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Efficiency in Large Dynamic Panel Models with Common Factor

Abstract

This paper deals with asymptotically efficient estimation in exchangeable nonlinear dy-

namic panel models with common unobservable factor. These models are especially relevant

for applications to large portfolios of credits, corporate bonds, or life insurance contracts, and

are recommended in the current regulation in Finance (Basel II and Basel III) and Insurance

(Solvency II). The specification accounts for both micro- and macro-dynamics, induced by

the lagged individual observation and the common stochastic factor, respectively. For large

cross-sectional and time dimensions n and T , respectively, we derive the efficiency bound

and introduce computationally simple efficient estimators for both the micro- and macro-

parameters. In particular, we show that the fixed effects estimator of the micro-parameter

is asymptotically efficient. The results are based on an asymptotic expansion of the log-

likelihood function in powers of 1/n. This expansion is used to investigate the second-order

bias properties of the estimators. The results are illustrated with the stochastic migration

model for credit risk analysis.

Keywords: Nonlinear Panel Model, Factor Model, Exchangeability, Semi-parametric Effi-

ciency, Fixed Effects Estimator, Bayesian Statistics, Credit Risk, Stochastic Migration, Basel

II, Granularity Adjustment, State Space Model.

JEL classification: C23, C13, G12.



1 Introduction

This paper considers the asymptotically efficient estimation of nonlinear dynamic panel mod-

els with common unobservable factor. We focus on exchangeable specifications that are ap-

propriate to analyze the set of histories of a large homogeneous population of individuals

featuring serial and cross-sectional dependence. Such a framework is largely encountered in

credit risk applications. For instance, for the risk analysis in portfolios of corporate debt, the

panel data are the default, loss given default and rating migration histories of a large pool of

firms in a given industrial sector and country. The common factor represents a latent macro-

variable, such as the sector and country specific business cycle, that introduces dependence

across the individual risks, such as default, loss given default, or migration correlations. The

purpose of the analysis is to predict the future risk in a large portfolio of corporate bonds or

credit derivatives issued by the firms in the pool. 1

The model considered in this paper involves both a micro- and a macro-dynamic. Con-

ditional on a given factor path, the individuals are assumed independent and identically dis-

tributed, with the histories of observations yit, t varying, following a same time-inhomogeneous

Markov process for any individual i. The transition density h(yit|yi,t−1, ft; β) at date t de-

pends on the factor value ft and the unknown parameter β. The micro-dynamic is captured

by the lagged individual observation yi,t−1 and unknown parameter β. The macro-dynamic is

driven by the time-varying stochastic common factor ft. The latter is unobservable and fol-

lows a Markov process with transition density g(ft|ft−1; θ), which depends on the unknown

parameter θ. When this common factor is integrated out, it introduces both non-Markovian

serial dependence within the individual histories, and cross-sectional dependence between

individuals. The variables yi,t are either quantitative, or qualitative (as for default and rating

histories in the credit risk application), while the components of vector ft are real valued

(corresponding to a continuum of latent states). The model is potentially nonlinear in both

the micro- and the macro-dynamic.

When the cross-sectional dimension n is fixed and the time dimension T tends to infinity,

1The panel data may also correspond to other risk characteristics of a pool of corporate loans, household

mortgages or life insurance contracts, such as prepayment, lapse, mortality.
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the Maximum Likelihood (ML) estimators of micro-parameter β and macro-parameter θ are

asymptotically normal and efficient. However, this asymptotic scheme is not appropriate for

a setting involving very large n and moderately large T , as in credit risk applications. For

instance, for corporate rating data the number of firms is typically of order n ' 10, 000, while

the number of dates is about T ' 20 with yearly data 2. Moreover, the numerical computation

of the ML estimate 3 is complicated since the likelihood function involves a large dimensional

integral w.r.t. the unobservable factor path.

The aim of this paper is to derive the asymptotic efficiency bound for estimating both the

micro-parameter β and the macro-parameter θ, and to introduce asymptotically efficient esti-

mators of β and θ that are easier to compute than the ML estimator. We consider the double

asymptotics n, T →∞, such that T b/n = O(1), for b > 1. We summarize our contributions

as follows. First, we show that the efficiency bound for micro-parameter β does not depend

on the parametric model defining the macro-dynamic. In particular, this bound coincides with

the efficiency bound with known transition of the factor, and also with the semi-parametric

efficiency bound when the transition of the factor is left unspecified. Second, a consistent

and (semi-)parametrically efficient estimator of the micro-parameter is the ML estimator of β

computed as if the factor values are fixed time effects. To get the intuition for these findings, it

is useful to remark that our specification with random time effects can be seen as a Bayesian

approach, with prior
T∏

t=1

g(ft|ft−1; θ) on the factor values 4. The results above provide an

example of the well-known asymptotic equivalence of frequentist and Bayesian methods in

large sample, implying the irrelevance of the prior choice [Bickel, Yahav (1969), Ibragimov,

Has’minskii (1981)]. Third, an efficient estimator of the macro-parameter θ is the ML esti-

mator computed by replacing the unobservable factor values with consistent cross-sectional

approximations.

In Section 2 we introduce the nonlinear dynamic panel model with common factor. This

model includes the Single Risk Factor (SRF) model suggested for the regulation of credit risk

2In applications to mortgage or life insurance data, we typically have n ' 100, 000 − 1, 000, 000 contracts

and T ' 200 months.
3For instance, by means of an Expectation-Maximization (EM) algorithm [Dempster, Laird, Rubin (1977)],

where the Expectation step is performed via a Gibbs sampler.
4See Aigner et al. (1984) for a discussion of this interpretation in a general latent variables setting.
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in Basel II [BCBS (2001), (2003)]. Then, we explain why our specification is not simply a

panel model with fixed effects, as usually considered in the econometric literature. The effi-

ciency bound is derived in Section 3. The derivation is based on an asymptotic expansion of

the log-likelihood function in powers of 1/n. For this purpose, the integration of the latent

factor is performed along the lines of the Laplace approximation [see Tierney, Kadane (1986)

for the use of Laplace approximation to compute posterior moments in Bayesian statistics].

If the micro-parameter is semi-parametrically identified, we show that the efficiency bound

for micro-parameter β is independent of the parametric specification of the factor dynamics.

In Section 4 we introduce efficient estimators of both parameters, that do not involve numeri-

cal integration w.r.t. the unobservable factor. We first show that the fixed effects estimator of

the micro-parameter is asymptotically efficient. This estimator is used to derive consistent ap-

proximations f̂t of the factor values. Then, we show that the estimator of the macro-parameter

derived from maximizing the macro-likelihood after substitution of the factor values ft by

their approximations f̂t is asymptotically efficient. Finally, we discuss the link between our

likelihood expansion and the granularity adjustment introduced in Pillar 2 of the Basel II reg-

ulation. The higher-order terms in the likelihood expansion can be used to get more accurate

approximations of the ML estimators. We compare the bias at order 1/n of different asymp-

totically efficient estimators, that are the Cross-Sectional Asymptotic (CSA) and Granularity

Adjusted (GA) maximum likelihood estimators, respectively. Section 5 describes a class of

models with macro-parameters only, where the impact of a vector of Gaussian autoregressive

macro-factors on the micro-dynamics is summarized through some noisy linear transforma-

tions of the macro-factors. Asymptotically efficient estimators can be easily computed by ap-

plying a linear Kalman filter to appropriate approximate state space models. In Section 6, the

results of the paper are applied to the stochastic migration model used for credit risk analysis.

In this model, the observable endogenous variable corresponds to the rating and the common

stochastic factor accounts for migration correlation. The patterns of the efficiency bound,

and the computation of the efficient estimators are illustrated for this example. In Section 7

we discuss the extension of the results to panel factor models with individual heterogeneity.

Section 8 concludes. The proofs of the results are gathered in Appendices A.1-A.9. The reg-

ularity conditions are listed in Appendix A.3. The proofs of the technical Lemmas are given
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in Appendix B on the web-site http://www.people.usi.ch/gagliarp/proofsPANEL.htm.

2 Exchangeable nonlinear panel model with common

factor

2.1 The model

Let us consider panel data yit for a large homogeneous population of individuals i = 1, ..., n

observed at dates t = 1, ..., T . We assume a nonlinear dynamic specification with common

factor such that:

A.1: Conditional on the factor path (ft), the individual histories (yit, t = 1, · · · , T ), i =

1, ..., n, are i.i.d. time-inhomogeneous Markov processes of order 1, with transition pdf

h (yi,t|yi,t−1, ft; β) and unknown parameter β ∈ B, where B ⊂ Rq.

A.2: The factor (ft) is a Markov process of order 1 in RK , with transition pdf g(ft|ft−1; θ)

and unknown parameter θ ∈ Θ, where Θ ⊂ Rp.

We denote by β0 and θ0 the true values of parameters β and θ, respectively. The common

factor ft is unobservable and has to be integrated out to derive the joint density of obser-

vations yit. The latent factor introduces both non-Markovian individual dynamics and de-

pendence across individuals. The distribution is exchangeable, i.e. invariant by permutation

of the individuals. The exchangeability property is equivalent to the existence of a factor

representation [de Finetti (1931), Hewitt, Savage (1955)] 5. Andrews (2005) considers lin-

ear regression models for cross-sectional data with very general exchangeable dependence

structure. Exchangeable linear models for panel data are considered in Hjellwig, Tjostheim

(1999). The focus of our paper is on the efficient estimation of both micro-parameter β and

macro-parameter θ in the nonlinear exchangeable panel model A.1-A.2.

5More precisely, by the de Finetti-Hewitt-Savage theorem, the infinite sequence of histories yi = (yi,t, t =

1, · · · , T ), i = 1, 2, · · · , is exchangeable if and only if there exists a sigma-field F such that yi, i = 1, 2, · · · ,

are i.i.d. conditional on F [see also Kingman (1978)]. In our model, the sigma-field F is generated by the

Markov process (ft).
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Next Assumptions A.3, A.4 and A.5 concern the stationarity and ergodicity properties of

the model.

A.3: The process (y1,t, ..., yn,t, ft) is strictly stationary, for any n ∈ N.

