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A Term Structure Model with Level Factor cannot be Realistic and
Arbitrage Free

Abstract

A large part of the term structure literature interprets one of the under-
lying factors as a level factor. In this paper we consider a single factor model
interpretable as a level factor model. We prove that this model is compat-
ible with no-arbitrage restrictions and the positivity of rates under rather
unrealistic conditions on the dynamic of the short term interest rate. This
introduces some doubt on the relevance of the level interpretation of a factor
in term structure models.

Keywords : Term Structure, Affine Model, No Arbitrage, Level Factor.
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1 Introduction

The dynamic analysis of the term structure of interest rates reveals the ex-
istence of a limited number of underlying factors. It is usual to interpret
sequentially these factors as a level factor, a slope (or steepness factor), a
curvature (or butterfly factor), and so on, even if these notions have not been
precisely defined in the literature [see e.g. Litterman, Scheinkman (1991),
Jones (1991)].3 This factor interpretation has also been extended to the field
of option pricing [see Rogers, Tehranchi (2008) for a study of parallel shifts
in the term structure of implied volatilities].
The aim of this note is to consider a single factor model, interpreted as a
level factor. Loosely speaking, any shock on the factorX will imply a parallel
shift in the whole term structure. From a modeling perspective, we suppose
that there exists a process (ξt)t≥0 such that for all t and all time-to-maturity
h :

r(t, h) = r(0, h) + ξt

where r(t, h) is the continuously compounded rate 4. This means that the
yield admits an additive decomposition :

r(t, h) = Xt + c(h), (1.1)

(Xt) denotes the underlying stochastic factor (Xt = X0 + ξt), and c(.) is a
baseline term structure. In the rest of the paper, we consider a discrete time
term structure model, i.e. t ∈ N , h ∈ N − {0}.

In decomposition (1.1), the factor is defined up to an additive constant.
Therefore, without loss of generality, we can always assume :

Assumption A.1 : c(1) = 0.

3”Level, slope and curvature factor loadings at the core of (term structure) models
have their origin in the somewhat arbitrary and atheoretical field of yield curve fitting”
[Krippner (2009)].

4Model (1.1) has been written for the continuously compounded rate. If we denote
by r∗(t, h) the rate which is not continuously compounded, we have : exp[−hr(t, h)] =
[1 + r∗(t, h)]−h, or equivalently r∗(t, h) = exp[r(t, h)] − 1 = exp[Xt + c(h)] − 1. Thus the
notion of level factor depends on the definition of the rate. We keep the continuously
compounded definition in the rest of the paper, which is compatible with the existing
literature.
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Under Assumption A.1, the factor coincides with the short term interest
rate : Xt = r(t, 1).

We also assume that model (1.1) really is a single factor model :

Assumption A.2 : The support of the conditional distribution of (Xt) given
X0 is not reduced to a single point.

Finally, we assume nonnegative rates, with a short term interest rate,
which can reach value zero.

Assumption A.3 :

i) The lower bound of the support of the distribution of Xt given X0 is
zero;

ii) c(h) ≥ 0, ∀h ∈ N − {0}.

In Section 2, we consider buy and hold strategies based on two zero
coupon bonds and derive the necessary and sufficient conditions for no-
arbitrage: the sequence [c(h)] has to be a sequence of Cesaro means of a
nonnegative increasing function. In Section 3, we discuss the implications of
this result on the behavior of the long term interest rate. Section 4 exhibits
all risk-neutral dynamics compatible with parallel shifts of the yield curve.
We prove that they correspond to strong random walks and we explain how
the behavior of the long term interest rate depends on the distribution of
the innovation of this random walk 5. Section 5 concludes. The history of
parallel shift of the term structure in the financial literature is presented in
appendix 1.

2 No-arbitrage condition for buy and hold

strategies based on two zero-coupon bonds.

Let us consider at date t a portfolio of two zero-coupon bonds with time-to-
maturity h1 and h2, h2 > h1, respectively. Its price at date t is :

Πt(h1, h2, α) = α1B(t, h1) + α2B(t, h2),

5The main result of this Section contradicts Theorem 4 in Ingersoll, Skelton, Weil
(1978). We will see later on why their result is incomplete.
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where B(t, h) = exp[−hr(t, h)] denotes the price of the zero-coupon bond,
and (α1, α2) the allocations.

