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Abstract

This work addresses the problem of estimating the optimal value function in a Markov

Decision Process from observed state-action pairs. We adopt a Bayesian approach to

inference, which allows both the model to be estimated and predictions about actions to

be made in a unified framework, providing a principled approach to mimicry of a controller

on the basis of observed data. A new Markov chain Monte Carlo (MCMC) sampler is

devised for simulation from the posterior distribution over the optimal value function.

This step includes a parameter expansion step, which is shown to be essential for good

convergence properties of the MCMC sampler. As an illustration, the method is applied

to learning a human controller.

Key-words: Markov Chain Monte Carlo, Data augmentation, Parameter expansion.

1 Introduction

1.1 Motivation

The problem of fitting a statistical model to observed actions has received significant attention

in a variety of disciplines. These include Optimal Control (Rust 1988), Economics (Gotz and

McCall 1980; Wolpin 1984; Rust 1987; Hotz and Miller 1993; Geweke and Keane 2000; Geweke

et al. 1994; Aguirregabiria and Mira 2002; Imai et al. 2009), and Machine Learning (Ng and

Russell 2000; Abbeel and Ng 2004). Across these cases there is some variety in the estimation
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aims and the assumed mechanisms which generate observed actions. We focus on the case in

which it is assumed that the observations arise from an underlying Markov Decision Process (a

full model specification is given in the next section). In this case, given the current state X of

the system, the controller chooses an action A and receives an instantaneous reward specified

by the function r,

(X,A) → r(X,A) ∈ R

where (X,A) is the state-action pair. The state then evolves according to a Markov kernel

p(·|X,A), the controller chooses the next action, receives a reward and so on. The controller

chooses its actions to maximize the average reward it will accrue over an infinite horizon.

However, the controller may take sub-optimal decisions from time to time. This is captured by

a “noisy” MDP model.

A generic approach to automating a task is to model it as a control problem (Bertsekas and

Tsitsiklis 1996, Chapter 8), which involves specifying a reward function and other elements of

the model, and then solving for the optimal controller. Putting aside the difficulties associated

with the last step, specifying the reward function is non-trivial and often achieved in practice

by a heuristic process of trial and error, i.e. by observing the system under the computed

optimal controller and then adjusting the reward function to avoid observed undesired behavior.

After this adjustment, the optimal controller is re-computed and this process is repeated until

satisfaction.

It is possible to simplify this automation process. In particular, it is often possible to

obtain a sample path which is characteristic of desired behavior, e.g. by a human controller,

and then estimate the control policy generating this sample path: this is known as the inverse

reinforcement learning problem (Ng and Russell 2000; Abbeel and Ng 2004). Learning to mimic

a controller has many potential applications in applied fields such as robotics and artificial

intelligence (Coates et al. 2009); biology, e.g. the study of animal learning (Watkins 1987;

Schmajuk and Zanutto 1997), economics (Rust 1987), and other fields.

Our aim is to develop a purely statistical, and computationally tractable, solution to this

problem, based on a statistical model for the controller’s actions, and the Bayesian approach.

2



This is advantageous because it gives us a unified and principled framework for the following

tasks: (a) to properly model uncertainty (i.e. the human controller may make mistakes); (b)

to estimate jointly the control policy and the model parameters, (c) to predict future actions.

In a parametric approach to estimation, the reward function and other elements of the

model are assumed to be specific functional forms of a parameter vector θ (Gotz and McCall

1980; Wolpin 1984; Rust 1987, 1988; Aguirregabiria and Mira 2002; Hotz and Miller 1993; Imai

et al. 2009). The best parametric estimate may then be computed, for example, by maximizing

the likelihood of the observed data with respect to θ. From a computational perspective, we

shall see that this approach is cumbersome for a noisy MDP model because the likelihood of

an observed action given observed states is a complicated integral. We avoid this difficulty by

targeting the control policy directly; as we shall see, a specific quantity called the optimal value

function. This gives an additional justification to the Bayesian approach in this context, as the

data augmentation principle (Tanner and Wong 1987) makes it possible to estimate the model

without computing the difficult integral mentioned.

1.2 Contributions

The contributions of this work are as follows. We adopt a Bayesian approach and infer the

optimal value function of noisy MDPs. Our approach is inspired by the pioneering work of

Albert and Chib (1993), McCulloch and Rossi (1994) in the context of statistical inference in

discrete choice models, where the computations are performed using a Gibbs sampler applied

to an enlarged (or augmented) model. In subsequent work, Nobile (1998), Imai and van Dyk

(2005) enhanced the computational efficiency of the Gibbs sampling technique while McCulloch

et al. (2000), Imai and van Dyk (2005), devised new priors for the identified parameters of the

model.

We devise a new Gibbs sampling algorithm for inferring the optimal value function. The

proposed algorithm is a Parameter Expanded Data Augmentation (PX-DA) algorithm (Liu

et al. 1999; Meng and van Dyk 1999). PX-DA improves upon the efficiency of standard DA

by reducing the correlation between the samples. This is achieved by inserting an additional
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simulation step into the algorithm which involves moving in the augmented data space. This

extra simulation step is computationally inexpensive and leads to improved performance over

standard DA algorithms. In fact, we give examples where the DA algorithm does not converge

whereas PX-DA does. The algorithms of Nobile (1998), Imai and van Dyk (2005) are indeed

PX-DA type samplers and ours differs in several ways. Particularly, the augmented data is

moved in the extra simulation step with a different transformation and with an improper prior

for the marginal distribution over the parameters of the transformations. This is done to

enhance mixing. We also implement an efficient Metropolis-Hastings kernel with independent

proposals when sampling the augmented data.

As an illustrative example of learning a human controller we apply our framework to the

game of Tetris. Automating Tetris is a challenging benchmark problem in the control literature,

see for example Bertsekas and Tsitsiklis (1996), and treating it is difficult because the control

model has a very large state space. Moreover, data from a human player is noisy, as we

are prone to making errors. We show the proposed method can quite accurately mimic the

human player by performing posterior prediction from a limited amount of observed data.

By contrast, existing approaches from the control literature focus solely on, having specified

the reward function, solving the associated difficult optimization problem using reinforcement

learning techniques (Tsitsiklis and Roy 1994; Bertsekas and Tsitsiklis 1996).