A.4: The process (ft) is geometrically strong mixing.

A.5: Conditional on the factor path (ft), the individual process (yi,t) is ergodic and beta

mixing, such that the conditional beta mixing coefficients:

βt(h) =

∫ {
sup

A∈B(R)

∣∣P [
yi,t ∈ A|yi,t−h = η, ft

]− P
[
yi,t ∈ A|ft

]∣∣
}

λ(η)dη, h ∈ N,

satisfy E [βt(h)] = O(h−α) as h → ∞, for some α > 0, where B(R) denotes the Borel

sigma-field on R, λ is a strictly positive p.d.f. on R, and ft = (ft, ft−1, · · · ). Moreover:

sup
A∈B(R)

E
[∣∣P [

yi,t ∈ A|ft

]− P [yi,t ∈ A|ft, · · · , ft−m]
∣∣] = O(m−α),

as m →∞.

Assumption A.5 requires that the individual processes (yi,t) are ergodic and beta mixing,

conditional on the factor path. The conditional mixing coefficients βt(h) can depend on the

factor path, and converge to zero as lag h increases, for any factor path. The convergence

rate can be geometric, for instance. The integration w.r.t. the factor path is expected to

decrease the decay rate of the mixing coefficients [Granger, Joyeux (1980)]. However, under

Assumption A.5 the integrated mixing coefficients converge to zero at least as a negative

power of the lag. The decay of the integrated mixing coefficients implies that the initial values

of the yi,t’s have no effect in the long run even after integrating out the factors. Moreover,

under Assumption A.5 the stationary distribution of yi,t conditional on the factor path can be

well approximated by a finite number of lags of the factor. Assumptions A.3-A.5 are used to

give a Weak Law of Large Numbers (WLLN) for nonlinear aggregates of the type:

1

T

T∑
t=1

ϕ

(
1

n

n∑
i=1

a(yi,t, ft, β)

)
,

as n, T → ∞ such that T/n → 0, where a is a matrix-valued function of individual ob-

servation yi,t, factor value ft and micro-parameter β, and ϕ is a continuous mapping. The
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precise asymptotic results are provided in Appendix 1. These results are used to derive the

asymptotic properties of the estimators introduced in Section 4 6.

2.2 The Single Risk Factor (SRF) model for default

The specification considered in Section 2.1 is motivated by the SRF model introduced by

Vasicek (1987), (1991) and based on the Value of the Firm model [Merton (1974)]. The SRF

model is recommended for the analysis of credit risk in Pillar 1 of Basel II regulation, con-

cerning the minimum required capital, and in Pillar 2, concerning internal risk models [BCBS

(2001), (2003)]. The objective is to analyze the risk of a portfolio of loans or credit deriva-

tives, included in the balance sheet of a bank or credit institution. These portfolios contain

several millions of individual assets and have to be segmented into subportfolios, which are

homogeneous by the type of contract (asset) and by the type of borrowers, including at least

their ratings among their characteristics. The SRF model is applied to these homogeneous

subportfolios separately (or jointly, see Section 5). The sizes of these subportfolios are still

rather large including some 10 thousands of individual loans for mortgages and credit cards,

for instance.

The basic Vasicek model is written for firms, but the same approach is applicable to

household borrowers. This model introduces the asset Ai,t and liability Li,t as latent variables.

Then, the latent model is written on the log-ratio of asset to liability y∗i,t = log(Ai,t/Li,t) as:

y∗i,t = α + γFt + σui,t, i ∈ PaRt, t = 1, ..., T,

where PaRt denotes the Population-at-Risk, that is the set of firms in the portfolio which are

still alive at time t, and where the common factor (Ft) and the errors (ui,t) are independent

standard Gaussian white noise processes. This specification distinguishes the idiosyncratic

6The stationarity and ergodicity Assumptions A.3-A.5 for asymptotic analysis with n, T → ∞, T/n → 0,

differ significantly from the hypotheses used with finite n [e.g., see Douc, Moulines, Rydén (2004) for the

asymptotic properties of the ML estimator in autoregressive models with Markov regimes, that correspond to

the case n = 1]. This is because the estimators in Section 4 depend on cross-sectional aggregates of the type
1
n

n∑

i=1

a(yi,t, ft, β), which become functions of the factor path ft, but not of the individual observations yi,t,

i = 1, · · · , n, when n →∞ (see Appendix 1).
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risks ui,t, which can be diversified, and the undiversifiable systematic risk Ft. The sensitivity

coefficients α, γ, σ are independent of the individuals, according to the definition of an homo-

geneous portfolio. The observed endogenous variable is the indicator for the default event,

that occurs when the asset is below the liability:

yi,t = 1lAi,t<Li,t
= 1ly∗i,t<0.

We deduce the Probability of Default (PD) at date t conditional on the common factor:

PDt = P [yi,t = 1|yi,t−1 = 0, Ft] = Φ [− (α/σ)− (γ/σ) Ft] ,

where Φ denotes the cumulative distribution function (cdf) of the standard normal distribu-

tion. Thus, the conditional probability of default is time-varying and driven by the common

stochastic factor Ft. This basic model can be extended by allowing for a dynamics of the

common factor, and for a joint analysis of more than two rating levels by means of stochastic

migration models describing the transitions between rating classes AAA, AA, ..., C, D, say

(see Section 6).

The unconditional probability of default is PD = Φ
(
−α/

√
γ2 + σ2

)
, whereas the un-

conditional default correlation between any two firms i and j is:

ρ = Corr (yi,t, yj,t) =
Ψ

(
−α/

√
γ2 + σ2,−α/

√
γ2 + σ2; ρ∗

)
− PD2

PD(1− PD)
, (2.1)

where ρ∗ = γ2/ (γ2 + σ2) is the asset correlation, that is the correlation between the log asset-

to-liability ratios of any two firms, and Ψ(., .; ρ∗) denotes the joint cdf of the bivariate standard

Gaussian distribution with correlation coefficient ρ∗. In the new regulation for credit risk, the

required capital depends on the values of PD and ρ∗, that is, indirectly on the values α/σ

and γ/σ, and is especially sensitive to the asset correlation parameter ρ∗. This explains the

importance of a computationally simple and statistically efficient estimation of the structural

parameters.

2.3 The panel model with fixed effects

The econometric literature on nonlinear panel models with fixed effects considers specifica-

tions such that the variables yi,t, for i = 1, 2, ..., n, and t = 1, ..., T , are independent with
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pdf f (yi,t; αi, β), where αi is the fixed effect of individual i [Hahn, Newey (2004); see e.g.

Hahn, Kuersteiner (2004) and Arellano, Bonhomme (2009) for extensions to a dynamic set-

ting]. The focus of this literature is on the correction of the bias of the ML estimator of β

caused by the incidental parameters problem [Neyman, Scott (1948); see Lancaster (2000) for

a review]. Without Assumption A.2 on the parametric factor dynamic, the model introduced

in Section 2.1 could be seen as a model with fixed time effects instead of fixed individual ef-

fects. However, there are important differences between our setting and the fixed effect panel

literature:

i) In applications to credit risk n is much larger than T , and therefore the incidental pa-

rameter problem is much less pronounced with fixed time effects than with fixed individual

effects. In particular, the bias corrections are less important in our setting and even not re-

quired if T/n → 0.

ii) Assumption A.2 shows that the nonlinear panel model with common factor in Section

2.1 is clearly a time series model introduced for prediction purpose. At the opposite, a model

with fixed individual effects is used to get a segmentation of the population into homogeneous

classes, i.e. with similar αi values. For instance, in the credit risk application, the models with

fixed individual effects are typically used to get the homogeneous subportfolios, whereas the

SRF model is written for each homogeneous subportfolio to derive the distribution of the

future portfolio value and the corresponding 1% quantile, called CreditVaR.

iii) As a consequence, we are also interested in the filtering of the factor values, in their

dynamics, that is, in macro-parameter θ, and in their interpretations.

3 Efficiency bound

3.1 The likelihood function

The joint density of yT = (yi,t, t = 1, ..., T, i = 1, ..., n) and fT = (ft, t = 1, ..., T ) (condi-

tionally on the initial values) is given by:

l
(
yT , fT ; β, θ

)
=

n∏
i=1

T∏
t=1

h (yi,t|yi,t−1, ft; β)
T∏

t=1

g(ft|ft−1; θ) (3.1)

= l
(
yT |fT ; β

)
l
(
fT ; θ

)
, (say).
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If the factors were observable, the terms l
(
yT |fT ; β

)
and l

(
fT ; θ

)
would correspond to the

conditional micro-density of the endogeneous variables, and the macro-density of the factors,

respectively. Since the factors are unobservable, the density of yT is obtained by integrating

out factors fT :

l
(
yT ; β, θ

)
=

∫
· · ·

∫ T∏
t=1

n∏
i=1

h (yi,t|yi,t−1, ft; β)
T∏

t=1

g(ft|ft−1; θ)
T∏

t=1

dft (3.2)

=

∫
· · ·

∫
exp

{
T∑

t=1

n∑
i=1

log h (yi,t|yi,t−1, ft; β)

}
T∏

t=1

g(ft|ft−1; θ)
T∏

t=1

dft.

This likelihood function involves an integral with a large dimension increasing with T , which

complicates the analytical study of the Maximum Likelihood (ML) estimators and the numer-

ical derivations of the ML estimates 7. However, for large n, this integral can be approximated

by expanding the integrand around its maximum w.r.t. the factor values, along the lines of

the Laplace approximation [Laplace (1774); see Jensen (1995) for the general setting and

Tierney, Kadane (1986) for application to Bayesian statistics]. The Laplace approximation

has been used in Arellano, Bonhomme (2009) to derive the bias of the integrated likelihood

in nonlinear panel models with fixed individual effects. In our setting with serially depen-

dent factor, the Laplace approximation is applied to the integral w.r.t. the full path of time

effects. Specifically, let us define for any parameter value β and date t the cross-sectional ML

7In such a model with unobservable factors, the ML estimate could be computed numerically by means

of an Expectation-Maximization (EM) algorithm [Dempster, Laird, Rubin (1977)]. The EM algorithm applies

recursively the Expectation step, which computes the function:

Q
[
(β, θ)|(β(p), θ(p))

]
= E

(β(p),θ(p))

[
log l

(
yT , fT ; β, θ

) |yT

]
,

and the maximization step, providing the next value of the parameter as:

(β(p+1), θ(p+1)) = arg max
(β,θ)

Q
[
(β, θ)|(β(p), θ(p))

]
.

