄En
0

{
P π

(
hn(f, f0) >

logn

n2β/(2β+1)
|Xn

)}

≤ Cn− 2β
2β+1 logn+ C′n−2,

for large n, where ℓ̄ < +∞ is an upper bound for ℓ(f, f0) which is easily deduced from the fact
that f , f0 belongs to some Sobolev class of functions. This implies Theorem 4.2.

To prove (C.1), we show that Conditions 1 and 2 of Theorem 4.1 are fulfilled for

un = n−2β/(2β+1)(log n).

In order to establish Condition 1, we show that, for n large enough, B̄n ⊃ B̂n, the set
containing all the f = F̃ (d, k, θ) such that k ≥ k̄n, for k̄n = k0n

1/(2β+1), d − unn
−a ≤ d0 ≤ d

and, for j = 0, . . . , k,
|θj − θ0j | ≤ (j + 1)−2βunn

−a, (C.3)

where a > 0 is some small constant. Then it is easy to see that π(B̄n) ≥ π(B̂n) ≥ exp{−nun/2},
provided k0 is small enough, since πk(k ≥ k̄n) ≥ exp{−Ck̄n log k̄n}, and (C.3) for all j implies
that

k∑

j=0

θ2j (j + 1)2β =

k∑

j=0

(θ0j − θ0j + θj)
2(j + 1)2β

≤ L0 + u2nn
−2a

k∑

j=0

(1 + j)−2β + 2unn
−a




k∑

j=1

|θ0j |





< L

for n large enough, since L0 =
∑

j θ0j(j + 1)2β < L, and
∑k

j=1 |θ0j | is bounded according to
(3.3).

Let f = F̃ (d, k, θ), with (d, k, θ) ∈ B̂n. To prove that (d, k, θ) ∈ B̄n, it is sufficient to prove
that hn(f, f0) ≤ un/4, since hn(f, f0) = KLn(f0; f)+KLn(f ; f0), and KLn(f ; f0) ≥ Cbn(f0, f),
using the same calculation as in Dahlhaus (1989, p. 1755) and the fact that d ≤ d0.

Since f0 ∈ S(β, L), and for the particular choice of k̄n above,

+∞∑

j=k̄n

θ20j ≤ L(k̄n + 1)−2β (C.4)
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and

+∞∑

j=k̄n

|θ0j | ≤




+∞∑

j=k̄n

θ20j(j + 1)2β




1/2


+∞∑

j=k̄n

(j + 1)−2β




1/2

≤ Ck̄1/2−β
n . (C.5)

Let

f0n(λ) = |1− eiλ|−2d0 exp




k̄n∑

j=0

θ0j cos(jλ)


 ,

bn(λ) = exp


−

∑

j≥k̄n+1

θ0j cos(jλ)


 − 1,

and gn = 1− f0n/f . Then f − f0 = f0bn + fgn, where bn and gn are bounded as follows. From

(C.5), one gets that, for n large enough, |bn|∞ ≤ Ck̄
1/2−β
n , and

|bn|
2
2 =

∫ π

−π

bn(λ)
2 dλ ≤ 2

∞∑

j=k̄n+1

θ20j ≤ 2Lk̄−2β
n ≤ 2Lk−2β

0

un
logn

according to (C.4). In addition since 1− x ≤ − log x, for x > 0,

gn(λ) ≤ (d0 − d) log(1− cosλ) +
∑

j≤k̄n

|θ0j − θj |

≤ Cunn
−a (| log |λ||+ 1) .

Moreover, since tr
{
(A+B)2

}
≤ 2trA2 + 2trB2 for square matrices A and B, one has

hn(f0, f) ≤
1

n
tr
[
Tn(f0bn)T

−1
n (f)Tn(f0bn)T

−1
n (f0)

]

+
1

n
tr
[
Tn(fgn)T

−1
n (f)Tn(fgn)T

−1
n (f0)

]

≤ C logn
{
|bn|

2
2 + unn

−a|bn|
2
∞

}

+Cu2nn
−1−2atr

[(
Tn(f (| log |λ||+ 1))T−1

n (f)
)2]

≤ cun (C.6)

where c may be chosen as small as necessary, since k0 is arbritrarily large. Note that the first
two terms above come from (A.2) in Lemma 6, and the third term comes from Lemma 4.