1.3 Plan, notation

The organization of this paper is as follows. Section 2 defines the problem in detail and states

the inference objectives. Section 3 describes the PX-DA method generally and then the specific

implementation for inferring the value function. Section 4 presents the PX-DA sampler in detail

for the assumed priors and discusses some practical issues and extensions. Numerical results

highlighting various properties of the proposed PX-DA algorithm are presented in Section 5,

as well as implementation details and results for Tetris. A proof of the correctness of the

proposed PX-DA algorithm is presented in the Appendix along with implementation details of

the MCMC algorithm.
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This section is concluded with a description of the notation used. Capital letters are used

for random variables and lower case for their realizations. The letters f and p are reserved

for the probability densities or probability mass functions of random variables. For two jointly

distributed random variables (X, Y ), fX|Y , fX,Y and fX denote, respectively, the conditional

probability density, the joint density and the marginal density. When the subscript is omitted,

the arguments of f or p will indicate precisely the random variables to which the density

corresponds. For example, p(x|y) is pX|Y (x|y). N (x;µ,Σ) is the value at x of the multivariate

normal probability density with mean µ and covariance Σ. For a vector v, the i-th component

is denoted v(i). All vectors are column vectors and the transpose of v is indicated by vT. The

m-dimensional vector comprised of ones (respectively zeros) only is denoted by 1m (respectively

0m). The subscript m is omitted when the dimension is obvious from context. Im will denote

the m by m identity matrix. Similarly, [Σ]i,j will denote the (i, j)-th element of the matrix Σ.

IA is the indicator function of the set A, i.e. IA(x) = 1 if x ∈ A and 0 otherwise. R denotes

the real line, R+ its strictly positive part and E is the mathematical expectation operator. The

cardinality of a finite set A is denoted by |A|. The Dirac measure concentrated at a point x is

denoted by δx.

2 Problem Statement

2.1 Markov decision processes

A MDP is comprised of a controlled Markov chain, a control process, a reward function and

an optimality criterion. Each of these are defined in turn below; see Bertsekas and Tsitsiklis

(1996) for additional background.

The state process, denoted {Xk}k≥0, is a X -valued controlled Markov chain where X is

the finite set {1, 2, . . . , N}. Let {Ak}k≥0 be the A-valued control (or action) process where

A = {1, 2, . . . ,M} is the set of all possible controls. Given the entire realization of the state

and actions up to time k, the evolution of the state to time k+ 1 is determined by the selected
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action and state at time k only, i.e.

Xk+1| (X0:k = x0:k, A0:k = a0:k) ∼ p(·|xk, ak), (1)

where for each state-action pair (x, a), p(·|x, a) is a probability distribution on X . The evolution

of the action process is determined by a policy µ which is a mapping from the set of actions to

the set of states. Particularly,

Ak| (X0:k = x0:k, A0:k−1 = a0:k−1) ∼ δµ(xk)(·).

Let r be a real valued function on X which is called the reward function. The reward at time k

for being is state Xk is r(Xk). The optimality criterion we consider is the following discounted

sum of accumulated rewards over an infinite horizon,

Vµ(x0) = Eµ

[
∞∑

k=0

βkr(Xk)

∣∣∣∣∣X0 = x0

]
(2)

where β ∈ (0, 1) is the discount factor ensuring the expectation is well defined.(If there exists a

zero reward state which is absorbing, and all policies lead to this state with probability one for

all initial states x0 then, the expectation is well defined without the discount β.) The subscript

on the expectation operator denotes the policy controlling the evolution of {Xk}k≥0. Let µ∗ be

a policy satisfying the following inequality,

Vµ∗(x0) ≥ Vµ(x0) for all (µ, x0).

Then µ∗ is said to be optimal. It is well known that µ∗ is characterized by the real valued

function on X , denoted V ∗, which satisfies the following fixed point equation,

V ∗(x) = max
a∈A

{
r(x) + β

∑

x′∈X

p(x′|x, a)V ∗(x′)

}
. (3)

In the literature on MDPs (Bertsekas and Tsitsiklis 1996), V ∗ is referred to as the (optimal)

value function. Given V ∗, the optimal policy µ∗ is

µ∗(x) = arg max
a∈A

{
∑

x′∈X

p(x′|x, a)V ∗(x′)

}
(4)

for all x ∈ X .
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2.2 A statistical model for imperfect policy execution

For each a ∈ A, let Pa be the transition probability matrix with elements

[Pa]i,j = p(j|i, a).

We consider the following statistical model for the action component ak of each observed

state-action pair (xk, ak) built around the MDP framework. It is assumed that

Ak = arg max
a∈A

{ǫk(a) + (PaV
∗) (xk)} . (5)

where the ǫk’s, k ≥ 0, are independent and identically distributed M-dimensional Gaussian

variates,

ǫTk = (ǫk(1), . . . , ǫk(M)) ∼ N (0M ,Σ).

The inclusion of this noise process renders the model more versatile. It may be interpreted

in two different ways. First, if there are several actions that are near optimal, in the sense

quantified by the numerical value of the expression in the right hand side of (4), then the

controller could have selected one of the near optimal actions in error. Thus while the policy

is optimal, the execution of the policy is subject to disturbance. Second, it can be shown that

(5) characterizes the optimal policy of a MDP with a mixed discrete-continuous state process,

(x, ǫ) ∈ X × R
M , and reward function r : X × R

M ×A → R given by r(x, ǫ, a) = r(x) + ǫ(a).

Given the state (xk, ǫk) at time k, and action ak, the discrete component of the next state,

Xk+1, is drawn from (1) while the continuous component ǫk+1 is drawn from N (0M ,Σ). It

follows from this separation in the evolution of the state components that there exists a vector

V ∗ ∈ R
|X | such the optimal policy for this MDP is given by (5) (Rust 1988, Theorems 3.1,

3.3). In this model, the statistician only observes the discrete component of the state process

and the action taken at each time, while ǫk is the unobserved random component of the reward

known only to the decision maker.

The data d consist of a sequence of state-action pairs, d = {dk}T
k=1 = {(xk, ak)}T

k=1 observed

for T epochs and the aim is to infer V ∗. It is assumed that the law of the controlled process,

which is specified by the collection of transition matrices {Pa}a∈A is known, but the reward

7



function r is unknown. This implies (3) cannot be used to solve for V ∗. The approach below

can be generalized to the case when {Pa}a∈A is unknown. However, assuming {Pa}a∈A is known

is reasonable in a number of applications, in particular the human controller example studied

in Section 5.

In Bayesian setting, a prior for V ∗ is chosen and inference will be based on samples from the

posterior pV |D(v|d), henceforth denoted as p(v|d) (The specification of the prior over the value

function is postponed to Section 4). These samples may then also be used via (5) to estimate

the optimal policy µ∗ and thus predict the behavior of the system. In the context of the human

controller example, d consists of the observed actions of a person.

The likelihood of the observed data is

p(d |V,Σ) =

T∏

i=1

p(xi|xi−1, ai−1)p(ai |V,Σ, xi ) ∝
T∏

i=1

p(ai |V,Σ, xi)

where, abusing notation, p(x0|x−1, a−1) denotes the prior distribution for X0. In the second

line, the terms p(xi|xi−1, ai−1) are omitted as they have no bearing on the desired posterior.

