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Abstract

We consider the issue of identifying nonparametrically mixture models. In these

models, all observed variables depend on a common and unobserved component,

but are mutually independent conditional on it. Such models are important in the

measurement error, auction and matching literatures. Traditional approaches rely

on parametric assumptions or strong functional restrictions. We show that these

models are actually identified nonparametrically if a moving support assumption is

satisfied. More precisely, we suppose that the supports of the observed variables move

with the true value of the unobserved component. We show that this assumption is

theoretically grounded, empirically relevant and testable. Finally, we compare our

approach with the diagonalization technique introduced by Hu and Schennach (2008),

which allows to obtain similar results.

Keywords: mixture models, nonparametric identification, measurement error, auc-

tions, matching.

JEL classification numbers: C14, D44.

Résumé

Nous considérons la question de l’identification non-paramétrique des modèles de

mélange. Dans ces modèles, les variables observées dépendent d’une composante com-

mune inobservée, mais sont indépendantes conditionnellement à cette dernière. Ces

modèles s’appliquent notamment aux problèmes d’erreurs de mesure, aux enchères

ou aux modèles d’appariement. Les approches traditionnelles reposent sur des hy-

pothèses paramétriques ou des formes fonctionnelles restrictives. Nous montrons que

ces modèles sont en fait identifiés sous une hypothèse de support variable. Plus

précisément, nous supposons que le support des variables observées dépend de la

composante inobservée. Nous montrons que cette hypothèse est justifiée par cer-

tains modèles théoriques, est pertinente empiriquement et est testable. Enfin, nous

comparons notre approche avec la technique de diagonalisation introduite par Hu et

Schennach (2008), qui permet d’obtenir des résultats similaires.

Mots-clés : modèle de mélange, identification non-paramétrique, erreur de mesure,

enchères, appariement.

Classification JEL : C14, D44.



1 Introduction

In this paper, we consider nonparametric mixture models where all observed variables de-
pend on a common and unobserved component, but are mutually independent conditional
on it. Such models have important applications in economics. The main one is probably
the measurement error model, in which extensive attention has been devoted to identi-
fying the effect of an unobserved variable when only measures of it are available. While
the literature on this topic is vast (see, e.g., Carroll et al., 2006 for a survey), most of
the papers focus on the case of classical measurement errors, for which errors are either
independent of the mismeasured variable or have a zero mean conditional on it (see, e.g.,
Hausman et al., 1991, Li, 2002, Schennach, 2004 and 2007). Yet, this assumption is likely
to fail in many context (see, e.g., Bound and Krueger, 1991). Building on the ideas of Hu
(2008), Hu and Schennach (2008) explain in a recent paper how to recover the effect of
the true variable in the general case of nonclassical measurement errors with continuous
variable. Under an injectivity condition one integral operators, they show that identifica-
tion can be achieved through an eigenvalue-eigenfunction decomposition. This method has
also been useful to answer other economic questions in which mixture models are present.
Hu and Shum (2009a) and Hu et al. (2009) have relied on it to study respectively entry
and heterogeneity in auctions, whereas Hu and Shum (2009b) have applied the same tech-
nique to dynamic models with unobserved state variables. Finally, another example where
mixtures models apply is the matching literature. In this case, we observe equilibrium
outcomes from the matches between heterogeneous agents. The aim is to recover the link
between the unobserved heterogeneity of the individuals and the outcome of the matches.

We propose here an alternative approach to Hu and Schennach (2008) and introduce a very
simple sufficient condition for the model to be identified. More precisely, we suppose that
the observed variables have a compact support that moves with the unobserved variable.
When this “moving support assumption” is satisfied, and a necessary normalization is
imposed, the model is identified without any other restriction. This approach complements
Hu an Schennach’s one in the sense that for some models, our condition is satisfied while
theirs fails to hold, and conversely.

We believe that our identification result is interesting for several reasons. First, the “moving
assumption” is naturally satisfied in different economic models. This is for example the
case in the matching literature. Building on Becker (1973) result, Shimer and Smith (2000)
derive sufficient conditions to extend assortative matching in an environment with search
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frictions. In this model, at equilibrium, workers match with firms of different qualities.
As seen below in Figure 1 (also Figure 1 in Shimer and Smith’s paper), the set of firms
with which a worker can match is increasing in the own quality of the worker and the
“moving support” assumption is satisfied. Similarly, in an auction model with a reserve
price unobserved by the econometrician, both the lower and upper bounds of the bids vary
with the unobserved reserve price (Riley and Samuelson, 1981).
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Figure 1: An example of matching set with search friction (taken from Shimer
and Smith, 2000).

Second, our assumption is easy to interpret economically. In the measurement error model,
the underlying idea is that the mismeasured variable cannot be too far from the true value
of the variable. Actually, in some cases, both the measurement and the true variable
are observed. Such data, even if unusual, are interesting to check directly if the “moving
support assumption” is reasonable or not. The validation sample of the PSID analyzed by
Rodgers et al. (1993), for instance, seems to support our condition (see Figure2).1 Finally,
even when the true value of the variable is unknown, we show that it is possible to test
the “moving support assumption”, using results from the statistical literature on extreme
values (see, e.g., Embrechts et al., 1997).