To establish Condition 2 is straightforward, since the prior has the same form as in Section
3.3, and we can use the same reasoning as in the proof of Theorem 3.2, that is, take, for some
well chosen δ,

F̄n =
{
(d, k, θ) ∈ S(β, L) : |d− d0| ≤ δ, k ≤ k̃n

}

where k̃n = k1n
1/(2β+1) so that, using Lemma 10,

π
(
F̄c

n ∩ {f, h(f, f0) < ε}
)
≤ πk(k ≥ k̃n) ≤ e−Ck̃n log k̃n
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for n large enough. Choosing k1 large enough leads to Condition 2.
We now verify Condition 3 of Theorem 4.2. Let ε2n ≥ un and l0 ≤ l ≤ ln, and consider

f = F̃ (d, k, θ), (d, k, θ) ∈ Vn,l, as defined in Theorem 4.1, and fi,l = (2e)lε
2
n F̃ (di, k, θi), where

dependencies on l in di and θi are dropped for convenience. If for some positive c > 0 to be
chosen accordingly |θj − θij | ≤ clε2n/(k + 1), for j = 0, . . . , k, one obtains

gi,l(λ)

g(λ)
= (2e)lε

2
n exp






k∑

j=0

(θj − θij) cos(jλ)






≤ (2e2)clε
2
n

and fi,l/f ≥ 1 so that the constraints of Condition 3 of Theorem 4.2 are verified by choosing c
small enough. The cardinal of the smallest possible net under these constraints needed to cover
Vn,l is bounded by

C̄n,l ≤ kn

(
1

clε2n

)(
L′kn
clε2n

)kn+1

since for all l |θl| ≤ L. This implies that

log C̄n,l ≤ Cnun

and Condition 3 is verified with ε2n = ε20un. This achieves the proof of (C.1), which provides a
rate of convergence in terms of the distance hn(·, ·).

Finally, we prove (C.2) to obtain a rate of convergence in terms of the distance h(·, ·). Consider
f such that

hn(f0, f) =
1

2n
tr
[
T−1
n (f0)Tn(f − f0)T

−1
n (f)Tn(f − f0)

]
≤ ε2n.

Equation (A.3) of Lemma 6 implies that

1

2n
tr
[
Tn(f

−1
0 )Tn(f − f0)Tn(f

−1)Tn(f − f0)
]

≤ Cεn[εn + n−1/2+δ]

≤ Cε2n. (C.7)

We now prove that

tr
[
Tn(f

−1
0 )Tn(f − f0)Tn(f

−1)Tn(f − f0)
]

−tr
[
Tn(f

−1
0 (f − f0))Tn(f

−1(f − f0))
]

≤
C(log n)2

n1−2a
.

for some small a > 0. By symmetry we consider only the case d ≥ d0. Let h0 = (1 − cosλ)d0 ,
h = (1 − cosλ)d, then fh ≤ C, f0h0 ≤ C and |f − f0|h ≤ C for some C ≥ 0, and it is sufficient
to study the difference below. Note that the calculations below follow the same lines and the
same notations as the treatment of γ(b) in Lemma 6, see Appendix A.
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1

n
tr [Tn(h0(f − f0))Tn(h(f − f0))]

−
1

n
tr [Tn(h0)Tn(f − f0)Tn(h)Tn(f − f0)]

= −
1

n

∫

[−π,π]3
(f − f0)(λ2)h0(λ2)(f − f0)(λ4)h(λ4)

(
h0(λ1)

h0(λ2)
− 1

)

×∆n(λ1 − λ2)∆n(λ2 − λ4)∆n(λ4 − λ1)dλ

−
1

n

∫

[−π,π]3
(f − f0)(λ2)h0(λ1)(f − f0)(λ4)h(λ4)

(
h(λ3)

h(λ4)
− 1

)

×∆n(λ1 − λ2)∆n(λ2 − λ3)∆n(λ3 − λ4)∆n(λ4 − λ1)dλ

≤
C(log n)

n

∫

[−π,π]2
|λ2|

−2(d−d0)|λ1|
−1+aLn(λ1 − λ2)

1+adλ

+
C

n

∫

[−π,π]4

|λ1|2d

|λ2|2d|λ3|1−a

×Ln(λ1 − λ2)Ln(λ2 − λ3)Ln(λ3 − λ4)
aLn(λ4 − λ1)dλ

≤
C(log n)2

n1−a

∫

[−π,π]2
|λ2|

−2(d−d0)|λ1|
−1+aLn(λ2 − λ1)dλ

+
C(logn)

n1−a

∫

[−π,π]3

|λ1|2d

|λ2|2d|λ3|1−a
Ln(λ1 − λ2)Ln(λ2 − λ3)dλ

≤
C(log n)2

n1−2a
,

provided d− d0 ≤ a/4, using standard calculations and inequality (A.6). Combined with (C.7),
this result implies that

1

n
tr [Tn (h0(f − f0))Tn (h(f − f0))] ≤ Cǫ2n.