In our nonlinear dynamic framework, the Expectation step requires the numerical approximation of function Q

by means of a Gibbs sampler [see e.g. Cappé, Moulines, Rydén (2005) for general properties, and Fiorentini,

Sentana, Shephard (2004), Duffie et al. (2009) for applications to credit and finance]. The closed form expres-

sion of the approximate likelihood function given in Proposition 1 allows to avoid the numerically cumbersome

expectation step, while controlling the approximation error.
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estimator of the factor value 8:

f̂n,t(β) = arg max
ft

n∑
i=1

log h (yi,t|yi,t−1, ft; β) . (3.3)

Proposition 1. Under the regularity Assumptions H.1-H.14 in Appendix A.3, the joint density

of
(
yT

)
is such that:

l
(
yT ; β, θ

)
=

(
2π

n

)TK/2 T∏
t=1

[det Int (β)]−1/2
T∏

t=1

n∏
i=1

h
(
yi,t|yi,t−1, f̂nt (β) ; β

)

T∏
t=1

g
(
f̂nt (β) |f̂n,t−1 (β) ; θ

)
exp

[
T

n
ΨnT (β, θ)

]
,

where:

Int (β) = − 1

n

n∑
i=1

∂2 log h

∂ft∂f
′
t

(
yi,t|yi,t−1, f̂nt (β) ; β

)
,

sup
β∈B,θ∈Θ

ΨnT (β, θ) = Op(1) as n, T →∞ such that T b/n = O(1), b > 1, and the probability

order Op is w.r.t. the true distribution.

Proof. See Appendix 5.

From Proposition 1 we deduce an expansion for the (nT -standardized) log-likelihood

function of the sample:

LnT (β, θ) =
1

nT
log l

(
yT ; β, θ

)
.

Corollary 2. The (nT -standardized) log-likelihood function is such that:

LnT (β, θ) = L∗nT (β) +
1

n
L1,nT (β, θ) +

1

n2
ΨnT (β, θ) , (3.4)

where:

L∗nT (β) =
1

nT

T∑
t=1

n∑
i=1

log h
(
yi,t|yi,t−1, f̂nt (β) ; β

)
, (3.5)

L1,nT (β, θ) = −1

2

1

T

T∑
t=1

log det Int (β) +
1

T

T∑
t=1

log g
(
f̂nt (β) |f̂n,t−1 (β) ; θ

)
, (3.6)

and sup
β∈B,θ∈Θ

ΨnT (β, θ) = Op(1).

8From a mathematical point of view (see Appendix A.4), the cross-sectional ML estimator f̂n,t(β) is defined

by optimizing on a well-chosen compact set Fn, that converges to the set RK when n →∞.
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Function L∗nT (β), called profile log-likelihood function, is the log-likelihood of β con-

centrated w.r.t. the factor values, as if the latter were nuisance parameters. In Corollary 2,

the profile log-likelihood function L∗nT (β) is the leading term in an asymptotic expansion of

the log-likelihood function LnT (β, θ) in powers of 1/n. The transition density of the factor

enters in the term L1,nT (β, θ) at asymptotic order 1/n, and is expected to be irrelevant for

the efficiency bound of β when n →∞ (see Section 3.3 for a precise statement).

3.2 Bayesian interpretation

The results in Proposition 1 and Corollary 2 are an example of the asymptotic equivalence of

frequentist and Bayesian methods in large sample. To get the intuition, let time dimension T

be fixed and parameter θ be given for a moment. Then, our specification with stochastic com-

mon factor can be seen as a Bayesian approach w.r.t. parameter β and time effects fT . The

prior distribution is such that the density of fT given β is
T∏

t=1

g (ft|ft−1; θ)
9, independent of β,

and the prior distribution of β is diffuse. Then, the posterior density of (β, fT ) corresponds to

the RHS of equation (3.1), while the posterior density of β corresponds to the RHS of equa-

tion (3.2), up to multiplicative constants. As the cross-sectional dimension n tends to infinity,

it is expected from results in Bayesian statistics that the posterior distribution of the parame-

ter ft, scaled by
√

n, approaches a normal distribution centered at the ML estimator f̂nt(β),

for given parameter β [see e.g. Bickel, Yahav (1969), Ibragimov, Has’minskii (1981)]. This

is why the integral in the RHS of (3.2) approaches asymptotically the density of
(
yT

)
given

(
fT

)
with ft replaced by f̂nt(β), t = 1, ..., T , for large n, up to higher order terms. Thus,

the “Bayesian” log posterior density LnT (β, θ) approaches the log-likelihood L∗nT (β), which

is the ”frequentist” log-likelihood for β concentrated w.r.t. parameters ft, t = 1, ..., T . The

asymptotic irrelevance of the second term in the RHS of (3.4) involving the transition den-

sity of the factor corresponds to the irrelevance of the prior distribution in large sample. Our

results show that this asymptotic equivalence is still valid when the number of time effects

parameters tends to infinity 10: T → ∞, such that T b/n → 0, b > 1. Function L1,nT (β, θ)

9This prior depends on ”hyperparameter” θ.
10See Belloni, Chernozhukov (2009) for another extension of the asymptotic normality of the (quasi-) poste-

rior distribution when the number of parameters increases with the sample size. This extension is derived under
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involves the determinant of the Hessian matrix Int (β), which is the Jacobian for a change of

variable performed in the Laplace approximation (see the proof of Proposition 1). The term

Int (β) corresponds to the term introduced by Cox and Reid (1987) in their modified profile

likelihood to correct the likelihood function after concentration w.r.t. nuisance (incidental)

parameters. For the derivation of the semiparametric efficiency bound, the term involving

Int (β) is irrelevant when n → ∞ under the semi-parametric identification conditions given

below 11.

3.3 Efficiency bound

The ML estimator
(
β̃nT , θ̃nT

)
is defined by:

(
β̃nT , θ̃nT

)
= arg max

β,θ
LnT (β, θ) . (3.7)

Under the regularity conditions listed in Appendix 3, we prove in Appendix 6 that the ML

estimator is asymptotically normal:


√

nT
(
β̃nT − β0

)

√
T

(
θ̃nT − θ0

)

 d−→ N





 0

0


 ,


 B∗

ββ B∗
βθ

B∗
θβ B∗

θθ





 , (3.8)

with different rates of convergence for the micro- and macro-component, that are root-nT

and root-T , respectively. The asymptotic variance-covariance matrix B∗ =


 B∗

ββ B∗
βθ

B∗
θβ B∗

θθ




defines the efficiency bound for estimating (β, θ).

To compute the efficiency bound, let us introduce the large sample counterparts of the

likelihood terms in the RHS of (3.4).

(i) Let us first consider L∗nT (β). We can define at each date t the cross-sectional pseudo-true

factor value:

ft (β) = arg max
f

E0

[
log h (yit|yi,t−1, f ; β) |ft

]
,

where E0

[
.|ft

]
denotes the expectation w.r.t. the true conditional distribution of (yi,t, yi,t−1)

at date t given ft. This function yields the factor value ft (β) that maximizes the limiting

a different set of regularity conditions.
11In his discussion of the Cox and Reid (1987) paper, Sweeting (1987) suggests that this correction term can

be derived in a Bayesian setting by integrating the nuisance parameters and using a Laplace approximation.
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cross-sectional log-likelihood at date t, for any given parameter value β. It corresponds to

the population counterpart of f̂n,t(β) in (3.3) when n → ∞. The pseudo-true factor value

ft (β) is a function of both parameter β and information ft. The pseudo-true factor value is

stochastic due to its conditional interpretation. Moreover, by the properties of the Kullback-

Leibler discrepancy, at true parameter value β0 the pseudo-true factor value ft (β0) coincides

with the true factor value ft, P -a.s., for any t. Then, let us define the function:

L∗ (β) = plimT→∞
1

T

T∑
t=1

E0

[
log h (yit|yi,t−1, ft (β) ; β) |ft

]

= E0 [log h (yit|yi,t−1, ft (β) ; β)] .

The assumptions below concern the identification of parameter β.

A.6 (Global semi-parametric identification assumption for β): The mapping β → L∗ (β)

is uniquely maximized at the true parameter value β0.

A.7 (Local semi-parametric identification assumption for β): The matrix I∗0 = −∂2L∗ (β0)

∂β∂β ′

is positive definite.

The matrix I∗0 is given by (see Appendix 6.2):

I∗0 = E0

[
Iββ(t)− Iβf (t)Iff (t)

−1Ifβ(t)
]
, (3.9)

where Iββ(t), Iff (t), Iβf (t) and Ifβ(t) = Iβf (t)
′ denote the blocks of the conditional infor-

mation matrix at date t:

I(t) = E0

[
−∂2 log h (yit|yi,t−1, ft; β0)

∂ (β ′ , f ′)
′
∂ (β ′ , f ′)

|ft

]
. (3.10)

Assumptions A.6 and A.7 correspond to identification conditions for parameter β in a semi-

parametric setting, in which the transition of the factor ft is left unconstrained and is treated as

an infinite-dimensional parameter. This interpretation is justified by the fact that the criterion

L∗(β) is the large sample counterpart of the profile likelihood function L∗nT (β) in (3.5), that

is, the likelihood of β concentrated w.r.t. “parameters” ft, t = 1, ..., T . 12

(ii) Let us now consider the macro component L1,nT (β, θ) of the log-likelihood. Under

Assumptions A.6-A.7 parameter β can be estimated at a rate infinitely faster than the rate for
12When Assumptions A.6 and A.7 are not satisfied, the identification of parameter β relies on the parametric

13



parameter θ and the relevant criterion for identification of θ is the mapping θ → L1(β0, θ),

where L1(β0, θ) is the large sample limit of L1,nT (β, θ) in (3.6) for β = β0. We have

L1(β0, θ) = E0 [log g(ft|ft−1; θ)], up to a term constant in θ. Thus, the identification as-

sumptions for the macro-parameter are the following:

A.8 (Global identification assumption for θ): The mapping θ → E0 [log g(ft|ft−1; θ)] is

uniquely maximized at the true parameter value θ0.