The value of this portfolio at date t+ k, k ≤ h1, is :

Πt+k(h1 − k, h2 − k, α) = α1B(t+ k, h1 − k) + α2B(t+ k, h2 − k).

The no-arbitrage condition is the impossibility to ensure a positive future
value with zero or negative initial endowment . This is equivalent to :

{min
t+k

[Πt+k(h1 − k, h2 − k, α] ≥ 0}

⇒ {min
t

Πt(h1, h2, α)] ≥ 0}, ∀α, k ≤ h1, h2, (2.1)

where mint is the minimum taken over the admissible values of the state
variable of date t.

Condition (2.1) provides a restriction on zero-coupon prices, only if α1

and α2 have opposite sign. Thus, without loss of generality, we can choose
α1 = 1, α2 = −α, α > 0, say.

Proposition 1 : Under model (1.1) and Assumptions A.1-A.3, the buy
and hold strategies based on two zero-coupon bonds do not feature arbitrage
opportunity if and only if the function c∗(h) = hc(h) is such that :

c∗(h+ 1)− c∗(h) is a nonnegative increasing function of h.

Proof : We have :

Πt+k(h1 − k, h2 − k, α) = exp[−(h1 − k)Xt+k − c∗(h1 − k)]
− α exp[−(h2 − k)Xt+k − c∗(h2 − k)]

= B(t+ k, h1 − k)
{[1− α exp[−(h2 − h1)Xt+k] exp[−c∗(h2 − k) + c∗(h1 − k)]}.

Since α ≥ 0, h2 ≥ h1, we deduce that :

min
t+k

Πt+k(h1−k, h2−k, α) ≥ 0 if and only if 1−α exp[−c∗(h2−k)+c
∗(h1−k)] ≥ 0.

Therefore, mint+k Πt+k(h1 − k, h2 − k, α) is nonnegative if and only if
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α ≤ exp[c∗(h2 − k)− c∗(h1 − k)].

Similarly, mintΠt(h1, h2, α) is strictly positive if and only if
α ≤ exp[c∗(h2)− c∗(h1)].

The no-arbitrage condition is satisfied if and only if,

{α ≤ exp[c∗(h2 − k)− c∗(h1 − k)]} ⇒ {α ≤ exp[c∗(h2)− c∗(h1)]},

which is equivalent to :

c∗(h2 − k)− c∗(h1 − k) ≤ c∗(h2)− c∗(h1), ∀k ≤ h1 ≤ h2. (2.2)

i) It is easily checked that condition (2.2) above is equivalent to the fact
that the function c∗(h2 + k)− c∗(h1 + k) is increasing in k for any h2 ≥ h1.

ii) Finally, by noting that :

c∗(h2 + k)− c∗(h1 + k) = [c∗(h2 + k)− c∗(h2 − 1 + k)] + [c∗(h2 − 1 + k)− c∗(h2 − 2 + k)]
+ . . .+ [c∗(h1 + 1 + k)− c∗(h1 + k)],

we get the increasingness condition.

To prove the nonnegativity, we have to check that c∗(2) − c∗(1) = 2c(2)
is nonnegative (since c∗(1) − c∗(0) = 0). This is a direct consequence of
Assumption A.3.

QED

Corollary 1 : The no-arbitrage condition of Proposition 1 is satisfied if and
only if the sequence [c(h)] is a sequence of Cesaro means of a nonnegative
increasing function.

Proof : We have :

c(h) = c∗(h)/h =
1

h

h∑
l=1

∆c∗(l),
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with ∆c∗(l) = c∗(l)− c∗(l − 1).
The result follows from Proposition 1.

QED

Corollary 2 : Under model (1,1), Assumption A1-A3 and no-arbitrage,
function c∗ is superadditive, that is,

c∗(h1) + c∗(h2) ≤ c∗(h1 + h2), ∀h1, h2 ∈ N − {0}.

Proof : Indeed, let us consider the special case of inequality (2.2) for k = h1.
We get :

c∗(h2 − h1) ≤ c∗(h2)− c∗(h1), ∀h1 ≤ h2.

QED

This condition was expected. Indeed, under Assumption A.3 the lower
bound of the support of r(t, h) is equal to c(h). It has been proved in
Gourieroux-Monfort (2010) that h times this lower bound, that is, c∗(h) =
hc(h) is necessarily superadditive under no-arbitrage condition.