1In this figure, as well as in the rest of the paper, the frontier functions have been estimated by the
DEA estimator (see, e.g., Farrell, 1957).
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Figure 2: Minimum and maximum values of reported earnings conditional
on true earnings (taken from Rodgers et al., 1993).

The paper is organized as follows. Section 2 presents the model and our main identification
result. The theoretical ground, empirical relevance and testability of our “moving support
assumption” is discussed in Section 3. Section 4 is devoted to some extensions and to
the comparison with Hu and Schennach’s framework. Section 5 concludes. All proofs are
deferred to the appendix.

2 The model and main result

We define in this section the general mixture model we focus on. We considerK real random
variables (X1, ...XK) which are observed by the econometrician. All depend on a real
continuous variable X∗, which is unobserved. We suppose, without loss of generality, that
X∗ is uniformly distributed.2 The aim of the econometrician is to recover the distribution
of Xk conditional on X∗.

The first assumption defines the mixture structure.

Assumption 1 K ≥ 3 and (X1, ...XK) are independent conditional on X∗.
2Other normalizations are possible. We could impose, similarly to Hu and Schennach (see their As-

sumption 5), that the mode, the median or some quantile of the measurement error is equal to zero. We
come back to this question in Subsection 4.2.
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This framework is well suited to various economic settings, such as models with measure-
ment errors on a covariate. Typically, we seek to measure the effect of a variable X∗ on
an outcome Y (= X3) = f(X∗, ν) but only observe two variables (X1, X2) related to X∗.
These variables may represent two measures of X∗, so that Xk = ϕk(X

∗, ηk), k ∈ {1, 2}
(see, e.g., Hausman et al., 1991 or Schennach, 2004, for papers studying models with re-
peated measures). Alternatively, we may observe only one measure X1 and an instrument
Z(= X2) of X∗ such that X∗ = ψ(Z, ξ) (see, e.g., Newey, 2001 or Schennach, 2007 for
studies of instrumental models with measurement errors). In the first case, Assumption
1 is satisfied if (ν, η1, η2) are independent conditional on X∗, while it holds in the second
if (Z, ν, η1, ξ) are independent. Assumption 1 is equivalent to Assumption 2 of Hu and
Schennach (2008), so that our framework is identical to theirs.

As mentioned in the introduction, this setting is however more general than the mea-
surement error model and applies to several other economic frameworks. Auctions with
unobserved heterogeneity is one example. Let us indeed consider a good which is sold by an
auction mechanism. This good has a characteristic X∗ which is observed by the K bidders
and affects their valuation (V1, ..., VK). Conditional on X∗, (V1, ..., VK) are independent,
but may be non identically distributed if bidders are asymmetric. The econometrician
observes the bids Bk(= Xk) = bk(Vk, X

∗) but neither (V1, ..., VK) nor X∗. In such a case,
(B1, ..., BK) are independent conditional on X∗. The ultimate goal in this literature is to
recover the distribution of Vk conditional on X∗. However, in general, the function bk is
known by the theory and it is thus sufficient to recover the distribution of Bk conditionally
on X∗. Such auction models with unobserved heterogeneity have been studied recently by
Krasnokutskaya (2009) and Hu et al. (2009), the latter applying Hu’s (2008) methodology.
Common value models also fit this framework, the unobserved variable being the true un-
known value of the good. D’Haultfoeuille and Février (2009) study this model using the
methodology presented in this paper. More generally, mixture models are useful as soon as
there are unobserved components and/or unobserved heterogeneity. This is generally the
case in panel data or in dynamic models with unobserved state variable (Hu and Shum,
2009b).

We now introduce two other assumptions. First, letting FXk|X∗(.|.) denote the cumulative
distribution function of Xk conditional on X∗, we assume the following mild regularity
conditions.

Assumption 2 For all k ∈ {1, ..., K} and u ∈ [0, 1], the support of Xk conditional on
X∗ = u is an interval and we denote it by [Xk(u), Xk(u)]. Moreover, x 7→ FXk|X∗(x|u)
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is continuously differentiable for all u, u 7→ FXk|X∗(x|u) is continuous for all x and Xk(.)

and Xk(.) are continuously differentiable.

Second, we impose the “moving support assumption” that states that the supports moves
with the true value of the unobserved variable. This is our main condition and we distin-
guish two cases depending on the number of variables that satisfy this assumption.

Assumption 3 For k ∈ {1, 2, 3}, Xk(.), X
′
k(.) > 0 and X ′k(.) > 0.

Assumption 4 For k ∈ {1, 2}, X ′k(.) > 0 and X ′k(.) > 0.

The fact that the bounds of the support are increasing functions of X∗ reflects the positive
link between X∗ and the Xs. Such a pattern is not very restrictive and is, for example,
a consequence of the maximum likelihood ratio property that states that

fXk|X∗ (x|x
∗
1)

fXk|X∗ (x|x
∗
0)

is an
increasing function of x when x∗1 > x∗0. Here, we need to reinforce this condition by stating
that higher values of X∗ lead to strictly higher values of Xk, i.e., that the observed variable
has a support that moves with the true value of the unobserved component.

