
INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES 
Série des Documents de Travail du CREST 

(Centre de Recherche en Economie et Statistique) 
 
 
 
 
 

 
 
 
 
 
 
 

n° 2010-31 
 

 

On Bayesian Data Analysis 
 
 

C. P.  ROBERT 1  
J.  ROUSSEAU 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Les documents de travail ne reflètent pas la position de l'INSEE et n'engagent que 
leurs auteurs. 
 
Working papers do not reflect the position of INSEE but only the views of the authors. 

                                                 
1 Université Paris-Dauphine, CEREMADE and CREST-INSEE, Paris.  
2 Université Paris-Dauphine, CEREMADE and CREST-INSEE, Paris.  



On Bayesian Data Analysis

Christian P. Robert and Judith Rousseau∗

February 9, 2010

Abstract

This introduction to Bayesian statistics presents the
main concepts as well as the principal reasons advo-
cated in favour of a Bayesian modelling. We cover
the various approaches to prior determination as well
as the basis asymptotic arguments in favour of using
Bayes estimators. The testing aspects of Bayesian
inference are also examined in details.
Keywords: Bayesian inference, Bayes model choice,
foundations, testing, non-informative prior, Bayesian
nonparametrics, Bayes factor

1 Introduction : the Bayesian
paradigm

In this Chapter we give an overview of Bayesian
data analysis, emphasising that it is a method for
summarising uncertainty and making estimates and
predictions using probability statements conditional
on observed data and an assumed model (Gelman
2008)—which makes it valuable and useful in Statis-
tics, Econometrics, and Biostatistics, among other
fields.

We first describe the basic elements of Bayesian
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analysis. In the following, we refrain from embarking
upon philosophical discussions about the nature of
knowledge (Robert 2001, Chapter 10) and the possi-
bility of induction (Popper and Miller 1983), opting
instead for a mathematically sound presentation of a
statistical methodology. We indeed believe that the
most convincing arguments for adopting a Bayesian
version of data analyses are in the versatility of this
tool and in the large range of existing applications.

1.1 First principles

Recall that, given a set of observations x ∈ X , a
statistical model is defined as a family of probabil-
ity distributions on X , say (Pθ, θ ∈ Θ) and the aim
of statistical inference is to derive quantitative infor-
mation about the unknown parameter θ. This in-
formation can be about explanatory features of the
model, like the impact of the increase by one point
of interest rates over inflation rate or the relevance
of culling strategies during the latest foot-and-mouth
epidemics in the UK or yet the amount of cold dark
matter in the Universe, or about predictive features,
like the value of a particular stock the next day or the
chances for a given individual of catching the H5N1
flu over the coming three mouths. Inference is quan-
titative in that it provides numerical values for the
quantities of interest and numerical evaluations of the
uncertainty surrounding those values as well.

Since all models are approximations of the real
World, the choice of a sampling model is wide-open
for criticisms: Bayesians promote the idea that a mul-
tiplicity of parameters can be handled via hierarchical,
typically exchangeable, models (Gelman 2008). This
is however a type of criticism that goes far beyond
Bayesian modelling and questions the relevance of
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completely built models for drawing inference or run-
ning predictions.

The central idea behind Bayesian modelling is that
the uncertainty on the unknown parameter θ is better
modelled as randomness and consequently a probabil-
ity distribution Π is constructed on Θ. In particular
Pθ then represents the probability distribution of the
observation x given that the parameter is equal to
θ, i.e. the conditional probability distribution of x
given θ. If Π is a probability on Θ, with density π
with respect to some measure ν on Θ, then we can
define a joint distribution for the observation and the
parameter (x, θ)

Pπ((x, θ) ∈ A×B) =

∫
θ∈B

Pθ(A)π(θ)dν(θ).

For the sake of simplicity we consider only models
(Pθ, θ ∈ Θ) that allow for a dominating measure, µ
(say the Lebesgue measure), and we denote by f(.|θ)
the density of Pθ with respect to µ (the likelihood).
Then the joint distribution of (x, θ) has density

pπ(x, θ) = f(x|θ)π(θ), (1)

with respect to µ × ν. Using Bayes theorem we can
define the distribution of the parameter θ given the
observations by its density with respect to ν:

π(θ|x) =
f(x|θ)π(θ)∫

Θ
f(x|θ)π(θ)dν(θ)

, (2)

and denote the denominator by

m(x) =

∫
Θ

f(x|θ)π(θ)dν(θ) .

The probability Π (π, respectively) on Θ is called the
prior distribution (density, respectively), the condi-
tional probability (2) of θ given x is called the pos-
terior distribution (density, respectively) and m(x)
is the marginal density of the observation x. Then,
Bayesian analysis is based entirely on the posterior
distribution (2), for all inferential purposes, e.g. to
draw conclusions on the parameter θ or on some func-
tions of the parameter θ, to make predictions, to test
the plausibility of a hypothesis or to check the fit of
the model.

There are many arguments which make such an ap-
proach compelling. Without entering into philosoph-
ical and epistemological arguments on the nature of
Science (Jeffreys 1939, MacKay 2002, Jaynes 2003),
we briefly state what we view as the main practi-
cal appealing features of introducing a prior prob-
ability on θ. First such an approach allows to in-
corporate prior information in a natural way in the
model, as explained in Section 2; second, by defin-
ing a probability measure on the parameter space Θ,
the Bayesian approach gives a proper meaning to no-
tions such as the probability that θ belongs to a spe-
cific region which are particularly relevant when con-
structing measures of uncertainty like confidence re-
gions or when testing hypotheses. Furthermore, the
posterior distribution (2) can be interpreted as the
actualisation of the knowledge (uncertainty) on the
parameter after observing the data. We stress that
the Bayesian paradigm does not state that the model
within which it operates is the “truth”, no more that
it believes that the corresponding prior distribution it
requires has a connection with the “true” production
of parameters (since there may even be no parame-
ter at all). It simply provides an inferential machine
that has strong optimality properties under the right
model and that can similarly be evaluated under any
other well-defined alternative model. Furthermore,
the Bayesian approach is such that techniques allow
prior beliefs to be tested and discarded as appropriate
(Gelman 2008), in agreement that the overall prin-
ciple that a Bayesian data analysis has three stages:
formulating a model, fitting the model to data, and
checking the model fit (Gelman 2008), so there seems
to be little reason for not using a given model at
an earlier stage even when dismissing it as “un-true”
later (always in favour of another model).

