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Approximate Derivative Pricing for Large Classes of Homogeneous Assets

with Systematic Risk

Abstract

We consider a homogeneous class of assets, whose returns are driven by an unobservable factor

representing systematic risk. We derive approximated pricing formulas for the future factor values

and their proxies, when the size n of the class is large. Up to order 1/n, these closed form approx-

imations involve well-chosen summary statistics of the basic asset returns, but not the current and

lagged factor values. The potential of the closed form approximation formulas seems quite large,

especially for credit risk analysis, which considers large portfolios of individual loans or corporate

bonds, and for longevity risk analysis, which involves large portfolios of life insurance contracts.

Keywords: Derivative Pricing, Large Portfolio, Systematic Risk, Credit Risk, Longevity Risk,

Basket Derivatives, Credit Default Swap, Mortality Linked Security, Default Correlation, Granu-

larity Adjustment.

JEL classification: G12, C23.
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1 Introduction

The interest in homogeneous classes of assets is growing rapidly with the Basel 2 [BCBS (2001)]

and Solvency 2 [CEA (2007)] regulations and the introduction of basket, or factor derivatives. The

portfolios involved in the balance sheet of a bank or an insurance company can involve several mil-

lions of individual assets, and it is suggested to cluster them into homogeneous classes to facilitate

the computation of risk measures. Examples of large homogeneous classes of assets are:

(i) a set of corporate bonds for firms with given industrial sector, rating and country;

(ii) a cohort of mortgages with identical contractual interest rate, maturity, pattern of monthly

payment and identical borrower’s rating;

(iii) a set of life insurance contracts with similar design and contractors with identical age.

The risk analysis in such large homogeneous classes of assets relies on the distinction between sys-

tematic risks, which arise from assets’ exposure to common factors, and unsystematic risks, which

are specific to the individual assets. For instance, a stationary common factor is usually introduced

in examples (i) and (ii) above to capture the default correlation. Among others, Vasicek (1987),

Gupton et al. (1997), Schoenbucher (2001), Hull, White (2004), Laurent, Gregory (2005) consider

a static framework, while Duffie et al (2009) consider a dynamic framework with observable indi-

vidual specific variables as well as an unobservable common factor, called frailty. A non-stationary

common factor is usually introduced in example (iii) to capture the longevity risk associated with

the increase in life expectancy [see e.g. Lee, Carter (1992), Dahl, Moller (2004), Cairns, Blake,

Dowd (2006), Schrager (2006), Gouriéroux, Monfort (2008)]. Basket derivatives, such as basket

default swaps (BDS), tranches of Collateralized Debt Obligations (CDO), stripped components of

Mortgage Backed Securities (MBS) and mortality linked securities (MLS) have been introduced

to hedge the systematic risk factor 1. For this purpose, these derivatives are written on proxies of
1Such derivatives can be traded in organized markets, as for instance some MBS issued by US federal agencies,

or Over-the-Counter (OTC). The market sizes at the end of year 2009 were about 30 trillions USD for the Credit

Default Swaps (CDS) [Bank for International Settlements (2010)], 9 trillions USD for the MBS, 6.8 trillions USD for

the corporate debt and associated credit derivatives, 2.4 trillions USD for the Asset Backed Securities (ABS) backed

on credit cards, student loans, etc. (data from the Securities Industry and Financial Market Authority on the web-site

www.sifma.org).
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the unobservable factor.

When pricing basket derivatives, two important issues have to be taken into account:

(i) The markets are incomplete due to the discrete time framework, the possibility of default and

the effect of (unobservable) dynamic factors. Therefore, there is a multiplicity of risk-neutral

distributions.

(ii) Even if some specific form of the risk-neutral distribution is selected, the derivative prices

depend on the current (and lagged) factor values. In the literature, it is usually assumed

that these unobservable factor values can only be recovered by means of observed prices of

derivatives traded on the market.

However, if such derivatives are not actively traded, the factor values cannot be deduced and

the pricing formula cannot be applied. This drawback arises typically at the emergence of new

derivative markets, when a coherent quotation scheme for derivatives not yet highly traded has

to be proposed. This paper explains how this drawback for the first quotation of derivatives can

be circumvented when we observe the prices (or returns) of a large homogeneous class of assets

driven by a same dynamic factor. We show that the unobserved factor value and the derivative

prices can be approximated by means of the observed asset prices (returns) at order 1/n, where n

is the size of the class. Thus, it is not necessary to observe at least one additional derivative price

to be able to price coherently the other ones. By exploiting the large class size, our approximate

derivative pricing formulas are based on a closed form Gaussian approximation of the predictive

distribution of the factor value. This sharply differs from other filtering approaches proposed for

dynamic latent factor models in the default risk literature [see e.g. Duffie et al (2009)], where the

predictive distribution of the factor is computed with simulation based methods.

The notion of a homogeneous class of risks is defined in Section 2 by means of the conditional

historical and risk-neutral distributions of risk variables y1,t, ..., yn,t, say, given the underlying path

of the factor ft, and the historical and risk-neutral factor dynamics. We particularize this notion

to different types of risk to account for quantitative as well as qualitative risk variables. Section 3

provides a convenient closed form approximation of the historical and risk-neutral distributions of

a future factor value ft+τ at time-to-maturity τ ≥ 1 given the information available at time t, which

includes the current and past values of y1,t, ..., yn,t, for large n. We discuss the consequences of
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this approximation formula in terms of first quotation of derivatives. In Section 4, the methodology

is illustrated by focussing on the approximate pricing of derivatives written on a common factor

proxy. A numerical illustration to the pricing of basket default swaps is given in Section 5. Section

6 concludes. The proofs are gathered in the Appendices.

2 Homogeneous classes of assets

Let us consider n assets with risk characteristics observed at T different dates. The risk character-

istics are denoted yit, for i = 1, ..., n, and t = 1, ..., T , and have different interpretations and ranges

according to the assets. For a class of stocks, yit can be the return between t− 1 and t, and is real

valued. For a class of corporate bonds, yi,t can be the issuer default indicator, that is equal to 1 if

the issuer of bond i is in default at date t, and 0, otherwise. Alternatively, yit can be the spread, that

is the difference between the corporate and risk-free interest rates, and is non-negative. Finally,

for a class of digital Credit Default Swaps (CDS) with given time-to-maturity, yit can be the ratio

of the CDS price to the price of the risk-free zero-coupon bond with the same maturity. Then, yit

takes value between 0 and 1 and corresponds to a risk-neutral (implied) default probability.

2.1 Definition and assumptions

The notion of homogeneous class is defined for instance in Gouriéroux, Tiomo (2007), Chapter 7.

Definition 1: A class of assets is homogeneous under the historical probability (resp. the risk-

neutral probability), if and only if the joint historical (resp. risk-neutral) distribution of processes

(y1,t) , ..., (yn,t) is invariant by permutation 2.

As remarked in the Introduction, the homogeneity assumption underlies the analysis by segment

recommended in the current regulation. This explains the focus of the paper on homogenous

classes of assets. However, the results can be easily extended to observed heterogeneity [see

Gagliardini, Gouriéroux, Monfort (2010)]. Moreover, the exchangeability property of the assets

in Definition 1 can be equivalently written in terms of underlying factors by applying de Finetti’s

Theorem [de Finetti (1931)] and its generalization by Hewitt and Savage (1955). For expository
2(yi,t) denotes the process yi,t, t = 1, 2, · · · .
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purpose, and since basket derivatives are typically introduced to hedge a given single systematic

risk, we focus on the single-factor case. However, the results can be extended to the multifactor

framework.

Assumption A.1: Under the historical probability, the processes (y1,t) , ..., (yn,t) are independent

given the factor path (ft).

Assumption A.2: The conditional historical density of y1,t, ..., yn,t given the past values of the

yi,t’s, and the current and past values of the factor, is
n∏

i=1

h (yit|ft), say, w.r.t. some dominating

measure
n∏

i=1

dyi,t. 3

The conditional historical density is driven by the current factor value only, is independent

of the date, and the variables y1,t, ..., yn,t are i.i.d. conditional on the current factor value. This

explains the terminology ”conditionally independent risk model” introduced in the credit risk lit-

erature [see e.g. Schoenbucher (2001)]. The conditional density
n∏

i=1

h (yit|ft) characterizes the

contemporaneous effect of factor ft on the individual risks and is called micro-density. Factor ft

represents systematic risk 4. Further, the dynamics of variables yi,t, i = 1, ..., n, is through the

dynamics of factor ft only, which is specified next.

Assumption A.3: Under the historical probability, the factor process is Markovian with transition

density g (ft|ft−1), say, w.r.t. a dominating measure dft.

Under Assumptions A.1, A.2 and A.3, the joint conditional distribution of

y1,t+1, ..., yn,t+1, ft+1 given the current and past values of the yi,t’s and ft is:

l(y1,t+1, ..., yn,t+1, ft+1|y1,t, ..., yn,t, ft) = g (ft+1|ft)
n∏

i=1

h (yi,t+1|ft+1) , (2.1)

where yi,t denotes the individual history yi,t, yi,t−1, ..., and similarly for ft. It is easily checked

from equation (2.1) that the assets are exchangeable under the historical probability. Assumptions

3We use the same notation for the dominating measure regardless if yi,t is a continuous variable, and the dominating

measure is the Lebesgue measure, or if yi,t is discrete, and dyi,t is the counting measure. This latter situation arises

when yi,t is a default indicator with values 0, 1.
4But not necessarily systemic risk, that is a risk that may destroy the financial system.
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A.1-A.3 correspond to a nonlinear state space model, where the measurement equations are char-

acterized by the conditional density
n∏

i=1

h (yit|ft) and the state equation by the transition density

g(ft|ft−1).

The above set of assumptions is completed by assumptions on the investors’ information set and

on the stochastic discount factor (sdf) mt,t+1, which characterizes the change of measure to pass

from the historical probability to the pricing operator [see e.g. Harrison, Kreps (1979), Hansen,

Richard (1987)].

Assumption A.4: The investors’ information set at date t is Ωt =
(
y1,t, ..., yn,t, ft−1

)
.

Assumption A.5: The sdf between date t and date t + 1 is mt,t+1 = m(ft).

The information set of the investors includes the current and past values of the yi,t’s, and the

past values of the factor. Hence, the variables yi,t, i = 1, ..., n, are observed at the beginning of

period (t, t + 1), whereas ft is observed by the investor at the end of that period. Assumption

A.4 reflects the incompleteness of the investors’ information, since the current factor value ft is

unobservable for the investor at date t. Thus, the investor faces a filtering problem when pricing

factor derivatives. In continuous time, it would not be possible to distinguish between the current

factor value ft and the most recent lagged value ft− , say, for a factor with continuous path. In

discrete time, the most recent factor value ft−1 differs from ft, and Assumption A.4 on information

becomes relevant.

The current factor value unobservable at time t is included in the sdf mt,t+1, which is really

stochastic from the investor’s view point at date t and is used for risk correction and time discount

between t and t + 1. The existence of a sdf is a consequence of the no arbitrage assumption.

In general, the sdf between t and t + 1 depends on the investors information at t + 1, that is

y1,t+1, ..., yn,t+1, ft, and on the market, in particular on the number n of assets. Under Assumption

A.5, the sdf is supposed to depend only on the current value of the common risk factor, and neither

on the idiosyncratic risks specific of the individual assets, nor on the size n of the homogeneous

class. The assumption that the sdf does not depend on the idiosyncratic risks is standard for pricing

credit securities [see e.g. Gouriéroux, Monfort, Polimenis (2006)] and mortality linked securities

(MLS) [see e.g. Schrager (2006)]. This assumption is justified by the underlying point of view that

idiosyncratic risks can be diversified and as such their prices are not adjusted for risk, similarly as
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in the standard arbitrage pricing theory [Ross (1976)]. The assumption of sdf independence w.r.t.

size n merits also to be further discussed. Let us assume an infinite population, n = ∞. Then, ft

becomes known (by using a cross-sectional maximum likelihood estimator, see Section 3) and the

short-term interest rate rt = − log E [mt,t+1|Ωt] = − log m(ft) is known too. Thus, either both

function m and the interest rate are constant, or factor ft can be identified with the interest rate, up

to a given transformation. If we want to get a pricing model with constant interest rate r and non

constant factor in the limit n = ∞, it is necessary to suppose mt,t+1 = m(n, ft), with m(∞, ft) =

exp (−r), and if we want to get a stochastic interest rate rt and another stochastic factor ft to

suppose mt,t+1 = m(rt, n, ft), with m(rt,∞, ft) = exp (−rt). A theoretical justification of the

sdf specification would require a structural equilibrium model, which is beyond the scope of this

paper.