Under our assumptions, the model is identified.

Theorem 2.1 Under Assumptions 1-3, fXk|X∗(.|.) is identified for all k ∈ {1, ..., K}.
Under Assumptions 1, 2 and 4, fXk|X∗(.|.) is identified for all k ≥ 3.

The intuition behind the proof is the following. Suppose for simplicity that the model is
symmetric and that for all k, FXk|X∗(x|u) = FX|X∗(x|u) on a support [X(X∗), X(X∗)]. As
shown by Figure 3, the range of X∗ compatible with an observation X1 = x is limited,
and so is the range of X2 that one can observe in the data when X1 = x. More formally,
observing X1 = x, we know that X∗ belongs to the set [X

−1
(x), X−1(x)]. Hence, X2

belongs to the set [X ◦X−1(x), X ◦X−1(x)] that we denote by [S(x), S(x)].
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Figure 3: Minimum and maximum values of X2 when X1 = x

Hence, and as described in Figure 4, observing both the values X1 = x and X2 = S(x),
allows us to pin down the unique X∗ = X−1(x) compatible with these two values. When
K ≥ 3, it is then possible to identify, for all x, fX|X∗(.|X−1(x)) by looking at the distribu-
tion of a third observation X3 conditional on observing X1 = x and X2 = S(x). Indeed,
by the conditional independence assumption,3

fX3|X1,X2(.|x, S(x)) = fX3|X1,X2,X∗(.|x, S(x), X−1(x)) = fX|X∗(.|X−1(x)).

3This equality is not rigorous because the density fX1,X2 is equal to zero at (x, S(x)). To overcome this
issue, we have to consider instead the event (X1, X2) ∈ Aδ(x1) = [x1 − δ, x1 + δ]× [S(x1 − δ), S(x1 + δ)],
and let δ → 0. The formal proof is given in appendix.
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Figure 4: Intuition on the identification of fX|X∗

In a last step, because X∗ is uniformly distributed by our normalization, we recover the
function X−1(.) by using4

fX∗(X
−1(x)) = X−1(x) =

fX1,X2(x, S(x))

fX|X∗(x|X−1(x))fX|X∗(S(x)|X−1(x))
,

in which all functions in the right-hand side are identified. X(.) is thus identified and
fX|X∗(.|.) = fX|X∗(.|X−1(X(.))) also is.

This informal proof also gives the intuition why having only two observed variables that
satisfy the moving support assumption is sufficient to identify the conditional distribution
of other observed variables. Two variables are sufficient to pin down the value of X∗, and
the distribution of any other variable can thus be recovered. This result is particularly
important for the measurement error framework. Indeed, no restriction has to be made on
the dependent variable Y . Only the supports of two measures of the unobserved variable
have to vary with the underlying unobserved true variable.

4Once again, this equation is not rigorous as the ratio may not be properly defined. The formal proof
considers a limit reasoning to circumvent this issue.
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3 The moving support assumption

3.1 Theoretical grounding

The crucial assumption for our result to be valid is the moving support assumption. It is
thus interesting to look at some economic models in which our assumption is satisfied.

First, the moving assumption is fulfilled in the classical measurement error model or with
multiplicative errors, as soon as the error term has a bounded support. Indeed, if Xk =

X∗ + ηk (resp. Xk = X∗ × ηk) and ηk ∈ [η, η], the support of Xk conditional on X∗ is
[X∗ + η,X∗ + η] (resp. [X∗ × η,X∗ × η]) and changes with X∗. Such a model is also
used by Krasnokutskaya (2009) to take into account unobserved heterogeneity in first price
auctions.

The moving support assumption, or part of it, may also derive naturally from the data at
our disposal. This is typically the case with truncated or censored data if the truncation or
the censoring is unobserved. For example, the econometrician may observe several wages
for an individual only if these wages are above his unobserved reserve wage. In such a case,
almost by definition, the lower bound of the wages moves with the unobserved component
i.e. the unobserved reserve wage : X(X∗) = X∗. Let us also mention the tobacco example
cited by Hu and Schennach (2008). If tobacco consumption is likely to be either truthfully
reported or under-reported, the upper bound of the reported value corresponds to the true
underlying consumption. At least one part of Assumption 3 is therefore satisfied because
X(X∗) = X∗.

More structurally, the moving support assumption may derive from the theoretical eco-
nomic model underlying the production of the data. Let us consider for example an auction
with reserve prices X∗ which are unobserved by the econometrician. We suppose that N
potential risk neutral and symmetric bidders with valuations (V1, ..., VN) ∈ [V , V ]N partic-
ipate to this auction. We note FV (.) (resp. fV (.)) the distribution (resp. density) function
of Vi. Finally, we suppose that before bidding, the bidders learn the number n of effective
bidders i.e. the number of bidders with valuations greater than X∗. In such a case, the
equilibrium function b(., ., .) is given by :

b(V,X∗, n) = V −
∫ V
X∗
F n−1
V (u)du

F n−1
V (V )
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Hence, for all n, conditional onX∗, the observed bids5 (X1, ..., Xn) = (b(V1, X
∗, n), ..., b(Vn, X