For each state x ∈ X , let Rx be the time homogeneous M ×N matrix

[Rx]k,l = p(xi = l|xi−1 = x, ai−1 = k). (6)

The likelihood p(ai |v,Σ, xi ), or CCP, is the intractable integral

p(Ai = ai |v,Σ, xi ) =

∫

{ǫ∈RM : ǫ(ai)≥ǫ(j),j 6=ai}

N (ǫ;Riv,Σ)dǫ. (7)

In the above expression, Rxi
has been abbreviated to Ri. Henceforth p(Ai = ai |v,Σ, xi ) will

be abbreviated to p(ai |v,Σ). The likelihood is invariant to both translations of the vector v

and multiplications of it by positive scalars,

p(d |v,Σ) = p(d |√z1(v + z21), z1Σ), ∀(z1, z2) ∈ R+ × R. (8)

The design of the PX-DA algorithm presented in the following Section is based on this property.

The assumed model for the noise corrupting the action selection process results in a target

distribution similar to the multinomial probit (MNP) problem (Albert and Chib 1993; Geweke

et al. 1994; McCulloch and Rossi 1994; McCulloch et al. 2000; Imai and van Dyk 2005) and
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the stated invariance of the likelihood to scaling (z1) is well documented in this literature. In

the context of MNP models, the main existing approach to ensure the posterior is well defined

for improper priors is to constrain enough parameters of the model to ensure identifiability

of the remaining ones and then introduce priors for them. For example, by setting the last

component of V to zero and then introducing a suitable prior for the remaining N −1 non-zero

components. We shall use a slightly different approach as detailed in Section 4.

3 The PX-DA Method

Let fX : R
p → R be a the target probability density from which samples are sought. In many

applications, it is not possible to simulate from fX directly. However, it is often possible to

introduce a random vector Y ∈ R
q which is jointly distributed with X such that sampling

from the conditional densities fX|Y and fY |X is straightforward. This is the principle of data

augmentation (DA) (Tanner and Wong 1987). Simulating from these densities sequentially as

follows,

Yn+1|Xn = xn ∼ fY |X(·|xn), Xn+1|Yn+1 = yn+1 ∼ fX|Y (·|yn+1), n ≥ 0, (9)

results in a Markov chain {Xn}n≥0 with the correct asymptotic distribution for any initial state

x0 (under weak regularity assumptions) Tanner and Wong (1987):

lim
n→∞

P(Xn ∈ A) =

∫

A

fX(x)dx. (10)

As noted by Liu et al. (1999), Meng and van Dyk (1999) in some situations it is possible to

improve the efficiency of this sampler by introducing auxiliary variables. This technique was

termed parameter expanded DA by Liu et al. (1999).

Let Λ ⊆ R
d and let {ϕλ}λ∈Λ be a class of one-to-one differentiable functions mapping R

q to

itself. Let

Jλ(y
′) =

∣∣∣∣∣∣
det




[
∂ϕλ,i(y)

∂y(j)

∣∣∣∣
y=y′

]

i,j





∣∣∣∣∣∣
(11)

where ϕλ,i(y) is i-th component function of ϕλ(y). Jλ is the Jacobian determinant of the mapping

ϕλ : R
q → R

q. Let Z be a random vector in Λ ⊆ R
d with probability density fZ . The aim is to
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reduce the auto-correlation between Xn and Xn+1 generated by the Gibbs sampler and PX-DA

achieves this by inserting the an extra simulation step as follows.
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Algorithm 1 A generic PX-DA sampler

Given Xn = xn, Yn = y′n at iteration n+ 1, perform the following steps to sample Xn+1:

Step 1. Sample Yn+1 from fY |X(·|xn) and call the sampled value yn+1. (If exact sampling

from fY |X is not possible, sample Yn+1 from a Markov kernel that leaves fY |X(·|xn) invariant.)

Step 2a. Sample Z
(1)
n+1 from fZ(·), call the sample z

(1)
n+1 and let ỹn+1 = ϕ−1

z
(1)
n+1

(yn+1).

Step 2b. Sample another Λ-valued random variable, Z
(2)
n+1, from the density which is defined

(upto a proportionality constant) by

fY (ϕz(ỹn+1))Jz(ỹn+1)fZ(z). (12)

Call the result z
(2)
n+1 and set y′n+1 = ϕ

z
(2)
n+1

(ỹn+1).

Step 3. Sample Xn+1 from fX|Y (·|y′n+1)

The difference between the standard DA algorithm in (9) and PX-DA is step 2. Per iteration,

PX-DA has a slightly greater computational cost due to the need to sample the variables

(Z
(1)
n , Z

(2)
n ). However, in the cases of practical interest, these variables are typically of a much

lower dimension than X or Y and the increase in computational cost is negligible. The benefit

though, in terms of the mixing rate of the sampler, has been observed to be quite substantial

(Liu et al. 1999). Direct simulation from the probability density on Λ given by (12) is possible

for the specific family of mappings {ϕλ}λ∈Λ we consider in the sequel. When a direct draw from

(12) is possible the resulting PX-DA algorithm is termed exact.

Step 2 transforms the simulated random variable in step 1 from yn+1 to y′n+1 via the in-

termediate value ỹn+1. Essentially step 2 is implementing a Markov transition from R
q to R

q

using the kernel

Q(yn+1, B) = E
{
IB(Y ′

n+1)|Yn+1 = yn+1

}
= E

{
IB(ϕ

Z
(2)
n+1

◦ ϕ−1

Z
(1)
n+1

(Yn+1))|Yn+1 = yn+1

}

It can be shown that Q is reversible with respect to fY and thus fY is also invariant for Q(yn, B)

(Liu et al. 1999, Theorem 1). This in turn implies that the invariant probability density of the
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Markov chain {Xn}n≥0 generated by the PX-DA algorithm is indeed fX ; if Xn ∼ fX then the

law of Yn+1 is fY and, since fY is invariant for Q, the law of Y ′
n+1 is also fY .

As was noted by Liu et al. (1999), Meng and van Dyk (1999), it is possible to reduce the

auto-correlation between the successive Xn samples generated by the PX-DA algorithm by

making the prior fZ more diffuse. In fact, with a trivial modification, the PX-DA algorithm is

still valid when the prior is improper. As the random draw in step 2a is no longer well defined,

the correct procedure in this case is to omit this draw and set ỹn+1 to yn+1 from step 1. All

other steps remain unchanged. We demonstrate the effect of an improper prior in the numerical

examples in Section 5.

The PX-DA algorithm for inferring the value function will be implemented with the following

specific transformation of the augmented data. Let Λ = R+ × R and

ϕz(y) =
y

z1
− z21, z = (z1, z2) ∈ R+ × R. (13)

A result concerning the correctness of the PX-DA method when fZ is improper is now stated.

Although this has been established in the case of either scaling or translation only (Liu et al.

1999; Meng and van Dyk 1999), the extension to the present setting is not difficult.