Under Assumptions A.1-A.5, the short-term pricing kernel w.r.t. the dominating measure

dft

n∏
i=1

dyi,t+1 is:

p (y1,t+1, ..., yn,t+1, ft|Ωt) = m(ft)g (ft|Ωt)

∫ n∏
i=1

h (yi,t+1|ft+1) g (ft+1|ft) dft+1, (2.2)

where:

g (ft|Ωt) =

g(ft|ft−1)
n∏

i=1

h (yi,t|ft)

∫
g(ft|ft−1)

n∏
i=1

h (yi,t|ft) dft

, (2.3)

denotes the density of ft given the investor information Ωt at t. This pricing kernel is used to

compute the price at date t of any short-term derivative written on y1,t+1, ..., yn,t+1, ft with payoff

a(y1,t+1, ..., yn,t+1, ft) as:

πt(a, 1) =

∫
a(y1,t+1, ..., yn,t+1, ft)p (y1,t+1, ..., yn,t+1, ft|Ωt) dy1,t+1...dyn,t+1dft.

The pricing kernel depends on information Ωt through the current observations y1,t, ..., yn,t and the

past factor value ft−1 only.

Proposition 1. The historical and risk-neutral conditional distributions of y1,t+1, ..., yn,t+1 given

ft are the same. The change of measure between the historical and risk-neutral distributions of ft

conditional on Ωt is given by the sdf m(ft).
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Proof. From the short-term pricing kernel (2.2), we deduce the short-term risk-neutral distribution

by standardizing with the short-term zero-coupon bond price B(t, t + 1) =

∫
m(ft)g (ft|Ωt) dft.

Thus, the risk-neutral conditional distribution is:

l∗ (y1,t+1, ..., yn,t+1, ft|Ωt) = p (y1,t+1, ..., yn,t+1, ft|Ωt) /B(t, t + 1)

= g∗ (ft|Ωt)

∫ n∏
i=1

h (yi,t+1|ft+1) g (ft+1|ft) dft+1,

where:

g∗ (ft|Ωt) =
m(ft)g (ft|Ωt)∫
m(ft)g (ft|Ωt) dft

,

is the risk-neutral conditional density of ft given Ωt. The result follows.

2.2 Examples

Let us now derive the expression of the micro-density
n∏

i=1

h (yi,t|ft) for standard models encoun-

tered in the literature for homogeneous class of stocks, corporate bonds, or digital CDS. In general,

the factor has a nonlinear effect and may admit different interpretations. For instance, it can be a

stochastic mean, a stochastic variance, a stochastic default probability, or a stochastic concentration

parameter.

i) Linear factor model

Let us consider a linear factor model:

yit = a + bFt + σuit, i = 1, ..., n,

where the errors uit are independent standard Gaussian variables. The common factor Ft impacts

the conditional mean of the variables yit. When the variables yit, i = 1, ..., n, are stock returns,

and factor Ft is the market portfolio return, we get the standard market model written for a homo-

geneous class of stocks, since the alphas, betas and idiosyncratic volatilities are stock independent.

The conditional correlation between any two assets is zero, but the unconditional correlation is

non-zero when the unobservable factor Ft is integrated out. By introducing the transformed factor

ft = a + bFt, this model satisfies Assumptions A.1 and A.2 with micro-density:
n∏

i=1

h (yi,t|ft) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(yit − ft)
2

}
.
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ii) Single-factor stochastic volatility model

Let us consider the model:

yit = µ + f
1/2
t uit, i = 1, ..., n,

where factor (ft) is a positive Markov process, and the errors uit are independent standard Gaus-

sian variables. Factor (ft) introduces a dependence between realized volatilities computed on the

individual assets. The joint stochastic volatility-covolatility matrix of the n assets is Σt = ftIdn,

where Idn denotes the identity matrix of order n. The associated micro-density is:

n∏
i=1

h (yi,t|ft) =
1

(2π)n/2
exp

{
−n

2
log ft − 1

2ft

n∑
i=1

(yit − µ)2

}
.

iii) Single Risk Factor (SRF) model for default correlation

The Single Risk Factor (SRF) model is specified as [see Vasicek (1987) and the Credit Metrics

framework in Gupton, Finger, Bhatia (1997)]:

log (Ait/Lit) = µ + σ
√

ρFt + σ
√

1− ρuit, (2.4)

where the error terms ui,t are independent standard Gaussian variables, Ait and Lit denote the

asset value and liability of firm i at date t, respectively, and ρ is a parameter 5 in (0, 1). When the

variance of the common factor Ft is normalized to 1, the unconditional variance of the log asset-to-

liability ratio of any firm is σ2, and the unconditional correlation between the log asset-to-liability

ratios of any two firms is ρ. This structural model is used to characterize the joint distribution of

default occurrence: yit = 1, if Ait < Lit, and = 0, otherwise. Conditional on factor value Ft, the

dichotomous variables yi,t, i = 1, ..., n, are i.i.d. with Bernoulli distribution B (1, ft), where the

canonical factor is defined by ft = Φ

(
−µ + σ

√
ρFt

σ
√

1− ρ

)
and Φ denotes the cumulative distribution

function of a standard Gaussian variable. This transformed factor ft is the conditional default

probability at time t. The joint conditional distribution of default indicators is:

n∏
i=1

h (yi,t|ft) = (ft)
nȳnt (1− ft)

n(1−ȳnt) , (2.5)

5The usual notation in the documents of the Basle Commitee is ρ2 instead of ρ; we prefer the second notation due

to the interpretation of the parameter as a correlation.
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where ȳnt = 1
n

∑n
i=1 yi,t is the proportion of obligors that defaulted in period t.

iv) Single-factor corporate spread model

Corporate spreads are positive and their dynamics is generally specified to get an affine term

structure [see e.g. Duffie, Filipovic, Schachermayer (2003) and Duffie, Singleton (2003) in con-

tinuous time, Darolles, Gouriéroux, Jasiak (2006) and Gouriéroux (2008) in discrete time]. For

instance, let us assume that the historical conditional distribution of yit given ft is a gamma dis-

tribution γ (ft, λ) with stochastic degree of freedom ft and scale parameter λ. The conditional

density is:

h (yi,t|ft) =
1

Γ(ft)
exp (−λyi,t) yft−1

i,t λft 1Iyi,t>0,

and the micro-density becomes:

n∏
i=1

h (yi,t|ft) =
1

Γ(ft)n
exp

(
−λ

n∑
i=1

yi,t

)(
n∏

i=1

yi,t

)ft−1

λnft 1Imini yi,t>0,

where Γ denotes the gamma function. The associated conditional Laplace transform is given by:

E [exp (−uyi,t) |ft] = exp [ft log(1 + u/λ)] .

This Laplace transform is an exponential affine function of the factor, which simplifies the deriva-

tion of nonlinear predictions if process (ft) is affine 6.

v) Homogeneous class of CDS

In this example, the variable yit is the value of a digital CDS 7 divided by the associated zero-

coupon bond price with identical time-to-maturity. Such variable takes continuous values between

0 and 1, and its distribution can be chosen in the class of beta distributions:

h (yit|ft) =
Γ(ft)

Γ(δft)Γ [(1− δ) ft]
yδft−1

it (1− yit)
(1−δ)ft−1 1I0<yit<1, (2.6)

6Another linear factor specification compatible with affine term structure is yit = ft + uit, i = 1, ..., n, where

ft and ui,t are positive variables. However, the conditional distribution of yit given ft will admit a support (ft,∞)

depending on the factor value. As seen in Section 3, the large portfolio approximation theorem is valid for a micro-

density, which is third-order differentiable with respect to ft. Thus, it cannot be applied to this type of linear factor

model.
7A digital CDS is a CDS without legs (and a unitary payment for the contractual recovery rate). Such digital CDS

are the standard for short-term CDS. Otherwise, leg and contractual recovery rate adjustments have to be introduced.
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where δ is a scalar parameter in (0, 1), and ft is a positive factor. The conditional mean E (yit|ft) =

δ is constant. Moreover, the conditional variance of a variable on [0, 1] is upper bounded:

V (yit|ft) ≤ E (yit|ft) [1− E (yit|ft)] = δ(1− δ),

and the upper bound is reached when the total mass is on the two-points set {0, 1}. It is easily

checked from (2.6) that:

ft + 1 =
δ(1− δ)

V (yit|ft)
.

Thus, factor ft measures the concentration of the distribution, taking into account the existence

of the upper bound. We get a model with constant conditional mean and stochastic concentration

parameter. The micro-density is:

n∏
i=1

h (yi,t|ft) =

(
Γ(ft)

Γ(δft)Γ [(1− δ) ft]

)n
(

n∏
i=1

yi,t

)δft−1 (
n∏

i=1

(1− yi,t)

)(1−δ)ft−1 n∏
i=1

1I0<yit<1.

By interchanging the roles of δ and ft in density (2.6), we get an alternative single-factor model

with stochastic conditional mean ft and constant concentration parameter δ.

3 Large portfolio approximation

We first derive the approximation theorems of the predictive factor distribution valid for large n.

Then, we explain how these theorems are used for pricing purposes by applying them to the risk-

neutral distribution.

3.1 Approximation theorems

Let us consider a homogeneous class satisfying Assumptions A.1-A.3. The predictive distribution

of factor ft is characterized by its Laplace transform, which gives the conditional expectation of

any exponential transformation of the factor given the investors’ information.

Assumption A.6: The conditional Laplace transform of ft given y1,t, ...,yn,t,ft−1, that is, the func-

tion:

Ln,t(u) = E
[
exp (uft) |y1,t, ..., yn,t, ft−1

]
, u ∈ R,
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is well-defined in a neighbourhood of u = 0.

The approximation theorem is derived along the lines of the Laplace method [see e.g. Jensen

(1995)]. Let us define the cross-sectional maximum likelihood approximation of the factor:

f̂nt = arg max
ft

n∑
i=1

log h (yit|ft) , (3.1)

and introduce the next Assumption A.7.

Assumption A.7: The function f → E[log h(yi,t|f)|ft] is uniquely maximized at f = ft, for any

t, P -a.s. Moreover, It := E

[
−∂2 log h(yi,t|ft)

∂f 2
t

|ft

]
> 0, for any t, P -a.s.

Assumption A.7 corresponds to the standard global and local identification conditions in maxi-

mum likelihood estimation, when the unobservable factor value at date t is treated as an unknown

parameter for the cross-section at date t. Under Assumption A.7, the cross-sectional log-likelihood

function
n∑

i=1

log h (yit|ft) admits an unique global maximum w.r.t. ft, that is f̂n,t, on any compact

interval, with probability approaching 1 as the cross-sectional sample size n goes to infinity.

Proposition 2. Under Assumption A.1-A.7, the conditional Laplace transform of ft given y1,t, ...,yn,t,ft−1

is such that:

Ln,t(u) = exp

{
u

(
f̂nt +

1

n
I−1
nt

∂ log g

∂ft

(
f̂nt|f̂n,t−1

)
+

1

2

1

n
I−2
nt Knt

)
+

1

2

1

n
I−1
nt u2 + o(1/n)

}

= E
[
exp (uft) |y1,t, ..., yn,t

]
+ o(1/n),

where:

Int := − 1

n

n∑
i=1

∂2 log h

∂f 2
t

(
yit|f̂nt

)
and Knt :=

1

n

n∑
i=1

∂3 log h

∂f 3
t

(
yit|f̂nt

)
.

Proof. See Appendix 1.

Up to order 1/n, the dependence of Ln,t(u) on information is captured by means of the four

summary statistics f̂nt, f̂n,t−1, Int and Knt, which depend only on current and past values yi,t.