A.9 (Local identification assumption for θ): The matrix I1,θθ = E0

[
−∂2 log g (ft|ft−1; θ0)

∂θ∂θ′

]

is positive definite.

Assumptions A.8 and A.9 are the standard global and local identification conditions for esti-

mating θ in a model with observable factor values.

Proposition 3. Under Assumptions A.1-A.9 and H.1-H.14, and if n, T → ∞ such that

T b/n = O(1), b > 1, the efficiency bound for (β, θ) is:

B∗ =


 B∗

ββ B∗
βθ

B∗
θβ B∗

θθ


 =


 (I∗0 )−1 0

0 I−1
1,θθ


 ,

where:

I∗0 = E0

[
Iββ(t)− Iβf (t)Iff (t)

−1Ifβ(t)
]
,

and

I1,θθ = E0

[
−∂2 log g (ft|ft−1; θ0)

∂θ∂θ′

]
.

Proof. See Appendix 6.

The zero out-of-diagonal blocks in the efficiency bound imply that parameters β and θ

can be considered independently for estimation purpose. This justifies ex-post their interpre-

tation as micro- and macro-parameters, respectively, since parameter β (resp. θ) contains no

model g(ft|ft−1; θ) for the transition of the factor. Intuitively, we would have to distinguish the transformations

of vector β that are identified by criterion L∗(β), and the transformations of β that are identified only with the

contribution of the parametric model g(ft|ft−1; θ). This would induce different rates of convergence for these

transformations, that are 1/
√

nT and 1/
√

T , respectively. The analysis of this general setting is beyond the

scope of this paper.
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macro-information (resp. no micro-information) under Assumptions A.6-A.9. The result in

Proposition 3 is a consequence of the expansion of the likelihood function in Corollary 2. In-

deed, under identification Assumptions A.6-A.7 and the regularity conditions in Appendix 3,

for large n and T the relevant term for estimation of parameter β is L∗nT (β). The correspond-

ing limit log-likelihood function is L∗ (β) , and the efficiency bound B∗
ββ for β is the inverse

of the Hessian I∗0 = −∂2L∗(β0)

∂β∂β′ . Similarly, the efficiency bound B∗
θθ for θ is the inverse of

the Hessian I1,θθ = −∂2L1(β0,θ0)

∂θ∂θ′ . Moreover, the (standardized) ML estimators of β and θ are

asymptotically independent. Therefore, the efficiency bound B∗
ββ for β given in Proposition 3

is the same as the efficiency bound for β with known transition density of the factor. Finally,

matrix I∗0 in (3.9) is smaller than the information I∗∗0 = E0 [Iββ(t)] corresponding to the case

of observable factor, while matrix I1,θθ is equal to the information for θ with observable fac-

tor. Therefore, the unobservability of the factor has no efficiency impact asymptotically for

estimating θ, but has an impact for estimating β. This is due to the fact that the factor values

can be estimated at rate 1/
√

n (see Section 4.2), a rate which is infinitely faster than the rate

1/
√

T for estimating θ, if T b/n = O(1), b > 1, and infinitely slower than the rate 1/
√

nT for

estimating β.

The efficiency bound B∗
ββ for parameter β in Proposition 3 is independent of the para-

metric model g(ft|ft−1; θ), θ ∈ Rp, for the transition density of the factor, that is, factor

distribution free. This suggests that the efficiency result extends to a semi-parametric set-

ting. Specifically, the asymptotic semi-parametric efficiency bound B for β is the efficiency

bound for estimating β in the semi-parametric model in which the transition g(ft|ft−1) of

the factor is a functional parameter. The semi-parametric efficiency bound B can be com-

puted by using Stein’s heuristic [Stein (1956), Severini, Tripathi (2001)]. More precisely, let

gθ = g(ft|ft−1; θ) be a well-specified parametric model for the transition of ft with param-

eter θ ∈ Rp that satisfies Assumptions A.8-A.9 and the regularity conditions H.11-H.14 in

Appendix 3, and let B∗
ββ(gθ) be the corresponding parametric efficiency bound for estimating

β.

Definition 1. The semi-parametric efficiency bound B is defined by:

B = max
gθ

B∗
ββ(gθ),
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where the maximization is performed w.r.t. the well-specified parametric models gθ for the

transition of ft that satisfy Assumptions A.8-A.9 and H.11-H.14.

The result in Proposition 3 shows that B∗
ββ(gθ) is independent of gθ. Therefore we deduce:

Corollary 4. Under Assumptions A.1-A.9 and H.1-H.10, and if n, T →∞ such that T b/n =

O(1), b > 1, the semi-parametric efficiency bound for β is equal to the parametric efficiency

bound:

B = B∗
ββ = E0

[
Iββ(t)− Iβf (t)Iff (t)

−1Ifβ(t)
]−1

.

Thus, any well-specified parametric model gθ is the least-favorable one in the sense of

Chamberlain (1987). The results in Proposition 3 and Corollary 4 show that the knowledge of

the parametric model for the transition of the factor, and even the knowledge of the transition

itself, are irrelevant for the asymptotically efficient estimation of micro-parameter β.

3.4 Identification in the SRF model for default

The SRF model of Section 2.2 is such that yi,t admits the Bernoulli distribution

B (1, Φ [− (α/σ)− (γ/σ) Ft]) conditional on the factor Ft, and the observations can be sum-

marized by the sufficient statistics P̂Dt =
1

n

n∑
i=1

yi,t, that are the cross-sectional default

frequencies. In a semi-parametric framework, in which the transition of the factor is left un-

specified, parameters α/σ and γ/σ are not identified. Indeed, the initial factor can be replaced

by ft = Φ [− (α/σ)− (γ/σ) Ft] = PDt, and the model becomes:

yi,t ∼ B (1, ft) , (3.11)

conditionally on ft. The factor values are approximated by f̂n,t = P̂Dt. Parameters α/σ and

γ/σ can be identified when a parametric specification for the factor dynamics is introduced.

For instance, the SRF model considered by Basel II is identifiable due to the assumption that

the factor values Ft are independent standard normal. Then, the transformed factors ft are

such that:

Φ−1(ft) ∼ IIN
(−α/σ, γ2/σ2

)
. (3.12)

The model defined by equations (3.11) and (3.12) satisfies Assumptions A.1-A.9, with no

micro-parameter and macro-parameter θ = (α/σ, γ/σ)′. From equation (2.1), the default
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correlation is a function of the macro-parameters only. We see in Section 6 that micro-

parameters, and their semi-parametric identification, are recovered either when more than

two rating levels are considered, or in a two-state framework without absorbing state.

4 Efficient estimators and granularity adjustment

In this Section we introduce asymptotically efficient estimators of the micro- and macro-

parameters that are easier to compute than the ML estimator. These estimators rely on the

asymptotic expansion of the log-likelihood function and do not involve the numerical inte-

gration w.r.t. the unobservable factor. We also compare the bias at order 1/n of the efficient

estimators, and deduce the higher-order expansion of the true ML estimator.

4.1 The fixed effects estimator of the micro-parameter

The asymptotic expansion of the likelihood function in Corollary 2, and the derivation of the

efficiency bound in Proposition 3, suggest that the (semi-)parametric efficiency bound for β

can be achieved by maximizing the likelihood function L∗nT (β), i.e. by computing the fixed

effects estimator which considers the ft values as additional unknown parameters.

Proposition 5. Under Assumptions A.1-A.7 and H.1-H.10, and if n, T → ∞ such that

T b/n = O(1), b > 1, the estimator:

β̂∗nT = arg max
β

T∑
t=1

n∑
i=1

log h
(
yi,t|yi,t−1, f̂nt (β) ; β

)
,

is consistent, root-nT asymptotically normal and (semi-)parametrically efficient.

Proof. See Appendix 6.

The semi-parametric estimator β̂∗nT achieves the same asymptotic efficiency as a para-

metric estimator that uses the information on the true transition of (ft). It is computed by

maximizing the likelihood function for β concentrated w.r.t. the factor values. Proposition

5 completes the standard analysis of the incidental parameter problem. If T → ∞ and n

is fixed, the fixed effects estimator β̂∗nT is not consistent. If n, T → ∞ and T/n → c > 0
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(say), estimator β̂∗nT is consistent, but its asymptotic distribution is not centered at the true

parameter value β0
13. The fixed effects estimator β̂∗nT becomes efficient if n, T → ∞ such

that T b/n = O(1), b > 1.

The numerical computation of an asymptotically efficient estimator of the micro-parameter

β can be simplified when the micro-dynamics is such that:

h (yi,t|yi,t−1, ft; β) = h̃ (yi,t|yi,t−1, at) , say, (4.1)

where the impact of factor ft and parameter β is summarized through the canonical fac-

tor vector at = c (ft, β), with dim(at) ≥ dim(ft) + 1. Let us assume that the canoni-

cal factor is cross-sectionally identifiable, that is, the cross-sectional log-likelihood function

E0

[
log h̃(yi,t|yi,t−1, a)|at

]
is uniquely maximized at the true value a = at of the canonical

factor at date t, P -a.s., for any t. Another asymptotically efficient estimator of β can be de-

rived by first computing the cross-sectional fixed effects estimators of the canonical factor

values:

ân,t = arg max
at

n∑
i=1

log h̃ (yi,t|yi,t−1, at) ,

and their estimated asymptotic variances:

Σ̂n,t =

(
− 1

n

n∑
i=1

∂2 log h̃ (yi,t|yi,t−1, ân,t)

∂at∂a
′
t

)−1

.

Then, the estimator β̂∗∗nT obtained by solving the optimization:

min
β,f1,...,fT

T∑
t=1

[ân,t − c (ft, β)]
′
Σ̂−1

n,t [ân,t − c (ft, β)] , (4.2)

is asymptotically equivalent to β̂∗nT by applying general results on Asymptotic Least Squares.