∗, n))

belong to the set [X∗, b(V ,X∗, n)]N . Both bounds are strictly increasing in X∗ and the
moving support assumption is a consequence of the theoretical model.6

Similarly, let us consider the matching model with search frictions developed by Shimer
and Smith (2000)7. In their model, they assume a continuum of heterogeneous agents.
Two agents of type X∗ and Y in [0, 1] can match to produce f(X∗, Y ), where f is strictly
increasing in both arguments. At each instant, agents are either matched or unmatched,
and nature destroys any match with a positive probability. Unmatched agents constitute
the pool of searchers that are trying to form new matches. Shimer and Smith charac-
terize the equilibrium matching sets. They prove in particular that under regularity and
supermodularity assumptions, positively assortative matching is ensured.8 This, in turn,
implies that the lower and upper bound functions of the matching set are nondecreasing,9

as depicted in Figure 1. Let us then suppose that the econometrician observes several
matches between, for example, firms and workers on the job market, and their correspond-
ing matching outputs.10 Hence, for a worker of unobserved type X∗, the econometrician
observes (X1, ..., Xn) = (f(X∗, Y1), ..., f(X∗, Yn)). Given Shimer and Smith (2000) results,
the support ofXi is given by [f(X∗, Y (X∗)), f(X∗, Y (X∗))]. Because x 7→ f(x, y) is strictly
increasing whereas Y (.) and Y (.) are nondecreasing, the moving support assumption is sat-
isfied. Hence, the distribution of Xi conditional on X∗ is identified.

3.2 Empirical evidence

More generally, and even if the moving support condition does not come directly from the
model, a nice feature of our condition is that its definition relies only on the primitives
of the model and is easy to interpret. Basically, it means that the mismeasured variable
cannot be too far from the true variable. This assumption seems reasonable to us and we
believe it should be satisfied in several empirical settings.

First, one can verify whether the moving assumption is satisfied or not when looking at
5We suppose here without loss of generality that bidders 1, ..., n have a valuation greater than X∗.
6This result holds regardless of whether V < +∞ or not, provided that E(V ) < +∞.
7We thank Jean-Marc Robin for suggesting us this example.
8For more details, see their Proposition 6.
9For more details, see their Proposition 3.

10Wages are usually observed, rather than the production itself. However, in simple models, there is a
one to one relationship at equilibrium between the wages and the output.
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some data for which an auxiliary dataset containing the true variables is available. This is
typically the case for the validation sample taken from the PSID and used by Rodgers et al.
(1993) to better understand how to model measurement errors. These data contain indeed
both reported earnings and the exact earnings obtained from administrative records. It
is thus interesting to see if Assumption 3 is relevant in these data. As mentioned in the
introduction (see Figure 2), the minimum and maximum reported earnings appear to be
strictly increasing functions of the true earnings, supporting our condition.

Such data are unfortunately quite unusual and one may want to have other ways to check
the moving support assumption. In the case of unobserved heterogeneity, an indirect
and informal test consists of looking at the link between the measured variable and some
observed components. Indeed, if the observed components satisfy the moving support
assumption, it is reasonable to think that the unobserved one also does. There is no
reason, a priori, to treat differently the observed and unobserved components. Figure 5 for
example shows the link between the highest bid P and an estimation P ∗ of the value of the
wines given by the auctioneer in wine auctions at Drouot before the auctions take place
(See Février et al., 2005, for more details). It clearly appears that the support of P strictly
moves with P ∗. Other observed components that influence positively the bids (quality of
the wine, quality of the year,...) display similar patterns. The bids strictly increase when
some positive information is revealed about the wines. Hence, if such a pattern is at stake
for the observed components, it indicates indirectly that this should also be the case for
the unobserved ones.

0
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8000

0 500 1000 1500 2000 2500 3000 3500 4000

P*

P

Figure 5: Values of the winning bids P given the estimation P ∗ of the auc-
tioneer
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Finally, it is possible to verify directly if the moving assumption is reasonable or not.
Indeed, as already mentioned, we know that the set of values X2 that one can observe
with X1 = x is given by [S(x), S(x)]. Figure 6 thus shows that we are able to recover the
upper and lower bounds using only the data. As these functions are strictly increasing
on [X(0), X(1)] if and only if the moving support assumption is satisfied, it is possible
to check directly our main assumption by constructing empirically these functions.11 As
an illustration, Figure 7 displays the dependence between several test scores of French
students from the 1997 panel of the French Ministry of Education.12 Such test scores are
often used as proxies for the unobserved cognitive ability X∗, but typically suffer from
the measurement error problem. The left graph corresponds to the dependence between
first and third grade test scores (X1 and X2), while the right one presents the sixth grade
maths score as a function of the sixth grade French score (X ′1 and X ′2). In both cases, the
supports of these test scores seem to be strictly increasing, providing evidence that the
moving support assumption is satisfied.
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Figure 6: Minimum and maximum values of X2 when X1 = x

11Note that it is possible to identify X(0) and X(1), as shown in the proof of Theorem 2.1.
12We restrict ourselves to students who did not repeat any grade before the sixth grade.
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3.3 Formal tests

The previous examples make us believe that the moving support assumption is theoret-
ically and empirically relevant. Nevertheless, a potential concern is that the observed
patterns could stem from the strict monotonicity of all quantiles, except the minimum
and maximum. This would typically be the case if Xk = X∗ + νk, with νk following a
normal or student distribution. It is thus desirable to formally test for the moving support
assumption.