3 Behavior of the long term interest rate

Proposition 2 : Under model (1.1) and Assumptions A.1-A.3, we get one
of the two following cases :

i) r(t,∞) = +∞ :
ii) r(t,∞) = Xt + c∞, where c∞ is a given positive constant.

Proof : Since ∆c∗(h) is nonnegative increasing, we have either limh→∞∆c∗(h) =
∞, or limh→∞∆c∗(h) = c∞ <∞ say. Since ∆c∗(h) is a nonnegative increas-
ing function, we deduce that the Cesaro mean [c(h)] is such that :

c(h) =
1

h

h∑
l=1

∆c∗(l) ≤ ∆c∗(h), ∀h,

and c(h) ≥
1

h

h∑
l=k+1

∆c∗(l) ≥
h− k

h
∆c∗(k), ∀k ≤ h.
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These two inequalities explain why the sequences [c(h)] and [∆c∗(h)] have
the same asymptotic behavior. For instance, let us assume that limh→∞∆c∗(h) =
+∞. Then, from the second inequality, we get :

lim
h→∞

inf c(h) ≥ ∆c∗(k), ∀k,

which implies limh→∞ inf c(h) ≥ +∞. We deduce that limh→∞ c(h) = +∞.
When limh→∞∆c∗(h) = c∞, the joint use of the two inequalities shows that
limh→∞ inf c(h) and limh→∞ sup c(h) exist and are equal to c∞.

QED

Proposition 2 shows that the case, where the long term interest rate does
not exist due, for instance, to a periodic asymptotic behavior of function c
has been eliminated.

Proposition 2 concerns the limiting behavior of the long run spot interest
rate when the whole term structure moves by parallel shifts. The instanta-
neous forward interest rate is given by :

f(t, h) = hr(t, h)− (h− 1)r(t, h− 1).

Under model (1.1), the instantaneous forward rate is equal to :

f(t, h) = Xt + c∗(h)− c∗(h− 1), ∀t, h.

It is not a constant function of time. In particular, if limh→∞∆c∗(h)
exists, the long run instantaneous forward interest rate also exists and is
stochastic.

4 Risk-neutral factor dynamic

Proposition 3 : Under model (1.1) and Assumptions A.1-A.3, the factor
process is a Markov process under the risk-neutral probability Q and we
have :

Q

Et [exp(−hXt+1)] = exp[−hXt + c∗(h)− c∗(h+ 1)].

Proof : Under no-arbitrage, we have :
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B(t, h+ 1) =
Q

Et {exp[−r(t, 1)]B(t+ 1, h)}, ∀h,

or, equivalently :

exp[−(h + 1)r(t, h+ 1)] = exp[−r(t, 1)]
Q

Et {exp[−hr(t+ 1, h)]}, ∀h.

By decomposition (1.1), we deduce :

exp[−(h + 1)Xt − c∗(h + 1)] = exp(−Xt)
Q

Et {exp[−hXt+1 − c∗(h)]},

or :

Q

Et [exp(−hXt+1)] = exp[−hXt + c∗(h)− c∗(h+ 1)], ∀h.

For a nonnegative variable, the knowledge of the Laplace transform for
negative integer characterizes the distribution 6. We deduce that the condi-
tional distribution of Xt+1 given its past depends on the past by means of
the most recent observation. This is the Markov property and Proposition 3
follows.

QED

The conditional log-Laplace transform is an affine function of the cur-
rent value of the process. This is exactly the definition of a Compound
Autoregressive (CaR) process [see Darolles, Gourieroux, Jasiak (2006)], also
called Affine process in continuous time [Duffie, Kan (1996), Duffie, Filipovic,
Schachermayer (2003)].

Proposition 4 7 : Under model (1.1) and Assumptions A.1-A.3, the level
factor process is a strong random walk under Q :

6Indeed, let us denote Z = exp(−X). Variable Z takes values in (0, 1). Thus, for any

argument u, the series Σ∞

h=0

E(Zh)(iu)h

h!
is uniformly absolutely convergent. We deduce

that the characteristic function ψ(u) = E[exp(iuZ)] exists [see Feller (1971), Vol2, p430].
7Proposition 4 contradicts Theorem 4 in Ingersoll, Skelton, Weil (1978), where it is

said that any parallel shift in a term structure is not arbitrage free. The random walk
models in Proposition 4 are both compatible with parallel shift and no-arbitrage. This
contradiction is due to a misleading proof in ISW (1978), p635, l3, where the effect of
diminishing time-to-maturity is omitted when computing the future value of the portfolio
of zero-coupon bonds. In some sense, they have implicitly assumed a flat term structure
c(h) = 0 [see the discussion in Appendix 1].
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Xt+1 = Xt + εt+1,

where (εt) is under Q a sequence of nonnegative i.i.d. variables with Laplace
transform :

ψε(h) =
Q

E [exp(−hεt)] = exp[c∗(h)− c∗(h+ 1)].