In the above formulation, note that Θ can be en-
dowed with quite different features: it can be a finite
dimensional set (as in parametric models), an infi-
nite dimensional set (as in most semi/non parametric
models) or a collection of various sets with no fixed
dimension (as in model choice).

As an example, consider the following contin-
gency table on survival rate for breast-cancer patients
with or without malignant tumours, extracted from
Bishop et al. (1975), the ultimate goal being to dis-
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tinguish between both types of tumour in terms of
survival probability:

survival

age malignant yes no

under 50 no 77 10

yes 51 13

50-69 no 51 11

yes 38 20

above 70 no 7 3

yes 6 3

Figure 1: Representation of two gamma poste-
rior distributions differentiating between malignant
(dashes) versus non-malignant (full) breast cancer
survival rates.

Then if we assume that both groups (malignant
versus non-malignant) of survivors are Poisson dis-
tributed P(Ntθ), where Nt is the total number of
patients in this age group, i.e.

f(xt|θ,Nt) = e−θNt
(θNt)

x
t

xt!
, x ∈ N ,

then we obtain a likelihood

L(θ|D) =

3∏
t=1

(θNt)
xt exp{−θNt}

which, under an exponential θ ∼ Exp(2) prior—
whose rate 2 is chosen here for illustration purposes—
, leads to the posterior

π(θ|D) ∝ θx1+x2+x3 exp {−θ(2 +N1 +N2 +N3)}

i.e. a Gamma Γ(x1 + x2 + x3 + 1, 2 +N1 +N2 +N3)
distribution. The choice of the exponential parameter
corresponds to a 50% survival probability. In the case
of the non-malignant breast cancers, the parameters
of the Gamma distribution are a = 136 and b = 161,
while, for the malignant cancers, they are a = 96 and
b = 133. Figure 1 shows the difference between those
posteriors.

1.2 Extension to improper priors

In many situations, it is useful to extend the above
setup to prior measures that are not probability dis-
tributions but σ-finite measures with infinite mass,
i.e. ∫

Θ

π(θ)dν(θ) = +∞,

since, provided that∫
Θ

f(x|θ)π(θ)dν(θ) < +∞, (3)

almost everywhere (in x), the quantity (2) is still
well-defined as a probability density as when using a
regular posterior probability as prior (Hartigan 1983,
Berger 1985, Robert 2001). Such extensions are justi-
fied for a variety of reasons, ranging from topological
coherence—limits of Bayesian procedures often par-
take of their optimality properties (Wald 1950) and
should therefore be included in the range of possible
procedures—to robustness—a measure with an infi-
nite mass is much more robust than a true probabil-
ity distribution with a large variance—and improper
priors are typically encountered in situations where
there is little or no prior information, inducing flat,
i.e. uniform, distributions on the parameter space (or
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on some transforms of the parameter space). Indeed
it is quite common, for complex models, to have little
or no information on some of the parameters present
in the model and using improper priors for such pa-
rameters has many advantages. Note however that in
such cases the marginal density m(x) does not define
a probability on X (and that the existence condition
(3) needs to be checked). This drawback has an im-
portance consequence for Bayesian model comparison
as explained in Section 5.

Note also that some improper priors never allow
for well-defined posteriors, no matter how many ob-
servations there are in the sample. One such example
is when the prior is π(θ) = exp(+θ2) and the obser-
vations are iid Cauchy. Another and less anecdotic
example occurs in mixture models, under exchange-
able improper priors on the components (Lee et al.
2008).

1.3 Bayesian decision theory

As a general modus vivendi, let us first stress that
inference as a whole is meaningless unless it is eval-
uated. The evaluation of a statistical procedure, i.e.
determining how well or how bad the inference per-
forms, requires the definition of a comparison crite-
rion, called a loss function. Set D the set of all pos-
sible results of the inference (corresponding to the
decision set in game theory). An estimator is then
a function from X into D. (With an obvious abuse
of notation, we will also use D for the set of estima-
tors.) For instance, the aim is to estimate θ, then
D = Θ; if the aim is to test for some hypothesis, then
D = {0, 1}, and D = X1 the set of a future obser-
vation if the aim is to predict a future observation.
A loss function L is a function on Θ × D, express-
ing what the loss (cost) is for considering a decision
δ when θ is the true value. Typical (formal) loss
functions used for estimation and test are quadratic
losses (L(θ, δ) = ||θ − δ||2) and 0-1 losses (1 if deci-
sion is wrong, 0 if it is right), respectively. Other loss
functions can (should) be constructed, depending of
the problem at hand, and they are strongly related to
the notion of utility function encountered in economy
and game theory (Berger 1985).

Given a statistical model (Pθ, θ ∈ Θ) on x ∈ X , a

prior π on θ ∈ Θ and a loss function L), the (opti-
mal) Bayesian procedure (estimator) is then defined
as the decision function δ minimising the integrated
risk r(π, δ):

δπ = argminδ∈Dr(π, δ)

where

r(π, δ) =

∫
Θ×X

L(θ, δ(x))f(x|θ)π(θ)dµ(x)dν(θ).

Such a procedure is called a Bayes estimator. Using
the fact (Robert 2001), that such estimators can be
computed pointwise as minimising the posterior risk:
∀x ∈ X ,

δπ(x) = argminδ∈D

∫
Θ

L(θ, δ(x))π(θ|x)dν(θ),

it is possible to derive explicit expression of Bayes
estimates for many common loss functions. In par-
ticular, the Bayes estimator associated with the
quadratic loss and the posterior distribution π(.|x)
is the posterior mean

δπ(x) =

∫
Θ

θπ(θ|x) dθ .

Note that the integrated risk r(π, δ) can also be
expressed as

∫
Θ
R(θ, δ)π(θ)dν(θ), where R(θ, δ) =∫

X L(θ, δ(x))f(x|θ)dµ(x) is the frequentist risk, so
that Bayes estimates are also often optimal in the
frequentist sense. (It can be shown in particular that
any admissible estimator is the limit of Bayes estima-
tors, see Berger 1985 or Robert 2001).