Thus, the lagged factor values are non-informative for large class size (at order 1/n). The

statistic f̂nt is the cross-sectional Maximum Likelihood (ML) estimator of the current factor value

ft. Statistic Int is the estimated Fisher information corresponding to this estimation problem.
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Finally, Knt is an additional statistic involved in asymptotic bias correction. This set of statistics

is independent of the factor dynamics, that is, of function g. By Proposition 2, the logarithm of the

approximated Laplace transform is quadratic in argument u; thus, the conditional distribution of ft

given y1,t, ...,yn,t, ft−1 is approximately normal at order 1/n :

N

(
f̂nt +

1

n

[
I−1
nt

∂ log g

∂ft

(
f̂nt|f̂n,t−1

)
+

1

2
I−2
nt Knt

]
,
1

n
I−1
nt

)
. (3.2)

The mean of this Gaussian distribution corresponds to the cross-sectional maximum likelihood

estimate of the factor value plus an adjustment at order 1/n. The variance shrinks to zero at rate

1/n as the class size increases. 8

Since the conditional distribution of ft given y1,t, ..., yn,t, ft−1 is independent of the lagged

factor values at order 1/n, the distribution in (3.2) can be interpreted as an approximation of the

filtering distribution for the nonlinear state space model defined by Assumptions A.1-A.3. While

the computation of the exact filtering distribution requires in general simulation based methods

[see e.g. Duffie et al. (2009) for an application to default models], we exploit the large number

n of individual cross-sectional measurements to get a Gaussian approximation at order 1/n. This

approximate Kalman filter shares some common features with the literature on robust Kalman fil-

tering [see e.g. Masreliez (1975)]. However, it differs in several respects. First, in robust filtering

the conditional distribution of ft+1 given y1,t, ..., yn,t is assumed to be close to a Gaussian distri-

bution, whereas in our framework it is the conditional distribution of ft given y1,t, ..., yn,t, which

is almost Gaussian 9. Second, in robust filtering the errors of the analytical approximations are

typically unknown 10, while in our approach the Gaussian approximation has been derived theoret-

ically together with its approximation error due to the information contained in the cross-sectional

observations. Third, the robust filtering literature mostly focuses on linear measurement and state

equations with non-Gaussian innovations 11, while our model fully allows for nonlinearities in both
8In the multiple factor case, a similar approximation as in Proposition 2 can be derived by replacing In,t with the

matrix In,t = − 1
n

n∑

i=1

∂2 log h

∂ft∂f ′t
(yi,t|f̂n,t) and I−2

n,tKn,t with a vector involving among other statistics the third-order

derivatives of the cross-sectional log-likelihood w.r.t. the components of ft.
9See Bates (2009), p. 25, for approximations written on the same conditional distribution as our. These approxi-

mations are used in the numerical implementation of an algorithm that updates the Laplace transform of the filtering

distribution when the joint dynamics of observations and latent states is affine.
10Except in the special model of contamination considered in Schick, Mitter (1994).
11Except Cipra and Rubio (1991), who take into account a nonlinear measurement equation with additive non-
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equations. Finally, the approximation in Proposition 2 is not recursive, but in closed form.

Proposition 2 can also be interpreted as an approximation of a posterior distribution in Bayesian

statistics [see e.g. Lindley (1980)]. Indeed, let us assume that ft is an unknown parameter. Then,

distribution g(.|ft−1) can be interpreted as the prior density, and E
[
exp (uft) |y1,t, ..., yn,t, ft−1

]

characterizes the posterior distribution. Proposition 2 can be seen as an instance of the well-known

asymptotic equivalence between Bayesian and frequentist methods in large samples. While in the

classical results of Bickel, Yahav (1969) and Ibragimov, Has’minskii (1981) this equivalence is

derived directly in terms of the posterior density, we prefer to follow e.g. Lindley (1980) and Tier-

ney, Kadane (1986) and focus on posterior moments. Indeed, the approximate posterior moments

of exponential and other nonlinear transformations of ft are the basis for approximate pricing of

derivatives written on the factor and its proxies (see Sections 3.3 and 4). 12 Finally, our Bayesian

interpretation considers ft as the parameter, and is valid for any parametric or nonparametric spec-

ification of the factor distribution. It has to be distinguished from Bayesian approaches concerning

the mean reversion and volatility parameters of the factor dynamics [see e.g. Duffie et al. (2009),

Section 4.4].

The posterior distribution of factor ft is asymptotically approximated by a well-defined dis-

tribution, that is the Gaussian distribution given in (3.2). This is especially important when the

approximation concerns the risk-neutral distribution. Indeed, the possibility to interpret the ap-

proximation as a probability distribution, that is, with positive density and unit mass, is equivalent

to no arbitrage in approximate pricing 13. From Proposition 2, the conditional expectation of a

function ϕ(ft) of the factor can be approximated at order 1/n by computing the integral w.r.t. the

Gaussian distribution (3.2).

Gaussian noise.
12In Lindley (1980), the Laplace approximation for the posterior moments is performed by expanding around the

posterior mode, and not around the ML estimate as in Proposition 2. In our setting, this would correspond to perform

the expansion around the posterior mode f̃n,t = arg max
ft

{
n∑

i=1

log h(yi,t|ft) + log g(ft|ft−1)

}
. It is possible to

show that this approach yields the same approximation as Proposition 2 at order o(1/n).
13Tierney, Kadane (1986) derive more accurate approximations at order 1/n2 by expanding around a modified

posterior mode. However, when these more accurate methods are used to approximate a moment E[ϕ(ft)|Ωt] by

En[ϕ(ft)|Ωt], say, the mapping ϕ → En[ϕ(ft)|Ωt] is not a linear operator [see e.g. formula (A.2) in Tierney, Kadane

(1986)]. Thus, these approximations are not appropriate for pricing purposes.
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Corollary 3. For any integrable function ϕ (ft) of ft, we have:

E
[
ϕ (ft) |y1,t, ..., yn,t, ft−1

]
=

∫
ϕ(ft)ĝnt(ft)dft + o(1/n),

where ĝn,t is the pdf of the Gaussian distribution (3.2).

The integral in Corollary 3 can be approximated at order 1/n in closed form for any smooth

function ϕ.

Corollary 4. For any twice differentiable function ϕ (ft) of ft, we have:

E
[
ϕ (ft) |y1,t, ..., yn,t, ft−1

]
= ϕ

(
f̂nt

)
+

1

n

dϕ

dft

(
f̂nt

) [
I−1
nt

∂ log g

∂ft

(
f̂nt|f̂n,t−1

)
+

1

2
I−2
nt Knt

]

+
1

2n

d2ϕ

df 2
t

(
f̂nt

)
I−1
nt + o(1/n).

Proof. The approximation is derived by expanding function ϕ at second-order around f̂nt :

ϕ (ft) = ϕ
(
f̂nt

)
+

dϕ

dft

(
f̂nt

)(
ft − f̂nt

)
+

1

2

d2ϕ

df 2
t

(
f̂nt

)(
ft − f̂nt

)2

+ o

((
ft − f̂nt

)2
)

,

and computing the conditional expectation w.r.t. the density in (3.2).

Corollary 4 describes how the first- and second-order derivatives of function ϕ are involved in

the expansion of the conditional expectation. This is the analogue of the Ito’s formula for a large

homogeneous class of assets.

3.2 Examples

The summary statistics f̂n,t, In,t and Kn,t for the examples of Section 2.2 are given in Table 1. Let

us discuss the associated approximate predictive distributions for Examples (i), (iii) and (v).

i) Linear factor model

For the linear factor model in Example (i), the factor approximation is the cross-sectional av-

erage f̂n,t = ȳn,t, where ȳn,t = 1
n

∑n
i=1 yi,t. Moreover, In,t = 1/σ2 and Kn,t = 0. Let us assume

that the latent factor admits a Gaussian autoregressive dynamics ft = µ + γ(ft−1 − µ) + ηεt, with

εt ∼ IIN(0, 1), unconditional mean µ, and autocorrelation coefficient γ such that |γ| < 1. The

approximate predictive distribution of the factor becomes:

N

(
µ +

(
1− 1

n

σ2

η2

)
(ȳnt − µ) +

1

n

σ2

η2
γ (ȳn,t−1 − µ) ,

σ2

n

)
.
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The predictive mean corresponds to the unconditional factor mean µ corrected by a convex com-

bination of ȳnt − µ and γ (ȳn,t−1 − µ) , with weights 1− 1
n

σ2

η2 and 1
n

σ2

η2 , respectively.

ii) SRF model for default correlation

In the SRF model in Example (iii), the cross-sectional factor approximation is the default fre-

quency f̂n,t = ȳn,t. Moreover, In,t = 1/[ȳn,t(1 − ȳn,t)] and the statistic Kn,t does not vanish. Let

us assume that the factor Ft admits an autoregressive Gaussian dynamics:

Ft = γFt−1 +
√

1− γ2εt, (3.3)

where εt ∼ IIN(0, 1) and |γ| < 1. The factor is normalized such that the unconditional distribu-

tion is standard Gaussian as in the Vasicek (1987) static model. The transition density g(ft|ft−1)

of the transformed factor ft = Φ

(
−µ + σ

√
ρFt

σ
√

1− ρ

)
is derived by change of variable. We get the

approximate predictive distribution:

N


f̂n,t +

1

n


 f̂n,t(1− f̂n,t)

φ
[
Φ−1(f̂n,t)

]
(

Φ−1(f̂n,t) +

√
1− ρ√

ρ

F̂n,t − γF̂n,t−1

1− γ2

)
+ 1− 2f̂n,t


 ,

f̂n,t(1− f̂n,t)

n


 ,

(3.4)

where F̂n,t = − 1√
ρ

(
µ
σ

+
√

1− ρΦ−1
(
f̂n,t

))
is the cross-sectional approximation of the Gaussian

factor. For expository purpose, let us focus on the case of i.i.d. factor γ = 0, that corresponds

to the static Vasicek (1987) model. The predictive mean and variance depend on the available

information through the current default frequency f̂n,t = ȳn,t only. Figure 1, middle Panel, displays

the predictive mean and the 95% prediction interval as a function of f̂n,t for class size n = 100. The

parameters are ρ = 0.10, µ = 0.3501, σ = 0.10 (see Section 5 for a discussion of this parameter

choice). For comparison, we display in the upper Panel of Figure 1 the predictive mean and 95%

prediction intervals for the linear Gaussian single-factor model in Example (i) with γ = 0 and

n = 100. The parameters are µ = 0.10, η = 0.055 and σ = 0.190 14. The predictive distribution

features heteroscedasticity for the SRF model, with smaller prediction intervals when f̂n,t is close

to either 0 or 1, while the predictive distribution is homoscedastic in the linear model.

iii) Homogenous class of CDS
14These parameters are such that the variances and correlations between variables yi,t in Example (i) match the

variances and correlations between the latent continuous variables log(Ai,t/Li,t) in Example (iii).
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While in the above examples the factor approximation corresponds to a cross-sectional average

of the individual observations, this does not necessarily hold in more complicated factor models.

In the homogeneous class of CDS in Example (v), the cross-sectional factor approximation is:

f̂n,t = Ψ−1
δ

(
1

n

n∑
i=1

[δ log yi,t + (1− δ) log(1− yi,t)]

)
, (3.5)

where Ψδ(s) = δΨ(δs) + (1 − δ)Ψ((1 − δ)s) − Ψ(s) and Ψ(s) =
d log Γ(s)

ds
is the digamma

function (see Appendix 2). For expository purpose, let us consider a static factor model with

gamma distribution. More precisely, let us assume that ft/c is i.i.d. with γ(ν) distribution, where

c, ν > 0 15. Then, the predictive distribution is given by:

N


f̂n,t +

1

n

1

Ψ
′
δ

(
f̂n,t

)

ν + 1

f̂n,t

− 1/c− 1

2

Ψ
′′
δ

(
f̂n,t

)

Ψ
′
δ

(
f̂n,t

)

 ,

1

n

1

Ψ
′
δ

(
f̂n,t

)

 .