Proof : Let us denote εt+1 = Xt+1−Xt. From Proposition 3, we deduce that :
Q

Et [exp(−hεt+1)] = exp[c∗(h) − c∗(h + 1)]. This shows that the conditional
distribution of εt+1 is independent of the past and provides the form of its
Laplace transform. Moreover, ε is nonnegative, since by Assumption A.3, Xt

can be arbitrary close to zero. In this case εt+1 = Xt+1, which is nonnegative.

QED

Since ε is nonnegative, ψε(h) is smaller than 1 and a decreasing function
of h. We deduce that c∗(h + 1)− c∗(h) is a nonnegative increasing function
of h (which is Proposition 1). We also get the following Corollaries :

Corollary 2 : Model (1.1) is compatible with the no-arbitrage condition if
and only if function c∗ is such that : exp[c∗(h) − c∗(h + 1)] is the Laplace
transform of a positive variable.

Corollary 3 : Under model (1.1) and Assumptions A.1-A.3, the factor
process is a non decreasing function of time: the term structure cannot make
uniform downward move.

Let us now come back to the behavior of the long term interest rate. We
have the following proposition :

Proposition 5 : For a strong random walk under Q, the long term interest
rate exists, if and only if :

lim
h→∞

{− logE[exp(−hε)]} = − logP [ε = 0] = c∞ <∞;

then the long run interest rate is equal to :

r(t,∞) = Xt + c∞.
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Proof : The first condition concerning limh→∞{− logE[exp(−hε)]} = c∞ <
∞ is a direct consequence of Proposition 4 and the proof of Proposition 2.

Moreover, we have

E[exp(−hε)] = P [ε = 0] +

∫
1lx>0 exp(−xh)dF (x).

But limh→∞ exp(−hx) = 0, ∀x > 0, and since exp(−hx) ∈ (0, 1), we
deduce by Beppo-Levi theorem that limh→∞

∫
1lx>0 exp(−hx)dF (x) = 0. The

result follows.

QED

In this framework, the long term rate exists, is stochastic and provides
the same information than the underlying factor. This contradicts Lemma 3
in El Karoui, Frachot, Geman (1998) which asserts that the long term yield
(if it exists) cannot be stochastic in a one-factor model.

The need for an innovation with point mass at zero explains the strange
behavior of the long run interest rate, in affine models with a level factor
following a Gaussian random walk, even if this factor is not positive [see e.g.
Christensen, Diebold, Rudebusch (2008)]. In this case, it is seen that the
long run interest rate is equal to −∞.

To illustrate Corollary 2, let us consider a random walk with a Poisson
innovation εt ∼ P(λ). We have :

ψε(h) = exp{−λ[1 − exp(−h)]},

− logP [ε = 0] = λ,

and the interest rate with time-to-maturity h is :

r(t, h) = Xt + λ{
h− 1

h
+

1

h
[1−

1− exp(−h)

1− exp(−1)
]}.

We check that : limh→∞ ψε(h) = r(t,∞)−Xt = − logP [ε = 0] = λ.

The results above concern the risk-neutral dynamics. It is known that the
historical and risk-neutral dynamics are weakly linked [see Rogers (1977)].
For instance, the historical dynamic of (Xt) is not necessarily affine, and
does not necessarily feature a unit root. Nevertheless, the historical and
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risk-neutral distributions have a same support : in particular the process
(Xt) is also increasing under the historical probability and the probability
that Xt+1 = Xt is nonzero if the long run interest rate exists. Similarly,
when it exists, the long run interest rate is also an increasing function of
time. Therefore under model (1.1), either the long term spot interest rate
does not exist, or if it exists it can never fall. 8

5 Concluding remarks

A large part of the term structure literature interprets one of underlying
factors as a level factor model. In this paper, we have considered a single
factor model, interpretable as a level factor. We have seen that this model is
compatible with the positivity of rate and the no-arbitrage restrictions under
rather unrealistic rate dynamics. The short term interest rate is stochastic,
but an increasing function of time. Moreover, if the long run interest rate
exists, the short term interest rate has a nonzero probability to coincide with
the previous rate. Both facts do not correspond to observed evolutions of
short term rates. 9

This introduces some doubt on the relevance of the level interpretation
of the underlying factor, but also on the practice which consists in consid-
ering parallel drift as basic shocks on a term structure, without checking if
these drifts are compatible with the existing term structure pattern and no
arbitrage [see the discussion in appendix 1].