2 On the selection of the prior

A critical aspect is the determination of the prior dis-
tribution π and its clear influence on the inference. It
is straightforward to come up with examples where
a particular choice of the prior leads to absurd de-
cisions. Hence, for a Bayesian analysis to be sound
the prior distribution needs to be well-justified. Be-
fore entering into a brief description of the various
ways of constructing prior distributions, note that
as part of model checking, it is necessary in every
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Bayesian analysis to assess the influence of the choice
of the prior, for instance through a sensitivity anal-
ysis. Since the prior distribution models the knowl-
edge (or uncertainty) prior to the observation of the
data, the sparser the prior information is, the flatter
the prior should be. The advantage of incorporating
prior information via a prior distribution is rather
universally accepted and we therefore first describe
ways of eliciting prior distributions from prior knowl-
edge.

2.1 Elicited priors

The elicitation of prior distributions from prior
knowledge consists in the construction of the prior
probability π(θ) using all items of prior informa-
tion available to the modeller. This prior informa-
tion may come from expert opinions or from biblio-
graphic data or yet from earlier analyses, as in meta-
analysis. There exists a vast literature on prior elic-
itation based on expert opinions, which is a much
more complex process than is usually acknowledged
in most Bayesian statistical notebooks, see Section 2
of this book for a more complete discussion on prior
elicitation based on expert opinions.

In particular the prior information is rarely rich
enough to entirely define a prior distribution, there-
fore it is customary to choose a prior distribution
within a parametric class of possible distributions:
π(θ|γ), where γ ∈ Γ is called a hyperparameter.
In such cases the prior information is summarised
through the choice of γ. For instance, Albert et al.
(2008) use bibliographic prior information to con-
struct a prior distribution on the probability of
cross-contamination from a contaminated broiler in
a household, say p. The prior distribution of p is
assumed to be a Beta Be(a, b) distribution,

π(p|a, b) ∝ pa−1(1− p)b−1 , 0 < p < 1 ,

and the parameters (a, b) of the Beta distribution
are assessed using two cross–contamination models
in the literature which lead to a probability of trans-
fer between 1/3 and 2/3, which was translated into
a Beta(8, 8) prior on p, as it corresponds to a prior
mean of 0.5 and to a 95% prior confidence interval

equal to (0.27, 0.73). See also Dupuis (1995) for an
example of expert elicitation of the Beta parameters
on some capture and survival probabilities in a lizard
population, or the Chapter of Böcker, Crimmi and
Fink in this volume where beta priors are elicited to
model correlations between risk types.

2.2 Conjugate priors

Among the possible parametric families π(θ|γ), γ ∈
Γ, conjugate priors form appealing parametric fami-
lies, merely for computational reasons (Berger 1985,
Robert 2001). A family of distribution prior distribu-
tions π(θ|γ), is said to be conjugate to the likelihood
f(x|θ) if the posterior also belongs to the same family,
i.e. when the prior is equal to π(θ|γ0) then there ex-
ists a γ(x, γ0) ∈ Γ such that the posterior is equal to
π(θ|γ(x, γ0)). The actualisation of the information
due to observing the data x is then modelled as a
change of hyperparameter from γ0 to γ(x, γ0). Expo-
nential families (as models for the observation x) are
almost in one-to-one correspondence with sampling
distributions allowing for conjugate priors. As an ex-
ample, Carlin and Louis (2001) consider an observed
random variable X that is the number of pregnant
women arriving at a given hospital to deliver their
babies within a given month, which they model as a
Poisson P(θ) distribution with parameter θ > 0. A
conjugate family of priors for the Poisson model is
the collection of gamma distributions Γ(a, b), since

f(x|θ)π(θ|a, b) ∝ θa−1+xe−(b+1)θ

leads to the posterior distribution of θ given X = x
being the gamma distribution Γ(a + x, b + 1). The
computation of estimators, of confidence regions—
called credible regions within the Bayesian literature
to distinguish the fact that those regions are evalu-
ated on the parameter space rather than on the ob-
servation space (Berger 1985)—or of other types of
summaries of interest on the posterior distribution
then becomes straightforward. For instance in the
above Poisson–Gamma example, the Bayesian esti-
mator of the average number of arrivals, associated
with the quadratic loss, is given by θ̂ = (a+x)/(b+1),
the posterior mean.
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The apparent simplicity of conjugate priors should
however not make them excessively appealing, since
there is no strong justification to their use. One of the
difficulties with such families of priors is the influence
of the hyperparameter γ0. If the prior information is
not rich enough to justify a specific value of γ, fixing
γ = γ0 arbitrarily is problematic, since it does not
take into account the prior uncertainty on γ0 itself.
To improve on this aspect of conjugate priors, a usual
fix is to consider a hierarchical prior, i.e. to assume
that γ itself is random and to consider a probability
distribution with density q on γ, leading to

θ|γ ∼ π(θ|γ)

γ ∼ q(γ) ,

as a joint prior on θ, γ). The above is equivalent to
considering, as a prior on θ

π(θ) =

∫
Γ

π(θ|γ)q(γ)dγ .

Obviously q may also depend on some hyperparame-
ters η. Higher order levels in the hierarchy are thus
possible, even though the influence of the hyper(-
hyper-)parameter η on the posterior distribution of
θ is usually smaller than that of γ. But multiple
levels are nonetheless useful in complex populations
as those found in animal breeding (Sørensen and Gi-
anola 2002).

In many applications prior information is quite
vague or at least vague enough on some parts of the
model, in which case it is important to derive priors
that have desirable properties and that are as little
arbitrary or subjective as possible. Such construc-
tions are commonly called non informative. While
this denomination is misleading, and should be re-
placed by the less judgemental reference prior de-
nomination, we nonetheless follow suit and use it in
the following subsections, since it is the most com-
mon denomination found in the literature (Kass and
Wasserman 1996).