The predictive mean and the 95% prediction intervals are displayed as a function of f̂n,t in Figure

1, lower Panel, for n = 100, δ = 0.5 and c = ν = 1 (exponentially distributed factor). The width

of the prediction interval is increasing w.r.t. factor approximation f̂n,t.

3.3 Approximate pricing formulas

Let us now consider a European derivative with time-to-maturity 1 and payoff a (y1,t+1), say. The

price of this derivative at date t is:

π̃t(a, 1) =

∫
· · ·

∫
a (y1,t+1) p(y1,t+1, ..., yn,t+1, ft|Ωt)dy1,t+1 · · · dyn,t+1dft

=

∫
m(ft)

(∫
a (y1,t+1) h (y1,t+1|ft+1) g(ft+1|ft)dy1,t+hdft+1

)
g (ft|Ωt) dft

= E [m(ft)α(ft)|Ωt] , say, (3.6)

by the iterated expectation theorem and equation (2.2). It is equivalent to price a derivative

written on the traded assets with payoff a (y1,t+1), or to price a virtual derivative written on

the unobserved factor value with payoff 16 α (ft). This argument can be extended to any payoff

15This model can be extended to a factor with autoregressive dynamics and gamma-type stationary distribution,

which corresponds to a discrete-time Cox-Ingersoll-Ross process [see Gouriéroux and Jasiak (2006)].
16This payoff is observed at the end of period (t, t + 1), not at the beginning of this period.

18



a (y1,t+τ , ..., yn,t+τ ) and horizon τ . The variables yi,t do not need to be individual asset prices or

returns, but can correspond to individual risk events, as individual default or prepayment for credit,

and death or lapse for life insurance.

The approximation theorem in Corollary 3 provides pricing formulas at order 1/n for European

payoffs written on the factor. Let us first consider the short horizon and denote πt(α, 0) the price

at date t of the payoff α (ft). We have:

πt(α, 0) = E
[
m(ft)α (ft) |y1,t, ..., yn,t, ft−1

]

=

∫
m(ft)α(ft)ĝn,t(ft)dft + o(1/n), (3.7)

by Corollary 3. Thus, the derivative price can be computed at order 1/n from the observed values

y1,t, ..., yn,t only, whenever the sdf (the risk premia) is given. The approximate pricing formula can

be used to define a coherent system of derivative quotations, even if the factor is unobservable at

all dates, for instance when no additional derivative is highly traded.

Let us now consider another horizon τ , τ ≥ 1, and denote πt(α, τ) the price at date t of payoff

α (ft+τ ). We have:

πt(α, τ) = E [m(ft)m(ft+1) · · ·m(ft+τ )α (ft+τ ) |Ωt] .

By the iterated expectation theorem, we can first condition on Ωt, ft to get:

πt(α, τ) = E [E [m(ft)m(ft+1) · · ·m(ft+τ )α (ft+τ ) |Ωt, ft] |Ωt]

= E
[
m(ft)Π(ft, α, τ)|y1,t, ..., yn,t, ft−1

]
= πt [Π(·, α, τ), 0] ,

where Π(ft, α, τ) = E [m(ft+1) · · ·m(ft+τ )α (ft+τ ) |Ωt, ft] is a function of ft only by the Markov

property. Function Π(ft, α, τ) corresponds to the price at time t of payoff α (ft+τ ) with time-to-

maturity τ , computed by an informed investor who has the larger information set (Ωt, ft) available

at date t, and uses the sdf m(ft+1) to discount risk between t and t + 1. By Corollary 3 applied

to ϕ(f ; α, τ) = m(f)Π(f, α, τ), the derivative price πt(α, τ) can be approximated at order 1/n by

using the observed values y1,t, ..., yn,t only:

πt(α, τ) =

∫
m(ft)Π(ft, α, τ)ĝn,t(ft)dft + o(1/n). (3.8)

These approximate pricing formulas are applied in the next Section to derivatives written on a

factor proxy.
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4 Derivatives written on a factor proxy

4.1 Review of the literature on basket derivative pricing

As noted above, the common stochastic factor captures the nondiversifiable component of indi-

vidual risks, also called systematic risk. It is not surprising to see market solutions to reduce the

nondiversifiable risk exposure. Since the underlying factor is not directly observable, it is not pos-

sible to propose derivatives written on the factor itself. However, such derivatives can be replaced

by basket derivatives written on an observable factor proxy. A typical example is provided by Bas-

ket Default Swaps (BDS). These are digital derivatives that pay off at maturity, if the frequency

of defaults in a given pool of obligors is larger than a given threshold. Similarly, a tranche of a

synthetic Collateralized Debt Obligation (CDO) offers protection when the frequency of default

in the pool is in a given range. The frequency of default is a proxy for the systematic credit risk

factor.

The literature on basket derivative pricing has mostly focused on static factor models. Hull,

White (2004) and Laurent, Gregory (2005) consider copula factor models and introduce semi-

analytical and numerical approaches for pricing BDSs and CDOs. Large portfolio approximations

are useful to get pricing methods that are less time consuming. Vasicek (1991) introduces a large

portfolio approximation in the static SRF model [see Example (iii) of Section 2.2] to approximate

the distribution of the default frequency f̂n,t = 1
n

∑n
i=1 yi,t in a pool of obligors. Based on a limit

argument for an infinite class (i.e. n = ∞), the large portfolio approximation of Vasicek (1991)

consists in replacing the distribution of the default frequency f̂n,t by the distribution of the condi-

tional default probability ft
17. This corresponds to the infinite granularity assumption of the Basel

2 regulation for credit risk management. For derivative pricing, this large portfolio approximation

suggests to price a basket derivative as if it were written on the factor value itself instead of the

factor proxy. To adjust for the granularity of the portfolio, the more recent literature considers ap-

proximations for large, but finite, cross-sectional dimension n [see e.g. Gordy (2003), (2004) and

references therein for granularity adjustments of the Value-at-Risk and expected shortfall of the

17Similar large portfolio approximations have been proposed e.g. in Lucas et al. (2001), Schonbucher (2002), Frey,

McNeil (2003), Schloegl, O’Kane (2005) to approximate the distribution of the percentage portfolio loss in more

complex static factor models.

20



portfolio loss distribution in a static framework]. The idea is to approximate the conditional distri-

bution of f̂n,t given ft for large n, and then to integrate out factor ft. Bastide, Benhamou, Ciuca

(2007), El Karoui, Jiao, Kurtz (2008) and El Karoui, Jiao (2009) correct a Gauss (or Poisson)

approximation of the distribution of f̂n,t given ft by using Stein’s zero-bias method 18.

While all the above papers consider static factor models only, Lamb, Perraudin, Van Land-

schoot (2008) extend the SRF model by allowing an autoregressive dynamics for a multivariate

factor. The investors’ information set at date t includes the factor value ft only. By following

Vasicek (1991), the large portfolio approximation of Lamb, Perraudin, Van Landschoot (2008)

is based on the replacement of the conditional distribution of f̂n,t+1 given ft by the conditional

distribution of ft+1 given ft. This conditional distribution is used to price synthetic CDO tranches.

Our paper contributes to the literature by considering a rather general factor model specification

in a dynamic framework (Assumptions A.1-A.5). The factor value ft at date t is not included in the

investors’ information set Ωt. As a result, the conditional distribution of f̂n,t+1 given ft has to be

integrated out w.r.t. the distribution of ft given Ωt (see Sections 4.2 and 4.3). This sharply differs

from static factor models, where the integration is performed w.r.t. the unconditional distribution

of ft, and from dynamic models where ft is assumed observable by the investors at date t. In

our paper the large portfolio approximation concerns primarily the distribution of ft given Ωt

(see Proposition 2), and not only the conditional distribution of f̂n,t+1 given ft as in the previous

literature.

4.2 Approximate pricing of derivatives written on a default frequency

i) Short-term α-to-default swap

Let us consider a large pool of firms of similar size in a given industrial sector. Let yit denote

the indicator for default occurrence, that is yit = 1, if firm i defaults at date t, and = 0, otherwise.

Suppose that the joint distribution of the individual default indicators is given by the SRF model

[Example (iii) in Section 2.2], in which y1,t, ..., yn,t are i.i.d. with the same Bernoulli distribution

B(1, ft), conditional on the transformed factor ft. The Gaussian factor Ft follows the autoregres-

sive dynamics (3.3). A α-to-default swap with maturity t+1 pays one Euro, if the fraction of firms

18Related large n approximations of the portfolio loss distribution are developed in Gordy (2002) and Dembo,

Deuschel, Duffie (2004) based on saddle-point and large deviation techniques, respectively.
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in the pool which are in default at t + 1 is above 100α percent, α ∈ (0, 1], and pays zero Euro,

otherwise. The payoff of this derivative is given by:

a (y1,t+1, ..., yn,t+1) = 1Iȳn,t+1≥α,

where ȳn,t+1 = 1
n

∑n
i=1 yi,t+1.

The basket default swap can be interpreted as a derivative written on a factor proxy. Indeed,

let nt =
∑n

i=1(1 − yi,t) denote the number of firms which are still operating at the end of year t.

Without loss of generality, we assume that these firms correspond to indices i = 1, ..., nt. Then,

we have ȳn,t+1 = nt

n
f̂n,t+1, where f̂n,t+1 = 1

nt

∑nt

i=1 yi,t+1 is the cross-sectional ML estimator of

default probability ft+1 at date t + 1 in the pool of nt firms. Estimator f̂n,t+1 corresponds to the

future default frequency. Thus, the payoff of the α-to-default swap can be written as:

a (y1,t+1, ..., yn,t+1) = 1If̂n,t+1≥αt
,

where αt = n
nt

α is known at date t.

Let us assume for expository purpose a constant sdf and a zero risk-free rate, that is, equal

risk-neutral and historical distributions. The price at time t of the α-to-default swap for maturity

t + 1 is given by:

pn,t(α, 1) = E
[
1If̂n,t+1≥αt

|Ωt

]
. (4.1)

This price can be computed from the prices of exponential derivatives written on f̂n,t+1 by using

the Fourier Transform Inversion formula [Duffie, Pan, Singleton (2000)]. More precisely, the price

at date t of the derivative with exponential payoff exp
(
uf̂n,t+1

)
at t + 1 is given by:

π̃n,t(u, 1) = E
[
exp

(
uf̂n,t+1

)
|Ωt

]

= Et

[
Et

[
exp

(
uf̂n,t+1

)
|ft+1

]]

= Et [{1 + (exp (u/nt)− 1) ft+1}nt ] , (4.2)

where Et[.] denotes the conditional expectation given the investors’ information

Ωt =
(
y1,t, · · · , yn,t, ft−1

)
. By the iterated expectation theorem, we get:

π̃n,t(u, 1) = E [ϕ(ft; u)|Ωt] , (4.3)
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where ϕ(ft; u) = E [{1 + (exp (u/nt)− 1) ft+1}nt | ft]. The density of ft given Ωt is computed

by formula (2.3) applied to the pool of nt−1 firms operating in period (t− 1, t):

g (ft|Ωt) =
g(ft|ft−1) (ft)

nt−1−nt (1− ft)
nt

∫
g(ft|ft−1) (ft)

nt−1−nt (1− ft)
ntdft

. (4.4)

Thus, the true derivative price π̃n,t(u, 1) depends on the investor information Ωt through ft−1, nt

and nt−1. Then, from the Fourier Transform Inversion formula in Proposition 2 of Duffie, Pan,

Singleton (2000), which applies to purely imaginary argument u = iv, we get 19:

pn,t(α, 1) =
1

2
+

1

π

∫ ∞

0

Im [π̃n,t(iv, 1) exp (−ivαt)]

v
dv, (4.5)

where Im denotes the imaginary component of a complex number.

The large portfolio approximation of the α-to-default swap price is derived by the approxima-

tion of the exponential derivative prices. By Corollary 3 and equation (4.3), for nt−1 → ∞ we

get:

π̃n,t(u, 1) =

∫
ϕ(ft; u)ĝnt(ft)dft + o(1/n), (4.6)

where ĝnt is the pdf of the normal distribution in (3.4) with n = nt−1 and f̂n,t = 1
nt−1

∑nt−1

i=1 yi,t.

