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In Templeton (2010), the Approximate Bayesian Compu-
tation (ABC) algorithm (see, e.g., Pritchard et al., 1999,

Beaumont et al., 2002, Marjoram et al., 2003, Ratmann et al.,
2009) is criticised on mathematical and logical grounds: “the
[Bayesian] inference is mathematically incorrect and formally
illogical”. Since those criticisms turn out to be bearing
on Bayesian foundations rather than on the computational
methodology they are primarily directed at, we endeavour to
point out in this note the statistical errors and inconsistencies
in Templeton (2010), refering to Beaumont et al. (2010) for a
reply that is broader in scope since it also covers the phyloge-
netic aspects of nested clade versus a model-based approach.

Coherence

Templeton (2010) mostly uses arguments found in Templeton
(2008) and already answered in Beaumont et al. (2010). How-
ever, the tone adopted in this PNAS paper is harsher and
has a wider scope than in the earlier paper, in that it
contains a foundational if inappropriate critical perspective
on Bayesian model comparison. All of the arguments pre-
sented in Templeton’s tribune against the ABC “method”
(Tavaré et al., 1997) actually aim at exposing the incoher-
ence of the Bayesian approach. The major point of con-
tention is that Bayes factors are mathematically incorrect be-
cause they contradict basic logic by being incoherent. The
notion of coherence used in Templeton (2010) is borrowed
from Lavine and Schervish (1999). Those authors introduced
this notion to criticise Bayes factors in the limited sense that
those may be nonmonotonous in the alternative hypothesis—
in cases when monotony is relevant—, and thus that posterior
probabilities—which are coherent—should be used instead in
a correct decision theoretic perspective.

Bayes factors

The core of the Bayesian paradigm is to incorporate all as-
pects of uncertainty within a prior distribution on the param-
eter space and all aspects of decision consequences within a
loss function in order to produce a single inferential machine
that provides the “optimal” solution (Berger, 1985). Poste-
rior probabilities and hence Bayes factors (Kass and Raftery,
1995) are the product of this inferential machine when the
goal is the selection of a statistical model. We recall that a
Bayes factor, of the form

B
π
12(x) =

∫
Θ1

π1(θ1)f1(x|θ1) dθ1∫
Θ2

π2(θ2)f1(x|θ2) dθ2
=

m1(x)

m2(x)
,

compares the marginal likelihoods at the observed data x
under both models under comparison. The suggestion of
Templeton (2010) to “incorporate the sampling error of the
observed statistic” is therefore exhibiting a misunderstanding
of the above Bayesian construction since the posterior dis-

tributions naturally incorporate the sampling errors f1(x|θ1)
and f2(x|θ2) under both models.

Templeton’s (2010) first argument against Bayes factors,
namely that ”the probability of the nested special case must
be less than or equal to the probability of the general model
within which the special case is nested. Any statistic that as-
signs greater probability to the special case is incoherent”,
proceeds from the “natural” argument that larger models
should have larger probabilities by an encompassing analogy.
(Note that the notion of defining “the” probability over the
collection of models that Templeton seems to take for granted
does not make sense outside a Bayesian framework.) The au-
thor presents a Venn diagram to further explain why a larger
set should have a larger measure, as if this simple-minded
analogy was relevant in model choice settings. We found sim-
ilar arguments in the recent epistemological book by Sober
(2008) as well as in Popper (1959). This reductive viewpoint
does not account for the fact that in Bayesian model choice,
different models induce different parameters spaces and that
those parameter spaces are endowed with orthogonal mea-
sures, especially if those spaces are of different dimensions.
When the smaller parameter space corresponds to the restric-
tion θ1 = 0, the measure of this constraint is zero in the larger
space, i.e. P (θ1 = 0|M2) = 0, when the parameter space is
continuous. As stressed by Jeffreys (1939), testing for point
null hypotheses (and hence for nested models) requires a dras-
tic change of dominating measure so that both the null and
the alternative hypotheses have a positive probability. This
implies defining versions of the prior distribution over both
parameter spaces. Therefore, talking of nested models hav-
ing a “smaller” probability than the encompassing model or
of “partially overlapping models” does not make sense from a
measure theoretic (hence mathematical) perspective. In other
words, the measure of the event is conditional on the model
considered. (The fifty-one occurences of the words coherent
or incoherent in the paper do not bring additional scientific
weight to the argument.)

Bayesian model comparison

When Templeton (2010) calls to logic for rejecting “incoher-
ent” probability orderings on models, he rejects the fact that
marginal likelihoods are in the same scale and can be added
within the denominator of posterior probabilities, namely

Pr(Mi|x) =
Πimi(x)∑k

j=1
Πjmj(x)

,

using standard notations (Berger, 1985, Robert, 2001). His
argument is that the denominator is proportional to the prob-
ability of the union of several models and hence that the prob-
abilities of the intersections of the overlapping hypotheses [or
models] must be subtracted”. Another Venn diagram explains
why this basic consequence of Bayes formula is ”mathemat-
ically and logically incorrect” and why marginal likelihoods
cannot be added up when models ”overlap”. According to
Templeton, ”there can be no universal denominator, because
a simple sum always violates the constraints of logic when
logically overlapping models are tested”. Once more, this
simply shows a poor understanding of the probabilistic mod-
elling involved in model choice: The argument fails because
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of the measure-theoretic assumptions separating models and
because model choice ultimately involves the selection of one
single model, hence the rejection of all other models. There
cannot be a posterior weight on any intersection for this rea-
son.