2.3 Non informative priors

Non informative priors are expected to be flat dis-
tributions, possibly improper. An apparently natu-

ral way of constructing such priors would be to con-
sider a uniform prior, however this solution has many
drawbacks, the worst one being that it is not invari-
ant under a change of parameterisation. To under-
stand this consider the example of a Binomial model:
the observation x is a B(n, p) random variable, with
p ∈ (0, 1) unknown. The uniform prior π(p) = 1
could then sound like the most natural non informa-
tive choice; however, if, instead of the mean parame-
terisation by p, one considers the logistic parameter-
isation θ = log(p/(1 − p)) then the uniform prior on
p is transformed into the logistic density

π(θ) = eθ/(1 + eθ)2

by the Jacobian transform, which obviously is not
uniform.

To circumvent this lack of invariance per reparam-
eterisation, Jeffreys (1939) proposed the following
choice now known as Jeffreys’ prior

π(θ) ∝
√
|i(θ)|, (4)

where i(θ) is the Fisher-information matrix and |i(θ)|
denotes its determinant. The above construction
is obviously invariant per reparameterisation and
has many other interesting features specially in one-
dimensional setups (see Robert et al. 2009 for a re-
assessment of Jeffreys’ impact on Bayesian statis-
tics). In particular, in the one-dimensional parameter
case, the Jeffreys prior is also the matching prior (see
Robert 2001, Chapters 3 and 8), and the reference
prior defined by Bernardo (Bernardo 1979, Clarke
and Barron 1990). For instance, when Pθ is a lo-
cation family, i.e. when f(x|θ) = g(x− θ), the Fisher
information is constant and thus the Jeffreys prior is
π(θ) = 1. Note that in many cases like the above the
Jeffreys prior is improper.

In multivariate setups, Jeffreys’ construction is
not so well-justified and it may lead to not-so-well-
behaved priors. A famous example is the Neyman–
Scott problem where two groups of observations
are such that in each group all observations are
distributed from xi,j ∼ N (µi, σ

2), i = 1, ..., n,
j = 1, 2. In this case Jeffreys’ prior is given by
π(µ1, ..., µn, σ) ∝ σ−(n+1), and the Bayes estimator
of σ2 associated with the quadratic loss function is
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equal to

Eπ
[
σ2|x1,1, ..., xn,2

]
=

n∑
i=1

(xi,1 − xi,2)2

4(n− 1)
,

which converges to σ2/2 as n goes to infinity, thus
leading to an inconsistent estimate. Although this
seems like an artificial example it is actually of wider
interest, since in the normal linear regression model
Jeffreys’ prior is proportional to σ−p−2 where p is
the number of covariates. This dependence on p
makes it rather unappealing, even though the alter-
native g-prior of Zellner (1986) discussed below suf-
fers from the same drawback. Another standard ex-
ample discussed further in Section 4 is when estimat-
ing ||θ||2 when θ is the n-dimensional mean of an
n-dimensional normal vector.

The ultimate attempt to define a non informative
prior is in our opinion Bernardo’s (1979) definition
through the information theoretical device of Kull-
back divergence (see also Berger and Bernardo 1992
or Berger et al. 2009). The idea is to split the param-
eter into groups say (θ(1), ..., θ(p)) where θ(1) is more
interesting than θ(2), which is more interesting than
θ(3) and so on. This can be seen as a generalisation
of the usual splitting into a parameter of interest and
a nuisance parameter. Then the Bernardo’s reference
prior is constructed iteratively as some sorts of Jef-
freys’ priors in each of the submodels, see also Robert
(2001) for a more precise description of the iterative
construction. Quite obviously, this is not the unique
possible approach, it depends on a choice of infor-
mation measure, does not always lead to a solution,
requires an ordering of the model parameters that
involves some prior information (or some subjective
choice) but, as long as we do not think of those refer-
ence priors as representing ignorance (Lindley 1971),
they can indeed be taken as reference priors, upon
which everyone could fall back when the prior infor-
mation is missing (Kass and Wasserman 1996).

2.4 Some asymptotic results

A well-known phenomenon is the decrease of influ-
ence of the prior as the sample size (or the informa-
tion in the data) increases. We shall recall here these

results in the simpler case of i.i.d observations, how-
ever these results can be extended to non i.i.d. cases
such as dependent observations under stationary and
mixing properties, Gaussian processes and so on.
Generally speaking in most parametric cases, the pos-
terior distribution concentrates towards the true pa-
rameter value as n goes to infinity so that posterior
estimates will converge to the true values, as n goes to
infinity. This first type of results ensures that point
estimates are satisfactory, as far as asymptotic con-
vergence is concerned.

Another important aspect of the asymptotic anal-
ysis of Bayesian procedures is to understand how the
measures of uncertainty derived from the posterior
can be related to frequentist measures of uncertainty.
Such a relation can be deduced from the Bernstein
Von Mises property, which can be stated in the fol-
lowing way: Assume that the vector of observations
x = (x1, ..., xn) := xn is made of i.i.d observations
from a distribution f(.|θ), which is regular, see for in-
stance Ghosh and Ramamoorthi (2003) for more pre-
cise conditions, and let π be a prior density, which is
positive and continuous on Θ, then the posterior dis-
tribution can be approximated in the following way,
when n goes to infinity: for all A ⊂ Θ

Pπ
[√

n(θ − θ̂) ∈ A|xn
]
≈ P

[
N (0, i1(θ̂)−1) ∈ A

]
,

where θ̂ is the maximum likelihood estimator and
i1(θ̂) is the Fisher information matrix per observa-

tion calculated at θ = θ̂. In other words the pos-
terior distribution resembles a Gaussian distribution
centred at θ̂ with covariance matrix i−1(θ̂)/n, when
n is large.

This result has many interesting implications. The
first consequence is that, to first order, the influence
of the prior disappears as n goes to infinity. It also al-
lows for quick approximate computations in the case
of large samples, and it implies that to first order
Bayesian and frequentist inference (based on the like-
lihood) essentially give the same answers. Although
devising procedures giving the same answers as fre-
quentist procedures is not an ultimate aim of the
Bayesian analysis, it is of importance to ensure that
Bayesian procedures ultimately have also good fre-
quentist properties. The asymptotic equivalence be-
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tween the Bayesian and the frequentists answers (to
first order) hold in wide generality for finite dimen-
sional models. When the dimension of the parameter
grows with the number of observations or is infinite,
then this is often not true anymore, see for instance
Freedman (1999) and Rivoirard and Rousseau (2009).