Since f̂nt = (nt−1 − nt)/nt−1, the approximate derivative price depends on the past default his-

tory through the counts nt−2, nt−1 and nt of firms operating at the end of year t − 2, t − 1 and t,

respectively. An equivalent summary of past default history is nt−1, nt, f̂n,t−1
20 . Then, the ap-

proximation of the α-to-default swap price is obtained by the Fourier Transform Inversion formula

(4.5) applied with approximation (4.6) evaluated at purely imaginary argument.

ii) α-to-default swap at longer horizon

Let us now consider a α-to-default swap with another time-to-maturity τ . The payoff at t + τ

is given by:

a (y1,t+τ , ..., yn,t+τ ) = 1Iȳn,t+τ≥α.

19The Fourier Transform Inversion formula is presented in Duffie, Pan, Singleton (2000) to compute expectations

of indicator and truncated functions of continuous-time affine processes, but is valid for the indicator function of any

random variable. It differs from the Fourier Inversion approach used by Laurent, Gregory (2005) since it directly

provides the conditional cdf of f̂n,t+1 and does not involve the computation of the density of f̂n,t+1.
20Another one is nt, f̂nt, f̂n,t−1.
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The approximation of the derivative price can be derived along the same lines as for short horizon

τ = 1. Indeed, conditional on a factor path, the default probability at horizon τ for a firm which is

operating at t is:

P [yi,t+τ = 1|yi,t = 0, (ft)] = 1− (1− ft+1) · · · (1− ft+τ ) =: λt+τ .

Thus, conditional on a factor path, the default indicators yi,t+τ , i = 1, ..., nt, of the firms operating

at t are i.i.d. with Bernoulli distribution B (1, λt+τ ). The same approach as above can be applied,

with ϕ(ft; u) = E [{1 + (exp (u/nt)− 1) λt+τ}nt | ft].

iii) Other examples of derivatives written on a default frequency

The approximate pricing approach introduced for α-to-default swaps can be extended to other

derivatives written on a default frequency. For instance, a synthetic CDO tranche is a derivative

that offers protection against the portfolio losses in a specific range. Let us consider a portfolio

with homogeneous nominals and zero recovery rates. The percentage portfolio loss at horizon τ is

f̂n,t+τ , and the payoff is
(
f̂n,t+τ − α1

)+

−
(
f̂n,t+τ − α2

)+

, where α1 < α2 are called attachment

(resp. detachment) points. An actively traded contract of this type is written for instance on the

iTraxx Europe index, which is an index based on the CDS spreads of 125 companies. Finally,

derivatives written on an observable factor proxy have been proposed in the insurance industry. A

typical example is the longevity bond. Such a bond has a contractual maturity (e.g. 25-year) and

pays regularly a coupon proportional to the current frequency of surviving people in a contractual

cohort, such as a national population with given age at the date of bond issuing. These observed

frequencies are proxies of the successive values of a longevity factor and correspond to the cross-

sectional maximum likelihood estimates of these factor values. Approximate pricing formulas for

longevity bonds can be derived by considering for instance a single-factor model similar to the

SRF model in Sections 4.2 i), ii), where the common factor is assumed nonstationary to capture a

stochastic trend in mortality risk.

4.3 Granularity adjustment for derivatives written on a factor proxy

While in the SRF model for default the factor approximation is a cross-sectional average, in a more

complex factor model the factor approximation does not admit in general the interpretation of a
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cross-sectional average. For instance, for a homogeneous class of CDS such as Example (v) in

Section 2.2, the cross-sectional factor approximation is a nonlinear transformation of the quantity
1

n

n∑
i=1

[δ log yi,t + (1 − δ) log(1 − yi,t)], see equation (3.5). In this case, the relevant proxy of the

systematic risk factor may be very different from a cross-sectional average of the CDS prices.

In this Subsection we derive approximate pricing formulas for the general framework of a

homogeneous class of assets satisfying Assumptions A.1-A.7 and derivatives written on the fac-

tor proxy f̂n,t+τ = arg max
ft+τ

n∑
i=1

log h (yi,t+τ |ft+τ ), that is the cross-sectional ML estimator of the

factor value ft+τ at time-to-maturity τ . We focus on approximate pricing of derivatives with ex-

ponential payoff exp
(
uf̂n,t+τ

)
. These derivatives are the basis for approximate pricing of more

general payoffs by means of the Fourier Transform Inversion formula (see Section 4.2).

Proposition 5. The true price π̃n,t(u, τ) at time t of the derivative with payoff exp
(
uf̂n,t+τ

)
at

t + τ is such that:

π̃n,t(u, τ) = E [ϕn (ft; u, τ) |Ωt] + o(1/n), (4.7)

where:

ϕn (ft; u, τ) = E

[
m(ft)m(ft+1) · · ·m(ft+τ−1) exp

(
uft+τ − u

2n
I−2
t+τβt+τ +

u2

2n
I−1
t+τ

)
|ft

]
,

(4.8)

with It+τ = E
[
−∂2 log h(yi,t+τ |ft+τ )

∂f2 |ft+τ

]
and:

βt+τ = Cov

(
∂ log h (yi,t+τ |ft+τ )

∂f
,
∂2 log h (yi,t+τ |ft+τ )

∂f 2
+

(
∂ log h (yi,t+τ |ft+τ )

∂f

)2

|ft+τ

)
.

Proof. See Appendix 3.

From equation (3.6), we know that the derivative with payoff exp
(
uf̂n,t+τ

)
is equivalent to a

virtual derivative with payoff written on the factor value. Proposition 5 shows that, at order 1/n,

this payoff does not involve large dimensional integrals w.r.t. the future values of variables yi,t,

i = 1, ..., n, but only an expectation w.r.t. the factor path.

The quantity exp

(
uft+τ − u

2n
I−2
t+τβt+τ +

u2

2n
I−1
t+τ

)
in equation (4.8), u varying, is the Laplace

transform of f̂n,t+τ conditional on ft+τ at order 1/n. It corresponds to the Gaussian distribution

N

(
ft+τ − 1

2n
I−2
t+τβt+τ ,

1

n
I−1
t+τ

)
. The terms of order 1/n capture the effect of finite cohort size.
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More precisely, the price of the virtual derivative written on the factor value itself is:

π∞,t(u, τ) = E [m(ft)m(ft+1) · · ·m(ft+τ−1) exp (uft+τ ) |Ωt] .

The difference between the derivative prices π̃n,t(u, τ) and π∞,t(u, τ) is the granularity adjustment.

The large portfolio approximation theorems of Section 3 can be used to approximate the deriva-

tive price π̃n,t(u, τ). By Corollary 3 we get the next result.

Corollary 6. An approximation at order 1/n of derivative price π̃n,t(u, τ) is:

π̃n,t(u, τ) =

∫
ϕn(ft; u, τ)ĝnt(ft)dft + o(1/n), (4.9)

where ϕn (ft; u, τ) is given in (4.8) and ĝnt is the pdf of the Gaussian distribution (3.2).

The approximate derivative price in Corollary 6 depends only on the observed yi,t’s.

Let us illustrate the use of the pricing formulas in two examples of Section 2.2 (see Table 1 for

the statistics βt and It in the other examples).

i) SRF model for default correlation: We have It+1 = 1/[ft+1(1 − ft+1)] and βt+1 = 0.

Then, from Proposition 5 the true price of the exponential derivative with time-to-maturity 1 is

π̃n,t(u, 1) = E [ϕn(ft; u)|Ωt] at order 1/n, where ϕn(ft; u) = m(ft)E

[
exp

(
uft+1 +

u2

2n
ft+1(1− ft+1)

)
|ft

]

and n = nt
21. The ratio between π̃n,t(u, 1) and the price π∞,t(u, 1) = E [m(ft) exp(uft+1)|Ωt] of

the virtual derivative written on the factor value is:

π̃n,t(u, 1)

π∞,t(u, 1)
= EPu

t

[
exp

(
u2

2n
ft+1 (1− ft+1)

)]
+ o(1/n),

where Pu is a modified probability with density m(ft) exp (uft+1) /Et [m(ft) exp (uft+1)]. In par-

ticular, the price π̃n,t(u, 1) is always larger than π∞,t(u, 1) for large n, and decreases with the size n

of the underlying cohort. Since Vt

[
f̂n,t+1|ft+1

]
= 1

n
ft+1 (1− ft+1), the ratio π̃n,t(u, 1)/π∞,t(u, 1)

represents the price of the aggregate idiosyncratic risk, which does not vanish when the cohort has

a finite size. We get an approximate derivative price from equation (4.9), where ĝn,t is the Gaussian

distribution (3.4) with n = nt−1.

ii) Homogenous class of CDS: Derivatives based on a class of CDS have been introduced on

the market and are generally written on an average of CDS spreads. In a single-factor model, in
21This formula can also be deduced by expanding the RHS of (4.2) at first-order in 1/n.

26



which the systematic factor measures the concentration of risk, such an average does not represent

the appropriate cross-sectional factor proxy. Proposition 5 and Corollary 6 suggest new derivative

designs, where the derivative payoff depends on a cross-sectional maximum likelihood approxi-

mation of the factor. For the homogeneous class of CDS in Example (v) in Section 2.2, we have

It+1 = Ψ′
δ(ft+1) and βt+1 = Ψ′′

δ(ft+1) (see Appendix 2). The price of exponential derivatives writ-

ten on the factor proxy f̂n,t+1 are computed as conditional expectation of the discounted payoff:

ϕn(ft; u) = m(ft)E

[
exp

(
uft+1 − u

2n

Ψ′′
δ(ft+1)

[Ψ′
δ(ft+1)]2

+
u2

2n

1

Ψ′
δ(ft+1)

)
|ft

]
.

The (theoretical) granularity adjustment is:

π̃n,t(u, 1)

π∞,t(u, 1)
= EPu

t

[
exp

(
− u

2n

Ψ′′
δ(ft+1)

Ψ′
δ(ft+1)2

+
u2

2n

1

Ψ′
δ(ft+1)

)]
+ o(1/n).

It involves mean and variance adjustments, associated with the terms in u and u2, respectively.

The presence of a mean adjustment may imply a ratio of prices smaller than 1, that is a negative

granularity adjustment. Indeed, for small u we have
π̃n,t(u, 1)

π∞,t(u, 1)
' 1 − u

2n
Et

[
Ψ′′

δ(ft+1)

Ψ′
δ(ft+1)2

]
. Since

Et

[
Ψ′′

δ(ft+1)

Ψ′
δ(ft+1)2

]
6= 0, the ratio of prices is smaller than 1 for some derivatives. Therefore, the price

π̃n,t(u, 1) of the derivative with payoff exp(uf̂n,t+1) is not necessarily a decreasing function of n,

or equivalently the price π∞,t(u, 1) is not a lower bound for price π̃n,t(u, 1). Even if the underlying

portfolio gets more diversified when size n increases, the above unexpected effect can be explained

by the asymptotic bias in the proxy f̂n,t+1, whenever βt+1 6= 0. This is a rather common feature of

nonlinear factor models.

5 Numerical illustration to basket default swap

In this section we provide a numerical illustration to approximate pricing of α-to-default swap

derivatives within a dynamic SRF model (see Sections 3.2 and 4.2). Compared to the standard

pricing methods based on static factor models, our approach accounts for all individual default

histories. We focus on the pricing error due to the large portfolio approximation of the factor pre-

dictive distribution. We do not analyze the granularity adjustment which measures the difference

between the true prices and the misspecified pricing with n = ∞ proposed in Basel 2.
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5.1 The SRF model

The time period corresponds to one year. In SRF model (2.4), the asset volatility is σ = 0.20,

and parameter µ is set equal to 0.3501 in order to match an historical (unconditional) default

probability of 4% 22 . The asset correlation parameter ρ can be calibrated in order to match relevant

values of (unconditional) default correlation 23 . In the empirical literature, different orders of

magnitude for estimated default correlations have been proposed, according to the country, firm

size and characteristics used to group the firms in homogeneous classes. For instance, values of

about 1% have been found when large US firms are grouped into industrial sectors [De Servigny,

Renault (2002), Feng, Gouriéroux, Jasiak (2008)], while the estimated default correlations are

about 0.1% for small and medium size French firms classified according to both industrial sector

and rating [Gagliardini, Gouriéroux (2005)]. These values of default correlation imply an asset

correlation ρ below 0.10, much smaller than the value of about 0.30 given by the formula proposed

by the Basle Committee for a default probability of 4%. To cover the range obtained with these

different approaches, we consider three values of asset correlation, that are ρ = 0.01, ρ = 0.10

and ρ = 0.30, respectively. Finally, the common factor Ft is a Gaussian autoregressive process as

in (3.3), where the autocorrelation coefficient is γ = 0.5 and the innovations ηt are i.i.d. standard

Gaussian variables. For expository purpose, the sdf is assumed constant with zero risk-free rate.