Proposition 1 Consider the transformation in (13) and let

c(y) =
∫

R+×R
fY (ϕz(y))Jz(y)dz1dz2, y ∈ R

q. Then the Markov transition density on R
q defined

by

Q(y, B) =

∫

R+×R

IB(ϕz(y))
fY (ϕz(y))Jz(y)

c(y)
dz1dz2

is reversible with respect to fY .

(Proof is in the Appendix.)

For any h : R
p → R which is square-integrable with respect to fX , i.e.

∫
h2(x)fX(x)dx <∞,

if a central limit theorem holds, then

1√
L

L∑

n=1

h(Xn)
d→ N (EfX

(h(X)), σ2(h)) (14)
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where

σ2(h) = c0(h) + 2

∞∑

i=1

ci(h), ci(h) = EfX
(h(Xi)h(X0)) − EfX

(h(X0))
2, i ≥ 0. (15)

The convergence in (14) is in distribution and the expectations in the expression for σ2(h) are

computed with respect to the law of the Markov chain {Xn}n≥0 with initial distribution fX .

The following inequality for the asymptotic variance of DA, PX-DA (for any proper prior

for Z) and PX-DA when the prior for Z is improper holds Hobert and Marchev (2008),

σ2(h) ≥ σ2
P(h) ≥ σ2

P-I(h)

where the subscripts indicate the algorithm generating {Xn}n≥0; the standard DA is without

subscript, the subscript P denotes PX-DA with a proper prior on Z and P-I denotes PX-DA

with an improper prior. PX-DA with an improper prior is said to be the most efficient since

it has a smallest asymptotic variance as measured by (14). Strictly speaking, this variance

inequality has only been shown to hold when fY |X can be sampled from exactly in step 1 of

Algorithm 1 (Hobert and Marchev 2008). Otherwise, there is no explicit bound quantifying the

improvement and we resort to estimating the constants in the expression (15) for the efficiency

comparison in the numerical examples.

4 A PX-DA sampler for inferring the value function

The transformation of the augmented data will be as in (13). This section completes the

description by specifying the prior for the value function, the auxiliary variable Z and culminates

with a statement of the complete sampling algorithm for these specific choices. Extensions to

a more general reward function and the practicality of the approach for large problem sizes,

specifically large X , are discussed at the end of the section.

Regarding the prior for V , the following requirements seem reasonable: (a) it should re-

spect the symmetry of the model regarding the N states; specifically, it should be invariant

with respect to permutation of the state labels; (b) it should be conjugate, so that Gibbs

steps can be implemented; and (c) to ease interpretation of the output, it should make the
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model identifiable. These requirements are met by the following prior distribution: a Gaussian

N (0N , κIN) distribution, but conditional on the event
∑N

i=1 V (i) = 0. This prior distribution

may be alternately described as follows: take U ∼ N (0N , κIN), then set V = U −N−11N1T
NU ,

that is, remove the mean of the U(i) to force the components of V to sum to zero.

The constraint
∑N

i=1 V (i) = 0 addresses the additive unidentifiability of the model, i.e. the

fact that the likelihood is unchanged if the same constant is added to all the V (i). To fix

multiplicative unidentifiability, i.e. the likelihood is unchanged if both V and σ are multiplied

by the same constant, we take Σ = I for the remainder of this Section. This choice presents

an important advantage: it makes it possible to implement Step 1 of Algorithm 1 using an

efficient Metropolis-Hastings step, as described below. In Section 4.1, we explain briefly how to

consider a more general matrix Σ, and why we believe that Σ = I should be sufficient in many

practical (MDP) applications.

We note in passing a different way to treat additive unidentifiability inspired by multivariate

probit models (McCulloch and Rossi 1994): i.e. set one of the N components of the value

function to zero, e.g. V (N) = 0. In our context however, this would suppress the symmetry

between the N states, complicate the notations, and bring no obvious benefit. Also, additive

unidentifiability can be exploited to yield a better PX-DA sampler.

The augmented data is

Y = (W1, . . . ,WT ), with p(w1, . . . , wT | v) =
T∏

i=1

p(wi| v) =
T∏

i=1

N (wi;Riv, IM)

and the PX-DA algorithm defined below will target the joint density (fX,Y (x, y) in section 3).

p(v, w1, . . . , wT |d)

∝ N
(
v; 0N−1, κIN−1 − κN−11N−11

T
N−1

) T∏

i=1

I{wi∈RM : wi(ai)≥wi(j),j 6=ai}N (wi;Riv, IM), (16)

with the slight abuse of notation that the vector v in N (wi;Riv, IM) is N dimensional where

N -th component is

v(N) = −
N−1∑

i=1

v(i).
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(This convention will hold for the remainder of this section wherever Riv occurs.) The den-

sity (16) has indeed the correct marginal and implementing a Gibbs sampler which samples

(w1, . . . , wT ) and v alternately is straightforward.

The transformation of the augmented data for the PX-DA implementation is given in (13).

We set fZ1,Z2(z1, z2) = fZ2(z2)fZ1(z1) and

Z1 ∼ IG(a, b), Z2 ∼ N (0, κ/N), (17)

where IG is the inverse Gamma density. To clarify the connection with the description of the

generic PX-DA sampler in section 3, with a slight abuse of the definition of ϕ−1
z ,

Y ′ = ϕ−1
z (Y ) =

(√
z1(W

T
1 + z21

T
M), . . . ,

√
z1(W

T
T + z21

T
M)
)T
,

and the Jacobian in (11) is

Jz(y
′) = z

−MT
2

1 .

With this choice of transformation of the variables, step 1 and 2a of the generic PX-DA algo-

rithm 1 can be combined into step 1 of algorithm 2 below. Similarly, step 2b and 3 of algorithm

1 may be combined into step 2 of algorithm 2.

The Metropolis Hastings kernel (with independent proposals) for step 1 of Algorithm 2

presented in the Appendix is quite efficient with acceptance rates typically around 70 percent

for the numerical examples in Section 5. Step 2 can be implemented as detailed in Section

6.3. When improper priors are used for V , Z1 and Z2, the corresponding terms in (20) should

be omitted. As discussed in Section 3, when improper priors are used for Z1 and Z2, these

variables should not be sampled in step 1 above.

4.1 Extensions

4.1.1 State-dependent Rewards

In Section 2 it was assumed that the reward function is not action dependent. The following

extension to the criterion in (2) can be considered. Replace r(Xk) in (2) by

r(Xk, Ak) = r1(Xk) + r2(Ak). (18)
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Algorithm 2 PX-DA for inferring the value function

Let w1:T and v be the samples after iteration n. At iteration n + 1, perform the following

two steps.

Step 1: Sample Z1 ∼ IG(a, b), call the result z1, sample Z2 ∼ N (0, κ/N) and let z2 denote

this sampled value. For each i = 1, ..., T , sample Wi from the truncated Gaussian

I{wi∈RM : wi(ai)≥wi(j),j 6=ai}N (wi;Riv, IM), (19)

call the result wi and set w′
i =

√
z1(wi + z21M). (This step can be achieved directly or using

the Metropolis-Hastings kernel detailed in Section 6.2.)