Assumption 4 imposes two restrictions on the distributions of X1 and X2 conditional on
X∗.13 First, their support should be compact. Second, the corresponding upper and lower
bounds should be strictly increasing as functions of X∗. Such distributions are unobserved,
but Figure 6 suggests that we can use instead the distribution of X1 (resp. X2) conditional
on X2 (resp. X1). To do so, let (Aj)j=1...J and (Bj′)j′=1...J ′ be two partitions of the supports
of X1 and X2 into finite intervals. Then one can show that X1 and X2 have finite supports
conditional on X∗ if and only if, for all (j, j′), the supports of X2 conditional on X1 ∈ Aj
and of X1 conditional on X2 ∈ Bj are finite. Similarly, if A2 contains larger values than
A1, one can test for the strict monotonicity condition by testing that the upper bound
X2j (j ∈ {1, 2}) of the support of X2 conditional on X1 ∈ Aj is strictly increasing in j. We

13The tests would be similar for Assumption 3.
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investigate below how both points can be formally tested, under the standard condition
that we observe a sample (X1i, ..., XKi)i=1...n of independent and identically distributed
variables.

To test for the compact support assumption, let us consider a given partition (Aj)j=1...J of
the support of X1. Our purpose is to test, for all j, that the supremum X2j of the support
of X2 conditional on X1 ∈ Aj is finite (the test for a finite infimum is similar). We actually
test for the slightly stronger condition that FX2|X1∈Aj ∈ P , where P is the subset of the
set F of all distributions functions defined by14

P = {F ∈ F/ sup(support(F )) = xF <∞ and F (x) = 1− (xF − x)αL(1/(xF − x))

for some α > 0 and some slowly varying function L} .

We rely on the following result (see, e.g., Theorem 3.3.12 of Embrechts et al., 1997).

Theorem 3.1 FX2|X1∈Aj ∈ P if and only if FX2|X1∈Aj belongs to the domain of attraction
of the Weibull distribution.

This result is related to the extreme value theory that shows that under mild restrictions,
the maximum of an i.i.d. sample drawn from F converges in distribution either to a
Weibull, Gumbel or Fréchet distribution. Theorem 3.1 shows that the Weibull domain of
attraction only encompasses distributions F with finite supremum. This literature also
shows that distributions F with light tails such as the normal or exponential ones converge
to a Gumbel, whereas distributions F with heavy tails such as the Pareto or Cauchy ones
converge to a Fréchet. Actually, the three limit distributions can be gathered together in
the family of generalized extreme value distributions, indexed by a parameter ξ ∈ R. ξ
is negative for the Weibull, zero for the Gumbel and positive for the Fréchet. Moreover,
for each distribution function F , there is a unique ξF that corresponds to the limit in
distribution of the maximum of the sample. Hence, testing for FX2|X1∈Aj ∈ P , that is
basically that the supremum of the support is finite, is equivalent to testing for ξFX2|X1∈Aj

<

0. This equivalence is fortunate because inference on this parameter can be led in many
ways, using for instance the Pickland estimator or modifications of it (see Embrechts et al.,
1997, Chapter 6). Hence, implementing such a test for several Aj allows us to formally
test whether the data are compatible with the compact support assumption.

We now turn to the test of the strict monotonicity of the upper bound, under the maintained
assumption that supports are compact. More precisely, we test if X21 < X22 with X2j the

14Recall that a real function L is slowly varying if for all t > 0, limx→∞ L(tx)/L(x) = 1.
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upper bound of the support of X2 conditional on X1 ∈ Aj. We suppose that FX2|X1∈Aj

belongs to the subset P ′ of P defined by

P ′ =
{
F ∈ P/∃m > 0/F (1)(xF ) = ... = F (m−1)(xF ) = 0 and F (m)(xF ) 6= 0

}
.

Using a Taylor expansion of FX2|X1∈Aj at X2j, one can show that

n1/m(X2j −Mnj)
L−→W

(−1)m−1P (X1 ∈ Aj)F (m)
X2|X1∈Aj(X2j)

m!
,m

 ,

where Mnj is the maximum of the (X2i)i:X1i∈Aj and W denotes the family of Weibull
distributions. Hence we can consistently test for X21 = X22 against X21 < X22 since,
under the null, the distribution of T = n1/m(Mn2 −Mn1) is identified, whereas T tends to
infinity under the alternative. Such a test could be implemented with different intervals
Aj. The rejection of all these tests strongly supports the strict monotonicity condition.

4 Discussion and extensions

4.1 Fewer variation in the support

Up to now, we have supposed that both the lower and upper bound are strictly increasing
functions. One may wonder whether our result would still hold in general with fewer
variation in the support. We show that it is possible to extend Theorem 2.1, in the
symmetric case where the Xk are identically distributed conditional on X∗, to situations
where only one bound is strictly increasing.