8Several authors argue that this property of the long term spot rate is a consequence of
no-arbitrage [Dybvig, Ingersoll, Ross (1996), El Karoui, Frachot, Geman (1998)], but prove
this property under additional assumptions. These assumptions can be a predetermined
long interest rate [DIR (1996)], or a long rate satisfying a diffusion equation [EFG (1998)].

9As noted in Andersen, Lund (1997), ”We simply do not know of any theoretical
rationale for explosive interest rate series”.
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Appendix 1

Parallel Shift in the Term Structure Literature

i) From a coupon bond to a zero-coupon bond.

Very early in the literature [Macaulay (1931), (1938), p48] is the idea to
replace a coupon bond by an ”equivalent” zero-coupon bond, to facilitate
the comparison of bonds with varying maturities and seasoning. More pre-
cisely, let us consider at time t a coupon bond with nonnegative coupons
Ah, h = 0, 1 . . . at the different times-to-maturity, and a current price Πt(A).
To create the ”equivalent” zero-coupon bond, we have to define the corre-
sponding rate and time-to-maturity. They are usually defined as follows :
the equivalent rate, or yield, is the solution rIt (A) of the equation :

Πt(A) =

∞∑
h=0

Ah exp[−hr
I
t (A)].

The equivalent time-to-maturity is the so-called Macaulay’s duration 10

defined by :

DI
t (A) =

∞∑
h=0

hAh exp[−hr
I
t (A)]/

∞∑
h=0

Ah exp[−hr
I
t (A)].

It is equal to the average time-to-maturity of the coupons weighted by
the discounted coupons.

In a modern terminology, these two notions are an implied rate and an
implied time-to-maturity, since they are computed from a misspecified term
structure model, which assumes a flat term structure, possibly varying in
time :

r(t, h) = Xt, ∀h, say. (A.1)

ii) The duration as a sensitivity parameter.

It is also well-known that the duration is a measure of the sensitivity
of the bond price with respect to shock on the level of interest rate, which
does not depend on time-to-maturity due to the assumption of a flat term

10The eponym ”Macaulay’s duration” has been introduced in Fisher, Weil (1971), p416.
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structure [see e.g. Hicks (1939), Redington (1952), Fisher (1966), Hopewell,
Kaufman (1973)] :

DI
t (A) =

∂ logΠt(A)

∂rIt (A)
. (A.2)

iii) Consistency with no-arbitrage

The flat term structure model underlying the derivation and interpreta-
tion of the yield and duration hardly coincides with the true term structure.
Nevertheless, this misspecified model should be consistent with no-arbitrage
restrictions.

From (A.1), we note that the underlying model is a special case of model
(1.1) with c(h) = 0, ∀h. By arguments similar to the arguments in Section 4,
we deduce that, under no-arbitrage, the dynamic of (Xt) is such that :

Xt+1 = Xt, ∀t. (A.3)

Therefore, under no-arbitrage, the term structure is flat at all dates if
and only if it is also time independent :

Xt = X0, ∀t,

⇔ r(t, h) = X0, ∀t, h say. (A.4)

Thus the no-arbitrage restriction induces strong links between the pattern
of the term structure (i.e. flat) and its evolution (i.e. constant in time).

The underlying model can be stochastic if the initial value is stochastic,
but the associated notion of shock is very special. Indeed, a shock on X0

can be introduced : this shock will have a drift effect not only on the term
structure at date t, but on the term structures of all dates jointly. Under
no-arbitrage on the underlying misspecified model, a transitory shock on a
term structure, that is a shock specific to date t, cannot be defined. This
shock is systematically permanent.11

Note finally that the aim of Assumption A.2 was to eliminate this very
special limiting case.

11Theorem 4 in Ingersoll, Skelton, Weil (1978) provides an alternative proof of the result.
They show that a transitory shift in a flat term structure is not arbitrage free.
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