Step 2: Sample (V (1), . . . , V (N − 1), Z2, Z1) from the joint density

N
(
v; 0N−1, κIN−1 − κN−11N−11

T
N−1

) T∏

i=1

N
(
w′

i√
z1

− z21M ;Riv, IM

)

×N (z2; 0, κ/N)z
−MT

2
1 IG(z1; a, b) (20)

and z−0.5
1 w′

i − z21M , i = 1,. . . , T , are now the final w1:T for iteration n+ 1.

Note that V ∗ for this new problem still satisfies (3) with the reward function therein replaced

by (18). In this case the action generation model is now

Ak = arg max
a∈A

{ǫk(a) + r2(a) + β (PaV
∗) (xk)}

and

p(Ak = i |v, r2,Σ, xk ) =

∫

{ǫ∈RM : ǫ(i)≥ǫ(j),j 6=i}

N (ǫ; r2 +Rkv,Σ)dǫ.

It can be verified that, for all (z1, z2, z3) ∈ R+ × R × R,

p(Ak = i |√z1(v + z21),
√
z1(r2 + z31), z1Σ, xk ) = p(Ak = i |v, r2,Σ, xk ).

The prior for V could be the same as before (see Section 4) and one could also use a prior with

the same structure for r2.
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4.1.2 Large State-spaces

Since V is a vector of length |X |, the approach detailed thus far will be impractical for a

very large state-space X . In this setting we may regress the value function onto a set of basis

functions. (A similar approach was proposed by Geweke and Keane (1996), Geweke and Keane

(2000) for a finite horizon dynamic discrete choice problem.) Let {φi}1≤i≤K be a collection

of basis functions, mapping X to the real line. Typically K is much smaller than |X |. It is

assumed that the conditional expectation,
∑

x′∈X φi(x
′)p(x′|x, a), can be computed easily for

each state-action pair (x, a) and i. For example, this would be true if p(x′|x, a) is non-zero for

only a handful of values of x′, see the human controller example considered in Section 5.2. The

action generation model is (for an action independent reward),

ak = arg max
a∈A

{
ǫk(a) +

K∑

i=1

V ∗(i) (Paφi) (xk)

}
,

and the corresponding likelihood satisfies

p(Ak = i |√z1v, z1Σ, xk ) = p(Ak = i |v,Σ, xk ).

The likelihood is no longer invariant to scalar translations of the value function. As the model

is no longer additively unidentifiable, an unconstrained prior may thus be defined over all N

components of V . For example, the prior N(0N , κIN) is admissible even as κ → ∞. The PX-

DA implementation for this model will involve transforming the augmented data by a scalar

multiplication only.

4.1.3 Constrained Actions

In some applications, state dependent action constraints are present, i.e. not every action in A
is permitted in every state. The modification to Algorithm 2 is trivial. For example, if action j

is not permitted in state xi, then row j of the Rxi
defined in (6) is deleted. Action constraints

are present in the example studied in Section 5.
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4.1.4 Non-identity Noise Covariance Matrix

We think that restricting the model to an identity covariance matrix for the noise term is very

reasonable for the following reasons. First, in the MDP context, one is mostly interested in

inferring V as Σ is merely a nuisance parameter. Second, since only one action is observed

at a time, it seems hard to estimate correlations between the different components of the

noise vector. Third, considering a general Σ means that the dimension of the parameter space

becomes O(M2), and the computational burden O(M3), as opposed toO(M) for both quantities

in the Σ = I case. (The computational burden increases also because of the greater difficulty

to sample the latent variables Wi, as explained below.) This is clearly impractical when M is

large.

However, for the sake of completeness, we now explain how to account for a general covari-

ance matrix Σ. The prior suggested in Imai and van Dyk (2005) may adapted to the present

setting. A prior for the covariance matrix Σ subject to the constraint [Σ]1,1 = 1 is constructed

by normalizing the samples from an inverse Wishart distribution. Specifically, Σ̃ ∼ IW(ν, S̃)

and Σ = Σ̃/[Σ̃]1,1. Let z1 = [Σ̃]1,1 then,

p(z1,Σ) ∝ |Σ|−(ν+M+1)/2 exp

(
− α2

2z1
tr(SΣ−1)

)
(z1)

− νM
2

−1

where constant α2 satisfies S̃ = α2S. The conditional density

p(z1|Σ) = IG

(
νM

2
,
α2

2
tr(SΣ−1)

)

is now the new distribution for the scaling parameter in the PX-DA transformation of the

augmented data; see (17). To infer Σ as well, Algorithm 2 would be modified to sample W1:T ,

V and then Σ in turn. For a non-diagonal covariance matrix, step 1 cannot be implemented

with the Metropolis-Hastings kernel described in Section 6.2. A possible alternative is to use

a Gibbs sampling step where, for each i, each component of Wi is sampled conditioned on the

remaining components. Once a complete cycle has been performed, then the transformation at

the end of step 1 can be applied. Step 2 will be modified to sample (Z1, Z2, V,Σ) conditioned on

w1:T , which can be performed by an appropriate blocking scheme after the change of variable
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in (30). Roughly speaking, (Z1, Z2, V ) is sampled conditioned on (Σ, w1:T ) and then (Z1,Σ)

conditioned on (Z2, V, w1:T ). The samples produced may suffer from much more correlation

than in the case of Algorithm 2 which is catered to Σ = I.

5 Numerical Examples

5.1 Toy Example

To demonstrate the performance improvements of PX-DA over standard DA, a data record

of 20 state-action pairs was generated from the model with 7 states, 3 actions. The true

value function was drawn from the prior. Algorithm 2 was run for 5 × 105 iterations and half

were discarded for burn in. The parameters of the priors in (17) were chosen a = b = 1,

κ = 2500. Figure 1 shows the computed autocorrelation for some of the components of the

estimated value function. The improvements due to scaling and translation of the augmented

data are isolated. For the components of the value function not shown, the improvements were

comparable. Figure 1 also displays the kernel density estimate of the posterior of component

seven of the value function to show that PX-DA indeed preserves the target distribution. The

acceptance rate for the Metropolis-Hastings kernel used to implement step 1 of Algorithm 2

was in excess of 95%.

Figure 2 isolates the effect of an improper prior in PX-DA. This study is restricted to PX-

DA that scales the augmented data only since the prior for the value function in (16) also

depends on the parameter κ that controls the variance of the law of the translation parameter

(17). Figure 2 shows the computed autocorrelation for components 4 and 7 of the estimated

value function. For the proper prior, a = 5, b = 0.5. In this case the improper prior for the

scaling parameter yields a modest improvement in performance over the proper prior. (Note

though there no longer the issue of tuning the prior for the scaling parameter.)