5.2 Factor distributions and derivative prices

Let us first illustrate the patterns of the factor distribution and α-to-default swap price for a specific

past default history. The numbers of operating firms at the end of years t−1 and t are nt−1 = 1000

and nt = 960, respectively, which imply f̂nt = 0.04. We consider three different values of nt−2,

which correspond to f̂n,t−1 = 0.04, f̂n,t−1 = 0.0025, and f̂n,t−1 = 0.125, respectively.

Figure 2 displays the conditional distribution of factor ft given ft−1, for different values of

ft−1 and asset correlation ρ = 0.10. The conditioning values of ft−1 are given in terms of their

22The unconditional default probability is equal to Φ (−µ/σ).
23The unconditional default correlation between any two firms i and j is given by [see e.g. Gouriéroux, Tiomo

(2007), Chapter 7]:

corr (yi,t, yj,t) =
Φ2 (−µ/σ,−µ/σ; ρ)− Φ(−µ/σ)2

Φ(−µ/σ) [1− Φ(−µ/σ)]
,

where Φ2 (., .; ρ) denotes the joint cdf of the bivariate standard Gaussian distribution with correlation coefficient ρ.
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corresponding Gaussian factor Ft−1; they are Ft−1 = 0, Ft−1 = 2, Ft−1 = −2, respectively. Figure

3 displays the conditional distribution of factor ft given the investors’ information ft−1, nt−1, and

nt, for different values of ft−1 and asset correlation ρ = 0.10. The conditioning values of the

lagged factor are Ft−1 = 0, Ft−1 = 2 and Ft−1 = −2, respectively. The density is obtained by

formula (4.4), where the integral in the denominator is computed numerically. Figure 4 displays

the approximate distribution of factor ft given the past default history nt, nt−1, f̂n,t−1, for different

values of f̂n,t−1. Asset correlation is ρ = 0.10. The approximation is obtained by formula (3.4).

Whereas the sole knowledge of the lagged factor value results in skewed distributions with very

different patterns (Figure 2), the observed default frequencies are very informative. When this

additional information is introduced, the predictive distributions given the investors’ information

are close to Gaussian distributions, peaked at a value near f̂n,t = 0.04 and much less sensitive to

the lagged factor value (see Figure 3). Similarly, the approximate predictive distributions given

the default history are not very sensitive to the estimated lagged factor value (see Figure 4), and

close to the predictive distributions given the investors’ information displayed in Figure 3. These

findings are consistent with Proposition 2.

The true price of α-to-default swap at time-to-maturity 1 year with payoff 1If̂n,t+1≥αn/nt
[see

Section 4.2 i)] is displayed in Figure 5 as a function of α, for three different values of asset corre-

lation ρ = 0.01, ρ = 0.10 and ρ = 0.30, respectively. The initial size of the pool is n = 1000, and

the current size is nt = 960. The lagged Gaussian factor value is Ft−1 = 0. The true price is com-

puted with the Fourier Transform Inversion formula (4.5), where the exponential derivative prices

are obtained from (4.2) by Monte-Carlo simulation with the acceptance-rejection algorithm based

on 10, 000 draws [see e.g. Robert, Casella (2004) and Appendix 4 i) for a discussion of this algo-

rithm]. The pattern of the true price as a function of α corresponds to the (risk-neutral) survivor

function of the future factor proxy f̂n,t+1 [see equation (4.1)]. For small values of ρ, this function

is close to a Gaussian survivor function because of the Central Limit Theorem 24. Moreover, the

derivative prices for large values of α, above 10% say, are very small, since they correspond to

rare joint default events. As expected, default correlation is a key parameter to measure the quality

24Strictly speaking, the CLT cannot be applied to f̂n,t+1 = 1
nt

∑nt

i=1 yi,t+1, since the common factor introduces an

equicorrelation structure across the individuals. However, for ρ = 0.01 the equicorrelation is weak and the Gaussian

approximation implied by the CLT is rather accurate.
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of a basket derivative. The true price of the α-to-default swap decreases in ρ (resp. increases in

ρ) for small (resp. large) values of α. This is due to the positive effect of ρ on the variance of

the (risk-neutral) distribution of f̂n,t+1. Figure 6 displays the true price of the α-to-default swap at

time-to-maturity 1 year as a function of α, for three different values of the lagged factor Ft−1 = 0,

Ft−1 = −2, and Ft−1 = 2. Asset correlation is ρ = 0.10. Since the observed current and past

default frequencies are included in the investor’s information set, the derivative price is not very

sensitive to the lagged factor value.

Figure 7 displays the approximate price of the α-to-default swap at time-to-maturity 1-year as

a function of α, for three different values of asset correlation ρ = 0.01, ρ = 0.10 and ρ = 0.30.

The past default history is such that f̂n,t−1 = 0.04. The approximation is obtained by Fourier

Transform Inversion formula (4.5) and approximation (4.6) for exponential derivatives [see also

Appendix 4 ii) for the implementation]. The approximate prices with f̂n,t−1 = 0.04 are close to

the true prices with Ft−1 = 0 (see Figure 5). Finally, Figure 8 displays the approximate price of

the α-to-default swap at time-to-maturity 1 year as a function of α, for asset correlation ρ = 0.10

and three different values of f̂n,t−1. The approximate price is not very sensitive to the estimate of

the lagged factor value.

5.3 Monte-Carlo

Let us now investigate the size of the pricing errors implied by the approximation formula. Let us

consider a α-to-default contract issued at date t = 0 on a pool of n = n0 obligors and maturing

at date t = 3. We consider two different values for the initial size of the pool, which are n = 100

and n = 1000. The price is computed at date t = 2, for default frequencies α = 2.5%, α = 5%,

α = 10% and α = 12.5%. To compare the true and approximate prices, we perform a Monte-

Carlo experiment to simulate the factor path ft, t = 1, 2, and the default history summarized by

nt, t = 1, 2. The price approximation is not valid when f̂n,t is equal to either 0 or 1, where the

approximate factor density is degenerate with zero variance. Thus, we disregard the realizations

with either f̂n,t = 0, or f̂n,t = 1, which amounts to simulate the process conditional on the event

f̂n,t ∈ (0, 1). For each Monte-Carlo replication, we compute i) the true prices at t = 2 using

nt, nt−1, ft−1, and ii) the approximate prices using nt, nt−1, f̂n,t−1. We perform 2500 replications.
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The computation of the theoretical and approximated derivative prices in one replication takes

about 4 seconds and 40 seconds, respectively, on a standard computer.

Table 2 reports the mean, the median, the two quartiles and the upper and lower 5% quantiles

of the distribution of the relative pricing errors, as well as the median of the absolute value of the

relative pricing errors. The three panels refer to asset correlation ρ = 0.01, ρ = 0.10 and ρ = 0.30,

respectively. The relative pricing error is defined as the difference between approximated price and

true price, divided by the true price. The approximate prices are obtained by the method discussed

in Section 5.2. The bias is rather small, and increases for small size of the class and large asset

correlation 25 (see the Panel with ρ = 0.30 and n = 100). For default frequencies α = 2.5%,

α = 5%, asset correlations ρ = 0.10, ρ = 0.30 and class size n = 1000, the median absolute value

of the relative pricing errors in percentage is below 3%. Relative pricing errors in percentage are

less than 10% in absolute value with probability at least 0.90. At the contrary, the median absolute

value of the relative pricing errors in percentage may be larger than 5% for either frequencies

α = 10%, α = 12.5%, or for class size n = 100, or for asset correlation ρ = 0.01. To explain

these findings, note that frequencies α = 10% and α = 12.5% correspond to rather extreme joint

default events compared to the historical default probability of 4%. The associated true derivative

prices are often very close to zero. In practice, since prices are displayed in discrete ticks, these

small values correspond to zero prices, yielding infinite relative approximation errors. To avoid this

problem, the statistics in Table 2 are computed using only the Monte-Carlo values with true prices

larger than .005. Still, for true prices close to this lower bound, the relative approximation errors

are quite large and explain the large values of the quantiles displayed in Table 2 for frequencies

α = 10%, 12.5%. For asset correlation ρ = 0.01, only the statistics for frequencies α = 2.5%,

α = 5% and pool size n = 1000 are displayed. Indeed, for α = 10% and α = 12.5% the derivative

prices are always below .005 (see Figure 5). Moreover for ρ = 0.01 the relative pricing errors

are rather large, and often above 100% for pool size n = 100 (not displayed). This is because for

ρ = 0 the factor ft does not impact the individual default indicators, and then the approximation

theorem breaks down.
25The bias reflects the strong negative skewness of the distribution of the relative pricing errors.
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6 Concluding remarks

A large variety of basket derivatives with nonlinear payoffs have been introduced in the market to

capture the nonlinear dynamic features of common latent risk factors influencing a homogeneous

pool of individual contracts. The associated securitization usually concerns either individual loans,

or insurance contracts. In our paper, we have derived approximated derivative pricing formulas

for large underlying pools. These formulas are semi-analytic. They can be applied to factors

with different interpretations, such as mean, volatility, default correlation, or concentration, and to

any factor dynamics. Moreover, the approach considers coherently the historical and risk-neutral

dynamics.

The large-portfolio pricing formulas do not involve the unobservable factor values, which are

replaced by well-chosen summaries constructed from the observable asset returns. Thus, these

approximate pricing formulas can be used even when no price of additional highly traded deriva-

tives is observed, as it is the case at the emergence of a new derivative market. It is known that

some major financial risks are due to systematic factors. The approximate pricing formulas can be

used to hedge systematic risk by introducing derivatives written on a cross-sectional factor proxy

compatible with the factor interpretation.

The present paper focuses on derivative pricing, and assumes the historical model parameters

and the risk premia known. In practice, the distribution of the observable variable yit given the

factor value ft, and the transition of the factor ft, involve unknown parameters. The estimation

of these historical parameters is the subject of a companion paper [see Gagliardini, Gouriéroux

(2008)]. Similarly, the sdf specification involves unknown risk premium parameters. The choice

of these sdf parameters is still an open question. At the emergence of a new derivative market,

risk premia are selected by the first firm proposing the products on a monopolistic and risk attitude

basis. In a later stage of market development, risk premia will be updated by using the incoming

information on the market prices of highly traded derivatives.

Finally, the methodology of the present paper can be extended to more complicated dynamic

models: first, to models featuring an idiosyncratic dynamics, that is, an additional effect of lagged

yi,t−1 on yi,t [see Gagliardini, Gouriéroux, Monfort (2010) for the extension of the approximation

formula]; second, to models including both observable and unobservable common factors [see
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Duffie et al. (2009) for an example of such a model]; third, to models with observed heterogeneity

to account for the so-called concentration risk.
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Table 1: Statistics for large portfolio approximation (Proposition 2) and granularity

adjustment (Proposition 5)

Linear factor model

f̂n,t = ȳn,t, In,t =
1

σ2
, Kn,t = 0, It =

1

σ2
, βt = 0.

Single-factor stochastic volatility model

f̂n,t =
1

n

n∑
i=1

(yi,t − µ)2, In,t =
1

2f̂ 2
n,t

, Kn,t =
2

f̂ 3
n,t

,

It =
1

2f 2
t

, βt = 0.

SRF model for default correlation

f̂n,t = ȳn,t, In,t =
1

ȳn,t (1− ȳn,t)
, Kn,t = 4

1/2− ȳn,t

ȳ2
n,t (1− ȳn,t)

2 ,

It =
1

ft(1− ft)
, βt = 0.