A second criticism of ABC (i.e. of the Bayesian approach)
is that model choice requires a collection of models and cannot
decide outside this finite and therefore incomplete collection.
The very purpose of a Bayesian model choice procedure ex-
actly aims at selecting the most likely model among all avail-
able, rather than rejecting a given model when the data is un-
likely. Studies like Berger and Sellke (1987) have shown the
difficulty of reasoning within a single model. Furthermore,
Templeton (2010) advocates the use of a likelihood ratio test,
which necessarily implies using two models with one nested
within the other.

In this paper, Templeton also reiterates the earlier (2008)
criticism that marginal likelihoods are not comparable across
models, because they “are not adjusted for the dimensionality
of the data or the models” (sic!). This point is missing the
whole purpose of using marginal likelihoods, namely that they
account for the dimensionality of the parameter by providing a
natural Ockham’s razor (MacKay, 2002) penalising the larger
model without requiring to specify a dimension penalty. Both
BIC and DIC (Spiegelhalter et al., 2002) are approximations
to the exact Bayesian evidence, which shows the intrinsic pe-
nalisation thus provided by marginal likelihoods. Note also
that ABC applies the basic principles of a Bayesian model
comparison to a summary statistic that is common across
models (Grelaud et al., 2009), rather than using model spe-
cific summary statistics which would then be inconsistent.

Implications of model criticism

The point corresponding to the quote “ABC is used for param-
eter estimation in addition to hypothesis testing and another
source of incoherence is suggested from the internal discrep-
ancy between the posterior probabilities generated by ABC
and the parameter estimates found by ABC” is that, while the
posterior probability that θ1 = 0 (model M1) is much higher
than the posterior probability of the opposite (model M2), the
Bayes estimate of θ1 under model M2 is “significantly different
from zero”. Again, this reflects both a misunderstanding of
the probability model, namely that θ1 = 0 is impossible [has
measure zero] under model M2, and a confusion between con-
fidence intervals (that are model specific) and posterior prob-
abilities (that work across models). The concluding message
that “ABC is a deeply flawed Bayesian procedure in which
ignorance overwhelms data to create massive incoherence” is
thus unsubstantiated.

ABC is only a Monte Carlo scheme

An issue common to all recent criticisms by Templeton (2008,
2010) is the misleading or misled confusion between the ABC
method and the resulting Bayesian inference. For instance,
Templeton distinguishes between the incoherence in the ABC
model choice procedure from the incoherence in the Bayes
factor, when ABC is used as a computational device to ap-
proximate the Bayes factor. In the current case, the Bayes
factor can be directly derived from the ABC simulation since
the (accepted or rejected) proposed values are simulated from
π(θ)f(x|θ) (modulo a numerical approximation effect). This
does not turn the Bayes factor into an ABC or simulation-
based quantity. There is therefore no inferential aspect linked

with ABC, per se, it is simply a numerical tool to approximate
Bayesian procedures and, with enough computer power, the
approximation can get as precise as one wishes.

One of the arguments in Templeton (2010) relies on the
following representation of the ”ABC equation” (sic!)

P (Hi|H,S
∗) =

Gi(||Si − S∗||)Πi∑n

j=1
Gj(||Sj − S∗||)Πj

where S∗ is the observed summary statistic, Si is ”the vec-
tor of expected (simulated) summary statistics under model
i” and ”Gi is a goodness-of-fit measure”. Templeton states
that this ”fundamental equation is mathematically incorrect
in every instance (..) of overlap.” This representation of the
ABC approximation is again misleading or misled in that the
simulation algorithm ABC produces an approximation to a
posterior sample from πi(θi|S

∗). The resulting approximation
to the marginal likelihood under model Mi is a regular Monte
Carlo step that replaces an integral with a weighted sum (an
average), not a ”goodness-of-fit measure” and the Si’s are
replicated many times. The subsequent argument of Temple-
ton’s about the goodness-of-fit measures being ”not adjusted
for the dimensionality of the data” (re-sic!) and the resulting
incoherence is therefore void of substance. The following ar-
gument repeats an misunderstanding stressed above with the
probabilistic model involved in Bayesian model choice: the
reasoning that, if ∑

j

Πj = 1

”the constraints of logic are violated [and] the prior proba-
bilities used in the very first step of their Bayesian analysis
are incoherent”, does not assimilate the issue of measures over
mutually exclusive spaces.

In Templeton (2010), ABC is presented as allowing sta-
tistical comparisons among simulated models: ”ABC assigns
posterior probabilities to a finite set of simulated a priori mod-
els.” The simulation aspect is treated with suspicion and op-
posed to ”standard classical tests”, even though the method
is simply replacing an intractable integral with a convergin
average. Once more, there is no statistical flaw that can be
attributed to ABC since this is a purely numerical method.
The models under comparison are therefore the same as those
studied by “standard classical tests” and what is simulated is
a sample from the posterior distribution associated with this
model, not the model itself.
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