The final experiment demonstrates a situation where PX-DA converges but DA does not.

The data comprising of 20 state-action pairs of the previous examples is extended to 50

by appending 30 more. In this example, the priors for V , Z1 and Z2 are improper. The
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Figure 1: Starting from top left, PX-DA post-burn in autocorrelation plots of posterior sam-

ples for component 4 and 7 of the value function; and kernel density estimate of posterior of

component 7 of the value function. Solid line is standard DA, dash-dot is PX-DA with scale

move only, dashed line is PX-DA with scale and translation move.

posterior mean of the value function calculated with PX-DA with scaling and translation is

[2.34,−0.92,−1.02, 4.12, 5.69,−1.79,−8.41]T. (1.5 × 106 posterior samples but half discarded

for burn in. The posterior mean for PX-DA with scaling or translation only was practically the

same.) The PX-DA implementations were initialized with the value function set to 100 × 17.

Shown in Figure 3 is the trace plot of the samples of component 7 of the value function ob-

tained using the DA method initialized with the value function set to 10 × 17. The mean of

the second half of the samples in Figure 3 is −3.56. (In fact all other components of the mean
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Figure 2: PX-DA post-burn in autocorrelation plots of posterior samples for component 4 (left)

and 7 (right) of the value function. Dash-dot line is PX-DA with scale move only and a proper

prior with a = 5, b = 0.5. Solid line is PX-DA with scale move only and an improper prior.

of the posterior value function calculated with DA are quite far out.) In this case we see that

DA fails to converge even though initialized far closer to the true values than PX-DA. Finally,

to isolate the improvements due to scaling and translation, the autocorrelation plots of certain

components of the posterior samples of the value function are compared in Figure 3 for PX-DA

implemented with both additive and scaling, scaling only and additive only. In this example,

the translation move appears more beneficial than scaling.

5.2 Application to Human Controller Learning

In this section we apply the proposed method to a MDP which arises in the context of the

popular computer game Tetris. In this game the player controls the positions and orientations

of random two-dimensional shapes, henceforth the blocks, which arrive over time and occupy a

field of play, henceforth the board, in a non-overlapping manner.

5.2.1 Model Definition

In the MDP formulation of Tetris, the state X = (ζ, η) consists of two components. The first

component, ζ , is the current configuration of the board and expressed as a 30 × 10 binary
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Figure 3: From left to right: PX-DA post-burn in autocorrelation plots of posterior samples for

component 4 and 7 of the value function; and DA trace plot of posterior samples of component

7 of the value function. For the autocorrelation plots, solid line is PX-DA with translation move

only, dash-dot is PX-DA with scale move only, dashed line is PX-DA with scale and translation

move. The mean of the second half of the samples from DA is −3.56 whereas the true posterior

mean (calculated with PX-DA for which the three implementations are in agreement) is −8.4.

matrix. The second component, η, is the index of a block. We consider 7 distinct blocks,

shown in Figure 4, and thus η takes values in {1, 2, ..., 7}. Each action A consists of the angle

through which to rotate the current block (0◦, 90◦, 180◦, 270◦), and the number of squares by

which to move it left or right. For each state not all combinations of horizontal translation

and rotation are necessarily permitted as the block must remain entirely within the boundaries

of the board and must not overlap with any occupied squares. We write A(x) for the set of
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Figure 4: The seven blocks of Tetris.

Figure 5: Example iteration of Tetris. From left to right: 1) A block appears at the top of the

board. 2) An action is taken to rotate and translate the block. 3) The block then falls until it

reaches occupied squares. 4) Fully occupied rows of the board are removed.

actions which are valid in state X = x.

From the current state Xk = (ζk, ηk) and an action Ak ∈ A(Xk), the evolution of the state

occurs according to

ζk+1 = ψ(ζk, ηk, Ak), ηk+1 ∼ U(1, 2, ..., 7), (21)

where ψ is a deterministic mapping which describes the evolution of the board configuration

once the action has been chosen. For a configuration ζk with no occupied squares in the top

row, ψ yields the new configuration ζk+1 by moving the block ηk according to Ak, then allowing

the block to “fall” until it reaches an occupied square or the bottom row of the board, and then

removing any fully occupied rows. For a configuration ζk which has an occupied square in the

top row, ψ sets ζk+1 = ζk irrespective of Ak and ηk. The latter corresponds to “termination”

of the game; once such a state is reached, subsequent actions do not influence the state. A
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pictorial representation of one iteration of the game is given in Figure 5.

As each state consists of a single board configuration and block type, the total number of

states in the Tetris model is rather large. We therefore adopt the approach outlined in Section

4 and regress the value function on to a collection of K basis functions {φ1, φ2, ..., φK}, which

depend on the board configuration ζ but not on the randomly falling piece η. (Note that the

latter is not controlled as new blocks arrive independently of the action and the previous state.)

Specific details of the basis functions are given in section 5.2.

We assume that the reward is independent of the action and the action generation model

is then

Ak = arg max
a∈A(xk)

{
ǫk(a) +

K∑

i=1

V ∗(i) · (φi ◦ ψ) (ζk, ηk, a)

}
. (22)

We assume that the noise corrupting the action choice has identity covariance. The likelihood

of observed data is

p(d|v,Σ) =

T∏

k=1

p(ak|v, xk,Σ),

where for each k = 1, ..., T ,

p(Ak = i |v, xk,Σ) =

∫

{ǫ∈R
Mk : ǫ(i)≥ǫ(j),j 6=i}

N (ǫ;Rkv, IMk
)dǫ.

Here Mk := |A(xk)| and Rk is the Mk ×N matrix with entries specified by

[Rk]ij := (φj ◦ ψ)(ζk, ηk, i).

In this case the likelihood is invariant to scaling in the sense that

p(d|v, σ2I) = p(d|√z1v, z1σ2I), ∀z1 ∈ R+.

The sampling algorithm for inference is Algorithm 2 where the augmented data and transfor-

mation are given by

Y = (W1, . . . ,WT ), Y ′ = ϕ−1
z1

(Y ) =
(√

z1W
T
1 , . . . ,

√
z1W

T
T

)T
,

where the scaling factor Z1 ∼ IG(a, b). The Jacobian for this transformation is

Jz1(y
′) = z

−
∑T

k=1 Mk
2

1 .
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The prior for V is N (0N , κIN).

We consider the following K = 3 basis functions which were found to capture various

features of the board configuration. φ1, the height of the top-most occupied square in the

board, across all the columns; φ2, the number of unoccupied squares which have at least one

occupied square above them in the same column; φ3 the sum of the squared differences between

occupied heights of adjacent columns.