Assumption 5 The (Xk)k=1...K are identically distributed conditional on X∗, X ′(.) > 0,
X(.) = X is constant and FX|X∗ ∈ P ′ .

Theorem 4.1 Under Assumptions 1, 2 and 5, fX|X∗(.|.) is identified .

We also prove that without any variation in the support, the model is not identified in
general. To the best of our knowledge, this is the first non identification result on these
models. It indicates that restrictions, such as our moving support assumption or the
injectivity assumption of Hu and Schennach (2008), are necessary to identify nonparametric
mixture models. Quite surprisingly, this result does not depend on the number K of
variables that we observe.
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Theorem 4.2 Under Assumptions 1 and 2 only, the distributions fXk|X∗ are not identified
in general.

4.2 Comparison with the diagonalization approach

Whereas Hu and Schennach (2008) rely on the injectivity of integral operators (see their
Assumption 3), we mostly use the moving support condition. We believe that the mer-
its of our condition are its simple economic meaning and its testable implications. On
the contrary, no empirical test has been proposed on the injectivity condition yet. Even
theoretically, not much is known about this condition. It is closely related to the complete-
ness condition used in additive instrumental nonparametric models to secure identification.
This latter condition holds in exponential models (see Newey and Powell, 2003), or in non-
linear models under an additive decomposition and a large support condition, but under
restrictive technical conditions (see D’Haultfœuille, 2009). No result has been obtained
otherwise. It is thus difficult to define which restrictions on the dependence between Xk

and X∗ are implied by the injectivity condition.

Nevertheless, it is worth mentioning that the injectivity condition and the moving sup-
port assumption are more complementary than anything else, as the two examples below
emphasize.

Example 1 Consider the case where Xk = X∗+Uk, where (X∗, U1, ..., UK) are independent
and Uk ∼ N (0, σ2

k). Then the moving support assumption obviously fail. On the other
hand, Assumption 3 of Hu and Schennach (2008) is satisfied. In other terms, the operators
Tk(g) =

∫
fXk|X∗(x|u)g(u)du are injective on the space of integrable functions. Indeed

T (g)(x) = e
− x2

2σ2
k

∫
e
− xu
σ2
k

(
e
− u2

2σ2
k g(u)

)
du.

T is the product of a positive function and the Laplace transform of exp(− u2

2σ2
k
)g(u). By

injectivity of this transform (see, e.g., Bellamn and Roth, 1984), Tk(g) = 0 if and only if
g = 0.

Example 2 Suppose now that Xk = X∗ + Uk, where (X∗, U1, ..., UK) are independent,
X∗ has a compact support [x, x] and Uk ∼ U [0, αk]. The moving support assumption is
satisfied. On the other hand, Assumption 3 of Hu and Schennach (2008) fails to hold.
Indeed, Tk(g)(x) =

∫ x
x−αk

g(u)du. As a result, any function which is periodic with period
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αk on [x − αk, x], which equals zero elsewhere and such that
∫ αk
0
g(u)du = 0 satisfies

Tk(g) = 0.

Another difference between the two papers is the choice of the normalization on X∗. We
choose here for simplicity to normalize X∗ to have a uniform distribution, whereas the
normalization is achieved by Hu and Schennach (2008) through a link between one of the
Xk and X∗ (see their Assumption 3). More precisely, they suppose that there exists a
known functional M such that

M
[
fXk|X∗(.|x

∗)
]

= x∗. (4.1)

Such a functional may be for instance the mean, the mode, the median or any quantile of
the distribution. The choice of the normalization is however innocuous for the identification
results. Suppose for example, in our framework, that X∗ satisfies Condition (4.1) rather
than being uniformly distributed. Then, by Theorem 2.1, we can identify fXk|X̃∗ where
X̃∗ is uniformly distributed and defined by X̃∗ = R(X∗), R being a strictly increasing
function. By (4.1),

M
[
fXk|X̃∗(.|x̃

∗)
]

= M
[
fXk|X∗(.|R

−1 (x̃∗))
]

= R−1 (x̃∗) .

As a result, R−1 is identified, and so are fXk|X∗ and fX∗ .

5 Conclusion

This paper proposes an alternative and complementary approach to Hu and Schennach
(2008)’s one to identify mixture models. Our result relies on a moving support assumption
that states that the supports of the observed variables strictly change with the underlying
unobserved component. We believe that this assumption is economically relevant and has
the advantages of being simple and testable. Our results have important implications in
particular for the measurement error, auction and matching literatures.

Once identification has been established, the problem of estimating these models remain.
D’Haultfoeuille and Février (2009), studying common value auctions, propose a multistep
nonparametric estimation method that is close to our identification proof. In a first step,
the bounds S(.) and S(.) are estimated, using standard frontier estimation methods. Such
methods do not necessarily use solely the observed maxima and minima. Quantiles can
be used instead (see Cazals et al., 2005). In a second step, the conditional distribution
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functions FX|X∗(.|X−1(.)) are estimated using data for which two “sufficiently extreme”
values X1 and X2 have been observed. Finally, we use the fact that X−1(.) satisfies an
integral equation, and estimate it through a Landweber-Fridman estimator (see Carrasco
et al., 2007).
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Appendix: proofs

Proof of Theorem 2.1

We only prove the second part of the theorem, the first part being an immediate corollary.