This shows that for the computation of the asymptotically efficient estimators the data can

be aggregated through the fixed effects estimators of the canonical factors. The computation

of the estimator β̂∗∗nT is greatly simplified when the canonical factors at are linear w.r.t. the

factors ft, that is:

at = α(β) + γ(β)ft, (4.3)
13It is beyond the scope of this paper to investigate whether a bias reduction approach in the spirit of

Woutersen (2002), Hahn, Kuersteiner (2004), Arellano, Hahn (2006), Bester, Hansen (2009) can be applied

in our framework.

18



where α(.) and γ(.) are known vector and matrix functions of the micro-parameter, respec-

tively. Indeed, in this case the factor values are easily concentrated in the optimization prob-

lem (4.2), and the concentrated criterion for β can then be optimized to get β̂∗∗nT . The stochas-

tic transition model for rating migration considered in Section 6 is a specification satisfying

equations (4.1) and (4.3).

4.2 Approximation of the factor values

The efficient estimator β̂∗nT can be used to derive cross-sectional approximations of the factor

values 14. A consistent approximation of the factor value at date t is:

f̂nT,t = f̂n,t

(
β̂∗nT

)
.

Proposition 6. Suppose Assumptions A.1-A.7 and H.1-H.10 hold, and let n, T → ∞ such

that T b/n = O(1), b > 1. Then:

i) For any date t, conditional on ft we have:

√
n

(
f̂nT,t − ft

)
d−→ N

(
0, Iff (t)

−1
)
.

ii) sup
1≤t≤T

∥∥∥f̂nT,t − ft

∥∥∥ = Op

(√
log(n)a

n

)
, where a = 2a1 + a2 + a3, and a1, a2, a3 > 0 are

defined in Assumptions H.8-H.10 in Appendix A.3.

Proof. See Appendix 6.

For any given date t, the factor approximation f̂nT,t depends on the whole individual his-

tories and can be considered as a smoothed factor value. It converges to the true factor value

ft at rate 1/
√

n. Since β̂∗nT is root-nT consistent, estimator f̂nT,t is asymptotically equiva-

lent to the unfeasible ML estimator f̂n,t (β0) for known micro-parameter β0. The asymptotic

variance Iff (t)
−1 of f̂nT,t is the inverse of the Fisher information for estimating ft in the

14Consistent approximations of factor values in panel data with large cross-sectional and time dimensions

have been proposed in, e.g., Forni, Reichlin (1998), Bai, Ng (2002), Stock, Watson (2002), Forni, Hallin, Lippi,

Reichlin (2004), Connor, Hagmann, Linton (2007). All these papers consider linear factor models for the micro-

dynamics.
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cross-section at date t with known β0. Since the factor value ft is stochastic, the convergence

rate for sup
1≤t≤T

∥∥∥f̂nT,t − ft

∥∥∥ has to be adjusted by a logarithmic factor. Proposition 6 ii) is

derived by using a large deviation bound for ML estimators applied conditional on the factor

path ft, and then integrating out ft [see also Appendix A.4 for a general result on the uniform

convergence rate of f̂n,t(β) w.r.t. β].

4.3 Efficient estimator of the macro-parameter

The consistent approximations of the factor values f̂nT,t can be used to derive an approxima-

tion of the macro-likelihood function:
T∑

t=1

log g
(
f̂nT,t|f̂nT,t−1; θ

)
.

By maximizing this approximate likelihood w.r.t. θ, we get an efficient estimator of the

macro-parameter.

Proposition 7. Under Assumptions A.1-A.9 and H.1-H.14, and if n, T → ∞ such that

T b/n = O(1), b > 1, the estimator:

θ̂nT = arg max
θ

T∑
t=1

log g
(
f̂nT,t|f̂nT,t−1; θ

)
,

is root-T asymptotically normal and efficient.

Proof. This follows from Proposition 6 ii) by using Assumption H.11-H.14, condition T b/n =

O(1), b > 1, and standard asymptotic arguments for extremum estimators [see Connor, Hag-

mann, Linton (2007) for a similar result in a semi-parametric model with linear factor struc-

ture and nonlinear factor dynamics].

Estimator θ̂nT is asymptotically equivalent to the unfeasible ML estimator

θ̂∗∗T = arg max
θ

T∑
t=1

log g (ft|ft−1; θ), that uses the true factor values. As already noted in

Section 3, replacing the true factor values by their root-n consistent approximations has no

effect asymptotically for estimating θ at rate root-T , if T b/n = O(1), b > 1. Since Proposi-

tions 5 and 7 show that estimators β̂∗nT and θ̂nT achieve the efficiency bounds for parameters

β and θ, respectively, then the joint estimator
(
β̂∗nT , θ̂nT

)
is also asymptotically efficient [see

Gouriéroux, Monfort (1995)].
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4.4 Cross-sectional Asymptotic and Granularity Adjusted Maximum

Likelihood estimators

The asymptotic analysis can be refined by considering expansions of the log-likelihood func-

tion at probability order 1/n, and 1/n2. From Corollary 2, an approximation at order 1/n is

given by:

LCSA
nT (β, θ) = L∗nT (β) +

1

n
L1,nT (β, θ). (4.4)

This approximation defines the cross-sectional asymptotic (CSA) log-likelihood function.

Similarly, we can derive an approximation valid up to order 1/n2:

LGA
nT (β, θ) = L∗nT (β) +

1

n
L1,nT (β, θ) +

1

n2
L2,nT (β, θ), (4.5)

where L2,nT (β, θ) is given in (A.5) in Appendix 5. This approximated log-likelihood function

defines the granularity adjusted (GA) log-likelihood function.

Both CSA and GA log-likelihood functions have closed form expressions, that is, without

integrals w.r.t. the factor values. Then, we can define the CSA and GA maximum likelihood

estimators as follows.

Definition 2. (i) The CSA maximum likelihood estimator is:

(
β̃CSA

nT , θ̃CSA
nT

)
= arg max

β,θ
LCSA

nT (β, θ).

(ii) The GA maximum likelihood estimator is:

(
β̃GA

nT , θ̃GA
nT

)
= arg max

β,θ
LGA

nT (β, θ).

The difference between the GA and CSA maximum likelihood estimators is called the gran-

ularity adjustment. This terminology is explained by the link with the recent literature on

granularity adjustment in credit risk [see e.g. BCBS (2001), Gordy (2003)]. This literature

focuses on the computation of risk measures, such as the Value-at-Risk, for large homoge-

neous portfolios of n assets, whose values are affected by systematic risk factors. The basic

idea is to expand the risk measure around the cross-sectional limit of an infinitely fine grained

portfolio (n = ∞), and compute the adjustment at order 1/n [see Gagliardini, Gouriéroux

(2010) for a general presentation of granularity for risk measures].
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The CSA and GA estimates can be computed directly from Definition 2. They can also

be approximated at the appropriate order by other estimates with simpler expressions. For

instance, we have the following result.

Proposition 8. (i) Let us denote:

β̂CSA
nT = β̂∗nT +

(
−∂L∗nT (β̂∗nT )

∂β∂β′

)−1
1

n

∂L1,nT

∂β
(β̂∗nT , θ̂nT ), θ̂CSA

nT = θ̂nT ,

where
(
β̂∗nT , θ̂nT

)
are defined in Propositions 5 and 7. Then:

β̂CSA
nT − β̃CSA

nT = op(1/n), θ̂CSA
nT − θ̃CSA

nT = Op(1/n).

(ii) The estimator defined by:


 β̂GA

nT

θ̂GA
nT


 =


 β̂CSA

nT

θ̂CSA
nT


 +


−

∂2LCSA
nT

(
β̂CSA

nT , θ̂CSA
nT

)

∂(β′, θ′)′∂(β′, θ′)



−1

∂LGA
nT

(
β̂CSA

nT , θ̂CSA
nT

)

∂(β′, θ′)′
,

is such that:

β̂GA
nT − β̃GA

nT = op(1/n
2), θ̂GA

nT − θ̃GA
nT = op(1/n).

Proof. See Appendix B.9.

Thus, computationally tractable CSA and GA approximations are easily derived by applying

an iteration step in modified Newton-Raphson algorithms with appropriate starting values

[see also Gouriéroux, Jasiak (2008) in a static framework].

The interest in introducing several CSA and GA type estimators is threefold. First, it

provides approximations of the true ML estimator (β̃nT , θ̃nT ) with different accuracies, as

seen in Corollary 9 below.

Corollary 9. The CSA, GA and true ML estimators are such that:

β̂CSA
nT − β̃nT = Op(1/n

2), θ̂CSA
nT − θ̃nT = Op(1/n),

and:

β̂GA
nT − β̃nT = op(1/n

2), θ̂GA
nT − θ̃nT = op(1/n).

Proof. See Appendix B.10.
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Second, the different CSA and GA estimators introduced in Definition 2 and Proposition

8 are all asymptotically efficient, but have different finite sample properties. Therefore, we

get a set of consistent and asymptotically efficient estimators in which we can select the

preferred one in finite sample, according to the specific model and sample size. Third, as

seen in Section 4.5, the higher order expansion of the GA estimator can be used to derive the

second-order bias of the true ML estimator in the nonstandard framework considered in this

paper.

4.5 Higher-order bias of CSA, GA and ML estimators

It is possible to derive higher-order stochastic expansions for the CSA and GA estimators

introduced in Definition 2 and Proposition 8 by exploiting the closed form of the CSA and

GA log-likelihood functions given in Section 4.4. Then, Corollary 9 allows us to deduce the

stochastic expansion of the true ML estimator at the appropriate order, in particular its second-

order bias. For expository purpose, we focus on a model with a scalar macro-parameter only,

and a single static factor with unconditional pdf g(ft; θ). Moreover, let us assume that the

cross-sectional and time dimensions are such that T b/n is bounded and bounded away from

0, for 1 < b < 3/2. Then, the asymptotic expansion of the bias E[θ̂nT ]− θ0 at order o(1/n),

where θ̂nT denotes either the CSA, or the GA, or the true ML estimator, involves terms of

order 15 1/T , 1/
√

nT and 1/n, that is:

E
[
θ̂nT

]
− θ0 =

b1(θ0)

T
+

b2(θ0)√
nT

+
b3(θ0)

n
+ o(1/n). (4.6)

The coefficients b1(θ0), b2(θ0), b3(θ0) for the second-order bias expansion of the CSA and GA

estimators are given in the next proposition.