Single-factor corporate spread model

f̂n,t = Ψ−1

(
1

n

n∑
i=1

log yi,t + log λ

)
, where Ψ (s) :=

d log Γ(s)

ds
,

In,t = Ψ
′
(
f̂n,t

)
, Kn,t = −Ψ

′′
(
f̂n,t

)
, It = Ψ

′
(ft), βt = Ψ

′′
(ft).

Homogenous class of CDS

f̂n,t = Ψ−1
δ

(
1

n

n∑
i=1

[δ log yi,t + (1− δ) log (1− yi,t)]

)

where Ψδ(s) := δΨ (δs) + (1− δ) Ψ ((1− δ) s)−Ψ (s) ,

In,t = Ψ
′
δ

(
f̂n,t

)
, Kn,t = −Ψ

′′

δ

(
f̂n,t

)
,

It = Ψ
′
δ (ft), βt = Ψ

′′

δ (ft) .
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Table 2: Relative pricing errors

ρ = 0.01 n = 100 n = 1000

α .025 .05 .10 .125 .025 .05 .10 .125

Mean .0254 .0068 price below tick

5% Qu -.0497 -.5362 price below tick

25% Qu -.0141 -.2179 price below tick

Median approximation breaks down .0029 .0009 price below tick

75 % Qu .0320 .2183 price below tick

95% Qu .1808 .5757 price below tick

Median abs .0201 .2179 price below tick

ρ = 0.10 n = 100 n = 1000

α .025 .05 .10 .125 .025 .05 .10 .125

Mean .0260 .0287 -.0157 -.0190 .0004 -.0023 -.0004 -.0109

5% Qu -.4735 -.8361 -1.1743 -1.3239 -.0462 -.0983 -.2215 -.2551

25% Qu -.0728 -.1484 -.2799 -.3652 -.0125 -.0294 -.0770 -.0908

Median .0033 .0057 -.0055 -.0206 .0009 .0013 -.0034 -.0051

75% Qu .0887 .1942 .2682 .3064 .0123 .0293 .0739 .1018

95% Qu .5385 .7743 .8887 1.1067 .0426 .0831 .2284 .3171

Median abs .0792 .1662 .2718 .3363 .0124 .0294 .0754 .0960

ρ = 0.30 n = 100 n = 1000

α .025 .05 .10 .125 .025 .05 .10 .125

Mean -.0573 -.0750 -.0931 -.0975 -.0065 -.0076 -.0084 -.0086

5% Qu -.4988 -.6628 -.8342 -.8837 -.0722 -.1000 -.1582 -.2083

25% Qu -.0611 -.0800 -.1120 .1262 -.0180 -.0280 -.0518 -.0631

Median -.0027 -.0029 -.0006 .0007 -.0000 -.0016 -.0062 -.0085

75% Qu .0240 .0381 .0626 .0758 .0143 .0235 .0440 .0504

95% Qu .0925 .1408 .2103 .2463 .0486 .0749 .1300 .1723

Median abs .0358 .0505 .0761 .0888 .0159 .0257 .0484 .0564
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Figure 1: Prediction interval as a function of the available information

In each Panel, the solid line is the predictive mean for the factor value, and the dashed lines give the

95% prediction interval with class size n = 100. We consider static factor models. The available

information corresponds to the factor approximation f̂n,t. For the single-factor linear model (upper

Panel), we assume ft ∼ IIN(µ, η2), where µ = 0.10 and η = 0.0155. For the SRF model (middle

Panel), we have Ft ∼ IIN(0, 1) as in Vasicek (1987). For the homogenous class of CDS (lower

Panel), we assume ft ∼ i.i.d.γ(1). 41
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Figure 2: Transition density of the factor

The Figure plots the conditional distribution of factor ft given ft−1, for different values of ft−1.

The conditioning values of ft−1 are given in terms of their corresponding Gaussian factor values

Ft−1; they are Ft−1 = 0, Ft−1 = 2, Ft−1 = −2, respectively. Asset correlation is ρ = 0.10.
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Figure 3: Predictive distribution of the factor given investors’ information

The Figure plots the conditional distribution of factor ft given ft−1, nt−1 = 1000, and nt = 960, for

different values of ft−1. The conditioning values of ft−1 are given in terms of their corresponding

Gaussian factor values Ft−1; they are Ft−1 = 0, Ft−1 = 2, and Ft−1 = −2 respectively. Asset

correlation is ρ = 0.10.
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Figure 4: Gaussian approximation of the factor predictive density

The Figure plots the approximate conditional distribution of ft given past default history nt−1 =

1000, nt = 960, f̂n,t−1, for different values of f̂n,t−1. Asset correlation is ρ = 0.10.
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Figure 5: True price of the α-to-default swap for different values of the asset correlation

The Figure plots the price of α-to-default swap at time-to-maturity 1 year as a function of α, for

three different values of asset correlation ρ = 0.01 (dotted line), ρ = 0.10 (solid line) and ρ = 0.30

(dashed line). The lagged Gaussian factor value is Ft−1 = 0.
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Figure 6: True price of the α-to-default swap for different values of the lagged factor

The Figure plots the price of α-to-default swap at time-to-maturity 1 year as a function of α, for

three different values of the lagged factor Ft−1 = 0, Ft−1 = −2, and Ft−1 = 2. Asset correlation

is ρ = 0.10.
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Figure 7: Approximate price of the α-to-default swap for different values of asset correlation

The Figure plots the approximate price of α-to-default swap at time-to-maturity 1 year as a function

of α, for three different values of asset correlation ρ = 0.01 (dotted line), ρ = 0.10 (solid line) and

ρ = 0.30 (dashed line). The past default history is such that f̂n,t−1 = 0.04.
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Figure 8: Approximate price of the α-to-default swap for different values of the lagged factor

The Figure plots the approximate price of α-to-default swap at time-to-maturity 1 year as a function

of α, for different values of f̂n,t−1. Asset correlation ρ = 0.10.
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Appendix 1: Proof of Proposition 2

i) Let us first derive an approximation for the conditional Laplace transform of ft given y1,t, ...,yn,t

and ft−1 :

Lnt(u) = E
[
exp (uft) |y1,t, ..., yn,t, ft−1

]
=

∫
euftg(ft|ft−1)

n∏
i=1

h (yi,t|ft) dft

∫
g(ft|ft−1)

n∏
i=1

h (yi,t|ft) dft

, (A.1)

which depends only on y1,t, ..., ynt and ft−1.

Let us expand the micro-density around f̂nt :
n∑

i=1

log h (yi,t|ft) =
n∑

i=1

log h
(
yi,t|f̂nt

)

+
1

2

1

n

n∑
i=1

∂2 log h

∂f 2
t

(
yi,t|f̂nt

) [√
n

(
ft − f̂nt

)]2

+
1

6
√

n

1

n

n∑
i=1

∂3 log h

∂f 3
t

(
yi,t|f̂nt

) [√
n

(
ft − f̂nt

)]3

+
1

24n

1

n

n∑
i=1

∂4 log h

∂f 4
t

(
yi,t|f̂nt

) [√
n

(
ft − f̂nt

)]4

+ o (1/n) .

Let us introduce the change of variable:

X = I
1/2
nt

√
n

(
ft − f̂nt

)
⇐⇒ ft = f̂nt +

1√
n

I
−1/2
nt X .

Then, we have:
n∑

i=1

log h (yi,t|ft) =
n∑

i=1

log h
(
yi,t|f̂nt

)
− 1

2
X2 +

1

6
√

n
JntX

3 +
1

24n
QntX

4 + o(1/n),

where:

Jnt = I
−3/2
nt Knt and Qnt = I−2

nt

1

n

n∑
i=1

∂4 log h

∂f 4
t

(
yi,t|f̂nt

)
.

Thus:
n∏

i=1

h (yi,t|ft) =
n∏

i=1

h
(
yi,t|f̂nt

)
exp

(
−1

2
X2

)
exp

(
1

6
√

n
JntX

3 +
1

24n
QntX

4 + o(1/n)

)

=
n∏

i=1

h
(
yi,t|f̂nt

)
exp

(
−1

2
X2

)

[
1 +

1

6
√

n
JntX

3 +
1

24n
QntX

4 +
1

72n
J2

ntX
6 + o(1/n)

]
. (A.2)
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Similarly, we have an expansion for log g(ft|ft−1) as:

log g(ft|ft−1) = log g

(
f̂nt +

1√
n

I
−1/2
nt X|ft−1

)

= log g
(
f̂nt|ft−1

)
+

1√
n

I
−1/2
nt AntX +

1

2n
I−1
nt BntX

2 + o(1/n),

where:

Ant =
∂ log g

∂ft

(
f̂nt|ft−1

)
and Bnt =

∂2 log g

∂f 2
t

(
f̂nt|ft−1

)
.

Thus:

g(ft|ft−1) = g
(
f̂nt|ft−1

)
exp

(
1√
n

I
−1/2
nt AntX +

1

2n
I−1
nt BntX

2 + o(1/n)

)

= g
(
f̂nt|ft−1

) [
1 +

1√
n

I
−1/2
nt AntX +

1

2n
I−1
nt BntX

2 +
1

2n
I−1
nt A2

ntX
2 + o(1/n)

]
.

(A.3)

Finally, we have an expansion for exp (uft) :

exp (uft) = exp
(
uf̂nt

)
exp

(
u√
n

I
−1/2
nt X

)

= exp
(
uf̂nt

) [
1 +

u√
n

I
−1/2
nt X +

u2

2n
I−1
nt X2 + o(1/n)

]
. (A.4)

Let us now substitute expansions (A.2)-(A.4) into the numerator in equation (A.1) (the denom-

inator is obtained by setting u = 0). We have:
∫

euftg(ft|ft−1)
n∏

i=1

h (yi,t|ft) dft = euf̂nt

n∏
i=1

h
(
yi,t|f̂nt

)
g

(
f̂nt|ft−1

)

EX

[(
1 +

u√
n

I
−1/2
nt X +

u2

2n
I−1
nt X2 + o(1/n)

)

(
1 +

1√
n

I
−1/2
nt AntX +

1

2n
I−1
nt

(
Bnt + A2

nt

)
X2 + o(1/n)

)

(
1 +

1

6
√

n
JntX

3 +
1

24n
QntX

4 +
1

72n
J2

ntX
6 + o(1/n)

)]
,

where the expectation EX is w.r.t. the standard normal variable X. Since odd power moments of

X are equal to zero, the terms of order 1/
√

n [and similarly the terms of order 1/ (n
√

n), if the

expansion is considered up to order 1/n2] cancel and the expectation is equal to:

1 +
u

n

[
I−1
nt Ant +

1

2
I
−1/2
nt Jnt

]
+

1

2n
u2I−1

nt + Λnt + O(1/n2),
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where:

Λnt =
1

2n
I−1
nt

(
Bnt + A2

nt

)
+

1

2n
I
−1/2
nt JntAnt +

1

8n
Qnt +

1

72n
J2

ntE
[
X6

]
,

is independent of u. Thus, we deduce:

Lnt(u) = euf̂nt

1 + u
n

(
I−1
nt Ant + 1

2
I
−1/2
nt Jnt

)
+ 1

2n
u2I−1

nt + Λnt + O(1/n2)

1 + Λnt + O(1/n2)

= euf̂nt

(
1 +

u

n

(
I−1
nt Ant +

1

2
I
−1/2
nt Jnt

)
+

1

2n
u2I−1

nt + Λnt + O(1/n2)

) (
1− Λnt + O(1/n2)

)

= euf̂nt

[
1 +

u

n

(
I−1
nt Ant +

1

2
I
−1/2
nt Jnt

)
+

1

2n
u2I−1

nt + O(1/n2)

]
.

By definition of Jnt and Ant, we conclude:

Lnt(u) = euf̂nt

{
1 +

u

n

(
I−1
nt

∂ log g

∂ft

(
f̂nt|ft−1

)
+

1

2
I−2
nt Knt

)
+

1

2n
u2I−1

nt

}
+ O(1/n2),

and

Lnt(u) = exp

{
uf̂nt +

u

n

(
I−1
nt

∂ log g

∂ft

(
f̂nt|ft−1

)
+

1

2
I−2
nt Knt

)
+

1

2n
u2I−1

nt + O(1/n2)

}
.

ii) Another approximation valid at order 1/n can be obtained by replacing ft−1 by f̂n,t−1. We

have:

Lnt(u) = exp

{
uf̂nt +

u

n

(
I−1
nt

∂ log g

∂ft

(
f̂nt|f̂n,t−1

)
+

1

2
I−2
nt Knt

)
+

1

2n
u2I−1

nt + o(1/n)

}
.