Although these asymptotic results have a strong
frequentist flavour, in the sense that they are ob-
tained by assuming that there is a fixed true param-
eter θ0 and as new data comes in the posterior con-
centrates around the true parameter like a Gaussian
distribution, they are also appealing from the sub-
jectivists points of view where probabilities represent
degrees of belief and there are no objective probability
model, see Diaconis and Freedman (1986) for a more
precise discussion on this issue.

3 Measures of uncertainty:
credible regions

Recall that the whole inference about θ is deduced
from the posterior distribution, π(θ|x), including es-
timates as major summaries, but the posterior distri-
bution gives us much more information than simply
point estimates. In particular, different measures of
uncertainty can be derived from the posterior and
among the various measures credible regions are the
most popular. A set C ⊂ Θ is an α - credible region
if and only if

Pπ [θ ∈ C|x] ≥ 1− α. (5)

Contrariwise to frequentist confidence regions, the
notion of coverage probability is directly understood
as a probability on θ and is therefore straightforward
to interpret. Among all credible regions defined by
(5), those having minimal volume are particularly in-
teresting. It turns out, see Robert (2001), that they
are defined as highest posterior density (HPD) re-
gions:

Cπα = {θ;π(θ)f(x|θ) ≥ kα(x)}

where kα(x) is the largest value such that

Pπ [θ ∈ Cπα |x] ≥ 1− α.

(Note that we define the bound kα(x) in terms of
the product prior×likelihood in order to bypass the
difficulty with the normalising constant m(x).)

Although the analytic determination of kα(x) is
often challenging, the approximation of this bound
based on a sample from π(θ|x), θ(1), . . . , θ(p), can
be easily derived from an ordering of the values
π(θ(i))f(x|θ(i)) as the corresponding (1−α)-th quan-
tile. For instance, if a Poisson X ∼ P(θ) count is
associated with a Gamma Γ(a, b) prior, the posterior
Γ(a+ x, b+ 1) leads to the HPD region

{θ; θa+x−1 exp(−(b+ 1)θ) ≥ kα(x)}

whose determination requires a numerical construct.
On the other hand, if a sample θ(1), . . . , θ(p) from
the posterior Γ(a + x, b + 1) is available, then the
HPD bound kα(x) can be estimated as the (1−α)-th
quantile of the values [θ(i)]a+x−1 exp(−(b+ 1)θ(i))’s.
Figure 2 illustrates a similar derivation in the case
of a normal N (θ, σ2) model with both parameters
unknown.

Credible regions have nice interpretations and are
optimal under a volume criterion, as Bayesian esti-
mators of the confidence sets C. In a wide general-
ity, they further attain good frequentist coverage in
the sense that Pθ(θ ∈ C) = 1 − α + O(n−1/2) for
most prior distributions π, where n denotes the sam-
ple size (Welch and Peers 1963, Robert 2001, Chapter
5). Credible regions however suffer from a lack of in-
variance to changes of parameterisation, i.e. if θ is a
given parameterisation of interest and Cπα is the HPD
region constructed as above, then if η = g(θ) is an-
other parameterisation, g(Cπα) = {η = g(θ); θ ∈ Cπα}
is not necessarily the HPD region for the η parame-
terisation (see Druilhet and Marin 2007 for a detailed
analysis of this phenomenon).

4 Nuisance parameters : inte-
grated likelihood

In many applied problems, one is only interested in
some components of the parameter, the remaining
part of the parameter being then called the nuisance
parameter. This distinction opposes the parameter of
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Figure 2: Representation of a Gibbs sample of 103

values of (θ, σ2) for the normal model, x1, . . . , xn ∼
N (θ, σ2) with x = 0, s2 = 1 and n = 10, under
Jeffreys’ prior, along with the pointwise approxima-
tion to the 10% HPD region (in darker hues) (Source:
Robert and Wraith 2009).

interest, say ψ within θ = (ψ, λ), where ψ is the pa-
rameter of interest and λ is the nuisance parameter.
Dealing with nuisance parameters is quite problem-
atic in a frequentist framework, whether one is inter-
ested in parameter estimation, in confidence regions
determination or in testing. Likelihood approaches
need to define proper likelihoods for ψ, which in com-
plete generality is not possible. Hence, they use ap-
proximations and modifications of proper likelihoods
such as partial likelihoods or modified profile likeli-
hoods, see Severini (2000) for a more complete dis-
cussion on these issues.

On the opposite, the Bayesian framework offers is a
most natural way of dealing with nuisance parameters
and for defining proper profile likelihoods : integrat-
ing out the nuisance parameter. In other words the
Bayesian marginal likelihood for ψ under the prior
π(λ|ψ) is given by

fπ(x|ψ) =

∫
λ

f(x|ψ, λ) dπ(λ|ψ). (6)

This approach offers many advantages: (1) If the con-
ditional prior π(λ|ψ) is proper, then fπ(x|ψ) as de-
fined in (6) is a proper likelihood, in the sense that it
is the density of x under some model parameterised
by ψ alone; (2) Integrating λ out implicitly takes into
account the uncertainty on λ, contrary to the profile
likelihood, or to any other kind of plug-in likelihood
defined by f(x|ψ, λ̂ψ), where λ̂ψ is some estimate of
λ given ψ. In particular uncertainty measures de-
rived from fπ(x|ψ) are not biased downwards due to

the replacement of λ by λ̂ψ. Hence there is no need
to correct further for this uncertainty, which is usu-
ally necessary when dealing with plug-in likelihoods,
leading to penalised likelihoods. This is of particu-
lar interest in model selection, when the parameter
of interest is the model itself, as discussed in Section
5.