In Tsitsiklis and Roy (1994), Bertsekas and Tsitsiklis (1996), for a board with c columns,

φ1, φ2 and 2c − 1 additional features were used to construct an automated self-improving

Tetris playing system using Reinforcement Learning techniques. In contrast, the emphasis here

is to make predictions about actions and mimic play on the basis of observed state-action

data. In our setup the latter amounts to posterior prediction, which can be performed in

the following manner. Let {Vn}L
n=1 be a collection of post-burn-in samples from the posterior

distribution over the value function, obtained from the PX-DA algorithm. Then for each state

in a given sequence {(ζk, ηk)}T
k=1 we would like to make predictions under our model about

the corresponding action, on the basis of the posterior samples {Vn}L
n=1. To this end, for each

(ζk, ηk) we define the MAP predicted action as

ÂMAP
k (ζk, ηk) := arg max

a∈A(xk)

L∑

n=1

I

[
Ân,k(ζk, ηk) = a

]
,

Ân,k(ζk, ηk) := arg max
a∈A(xk)

{
ǫn,k(a) +

N∑

j=1

Vn(j) · (φj ◦ ψ) (ζk, ηk, a)

}
, (23)

where for each 1 ≤ n ≤ L, 1 ≤ k ≤ T and a ∈ A(xk), ǫn,k(a) is an independent N (0, 1) random

variable.

In the following section the predictive performance of the model is assessed for a number

of data sets. Each data set is divided into two subsets. The PX-DA algorithm is used to

draw samples from the posterior corresponding to the first subset and then the accuracy of the

posterior prediction is assessed using the second subset. This assessment is performed in terms

of the empirical action error, defined as

Ea :=
1

T

T∑

k=1

I

[
ÂMAP

k (ζk, ηk) 6= ak

]
. (24)
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where {(ζk, ηk, ak)}T
k=1 is the second data subset.

Finally we note that in practical situations computation of (23) may be expensive if L is

large, in which case one may resort to heuristic action prediction based on a posterior point

estimate of V . We do not explore this issue further.

5.2.2 Experiment 1

In the first numerical experiment, we verify that it is possible to recover a value function

and perform accurate prediction from data simulated according to the model. We consider

three different value functions (−3,−15,−1), (0, 5, 0) and (−20, 0, 1). These value functions

were chosen for purposes of exposition; the corresponding optimal policies lead to qualitatively

distinct styles of play. Snap-shots of typical board configurations under play according to the

action generation model for each of these value functions are given in the top row of Figure 7.

The first value function, (−3,−15,−1), led to an “efficient” style of play in which the upper

region of the board is rarely occupied. The second value function, (0 5 0), yields a policy which

encloses many unoccupied spaces, leading to the distinctive zig–zag pattern displayed in the

second columns of Figure 7. The third value function, (−20 0 1), corresponds to a policy which

tends to produce “towers” of occupied squares.

For each of the three value functions, 500 observations (state/action pairs) were generated

according to the model (22) with the state updated according to (21). During generation of the

data, if the game terminated it was immediately restarted. For the value function (−3 −15 −1),

termination did not occur within 500 time steps of the game. For the other two, termination

typically occurred after 10 to 20 time steps so the full data record of length 500 consisted of the

concatenation of several data sets. In all three cases, the first 100 observations were reserved

for inference and the remaining 400 used for assessment of predictive performance.

For each value function the PX-DA algorithm, incorporating the Metropolis-Hastings kernel,

was run independently targeting the posterior distributions corresponding to the first 10, 20, 50

and 100 observations. In each case the algorithm was run for 5×105 iterations, with a burn in of

104 iterations. The Metropolis-Hastings acceptance rate was found to be between 0.5 and 0.9 in
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all cases. The parameters of the model were set to κ = 2500 to give a relatively uninformative

prior over the value function, and for the prior on the parameter z1, a = 3 and b = 105. For

these tuned values of a and b, using an improper prior over z1 led to negligible improvements

in performance. Post-burn in trace plots, histograms and kernel density estimates are shown in

Figure 6 along with the true value function values for the case of inference from 50 observations.

In all cases, the posterior marginals have significant mass in the neighborhood of the true value

function values.

Figure 6 also shows the autocorrelation for one component of one of the value function,

from the output of the PX-DA and standard DA algorithms. This indicates that the PX-DA

algorithm yields a significantly lower autocorrelation than the standard DA scheme.

Figure 7 shows the predictive performance in terms of the prediction error Ea defined in

equation (24) as a function of the number of observations used for inference. In all cases Ea was

computed using the remaining 400 observations, i.e. in (24) T = 400. These results verify that

the predictive performance improves as the number of observations used for inference increases.

The qualitative characteristics of play according to the three true value functions and ac-

cording to the posterior predictions are also summarized in Figure 7. In this Figure, the top

row shows snap-shots of board configurations simulated from the model. The bottom row

shows snap-shots of play according to posterior predicted actions (with inference based on 50

observations) for a different block sequence {ηk} and with the state updated according to

ζk+1 = ψ
(
ζk, ηk, Â

MAP
k (ζk, ηk)

)
, ηk+1 ∼ U(1, 2, ..., 7).

These results indicate that the predicted actions result in a style of play which is qualitatively

similar to that obtained from actions generated according to the true value function.

5.2.3 Experiment 2

In the second experiment, inference was performed from a data set of a human player, i.e. in

this case the true value function is unknown. The game was played for 500 iterations and again,

the first 100 observations were reserved for inference and the subsequent 400 observations were

reserved for assessment of predictive performance. The PX-DA algorithm was run using the
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Figure 6: Experiment 1. PX-DA post burn-in trace plots of 4 × 105 samples, histograms and

kernel density estimates of the posterior marginal distributions corresponding to 50 observations

for the three value functions. Top left: value function (−3 − 15 − 1). Top right: (−20 0 1).

Bottom left: (0 5 0). True values are shown with vertical lines. Bottom right: auto-correlation

as a function of lag of the first component of V for PX-DA (dashed) and DA (solid) algorithms

in the case of the true value function (−3 − 15 − 1)T , from 4 × 105 post burn-in samples.

same settings as in Experiment 1. Again, the Metropolis-Hastings acceptance rate was found

to be between 0.5 and 0.9. Trace plots, histograms and kernel density estimates are displayed

in Figure 8 for the case of inference from 50 observations. Figure 8 also shows the empirical

action error as function of the number of observations used for inference. The result indicates

that even with three basis functions, it is possible to capture significant information about the

player’s policy.
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Figure 7: Experiment 1. Right top row: Board snap-shots for simulated data. From left to right

the true value functions are (−3 − 15 − 1), (0 5 0) and (−20 0 1). Right bottom row: Board

snapshots during play according to posterior predictive actions for a different block sequence.

Left: Posterior prediction errors as a function of the number of observations used for inference

for the three value functions: (−3 − 15 − 1) solid, (0 5 0) dashed and (−20 0 1) dash-dot.
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Figure 8: Left: trace plots, histograms and kernel density estimates for of posterior marginals

for the three components of the value function. Inference based on 50 observations. Right:

Posterior prediction error as a functions of the number of observations used for inference.