Then, Proposition 2 follows.
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Appendix 2: Examples

In this Appendix we derive the expressions of the summary statistics f̂nt, Int, Knt, It and βt for

Example (v) (the derivation of the statistics for the other examples given in Table 1 is similar and

available from the authors on request).

We have:

∂ log h(yi,t|ft)

∂ft

= −Ψδ (ft) + δ log yi,t + (1− δ) log (1− yi,t) ,

∂2 log h(yi,t|ft)

∂f 2
t

= −Ψ
′
δ (ft) ,

∂3 log h(yi,t|ft)

∂f 3
t

= −Ψ
′′
δ (ft) ,

where Ψδ (ft) := δΨ (δft) + (1− δ) Ψ ((1− δ) ft) − Ψ (ft) and Ψ(s) :=
d log Γ(s)

ds
. We deduce

that f̂n,t solves the equation Ψδ(f̂n,t) =
1

n

n∑
i=1

[δ log yi,t + (1 − δ) log(1 − yi,t)], In,t = Ψ
′
δ

(
f̂n,t

)
,

Kn,t = −Ψ
′′
δ

(
f̂n,t

)
, and It = Ψ

′
δ (ft). Since It is a conditional variance, we have It > 0, which im-

plies that Ψ′
δ(.) is monotone increasing. Thus, f̂n,t = Ψ−1

δ

(
1

n

n∑
i=1

[δ log yi,t + (1− δ) log(1− yi,t)]

)
.

Finally, let us derive βt. We have:

βt = Cov

(
∂ log h(yi,t|ft)

∂ft

,
∂2 log h(yi,t|ft)

∂f 2
t

+

(
∂ log h(yi,t|ft)

∂ft

)2

|ft

)
= E

[(
∂ log h(yi,t|ft)

∂ft

)3

|ft

]

= E
[
(Zi,t − E [Zi,t|ft])

3 |ft

]
= M

′′′
t (0),

where Zi,t := δ log yi,t + (1− δ) log (1− yi,t) and Mt(s) := log E [exp (sZi,t) |ft]. We have:

E [exp (sZi,t) |ft] = E
[
yδs

i,t (1− yi,t)
(1−δ)s |ft

]

=
Γ(ft)

Γ(δft)Γ((1− δ) ft)

∫ 1

0

y
δ(ft+s)−1
i,t (1− yi,t)

(1−δ)(ft+s)−1 dyi,t

=
Γ(ft)

Γ(δft)Γ((1− δ) ft)

Γ(δ (ft + s))Γ((1− δ) (ft + s))

Γ(ft + s)
.

Thus:

βt = M
′′′
t (0) = δ3Ψ

′′
(δft) + (1− δ)3 Ψ

′′
((1− δ) ft)−Ψ

′′
(ft) = Ψ

′′
δ (ft) .
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Appendix 3: Proof of Proposition 5

The proof of Proposition 5 relies on a higher-order stochastic expansion for f̂n,t+τ . This

stochastic expansion is derived from results in ML theory that are recalled below.

i) A useful result in ML theory

Let θ̂n = arg max
θ

n∑
i=1

log h (yi; θ) be the ML estimator of parameter θ in the p.d.f. h(y; θ). The

asymptotic expansion of θ̂n at order 1/n is given by [see Gouriéroux, Monfort (1995), Chapter 23]:

θ̂n − θ =
1√
n

I−1An +
1

n

[
I−2AnBn +

1

2
I−3KA2

n

]
+ op(1/n), (A.5)

where:

I = E

[
−∂2 log h (yi; θ)

∂θ2

]
, K = E

[
∂3 log h (yi; θ)

∂θ3

]
,

and:

An =
1√
n

n∑
i=1

∂ log h

∂θ
(yi; θ) , Bn =

1√
n

n∑
i=1

[
∂2 log h (yi; θ)

∂θ2
+ I

]
.

The quantity K can be rewritten in terms of covariances of the first- and second-order derivatives

of the log density. More precisely we have:

∂ log h

∂θ
=

1

h

∂h

∂θ
, (A.6)

∂2 log h

∂θ2
=

1

h

∂2h

∂θ2
− 1

h2

(
∂h

∂θ

)2

=
1

h

∂2h

∂θ2
−

(
∂ log h

∂θ

)2

, (A.7)

and:

∂3 log h

∂θ3
=

1

h

∂3h

∂θ3
− 3

h2

∂h

∂θ

∂2h

∂θ2
+

2

h3

(
∂h

∂θ

)3

=
1

h

∂3h

∂θ3
− 3

∂ log h

∂θ

∂2 log h

∂θ2
−

(
∂ log h

∂θ

)3

. (A.8)

By taking the expectation on both sides of equations (A.6) and (A.7), we get E

[
∂ log h(yi; θ)

∂θ

]
=

0 and I = E

[(
∂ log h(yi; θ)

∂θ

)2
]

, respectively. By taking the expectation on both sides of equa-
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tion (A.8), we get:

K = −3Cov

(
∂ log h(yi; θ)

∂θ
,
∂2 log h(yi; θ)

∂θ2

)
− E

[(
∂ log h(yi; θ)

∂θ

)3
]

= −2Cov

(
∂ log h(yi; θ)

∂θ
,
∂2 log h(yi; θ)

∂θ2

)

−Cov

(
∂ log h(yi; θ)

∂θ
,
∂2 log h(yi; θ)

∂θ2
+

(
∂ log h(yi; θ)

∂θ

)2
)

. (A.9)

ii) Stochastic expansion of f̂n,t+τ

The asymptotic expansion of the ML estimator f̂n,t+τ = arg maxft+τ

∑n
i=1 log h (yi,t+τ |ft+τ )

at order 1/n is derived from equation (A.5), by replacing the parameter θ with the factor value ft+τ

and by computing the expectations conditional on ft+τ . The stochastic expansion is given by:

f̂n,t+τ − ft+τ =
1√
n

I−1
t+τAn,t+τ +

1

n

[
I−2
t+τAn,t+τBn,t+τ +

1

2
I−3
t+τKt+τA

2
n,t+τ

]
+ op(1/n), (A.10)

where:

It+τ = E

[
−∂2 log h (yi,t+τ |ft+τ )

∂f 2
|ft+τ

]
, Kt+τ = E

[
∂3 log h (yi,t+τ |ft+τ )

∂f 3
|ft+τ

]
,

and:

An,t+τ =
1√
n

n∑
i=1

∂ log h

∂f
(yi,t+τ |ft+τ ) , Bn,t+τ =

1√
n

n∑
i=1

[
∂2 log h (yi,t+τ |ft+τ )

∂f 2
+ It+τ

]
.

Conditionally on Ωt and (ft) , the random vector Cn,t+τ := (An,t+τ , Bn,t+τ )
′

is such that:

E [Cn,t+τ |Ωt, (ft)] = 0, (A.11)

and:

V [Cn,t+τ |Ωt, (ft)] =


 It+τ Wt+τ

Wt+τ Rt+τ


 , (A.12)

where Wt+τ = Cov
(

∂ log h(yi,t+τ |ft+τ )

∂f
,

∂2 log h(yi,t+τ |ft+τ )

∂f2 |ft+τ

)
and Rt+τ = V

[
∂2 log h(yi,t+τ |ft+τ )

∂f2 |ft+τ

]
.

Moreover from (A.9) we have:

Kt+τ = −2Wt+τ − βt+τ , (A.13)

where βt+τ = Cov

(
∂ log h(yi,t+τ |ft+τ )

∂f
,

∂2 log h(yi,t+τ |ft+τ )

∂f2 +
(

∂ log h(yi,t+τ |ft+τ )

∂f

)2

|ft+τ

)
.
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iii) Asymptotic expansion of the derivative price

The price at t of the derivative with payoff exp
(
uf̂n,t+τ

)
is given by:

π̃n,t(u, τ) = E
[
m(ft)m(ft+1) · · ·m(ft+τ−1)e

uf̂n,t+τ |Ωt

]

= E
[
m(ft)m(ft+1) · · ·m(ft+τ−1)E

[
euf̂n,t+τ |Ωt, (ft)

]
|Ωt

]
.

By using stochastic expansion (A.10), we have:

E
[
euf̂n,t+τ |Ωt, (ft)

]

= euft+τ E

[
exp

(
u√
n

I−1
t+τAn,t+τ +

u

n

[
I−2
t+τAn,t+τBn,t+τ +

1

2
I−3
t+τKt+τA

2
n,t+τ

])
| (ft)

]
+ o(1/n).

By expanding the exponential function, and using (A.11)-(A.13), we get:

E
[
euf̂n,t+τ |Ωt, (ft)

]
= euft+τ

(
1 +

u

n
I−2
t+τWt+τ +

u

2n
I−2
t+τKt+τ +

u2

2n
I−1
t+τ

)
+ o(1/n)

= euft+τ

(
1 +

u2

2n
I−1
t+τ −

u

2n
I−2
t+τβt+τ

)
+ o(1/n)

= exp

(
uft+τ +

u2

2n
I−1
t+τ −

u

2n
I−2
t+τβt+τ

)
+ o(1/n).

We conclude by using the iterated expectation theorem and the Markov property of process (ft):

π̃n,t(u, τ)

= E

[
m(ft)m(ft+1) · · ·m(ft+τ−1) exp

(
uft+τ +

u2

2n
I−1
t+τ −

u

2n
I−2
t+τβt+τ

)
|Ωt

]
+ o(1/n)

= E

[
E

[
m(ft)m(ft+1) · · ·m(ft+τ−1) exp

(
uft+τ +

u2

2n
I−1
t+τ −

u

2n
I−2
t+τβt+τ

)
|ft

]
|Ωt

]
+ o(1/n).
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Appendix 4: Numerical illustration to basket default derivatives

i) Computation by simulation of the true price of exponential derivatives

The true price π̃n,t(u, 1) in (4.2) can be computed with Monte-Carlo simulation by drawing

first a sample {f s
t }s=1,...,S from the density of ft given Ωt, and then drawing a value f s

t+1 from the

density of ft+1 given f s
t for any s = 1, ..., S. To simulate from the density of ft given Ωt we can

use the acceptance-rejection algorithm [e.g., Robert, Casella (2004)]. We have from (4.4):

g(ft|Ωt) ∝ (ft)
nt−1−nt (1− ft)

ntg(ft|ft−1),

where ∝ denotes equality of the densities up to a scale factor (depending on the conditioning

variables only). By definition of the ML estimator f̂n,t, we have:

(ft)
nt−1−nt (1− ft)

nt ≤
(
f̂n,t

)nt−1−nt
(
1− f̂n,t

)nt

, for any value of ft.

Thus, the density of ft given Ωt is upper bounded, and the density of ft given ft−1 is a majorizing

density. The acceptance-rejection algorithm to draw f s
t works as follows:

i) Generate a random draw f̃t from the density of ft given ft−1.

ii) Generate a uniform variable U ∼ U(0, 1), independent of f̃t.

iii) If U ≤

(
f̃t

)nt−1−nt
(
1− f̃t

)nt

(
f̂n,t

)nt−1−nt
(
1− f̂n,t

)nt
, then f s

t = f̃t. Otherwise, return to i).

ii) Computation by simulation of the approximate price of exponential derivatives

The integral in (4.6) can be computed by Monte-Carlo simulation. The simulated sample of

future factor values is obtained by first drawing f s
t from the Gaussian distribution ĝnt, and then

drawing f s
t+1 from the distribution of ft+1 given f s

t , for s = 1, · · · , S, where the number of repli-

cations S is large. The integral in the RHS of equation (4.6) is computed by averaging the values
{
1 + [exp(u/nt)− 1] f s

t+1

}nt for s = 1, · · · , S.
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