First step: identification of X1(0), X1(1), X2 ◦X−11 (w).

By definition, Xk(0) ≤ Xk ≤ Xk(1). Hence, X1(0) is identified as the smallest value of
X1. We can also identified X1(1), as the smallest value of X1 given that X2 takes its
highest value X2(1). Using the same reasoning, S2(w) = X2 ◦X−11 (w) is identified. Given
a value w for X1, the highest value of X2 compatible with the observation of X1 is indeed
X2 ◦X−11 (w).

To prove that the model is identified, it is thus sufficient to prove that the distribution of
Xk (k ≥ 3) conditional on W1 = X1(X

∗) and the distribution of W1 are identified. Indeed,
for all w ∈ [X1(0), X1(1)], fXk|W1(x|w) = fXk|X∗(x|X

−1
1 (w)) and FW1(w) = X−11 (w). If

both functions are identified, we can then recover fXk|X∗(.|.).

Second step: identification of the distribution of Xk|W1

For all η > 0 and w ∈ [X1(0), X1(1)], let wη = max(w − η,X1(0)) and wη = min(w +

η,X1(1)). We also define the set Aη(w) by

Aη(w) =
[
wη;wη

]
×
[
S2(wη);S2(wη)

]
.

When (X1, X2) ∈ Aη(w), W1 belongs to the interval [wη, wη]. Indeed, when W1 < wη,
X2 < S2(wη) and when W1 > wη, X1 > wη.

For all δ > 0, by continuity of w 7→ FXk|W1(x|w), there exists η > 0 such that |FXk|W1(x|u)−
FXk|W1(x|w)| < δ for all u such that |u− w| < η. Hence,∣∣FXk|(X1,X2)∈Aη(w)(x)− FXk|W1(x|w)

∣∣
=

∣∣∣∣∣
∫ wη

wη

(
FXk|W1(x|u)− FXk|W1(x|w)

)
fW1|(X1,X2)∈Aη(w)(u)du

∣∣∣∣∣
≤

∫ wη

wη

∣∣FXk|W1(x|u)− FXk|W1(x|w)
∣∣ fW1|(X1,X2)∈Aη(w)(u)du

< δ,

where the second line stems from the independence between X1 and (X2, X3) conditional
on W1. Hence, for all w ∈ [X1(0), X1(1)] and all x ∈ [Xk ◦X−11 (w), Xk ◦X−11 (w)],

lim
η→0

FXk|(X1,X2)∈Aη(w)(x) = FXk|W1(x|w).
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As a consequence, the distribution of Xk conditional on W1 is identified.

Third step: identification of fW1

Define
qη(w) = P (X1 ∈ [wη, wη]|W = w)P (X2 ∈ [S2(wη);S2(wη)]|W = w).

qη(.) is identified by the previous step. Moreover, by conditional independence between X1

and X2,

P ((X1, X2) ∈ Aη) =

∫ wη

wη

qη(w)fW1(w)dw.

Let us denote
fW1,η(w) =

P ((X1, X2) ∈ Aη)∫ wη
wη

qη(u)du
.

fW1,η(w) is identified, so the result follows if we prove that limη→0 fW1,η(w) = fW1(w).

Because X ′1(.) is continuous, so is fW1(.) on [X1(0), X1(1)]. Thus, for all δ > 0, there exists
η such that |u− w| < η implies that |fW1(u)− fW1(w)| < δ. Hence,

|fW1,η(w)− fW1(w)| =

∣∣∣∣∣∣
∫ wη

wη

qη(u)∫ wη
wη

qη(v)dv
(fW1(u)− fW1(w)) du

∣∣∣∣∣∣
≤

∫ wη

wη

qη(u)∫ wη
wη

qη(v)dv
|fW1(u)− fW1(w)| du

< δ

∫ wη

wη

qη(u)∫ wη
wη

qη(v)dv
du

< δ.

The result follows.

Proof of Theorem 4.1

Using W̃ = X(X∗), we shall show that fX|W̃ and fW̃ are identified (because of the sym-
metry, we omit the subscript k on variables whenever unnecessary here). We suppose,
without loss of generality, that K = 3. Consider (x1, x2, x3) belonging to the support of X
and such that max(x1, X(0)) ≤ x2 ≤ x3. Because W̃ ≥ x3, we have

fX1,X2,X3(x1, x2, x3) =

∫ X(1)

x3

fX|W̃ (x1|w)fX|W̃ (x2|w)fX|W̃ (x3|w)fW̃ (w)dw
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For k ∈ {1, 2, 3}, let ∂krfX1,X2,X3 (resp. ∂klfX1,X2,X3) denote the right (resp. left) derivative
of fX1,X2,X3 with respect to xk. We have

∂3lfX1,X2,X3(x1, x2, x3) =− fX|W̃ (x1|x3)fX|W̃ (x2|x3)fX|W̃ (x3|x3)fW̃ (x3)