However, if π(λ|ψ) is an improper prior, then
fπ(x|ψ) is not necessarily a likelihood, in particular∫
X fπ(x|θ) dx = +∞ may occur. A well-known ex-

ample of such misbehaviour is the case of the so-called
marginalisation paradoxes, see for instance Robert
(2001, Chapter 3). As another example of badly
behaved marginal likelihood, consider the case pre-
sented in Robert (2001, Chapter 3) and Liseo (2006)
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where the observations xi ∼ N (µi, 1), i = 1, ..., p, are
independent and where the parameter of interest is
ψ = ||µ||2/p =

∑p
i=1 µ

2
i /p where µ = (µ1, ..., µp) and

the nuisance parameter is λ = µ/||µ||, the direction
of the vector µ. A natural flat prior on λ is the uni-
form distribution on the p-dimensional sphere for λ
and the scale prior π(ψ) = 1/

√
ψ, leading to a well-

behaved marginal likelihood, see Berger et al. (1998b)
for precise calculations. However if one considers in-
stead the Jeffreys prior on µ, i.e. π(µ) = 1, then
the posterior distribution of ψ is a chi-square distri-
bution with p degrees of freedom and non-centrality
parameter ||x||2, which is not a well-behaved poste-
rior. In particular the posterior mean of λ is equal to
ψ̂ = ||x||2/p + 1 and satisfies ψ̂ − ψ → 2 as p goes to
infinity.

The above examples do not imply that one should
not use improper priors on nuisance parameters, since
in most cases little information is known on those
parameters. Rather they show that one needs to
be quite careful in selecting improper priors in such
cases. The construction of Bernardo’s (1979) ref-
erence priors is particularly relevant in such frame-
works.

In the following section, we describe Bayesian test-
ing and Bayesian model comparison or model selec-
tion. It is to be noted that model selection can be
viewed as a specific example of nuisance parameter
framework, where the parameter of interest is the
model and the nuisance parameters are the param-
eters in each model.

5 Testing versus model com-
parison

5.1 Bayes factors

The most standard Bayesian answer to a testing
problem for hypotheses written as H0 : θ ∈ Θ0 for
the null and as H1 : θ ∈ Θ1 for the alternative, is
the Bayesian estimate corresponding to the 0–1 loss
function, i.e. to the procedure accepting H0 if and
only if

Pπ [Θ0|x] > Pπ [Θ1|x] .

In less formal terms, the null hypothesis is accepted
if it is more probable under the posterior distribu-
tion than under the alternative, which is a very in-
tuitive answer. To constrain the impact of the prior
probabilities, a different quantity is usually adopted,
namely the Bayes factor (Kass and Raftery 1995),
which is defined by Jeffreys (1939), Jaynes (2003) as

B01 =
π(Θ0|x)

π(Θ1|x)

/
π(Θ0)

π(Θ1)
=

∫
Θ0

f(x|θ)π0(θ)dθ∫
Θ1

f(x|θ)π1(θ)dθ

.

Note that the posterior odds can be recovered from
the Bayes factor by assigning the appropriate prior
probabilities on each of both models, contradicting
the criticism of Templeton (2008) that the Bayes fac-
tor is not scaled in probability terms. Interestingly
B10 = 1/B01, hence there is no asymmetry in the
definition and construction of Bayes factor, contrari-
wise to the Neyman–Pearson approach. We do not
believe that this is a drawback and would rather ques-
tion the interest in forcing such an asymmetry in the
Neyman–Pearson tests.

The Bayes factor, a monotonic transform of the
posterior probability of H0 which eliminates the in-
fluence of the prior weight π(Θ0), has a similar inter-
pretation to the classical likelihood ratio. As noted
in the previous section, by integrating out the pa-
rameters within each hypothesis, the uncertainty on
each parameter is taken into account, which induces
a natural penalisation for richer models, as intuited
by Jeffreys (1939) (variation is random until the con-
trary is shown; and new parameters in laws, when
they are suggested, must be tested one at a time, un-
less there is specific reason to the contrary). Although
we strongly dislike using the term because of its unde-
served weight of academic authority, the Bayes factor
acts as a natural Ockham’s razor. The well-known
connection with the BIC (Bayesian information cri-
terion, see Robert 2001, Chapter 5), with a penalty
term of the form d log n/2, makes explicit the penali-
sation induced by Bayes factors in regular parametric
models. However it goes beyond this class of models,
and in much greater generality, the Bayes factor cor-
responds asymptotically to a likelihood ratio with a
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penalty of the form d∗ log n∗/2 where d∗ and n∗ can
be viewed as the effective dimension of the model and
the effective number of observations, respectively, see
(Berger et al. 2003, Chambaz and Rousseau 2008).
The Bayes factor therefore offers the major inter-
est that it does not require to compute a complexity
measure (or penalty term)—in other words, to define
what is d∗ and what is n∗—, which often is quite com-
plicated and may depend on the true distribution.

5.2 Difficulties

The inferential problems of Bayesian model selection
and of Bayesian testing are clearly those for which the
most vivid criticisms can be found in the literature:
witness Senn (2008) who states that the Jeffreys-
subjective synthesis betrays a much more dangerous
confusion than the Neyman-Pearson-Fisher synthe-
sis as regards hypothesis tests. We find this suspicion
rather intriguing given that the Bayesian approach is
the only one giving a proper meaning to the proba-
bility of a null hypothesis, P(H0|x), since alternative
methodologies can at best specify a probability value
on the sampling space, i.e. on the wrong dual space.

If we consider the special case of point null
hypotheses—which is not such limited a scope since it
includes all variable selection setups—, there is a dif-
ficulty with using a standard prior modelling in this
environment. As put by Jeffreys (1939), when consid-
ering whether a location parameter α is 0 [when] the
prior is uniform, we should have to take f(α) = 0 and
B10 would always be infinite. This is therefore a case
when the inferential question implies a modification
of the prior, justified by the information contained in
the question. While avoiding the whole issue is a so-
lution, as with Gelman (2008) having no patience for
statistical methods that assign positive probability to
point hypotheses of the θ = 0 type that can never ac-
tually be true, considering the null and the alternative
hypotheses as two different models allows for a Bayes
factor representation and corresponds to assigning a
positive probability to the null hypothesis.

In our view, one of the major drawbacks of Bayes
factors - or even posterior odds - is that they can-
not be used under improper priors, for lack of proper
normalising constants. This is even more acute a dif-

ficulty than what is described in Section 4, because
the Bayes factor is simply not defined under improper
priors, for any sample size. Solutions have been pro-
posed, akin to cross-validation techniques in the clas-
sical domain (Berger and Pericchi 1996, Berger et al.
1998a), but they are somehow too ad-hoc to con-
vince the entire community (and obviously beyond).
In some situations, when parameters shared by both
models have the same meaning in each of the models,
an improper prior can be used on these parameters,
in both models.