Proposition 10. (i) The second-order bias expansion of the CSA maximum likelihood estima-

15The bias expansion does not involve a term at order 1/
√

T since the efficient score

I−1
1,θθ

1√
T

T∑
t=1

∂ log g (ft; θ0)
∂ft

with observable factors has zero expectation. Moreover, when the condi-

tion n = o(T 3/2) is not satisfied, the development at order 1/n involves additional terms, of order 1/T 3/2,

1/ (
√

nT ), etc. The extension of the results to the general case is theoretically straightforward, but notationally

cumbersome.
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tor of the macro-parameter θ0 is such that:

bCSA
1 (θ0) = I−2

1,θθCov

(
∂2 log g (ft, θ0)

∂θ2
,
∂ log g (ft, θ0)

∂θ

)
+

1

2
I−2
1,θθE

[
∂3 log g (ft, θ0)

∂θ3

]
,

bCSA
2 (θ0) = 0, and:

bCSA
3 (θ0) = I−1

1,θθE

[
Iff (t)

−2

(
K1,2(t) +

1

2
K3(t)

)
∂2 log g (ft, θ0)

∂θ∂f
+

1

2
Iff (t)

−1∂3 log g (ft, θ0)

∂θ∂f 2

]
,

where K1,2 (t) = Cov

(
∂2 log h (yi,t|yi,t−1, ft)

∂f 2
t

,
∂ log h (yi,t|yi,t−1, ft)

∂ft

|ft

)
and

K3(t) = E

[
∂3 log h (yi,t|yi,t−1, ft)

∂f 3
t

|ft

]
.

(ii) The second-order bias expansion of the GA maximum likelihood estimator is such that

bGA
1 (θ0) = bCSA

1 (θ0), bGA
2 (θ0) = bCSA

2 (θ0) = 0 and:

bGA
3 (θ0) = I−1

1,θθE

[
Iff (t)

−2 (K1,2(t) + K3(t))
∂2 log g (ft, θ0)

∂θ∂f

]

+I−1
1,θθE

[
Iff (t)

−1

(
∂ log g (ft, θ0)

∂f

∂2 log g (ft, θ0)

∂f∂θ
+

∂3 log g (ft, θ0)

∂θ∂f 2

)]
.

Proof. See Appendix 7.

The bias term at order 1/T for the CSA estimator coincides with the second-order bias of

the ML estimator with observable factor values [see e.g. Gouriéroux, Monfort (1995), Section

23.2.1 for the second-order bias of the ML estimator]. The term at order 1/
√

nT does not

contribute to the bias. The bias term at order 1/n involves third-order (cross-) conditional

moments of the micro-density given the factor path, as well as third-order derivatives of the

macro-density w.r.t. the factor value and the parameter. From Corollary 9, it follows that the

CSA and GA estimators of the macro-parameter differ at order Op(1/n), which is reflected in

Proposition 10 in the different bias coefficients bCSA
3 (θ0) and bGA

3 (θ0). Finally, from Corollary

9, we deduce that the bias expansion of the true ML estimator coincides up to order 1/n with

that of the GA estimator given in Proposition 10 (ii). The bias expansion in Proposition 10

can be used to eliminate the bias up to order 1/n by considering the estimator:

θ̄GA
nT = θ̂GA

nT − bGA
1 (θ̂GA

nT )

T
− bGA

3 (θ̂GA
nT )

n
.

This estimator is asymptotically efficient at first-order and such that E
[
θ̄GA

nT

]− θ0 = o(1/n).
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5 Approximate linear state space model

In this Section, we consider an exchangeable panel factor model, where the impact of the

macro-factors on the micro-dynamics is summarized by a vector of canonical factors. The

vector of canonical factors is a noisy affine transformation of a reduced set of factors ad-

mitting a Gaussian autoregressive dynamics. For this panel factor model we show that the

CSAML and GAML estimators derived in Section 4 are asymptotically equivalent to esti-

mators derived by a linear Kalman filter at appropriate orders in 1/n. The measurement

variables are suitable cross-sectional aggregates that approximate the canonical factors. The

methodology is illustrated by the Single Risk Factor model with heterogeneity.

5.1 Panel model with canonical factors

The model is defined in three steps. First, the micro-dynamics conditional on the canonical

factors is given by the transition pdf:

h̃(yi,t|yi,t−1; at), (5.1)

where at is a (m, 1) vector of latent canonical factors. Second, the canonical factors are such

that:

at = α + γFt + ut, (5.2)

where Ft is a (J, 1) vector, J ≤ m−1, and corresponds to a reduced set of latent factors, α is a

(m, 1) vector of intercept parameters and γ is a (m, J) full rank matrix of factor loadings. The

time specific noise is such that ut ∼ IIN(0, ∆) with (m,m) diagonal variance-covariance

matrix ∆ = diag(η2
1, · · · , η2

m). Third, the reduced factors satisfy a Gaussian Vector Autore-

gressive (VAR) model of order 1:

Ft = µ + ΦFt−1 + vt, (5.3)

where (vt) is IIN(0, Ω) and independent of the time specific noise (ut). In this panel model

the micro-dynamics (5.1) is potentially nonlinear, while the macro-dynamics is linear and

given by the Gaussian state-space model (5.2)-(5.3) for the canonical factors.
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Let us discuss factor and parameter identification. First, we assume that the canonical fac-

tors at are cross-sectionally identified. Second, the model is invariant under invertible affine

transformations of the latent factor Ft and the associated transformations of the parameters γ,

µ, Φ. To get the identification of factors and parameters, we may assume that µ = 0, Ω = IdJ

and γ′γ = IdJ . The model (5.1)-(5.3) differs from the specification (4.1), (4.3) considered in

Section 4.1. Indeed, by writing ft = (F ′
t , u

′
t)
′ the order condition dim(at) ≥ dim(ft) + 1 is

not satisfied. In fact, the parameters α, γ and ∆ have to be considered as macro-parameters,

and no micro-parameter is included in the model. By setting ∆ = 0 we recover the model in

equations (4.1) and (4.3), but then the interpretation of α and γ is as micro-parameters.

Example 1: Default Risk Factor Model with stratified heterogeneity

Let us consider a population of n credits partitioned at each date into K homogeneous

strata with size nk, for k = 1, · · · , K, with K ≥ 2. The individuals are doubly indexed by

(i, k), i = 1, · · · , nk and k = 1, · · · , K. An extension of the basic SRF model of Section

2.2 accounts for the heterogeneity between strata. The default indicators yi,k,t, i = 1, · · · , nk,

k = 1, · · · , K, t = 1, · · · , T , are independent conditionally on the underlying factors, with

Bernoulli distribution:

yi,k,t|(Ft), (uk,t) ∼ B(1, PDk,t),

and conditional default probability:

PDk,t = Φ (αk + γ′kFt + uk,t) ,

where (Ft) and (uk,t) are independent, such that Ft ∼ IIN(0, IdJ) and uk,t ∼ IIN(0, η2
k),

and uk,t is a stratum-specific effect common to all individuals in stratum k at date t.

The model can be rewritten as:

yi,k,t|(Ft), (uk,t) ∼ B [1, Φ(ak,t)] ,

where the canonical factors at = (a1,t, · · · , aK,t)
′ satisfy equation (5.2) with α = (α1, · · · , αK)′,

γ = (γ1, · · · , γK)′ and ut = (u1,t, · · · , uK,t)
′. In this example, we have m = K. The canon-

ical factor satisfies the cross-sectional identification condition and the number J of reduced

factors has to be strictly smaller than the number of strata, i.e. J ≤ K − 1.
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5.2 The CSA Maximum Likelihood estimator

Under the identification conditions on the canonical factors and parameters, the model in-

cludes macro-parameters only, gathered in vector θ. The asymptotic expansion of the (nT -

standardized) log-likelihood function becomes (see Appendix 8):

LnT (θ) = L∗nT +
1

n
L1,nT (θ) + Op

(
1

n2

)
, (5.4)

where L∗nT is constant in θ and function L1,nT (θ) is given by:

L1,nT (θ) =
1

T
log

(
1

[(2π)m det ∆]T/2[(2π)J det Ω]T/2

∫
· · ·

∫
exp

{
−1

2

T∑
t=1

(ân,t − α− γFt)
′
∆−1 (ân,t − α− γFt)

−1

2

T∑
t=1

(Ft − µ− ΦFt−1)
′ Ω−1 (Ft − µ− ΦFt−1)

}
T∏

t=1

dFt

)
, (5.5)

where vector ân,t denotes the cross-sectional ML estimator of the canonical factor at date t:

ân,t = arg max
at

n∑
i=1

log h̃(yi,t|yi,t−1; at).

Function L1,nT (θ) is the (T -standardized) log-density of the canonical factor path aT evalu-

ated at at = ân,t, t = 1, · · · , T , for parameter value θ. We deduce the next result.

Proposition 11. An asymptotically efficient estimator of parameter θ can be obtained by

applying the linear Kalman filter to the linear state-space model:




ân,t = α + γFt + ut, ut ∼ IIN (0, ∆) ,

Ft = µ + ΦFt−1 + vt, vt ∼ IIN(0, Ω).

Proof. See Appendix 8.

The approximate log-likelihood (5.5) associated with the state space model of Proposi-

tion 11 still includes multiple integrals of large dimension since the macro-factors Ft are not

semi-parametrically identified. However, due to the interpretation in terms of linear state

space model, an asymptotically efficient estimator is easily derived numerically by means of

a linear Kalman filter. The linear state space model in Proposition 11 corresponds to equa-

tions (5.2)-(5.3) after replacing the unobservable canonical factors at by their consistent ML
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cross-sectional approximations ân,t. Thus, we have reduced the estimation of a nonlinear la-

tent factor model written for a large number n of individuals to the estimation of a linear state

space model with m cross-sectional aggregates.