6 Appendix

6.1 Proof of Proposition 1

The proof is based on that of (Hobert and Marchev 2008, Proposition 3).
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An operation on R+ × R is defined as follows. For any constants z̃ = (z̃1, z̃2), z = (z1, z2) ∈
R+ × R, let

z̃z := (z̃1z1, z̃2 +
z2
z̃1

), z−1 := (z−1
1 ,−z1z2).

As a consequence of these definitions, ϕz̃(ϕz(y)) = ϕz̃z(y), ϕz−1(ϕz(y)) = ϕz(ϕz−1(y)) = y and

ϕ−1
z (y) = ϕz−1(y). The following equivalences may be established by routine integration. For

any z ∈ R+ × R and integrable functions h1, h2 : R
q → R

q, g : R+ × R → R,

∫
h1(ϕz(y))Jz(y)dy =

∫
h1(y)dy, (25)

∫

R+×R

g(zz̃)dz1dz2 =
1

z̃1

∫

R+×R

g(z)dz1dz2, (26)

c(ϕz(y)) =
c(y)

z1Jz(y)
, (27)

∫

R+×R

g(z−1
1 ,−z1z2)

1

z1
dz1dz2 =

∫

R+×R

g(z1, z2)dz1dz2. (28)

(25) is a change of variable formula while (27) follows from (26) and the fact that

Jz(ϕz̃(y)) =
Jzz̃(y)

Jz̃(y)
.

Then,

∫

R+×R

∫

Rq

h1(y)h2(ϕz(y))
fY (ϕz(y))Jz(y)

c(y)
fY (y)dydz1dz2

=

∫

R+×R

[∫

Rq

h1(ϕz−1(ϕz(y)))h2(ϕz(y))
fY (ϕz(y))Jz(y)

c(ϕz−1(ϕz(y)))
fY (ϕz−1(ϕz(y)))dy

]
dz1dz2

=

∫

R+×R

[∫

Rq

h1(ϕz−1(y))h2(y)
fY (y)

c(ϕz−1(y))
fY (ϕz−1(y))dy

]
dz1dz2

=

∫

Rq

[∫

R+×R

h1(ϕz−1(y))h2(y)
fY (y)Jz−1(y)

z1c(y)
fY (ϕz−1(y))dz1dz2

]
dy

=

∫

Rq

[∫

R+×R

h1(ϕz(y))h2(y)
fY (y)Jz(y)

c(y)
fY (ϕz(y))dz1dz2

]
dy

where the final three lines are established by invoking (25), (27) and (28). This establishes the

stated reversibility.
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6.2 Metropolis Hastings Kernel

For each i = 1, ..., T , sample Wi from the truncated Gaussian given in (19). The procedure for

performing this step is discussed below for W1 (with the subscript omitted from the notation.)

Let W (i) ∼ N (µ(i), 1) independently, i = 1, . . . ,M . The aim is to sample the scalar

random variables W (i)’s conditional on the event W (i) < W (l), for a fixed l and all i 6= l. For

convenience, take l = 1. The corresponding distribution for the W (i)’s may be decomposed as

follows. The marginal density of W (1) is

p(w(1)) ∝ pu(w(1)) = N (w(1);µ(1), 1)

M∏

i=2

Φ(w(1) − µ(i)),

and, conditional on W (1) = w(1), W (i)|{W (1) = w(1)} ∼ T N (−∞,w(1)](µ(i), 1) for i =

2, . . . ,M , independently, where Φ denotes the cumulative distribution function of N (0, 1),

and T N [a,b](m, s
2) stands for the N (m, s2) distribution truncated to the interval [a, b].

It is trivial to sample the W (i)’s, i > 1, conditional on W (1) (Devroye 1986, pg. 389), so we

focus on the marginal of W (1). We derive an efficient independent Metropolis-Hastings step

for W (1) based on a N (m, s2) proposal distribution. The acceptance rate reads:

pu(w
′(1))N (w(1);m, s2)

pu(w(1))N (w′(1);m, s2)
∧ 1

where w(1) and w′(1) denote, respectively, the current value and the proposed value W ′(1) ∼
N (m, s2). The main issue is to derive a method for calculating a good Gaussian approximation

of p(w(1)).

An initial approximation N (m0, s
2
0) is first constructed by regarding the function Φ(x) as

the constant one for x > 0, and N (x; 0, 1) for x < 0. Specifically, start with (m0, s
2
0) = (µ(1), 1),

and repeat the following steps: select the factor i with largest µ(i) and multiply the current

Gaussian approximation N (x;m0, s
2
0) by either the density N (x;µ(i), 1) if µ(i) > m0, or by

1 otherwise. Discard factor i and repeat this procedure until all M − 1 factors have been

accounted for. Set (m, s2) to be the mean and variance of this resulting proposal.

To refine this proposal, perform several Newton-Raphson iterations for finding the mode

and the curvature of the mode of log p(w(1)) by using (m, s2) as the starting values. All these
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operations take very little time, and leads to an acceptance rate close to one in most cases.

This program is available upon request.

6.3 Implementing Step 2 of Algorithm 2

The density (20) can be written as

N
(
v; 0N−1, κIN−1 − κN−11N−11

T
N−1

) T∏

i=1

N (w′
i −Ri

√
z1 (v + z21N) ; 0M , z1IM)

×N (z2; 0, κN
−1)IG(z1; a, b). (29)

By implementing the change of variable

(v(1), . . . , v(N − 1), z2)

→ (u(1), . . . , u(N)) =
√
z1

([
v(1), . . . , v(N − 1),−

N−1∑

i=1

v(i)

]
+ z21

T
N

)
, (30)

(29) becomes

N (u; 0N , κz1IN)

T∏

i=1

N (w′
i − Riu; 0M , z1IM) × IG(z1; a, b).

Sampling (U,Z1) is now straightforward and this is to be followed by a transformation of the

sampled U variable to recover (V, Z2). Sample

Z1 ∼ IG(
TM

2
+ a, b+ SSR/2 +H/2), U |Z1 = z1 ∼ N (

1

z1
S−1R̃Tw̃, S−1).

where

SSR = w̃Tw̃ − w̃TR̃(R̃TR̃)−1R̃Tw̃, uLS = (R̃TR̃)−1R̃Tw̃,

H = uT
LS(INκ+ (R̃TR̃)−1)−1uLS, S = INz

−1
1 κ−1 + z−1

1 (R̃TR̃).

and w̃T =
[
(w′

1)
T, . . . , (w′

T )T
]
, R̃T =

[
RT

1 , . . . , R
T
T

]
. Here uLS refers to the least squares estimate

of u and SSR is the minimum mean-squared error. Let u denote the sampled random vector

U . The sampled (Z2, V ) is
(
z
−1/2
1

1
T
N u

N
, z

−1/2
1 (u− 1

T
N u

N
1N )

)
.
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