For instance, when considering variable selection
in a regression model,

y|X, β, σ ∼ N (Xβ, σ2In) ,

e.g. when deciding whether or not the null hypothe-
sis H0 : β1 = 0 holds, the relevant non informative
prior distribution is Zellner’s (1986) g-prior, where
π(β|σ) corresponds to a normal N (0, nσ2(XTX)−1)
distribution on β and a “marginal” improper prior on
σ2, π(σ2) = σ−2. This means that, when considering
the submodel corresponding to the null hypothesis
H0 : β1 = 0, with parameters β(−1) and σ, we can
also use the “same” g-prior distribution

β(−1)|σ,X ∼ N (0, nσ2(XT
−1X−1)−1) ,

where X−1 denotes the regression matrix missing the
column corresponding to the first regressor, and σ2 ∼
π(σ2) = σ−2. Since σ is a nuisance parameter in this
case, we may use the improper prior on σ2 as common
to all submodels and thus avoid the indeterminacy in
the normalising factor of the prior when computing
the Bayes factor

B01 =

∫
f(y|β−1, σ,X)π(β(−1)|σ,X1)dβ−1 dσ

σ2∫
f(y|β, σ,X)π(β|σ,X)dβ dσ

σ2

Figure 3 reproduces an output from Marin and
Robert (2007) that illustrates how this default prior
and the corresponding Bayes factors can be used in
the same spirit as significance levels in a standard
regression model, each Bayes factor being associated
with the test of the nullity of the corresponding re-
gression coefficient. For instance, only the intercept
and the coefficients of X1, X2, X4, X5 are significant.
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Estimate BF log10(BF)

(Intercept) 9.2714 26.334 1.4205 (***)
X1 -0.0037 7.0839 0.8502 (**)
X2 -0.0454 3.6850 0.5664 (**)
X3 0.0573 0.4356 -0.3609
X4 -1.0905 2.8314 0.4520 (*)
X5 0.1953 2.5157 0.4007 (*)
X6 -0.3008 0.3621 -0.4412
X7 -0.2002 0.3627 -0.4404
X8 0.1526 0.4589 -0.3383
X9 -1.0835 0.9069 -0.0424
X10 -0.3651 0.4132 -0.3838

evidence against H0: (****) decisive, (***) strong, (**)
substantial, (*) poor

Figure 3: R output of a Bayesian regression analysis
on a processionary caterpillar dataset with ten co-
variates analysed in Marin and Robert (2007). The
Bayes factor on each row corresponds to the test of
the nullity of the corresponding regression coefficient.

This output mimics the standard lm R function out-
come in order to show that the level of information
provided by the Bayesian analysis goes beyond the
classical output, not to show that we can get simi-
lar answers to those of a least square analysis since,
else, if the Bayes estimator has good frequency be-
haviour then we might as well use the frequentist
method (Wasserman 2008). (While computing issues
are addressed in the following Chapter, we stress that
all items in the table of Figure 3 are obtained via
closed form formulae.)

The major criticism addressed to the Bayesian ap-
proach to testing is therefore that it is not inter-
pretable on the same scale as the Neyman-Pearson-
Fisher solution, namely in terms of probability of
Type I error and of power of the tests. In other
words, frequentist methods have coverage guarantees;
Bayesian methods don’t; 95 percent frequentist inter-
vals will live up to their advertised coverage claims
(Wasserman 2008). A natural question is then to
question the appeal of such frequentist properties
when considering a single dataset, i.e. in Jeffreys’
(1939) famous words, a hypothesis that may be true

may be rejected because it had not predicted observable
results that have not occurred, especially when con-
sidering that p-values may be inadmissible estimators
(Hwang et al. 1992). From a decisional perspective—
with which the frequentist properties should relate—,
a classical Neyman-Pearson-Fisher procedure is never
evaluated in terms of the consequences of rejecting
the null hypothesis, even though the rejection must
imply a subsequent action towards the choice of an
alternative model. Therefore, complaining that hav-
ing a high relative probability does not mean that a
hypothesis is true or supported by the data (Temple-
ton 2008), simply because the Bayesian approach is
relative in that it posits two or more alternative hy-
potheses and tests their relative fits to some observed
statistics (Templeton 2008), is missing the main pur-
pose of tests, which is not to validate or invalidate
a golden model per se but rather to infer a working
model that allows for acceptable predictive proper-
ties.1

5.3 Model choice

For model choice, i.e. when several models are under
comparison for the same observation

Mi : x ∼ fi(x|θi) , i ∈ I ,

where I can be finite or infinite, the usual Bayesian
answer is similar to the Bayesian tests as described
above. The most coherent perspective (from our
viewpoint) is actually to envision the tests of hy-
potheses as particular cases of model choices, rather
than trying to justify the modification of the prior
distribution criticised by Gelman (2008). This also
also to incorporate within model choice the alterna-
tive solution of model averaging, proposed by Madi-
gan and Raftery (1994), which strives to keep all pos-
sible models when drawing inference.

The idea behind Bayesian model choice is to con-
struct an overall probability on the collection of mod-
els ∪i∈IMi in the following way: the parameter is
θ = (i, θi), i.e. the model index and given the model

1It is worth repeating the earlier assertion that all models
are false and that finding that a hypothesis is “true” is not
within our reach, if at all meaningful!
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index equal to i, the parameter θi in model Mi, then
the prior measure on the parameter θ is expressed as

dπ(θ) =
∑
i∈I

pidπi(θi),
∑
i∈Ii

pi = 1 ,

where both the πi’s and pi’s are part of the prior
modelling, hence chosen by the experimenter. (The
πi’s have the natural interpretation of the traditional
prior under model Mi, while the pi’s correspond to
the prior assessment of the models under compari-
son.) As a consequence, the Bayesian model selection
associated with the 0–1 loss function and the above
prior is the model that maximises the posterior prob-
ability

π(Mi|x) =

pi

∫
Θi

fi(x|θi)πi(θi)dθi∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

across all models. Contrary to classical pluggin likeli-
hoods, the marginal likelihoods involved in the above
ratio do compare on the same scale and do not re-
quire the models to be nested: the criticism that com-
plicating dimensionality of test statistics is the fact
that the models are often not nested, and one model
may contain parameters that do not have analogues
in the other models and vice versa (Templeton 2008)
is not founded. As mentioned in Section 4 integrat-
ing out the parameters θi in each of the models takes
into account their uncertainty thus the marginal like-
lihoods

∫
Θi
fi(x|θi)πi(θi)dθi are naturally penalised

likelihoods. In many setups, the Bayesian model se-
lector as defined above is consistent, i.e. as the num-
ber of observations increases the probability of choos-
ing the right model goes to 1.