Example 1: Default Risk Factor Model with heterogeneity (cont.)

The cross-sectional estimator of ak,t is simply the transformed default frequency in the

category k for date t, that is,

ân,k,t = Φ−1(P̂Dn,k,t), (5.6)

where P̂Dn,k,t =
1

nk

nk∑
i=1

yi,k,t. The approximate CSA state space model becomes:





(
Φ−1(P̂Dn,1,t), · · · , Φ−1(P̂Dn,K,t)

)′
= α + γFt + ut, ut ∼ IIN(0, ∆),

Ft = µ + ΦFt−1 + vt, vt ∼ IIN(0, Ω).

5.3 The GA Maximum Likelihood estimator

Let us now derive the GAML estimator. For this purpose, the termL2,nT (θ) of order Op(1/n
2)

in the log-likelihood expansion has to be taken explicitly into account. In Appendix 8, we

show that:

LnT (θ) =
1

nT
log


(2π)−(m+J)T/2(det Ω)−T/2

(
T∏

t=1

det Ψn,t

)−1/2

∫
· · ·

∫
exp

{
−1

2

T∑
t=1

(
ât − α− γFt +

1

n
ξ̂n,t

)′
Ψ−1

n,t

(
ât − α− γFt +

1

n
ξ̂n,t

)

−1

2

T∑
t=1

(Ft − µ− ΦFt−1)
′
Ω−1 (Ft − µ− ΦFt−1)

}
T∏

t=1

dFt

]
+ op(1/n

2), (5.7)

where:

Ψ̂n,t = ∆ +
1

n
Σ̂n,t, Σ̂n,t =

(
− 1

n

n∑
i=1

∂2 log h̃

∂at∂a′t
(yi,t|yi,t−1; ân,t)

)−1

, (5.8)

and ξ̂n,t is a (m, 1) vector with components:

ξ̂n,t,r =
1

2

m∑

l,p,q=1

(
1

n

n∑
i=1

∂3 log h̃

∂al,t∂ap,t∂aq,t

(yi,t|yi,t−1; ân,t)

)
Σ̂n,t,lpΣ̂n,t,qr, r = 1, ..., m. (5.9)

Thus, we deduce the following result.
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Proposition 12. An estimator asymptotically equivalent at order 1/n to the GAML estimator

of parameter θ can be obtained by applying the linear Kalman filter to the linear state-space

model: 



ân,t +
1

n
ξ̂n,t = α + γFt + ut, ut ∼ IIN

(
0, ∆ +

1

n
Σ̂n,t

)
,

Ft = µ + ΦFt−1 + vt, vt ∼ IIN(0, Ω),

where Σ̂n,t and ξ̂n,t are defined in (5.8) and (5.9), respectively.

Proof. See Appendix 8.

The state-space model to compute the GAML estimator involves corrections at order 1/n

in the measurement variable and in the variance of the measurement error. As seen in Corol-

lary 9, corrections of such an order are sufficient for GA estimation of macro-parameters.

The matrix Σ̂n,t in the variance adjustment is the inverse of the Fisher information matrix for

cross-sectional estimation of the canonical factors. The vector ξ̂n,t involves the third-order

derivatives of the log micro-density and adjusts the bias of the cross-sectional ML estimator

of at at order 1/n. This bias adjustment is not complete, since the GAML (and thus the true

ML) estimator has a non-zero second-order bias as seen in Proposition 10.

Example 1: Default Risk Factor Model with heterogeneity (cont.)

From Proposition 12, the GA approximate state space model corresponds to approximate

measurement equations for the different strata:

ân,k,t +
1

nk

ξ̂n,k,t = αk + γkFt + u∗k,t, (5.10)

where the u∗k,t are independent across strata and time, with time-inhomogeneous Gaussian

distribution:

u∗k,t ∼ N

(
0, η2

k +
P̂Dn,k,t(1− P̂Dn,k,t)

nk

[
dΦ−1(p)

dp

]2

p=P̂Dn,k,t

)
,

and:

ξ̂n,k,t = (1− 2P̂Dn,k,t)

[
dΦ−1(p)

dp

]

p=P̂Dn,k,t

+
3

2
P̂Dn,k,t(1− P̂Dn,k,t)

[
d2Φ−1(p)

dp2

]

p=P̂Dn,k,t

.

The measurement equations (5.10) involve two granularity adjustments. The first one is a

variance adjustment and corresponds to the delta-method applied to the transformation of
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the default frequencies (5.6). The second one is a partial bias adjustment of the estimated

transformed default frequencies.

6 Stochastic migration model

In this Section we illustrate the finite sample properties of the efficient estimators in Propo-

sitions 5 and 7 for a dynamic panel model with factor structure as in equations (4.1) and

(4.3).

6.1 The model

The stochastic migration model has been introduced to analyze the dynamics of corporate rat-

ings and is a basic element for the prediction of future credit risk in an homogeneous pool of

credits [e.g., Gupton et al (1997), Gordy, Heitfield (2002), Gagliardini, Gouriéroux (2005b),

Feng, Gouriéroux, Jasiak (2008), Koopman, Lucas, Monteiro (2008)]. A basic stochastic mi-

gration model is the ordered qualitative model with one factor, which extends the SRF model

of Section 2.2 to more than two alternatives. Let us denote by yi,t, t varying, the sequence of

ratings for corporate i. The possible ratings are k = 1, 2, ..., K, say 16. The micro-dynamic

model specifies the transition matrices with elements depending on the factor value:

πlk,t = P [yi,t = k|yi,t−1 = l, ft] = G

(
ck − γlft − αl

σl

)
−G

(
ck−1 − γlft − αl

σl

)
,

where c1 < c2 < ... < cK−1 and αl, γl, σl, l = 1, ..., K are unknown micro-parameters,

and c0 = −∞, cK = +∞. Function G is the cdf of a probability distribution, that corre-

sponds to the standard normal distribution for the Probit model, where G(x) = Φ(x), and

to the logistic distribution for the Logit model, where G(x) = 1/ (1 + e−x). The ratios

al,k,t = (ck − γlft − αl) /σl in the above transition probabilities allow to identify semipara-

metrically the micro-parameters and the factor values up to location and scale transforma-

tions. For semiparametric identification (Assumptions A.6-A.7), we impose the constraints

c1 = 0, σ1 = 1, α1 = 0, γ1 = 1 when K > 2, and additionally σ2 = 1 when K = 2 (see

16In practice, the alternative k = K typically corresponds to default, which is an absorbing state. For exposi-

tory purpose, we do not consider an absorbing state here.
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Appendix 9.1). The model can be written as in equations (4.1) and (4.3), where the vector of

canonical factors is at = vec[al,k,t]. Finally, the common factor ft follows a linear Gaussian

autoregressive process:

ft = µ + ρft−1 + σηt, (6.1)

where (ηt) is IIN(0, 1), and µ, ρ and σ are unknown macro-parameters.

6.2 Estimation of the micro-parameters

The micro log-density is given by:

log h (yit|yi,t−1, ft; β)

=
K∑

k=1

K∑

l=1

1 {yi,t = k, yi,t−1 = l} log

[
G

(
ck − γlft − αl

σl

)
−G

(
ck−1 − γlft − αl

σl

)]
.

The estimators of the factor values given β are:

f̂n,t(β) = arg max
ft

K∑

k=1

K∑

l=1

Nlk,t log

[
G

(
ck − γlft − αl

σl

)
−G

(
ck−1 − γlft − αl

σl

)]
, t = 1, ..., T,

(6.2)

and depend on the data through the aggregate counts Nlk,t of transitions from rating l at time

t − 1 to rating k at time t, for k, l = 1, ..., K and t = 1, ..., T . The (semi-)parametrically

efficient estimator of the micro-parameter is:

β̂∗nT = arg max
β

K∑

k=1

K∑

l=1

T∑
t=1

Nlk,t log

[
G

(
ck − γlf̂n,t(β)− αl

σl

)
−G

(
ck−1 − γlf̂n,t(β)− αl

σl

)]
.

(6.3)

This estimator is computed from the aggregate data on rating transition counts (Nlk,t).

To compare the finite-sample distribution of estimator β̂∗nT and the semi-parametric effi-

ciency bound, we perform a Monte-Carlo study. We consider the two-state case K = 2 and

a DGP where the transition probabilities are given by a one-factor logit specification. Under

the semi-parametric identification constraints c1 = α1 = 0 and γ1 = σ1 = σ2 = 1, the

micro-parameter to estimate is β = (α2, γ2)
′. The parameter values used in the Monte-Carlo

study are displayed in Table 1.

Table 1: Parameter values
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α1 = 0 γ1 = 1 σ1 = 1 α2 = −0.5 γ2 = 1 σ2 = 1

c0 = −∞ c1 = 0 c2 = +∞ µ = 0.1 ρ = 0.5 σ = 0.5

In Figures 1 and 2, we consider the sample sizes n = 200, T = 20, and n = 1000,

T = 20, respectively. In each figure, the two panels display the finite sample distributions

of the estimators β̂∗nT for the two micro-parameters (solid lines). We also display for each

micro-parameter the Gaussian distribution (dashed lines) with mean equal to the true param-

eter value and variance equal to the semi-parametric efficiency bound divided by nT . The

estimator β̂∗nT is computed from (6.3) by numerical optimization, where for given β the esti-

mate f̂n,t(β) in (6.2) is computed by grid search 17. As expected from the stochastic migration

literature, the γ2 parameter, which represents the sensitivity of the transition probabilities with

respect to the factor, is the most difficult to estimate. Its asymptotic variance is larger and the

convergence of the finite sample distribution to the asymptotic one is slower. A comparison

of Figures 1 and 2 shows that the standard deviations of the estimators decrease by a factor

of about 2 when passing from n = 200 to n = 1000, as suggested by the rate of convergence
√

nT of the micro-parameters. Finally, we observe a rather small finite sample bias for both

estimators.