+

∫ X(1)

x3

fX|W̃ (x1|w)fX|W̃ (x2|w)
∂fX|W̃
∂x

(x3|w)fW̃ (w)dw

Similarly, by taking the derivative in x2, we find

∂2rfX1,X2,X3(x1, x2, x3) =

∫ X(1)

x3

fX|W̃ (x1|w)
∂fX|W̃
∂x

(x2|w)fX|W̃ (x3|w)dw

Hence, if X ≤ x ≤ w, we get

∂2rfX1,X2,X3(x,w,w)− ∂3lfX1,X2,X3(x,w,w) = fX|W̃ (x|w)f 2
X|W̃ (w|w)fW̃ (w) (5.1)

Suppose that m = 1, so that fX|W̃ (w|w) > 0. Then

fX|W̃ (x|w) =
∂2rfX1,X2,X3(x,w,w)− ∂3lfX1,X2,X3(x,w,w)∫ w

X
[∂3rfX1,X2,X3(y, w, w)− ∂2lfX1,X2,X3(y, w, w)] dy

.

Because the density fX1,X2,X3 and its derivative can be recovered from the data, the right-
hand side is identified, and so is fX|W̃ (x|w).
By (5.1), this implies that fW̃ (w) is identified by

fW̃ (w) =
∂3rfX1,X2,X3(x,w,w)− ∂2lfX1,X2,X3(x,w,w)

f 2
X|W̃

(w|w)fX|W̃ (x|w)
.

Hence, the whole model is identified if m = 1.

When m > 1, some algebra show that the following equation holds:

∂fX1,X2,X3

∂xm2r∂x
m−1
3l

(x,w,w)− ∂fX1,X2,X3

∂xm−12r ∂xm3l
(x,w,w) = fX|W̃ (x|w)

(
∂fX|W̃
∂xm−1

)2

(w|w)fW̃ (w)

Hence, reasoning as previously, we also obtain identification in this case.

Proof of Theorem 4.2

It suffices to exhibit a counter-example. Suppose that Xk = U +ηk for k ∈ {1, ..., K}, with
(U, η1, ...., ηK) mutually independent and (η1, ..., ηK) identically distributed. We further
assume that U has the density function fU(x) = (1 − cos(x))/(πx2) and ηk have the
density function fη(x) = fU(x/2K)/2K. Given our normalization, this model corresponds
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to Xk = F−1U (X∗) + ηk, with X∗ = FU(U) and FU being the cumulative distribution
function of U . Thus, fXk|X∗(x|u) = fη(x− F−1U (u)).

Now, let us consider the density function hU(x) = fU(x/2)/6 + 4fU(2x)/3. We now show
that the model where U has density hU(.) leads to the same distribution of (X1, ..., XK)

that the model in which U has density fU(.). We prove this by showing that the cor-
rresponding characteristic functions coincide. The result follows since the characteristic
function uniquely defines the distribution of a random variable.

First, note that the characteristic functions corresponding to fU , hU and fη are respectively
ΨU(t) = (1 − |t|)+ (where x+ = max(x, 0)), Ψ̃U(t) = 1

3
ΨU(2t) + 2

3
ΨU(t/2) and Ψη(t) =

(1− 2K|t|)+. Hence, the characteristic function of (X1, ..., XK) satisfies

ΨX1,...,XK (t1, ..., tK) = ΨU

(
K∑
k=1

tk

)
K∏
k=1

Ψη(tk)

=

(
1−

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)+ K∏

k=1

(1− 2K|tk|)+ .

Now, if
∣∣∣∑K

k=1 tk

∣∣∣ ≥ 1/2, |tk| ≥ 1/2K is satisfied for at least one k ∈ {1, ..., K}. Hence,

ΨX1,...,XK (t1, ..., tK) = ΨU

(
K∑
k=1

tk

)
K∏
k=1

Ψη(tk) = 0 = Ψ̃U

(
K∑
k=1

tk

)
K∏
k=1

Ψη(tk).

Moreover, Ψ̃ and ΨU coincide on [−1/2, 1/2]. Indeed, if
∣∣∣∑K

k=1 tk

∣∣∣ ≤ 1/2,

ΨU

(
K∑
k=1

tk

)
=

(
1−

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)+

=

(
1−

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)

=
1

3

(
1− 2

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)

+
2

3

(
1− 1

2

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)

=
1

3

(
1− 2

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)+

+
2

3

(
1− 1

2

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)+

= Ψ̃U

(
K∑
k=1

tk

)

21



Hence, for all (t1, ..., tK),

ΨX(t1, ..., tK) = ΨU

(
K∑
k=1

tk

)
K∏
k=1

Ψη(tk) = Ψ̃U

(
K∑
k=1

tk

)
K∏
k=1

Ψη(tk).

Going back to densities, this shows that a model where fXk|X∗(x|u) = fη(x−H−1U (u)), where
HU is the cumulative distribution function corresponding to hU , leads to the same distri-
bution of (X1, ..., XK) as when fXk|X∗(x|u) = fη(x− F−1U (u)). Because fη(x−H−1U (u)) 6=
fη(x− F−1U (u)), the model is not identified.
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