5.4 Other issues

The computational requirements related to handling
a collection of marginal likelihoods will be addressed
in the following Chapter, in connection with the
review of classical solutions in Robert and Marin
(2010). Interestingly enough, the most accurate ap-
proximation technique for marginal likelihoods is,

when applicable, directly derived from Bayes theo-
rem, via Chib’s (1995) rendering:

m(x) =
π(θ)f(x|θ)
π(θ|x)

≈ π(θ)f(x|θ)
π̂(θ|x)

,

where π̂(θ|x) is a simulation-based approximation
to the posterior density based on simulated latent
variables. Marin and Robert (2008) illustrate this
method in the setting of mixtures and Robert and
Marin (2010) in the alternative case of a probit
model, respectively, both of which demonstrate the
precision of this approximation.2

Posterior odds and Bayes factors are the most com-
mon Bayesian approaches to testing, however they
are not the only ones. In particular the choice of
the 0–1 loss function is not necessarily relevant or
the most relevant. In some situations it might be
more interesting to penalise the loss with the dis-
tance to the null hypothesis for instance, see Robert
and Rousseau (2002), Rousseau (2007) where such
ideas are applied to goodness of fit tests or Bernardo
(2009).

6 On pervasive computing

Bayesian analysis has long been derided for providing
optimal answers that could not be computed. With
the advent of early Monte Carlo methods, of per-
sonal computers, and, more recently, of more pow-
erful Monte Carlo methods (Hitchcock 2003), the
pendulum appears to have switched to the other ex-
treme and Bayesian methods seem to quickly move
to elaborate computation (Gelman 2008), a feature
that does not make them less suspicious: a simu-
lation method of inference hides unrealistic assump-
tions (Templeton 2008). The simulation techniques
that have done so much to promote Bayesian analysis
in the past decades are detailed in the next Chap-
ter and thus not described here. We nonetheless

2There have been discussions about the accuracy of this
method in multimodal settings (Frühwirth-Schnatter 2004),
but straightforward modifications (Berkhof et al. 2003, Lee
et al. 2008) overcome such difficulties and make for both an
easy and a well-grounded computational tool associated with
Bayes factors.

13



want to point out that, while simulation methods
can be misused—as about any other methodology—
and while Bayesian simulation seems stuck in an
infinite regress of inferential uncertainty (Gelman
2008), there exist enough convergence assessment
techniques (Robert and Casella 2009) to ensure a
reasonable confidence about the approximation pro-
vided by those simulation methods. Thus, as rightly
stressed by Bernardo (2008), the discussion of com-
putational issues should not be allowed to obscure the
need for further analysis of inferential questions.3

The field of Bayesian computing is therefore very
much alive and, while its diversity can be construed
as a drawback by some, we do see the emergence of
new computing methods adapted to specific applica-
tions as most promising, because it bears witness to
the growing involvement of new communities of re-
searchers in Bayesian advances.
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Frühwirth-Schnatter, S. (2004). Estimating marginal
likelihoods for mixture and Markov switching models
using bridge sampling techniques. The Econometrics
Journal, 7 143–167.

Gelman, A. (2008). Objections to Bayesian statistics.
Bayesian Analysis, 3(3) 445–450.

Ghosh, J. and Ramamoorthi, R. (2003). Bayesian non
parametrics. Springer-Verlag, New York.

Hartigan, J. A. (1983). Bayes Theory. Springer-Verlag,
New York, New York.

Hitchcock, D. H. (2003). A history of the Metropolis–
Hastings algorithm. The American Statistician, 57.

Hwang, J., Casella, G., Robert, C., Wells, M. and
Farrel, R. (1992). Estimation of accuracy in testing.
Ann. Statist., 20 490–509.

Jaynes, E. (2003). Probability Theory. Cambridge Uni-
versity Press, Cambridge.

Jeffreys, H. (1939). Theory of Probability. 1st ed. The
Clarendon Press, Oxford.

Kass, R. and Raftery, A. (1995). Bayes factors. J.
American Statist. Assoc., 90 773–795.

Kass, R. and Wasserman, L. (1996). Formal rules of se-
lecting prior distributions: a review and annotated bib-
liography. J. American Statist. Assoc., 91 343–1370.

Lee, K., Marin, J.-M., Mengersen, K. and Robert,
C. (2008). Bayesian inference on mixtures of distri-
butions. In Platinum Jubilee of the Indian Statistical
Institute (N. N. Sastry, ed.). Indian Statistical Insti-
tute, Bangalore.

Lindley, D. (1971). Bayesian Statistics, A Review.
SIAM, Philadelphia.

Liseo, B. (2006). The elimination of nuisance parame-
ters. In Handbook of Statistics (D. Dey and C. Rao,
eds.), vol. 25, chap. 7. Elsevier-Sciences.

MacKay, D. J. C. (2002). Information Theory, Infer-
ence & Learning Algorithms. Cambridge University
Press, Cambridge, UK.

Madigan, D. and Raftery, A. (1994). Model selec-
tion and accounting for model uncertainty in graphical
models using Occam’s window. J. American Statist.
Assoc., 89 1535–1546.

Marin, J.-M. and Robert, C. (2007). Bayesian Core.
Springer-Verlag, New York.

Marin, J.-M. and Robert, C. (2008). Approximating
the marginal likelihood in mixture models. Bulletin of
the Indian Chapter of ISBA, V(1) 2–7.

Popper, K. and Miller, D. (1983). The impossibility
of inductive probability. Nature, 310 434.

Rivoirard, V. and Rousseau, J. (2009). On the Bern-
stein Von Mises theorem for linear functionals of the
density. Tech. rep., CEREMADE, Université Paris
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