Finally, to obtain (C.2), we bound
∣∣tr [Tn(h0(f − f0))Tn(h(f − f0))]− tr

[
Tn(h0h(f − f0)

2)
]∣∣

= C
∣∣∣
∫

[−π,π]2
{h0(f − f0)} (λ1)

× [{h(f − f0)} (λ2)− {h(f − f0)} (λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ
∣∣∣

≤ C

∣∣∣∣∣

∫

[−π,π]2
{h(f − f0)} (λ1)(f − f0)(λ2)[h(λ2)− h(λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ

∣∣∣∣∣

+C

∣∣∣∣∣

∫

[−π,π]2
{hh0(f − f0)} (λ1) [f0(λ2)− f0(λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ

∣∣∣∣∣

+C

∣∣∣∣∣

∫

[−π,π]2
{hh0(f − f0)} (λ1) [f(λ2)− f(λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ

∣∣∣∣∣ .

The first term is of order O(n2a log n), from the same calculations as above. We consider the
last term, but the calculations for the second term follow exactly the same lines. Recall that
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f = hew, where w(λ) =
∑k

j=0 θj cos(jλ) is not necessarily continuously differentiable, e.g. when
β < 1. Thus

f(λ2)− f(λ1) =
[
h(λ2)

−1 − h(λ1)
−1
]
ew(λ2) + h(λ1)

−1
[
ew(λ2) − ew(λ1)

]
.

The first term is dealt with using (A.6), leading to a bound of order (logn)2n2a. For the second
term, and k ≤ kn,

∣∣∣∣∣

∫

[−π,π]2
h0(f − f0)(λ1)[g(λ2)− g(λ1)]∆n(λ1 − λ2)∆n(λ2 − λ1)dλ

∣∣∣∣∣

≤ C

∫

[−π,π]2

h0|f − f0|(λ1)

∣∣∣∣∣∣

k∑

j=0

θj (cos(jλ2)− cos(jλ1))

∣∣∣∣∣∣
Ln(λ1 − λ2)Ln(λ2 − λ1)dλ

≤ C(log n)




k∑

j=0

|θj |j



∫ π

−π

{h0|f − f0|} (λ1)dλ1

≤ C(log n)




k∑

j=0

|θj |j



(∫ π

−π

{
hh0(f − f0)

2
}
(λ)dλ

)1/2

,

where the latter inequality holds because
∫ π

−π
{h0/h} (λ)dλ is bounded when |d − d0| is small

enough. The same computations can be made on f0 so that for all a > 4|d−d0| we finally obtain
that

∣∣tr [Tn(h0(f − f0))Tn(h(f − f0))]− tr
[
Tn(h0h(f − f0)

2)
]∣∣

≤ C(log n)n2a + (log n)

k∑

j=0

j(|θj |+ |θ0j |)

(∫

[−π,π]

g0g(f − f0)
2(λ)dλ

)1/2

.

Splitting the indices of the sum above into into
{
j : j|θj | ≤ j2β+rθ2j

}
and its complementary, for

some r, we get that

k∑

j=0

j|θj | ≤
k∑

j=0

j2β+rθ2j +

k∑

j=0

j1−2β−r

≤ C
(
kr + k2−2β−r

)
≤ Ckn,

provided we take r = 3/2− β. Using the same computation for f0, one obtains eventually that,
provided β ≥ 1/2, ∫

[−π,π]

h0h(f0 − f)2dλ ≤ Cε2n,

which achieves the proof.

D Technical lemmas

The three following lemmas provide inequalities involving

b(f, f0) =
1

2π

∫ π

0

(f/f0 − 1)2dλ, h(f, f0) =
1

2π

∫ π

0

(f/f0 − 1)2
f0
f
dλ,

for f = F (d, g), f0 = F (d0, g0), d, d0 ∈ (0, 1/2), g, g0 ∈ G(m,M), for 0 < m < M .
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Lemma 10. For any ε > 0,

|d− d0| ≥ ε⇒ h(f, f0) ≥
1

π

(
4M

m

)−1/2ε

.

Proof. Without loss of generality, take d ≥ d0, then, since (x− 1)2/x ≥ x/2 for x ≥ 4,

h(f, f0) ≥
m

4πM

∫ π

0

1l
{
λ−2(d−d0) ≥ 4M/m

}
λ−2(d−d0) dλ

≥
1

π

(
4M

m

)−1/2ε

.

Lemma 11. There exists C > 0 such that, for any ε > 0,

|d− d0| ≥ ε⇒ b(f, f0) ≥ C−1/2ε.

Proof. If d ≥ d0, then, since (x− 1)2 ≥ x2/2 for x ≥ 4,

b(f, f0) ≥
m2

4πM2

∫ π

0

1l
{
λ−2(d−d0) ≥ 4M/m

}
λ−4(d−d0) dλ

≥
4

π

(
4M

m

)−1/2ε

.

Otherwise, if d < d0, one has (x − 1)2 ≥ 1/4 for 0 ≤ x ≤ 1/2, so

b(f, f0) ≥
1

8π

∫ π

0

1l
{
λ2(d0−d) ≤ m/2M

}
dλ

≥
1

8π

(
2M

m

)−1/2ε

.

Lemma 12. For any τ ∈ (0, 1/4), there exists C > 0 such that

d− d0 <
1

4
− τ ⇒ b(f, f0) ≤ Ch(f, f0).

Proof. If d ≤ d0, the bound is trivial, since f/f0 ≤ M/mπ2(d0−d). Assume d > d0, and let
A ≥ 1/2 some arbitrary large constant. Since (x− 1)2 ≤ x2 for x ≥ 1/2, one has

b(f, f0) ≤ Ah(f, f0) +
M2

2πm2

∫ π

0

1l {f(λ)/f0(λ) ≥ A}λ−4(d−d0)dλ

≤ Ah(f, f0) +
M2

2πm2

∫ π

0

1l
{
λ−2(d−d0) ≥ Am/M

}
λ−4(d−d0)dλ

≤ Ah(f, f0) +
C′(Am/M)2−1/2(d−d0)

1− 4t
, (D.1)
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provided A ≥ M/m and C′ = M2/2πm2. In turn, since (x − 1)2 ≥ x2/2 for x ≥ 4, and
assuming A ≥ 4M2/m2, then λ−2(d−d0) ≥ Am/M implies that f/f0 ≥ Am2/M2 ≥ 4, and
(f/f0 − 1)2f0/f ≥ f/2f0 ≥ Am2/2M2. Therefore

h(f, f0) ≥
1

2π

∫ π

0

1l
{
λ−2(d−d0) ≥ Am/M

}
(f/f0 − 1)2

f0
f
dλ (D.2)

≥ (Am/M)
2−1/2(d−d0) /4πA. (D.3)

One concludes the proof by combining (D.1) with (D.3) and taking A = 4M2/m2.

The lemma below makes the same assumptions with respect to f and f0, but it involves finite
n distances.

Lemma 13. One has:

d > d0 ⇒ KLn(f0; f) ≥
m2

M2π2
bn(f0, f).

Proof. Dahlhaus (1989, p. 1755) proves that KLn(f0; f) ≥ C−2bn(f0, f) where C is the largest
eigenvalue of Tn(f0)T

−1
n (f). In our case, f0/f ≤ Mπ2(d−d0)/m, hence C−2 = m2/M2π2(d−d0).

The last lemma in this section applies to the FEXP formulation of Section 3.3.

Lemma 14. Let

f0(λ) = (2− 2 cosλ)
−d0 exp {w0(λ)} , f(λ) = (2− 2 cosλ)

−d
exp {w(λ)} ,

then, for ε ∈ (0, 1/4),
|d− d0| ≤ ε, |w − w0| ≤ ε⇒ h(f, f0) ≤ 7ε.

Proof. Without loss of generality, take d−d0 ≥ 0. Then f0/f − 1 ≤ 2εeε− 1 ≤ (1+ log 2)ε, since
ex ≤ 1 + 2x for x ∈ [0, 1]. Moreover, since 2(1− cosλ) ≥ λ2/3 for λ ∈ (0, π), one has

∫ π

0

f(λ)

f0(λ)
dλ = eε3(d−d0)

∫ π

0

λ−2(d−d0) dλ ≤
πeε3ε

1− 2ε
,

and, to conclude, as again ex ≤ 1 + 2x for x ∈ [0, 1], and eε(1+log 3)(1 − 2ε)−1 − 1 ≤ 10ε, for
ε ≤ 1/4,

h(f, f0) =
1

2π

∫ π

0

(
f(λ)

f0(λ)
+
f0(λ)

f(λ)
− 2

)
dλ ≤ (6 + log 2)ε.
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