The semi-parametric efficiency bound for (α2, γ2)
′ is given by (see Appendix 9.2):

Bββ =

E0


µ2,t−1π22,t (1− π22,t)

(
1− µ2,t−1π22,t (1− π22,t) γ2

2

µ1,t−1π12,t (1− π12,t) + µ2,t−1π22,t (1− π22,t) γ2
2

) 
 f 2

t ft

ft 1






−1

,

(6.4)

where π12,t = 1/(1 + eft), π22,t = 1/(1 + eγ2ft+α2) and:

µ1,t−1 = P
[
yi,t−1 = 1|ft−1

]
= 1− µ2,t−1.

17The stochastic migration model can be easily extended to include multiple factor in the transition probabil-

ities. In such a model, the estimation procedure described in Section 4.1 based on optimization problem (4.2)

is numerically convenient. In particular, the cross-sectional estimators of the canonical factors âl,k,t are given

in closed form. This estimation procedure has been applied in Gagliardini and Gouriéroux (2005b) without

proving its asymptotic efficiency.
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The matrix Bββ involves the probabilities µ1,t−1 and µ2,t−1 of the lagged states, conditional on

the factor path, and the conditional variances of the indicator of state 2, that are π21,t(1−π21,t)

and π22,t(1− π22,t), respectively, according to the previous state. The matrix Bββ depends on

macro-parameters µ, ρ, σ2 by means of the expectation E0. The semi-parametric efficiency

bound can be approximated numerically by Monte-Carlo integration (see Appendix 9.3).

Figure 3 displays the semi-parametric efficiency bound of parameter γ2 as a function of

the autoregressive coefficient ρ and the unconditional variance σ2

1−ρ2 of the factor process (ft).

The values of the micro-parameters and µ are given in Table 1. More precisely, we display

the asymptotic standard deviation
(

1
nT

Bγ2γ2

)1/2, where n = 1000 and T = 20. The semi-

parametric efficiency bound is decreasing w.r.t. the factor variance. The pattern is almost flat

w.r.t. the autoregressive coefficient ρ of the factor, except for values of ρ close to 1, where the

semi-parametric efficiency bound diverges to infinity.

6.3 Estimation of the macro-parameters

Let us now consider the efficient estimation of the macro-parameter θ = (µ, ρ, σ2)
′. The esti-

mator is based on the cross-sectional approximations of the factor values f̂nT,t = f̂n,t

(
β̂∗nT

)

from (6.2) and (6.3). The estimators µ̂ and ρ̂ are obtained by OLS on the regression:

f̂nT,t = µ + ρf̂nT,t−1 + ut, t = 2, ..., T.

The estimator of parameter σ2 is given by σ̂2 =
1

T − 1

T∑
t=2

û2
t , where ût = f̂nT,t−µ̂−ρ̂f̂nT,t−1

are the OLS residuals. The estimator θ̂ = (µ̂, ρ̂, σ̂2)
′ achieves the asymptotic efficiency bound

with observable factor, that is, the Cramer-Rao bound for θ in the linear Gaussian model

(6.1). Thus, the asymptotic efficiency bound is such that the estimators of (µ, ρ)′ and σ2 are

asymptotically independent, root-T consistent, with asymptotic variance:

B∗
(µ,ρ) = σ2

0E





 1 ft

ft f 2
t






−1

=


 σ2

0 + µ2
0

1+ρ0

1−ρ0
−µ0(1 + ρ0)

−µ0(1 + ρ0) 1− ρ2
0


 ,

for (µ, ρ)′, and B∗
σ2 = 2σ4

0 for σ2.

Figures 4 and 5 display the distributions (solid lines) of the efficient estimators µ̂, ρ̂ and

σ̂2 in the Monte-Carlo study for sample sizes n = 200, T = 20, and n = 1000, T = 20,
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respectively. The parameter values are given in Table 1. We also display Gaussian distri-

butions (dashed lines) centered at the true values of the parameters, with variances equal to

the efficiency bounds divided by T . As expected, it is more difficult to estimate the autore-

gressive coefficient ρ and the variance σ2 than to estimate the intercept µ. The estimators

ρ̂ and σ̂2 feature moderate downward biases. By comparing Figure 4 and Figure 5, we no-

tice that the standard deviations of the estimators are rather similar for the two sample sizes

and do not scale with n. Moreover, by comparing Figure 2 and Figure 5, it is seen that

the discrepancy between the finite-sample distribution and the asymptotic efficiency bound

is more pronounced for the macro-parameters than for the micro-parameters for our sample

sizes. These findings are a consequence of the different convergence rates of the two types of

estimators, that are
√

T and
√

nT , respectively.

7 Extension to panel factor models with individual hetero-

geneity

The results can be extended to cases of either observed heterogeneity, or unobserved stochas-

tic heterogeneity. Let us first assume that the micro-dynamics is given by the transition pdf

h(yi,t|yi,t−1, ft, xi,t; β), where xi,t is an observed explanatory variable. The joint density of

the endogenous variables yT and the factor path fT , conditional on the path of the explanatory

variables xT and the initial conditions, is given by:

l
(
yT , fT |xT ; β, θ

)
=

n∏
i=1

T∏
t=1

h (yi,t|yi,t−1, ft, xi,t; β)
T∏

t=1

g(ft|ft−1; θ).

The asymptotic approximation of the log-likelihood function is performed as in Corollary 2

with the cross-sectional factor approximation f̂n,t(β) = arg max
ft

n∑
i=1

log h(yi,t|yi,t−1, ft, xi,t; β).

Results analogous to Propositions 3-7 can be proved under suitable regularity conditions.

Let us now consider unobserved individual heterogeneity in terms of a discrete mixture.

For expository purpose, let us assume that in the population there are individuals of two types,

type 1 and type 2, say, with unknown proportions π and 1−π, respectively. Conditionally on

the factor path (ft), the individuals are independent. The micro-dynamics for an individual
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of type j follows a Markov process with transition h(yi,t|yi,t−1, ft; βj) with parameter βj ,

for j = 1, 2. The factor (ft) follows a Markov process with transition g (ft|ft−1; θ). The

individual type and the factor path are unobservable for the econometrician. The unknown

parameters vector is (β′1, β
′
2, θ

′, π)′.

Let zi be the indicator variable that is equal to 1 if individual i is of type 1, and equal to

0, otherwise. The complete data density is:

l
(
yT , fT , z; β1, β2, θ, π

)
=

n∏
i=1





(
T∏

t=1

h(yi,t|yi,t−1, ft; β1)

)zi
(

T∏
t=1

h(yi,t|yi,t−1, ft; β2)

)1−zi




·
n∏

i=1

πzi (1− π)1−zi ·
T∏

t=1

g (ft|ft−1; θ) , (7.1)

where z = (z1, · · · , zn). The log-likelihood function is obtained by integrating out both

the factor path fT and the indicator variables z. To integrate out the factor path, we ob-

serve that for given z the density (7.1) corresponds to the density of a model with ob-

served time-invariant individual heterogeneity and micro-dynamics h̃(hi,t|yi,t−1, ft, zi; β) =

[h(hi,t|yi,t−1, ft; β1)]
zi [h(hi,t|yi,t−1, ft; β2)]

1−zi , say, where β = (β′1, β
′
2)
′. Thus, we can ap-

ply the Laplace approximation along the lines of Proposition 1 and Corollary 2 as discussed

above, and show that asymptotically:

1

nT
log l

(
yT , z; β1, β2, θ, π

)

' 1

nT

T∑
t=1

n∑
i=1

[
zi log h

(
yi,t|yi,t−1, f̂n,t(β, z); β1

)
+ (1− zi) log h

(
yi,t|yi,t−1, f̂n,t(β, z); β2

)]

+
1

nT

n∑
i=1

[zi log π + (1− zi) log (1− π)] +
1

nT

T∑
t=1

log g
(
f̂n,t(β, z)|f̂n,t−1(β, z); θ

)
, (7.2)

where the cross-sectional approximations of the factors are given by:

f̂n,t(β, z) = arg max
ft

n∑
i=1

[zi log h (yi,t|yi,t−1, ft; β1) + (1− zi) log h (yi,t|yi,t−1, ft; β2)] .

The first two terms in the RHS of (7.2) correspond to the complete data log-likelihood func-

tion of a panel mixture model, where the individual dynamics depend endogeneously on

the population segmentation through the summaries f̂n,t(β, z). The approximate maximum

likelihood estimator of (β1, β2, π) can be computed by using standard methods for mixture
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models, such as the EM algorithm, where the E-step is performed using a Gibbs sampler to

integrate over the discrete state space of z. Then, the estimator of parameter θ is derived

as usual from the dynamics of the factor approximations. The derivation of the asymptotic

properties of such estimators is behind the scope of this paper.

8 Concluding remarks

We have considered nonlinear dynamic panel models with common unobservable factor,

in which it is possible to disentangle the micro- and the macro-dynamics, the latter being

captured by the factor dynamic. Such models are largely encountered in finance and in-

surance when the joint risk dynamics are followed in large homogenous pools of individ-

ual contracts such as corporate loans, household mortgages, or life insurance contracts. In

such applications the model allows to disentangle the dynamics of systematic and unsys-

tematic risks. These models are also appropriate for performing macro-prediction from ten-

dency surveys [Gouriéroux, Monfort (2009)]. For large cross-sectional and time dimensions

[n, T → ∞, T b/n = O(1), b > 1], we have derived the semiparametric efficiency bound of

the parameter β characterizing the micro-dynamics. The semi-parametric efficiency bound

takes into account the factor unobservability, and coincides with the bound for known fac-

tor transition. Moreover, we have shown that the fixed effects estimator of β achieves the

(semi-) parametric efficiency. We have also shown that an asymptotically efficient estimator

of the macro-parameter θ is obtained by replacing the unobservable factor values by consis-

tent cross-sectional approximations in the likelihood function. These results require a large

cross-sectional dimension to approximate the likelihood function, which involves multidi-

mensional integrals, by a closed form expression. The higher-order terms in this expansion

around n = ∞ are the basis for granularity adjustments, which yield asymptotically efficient

estimators, that are more accurate approximations of the true ML estimator.
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Figure 1: Distribution of the semiparametrically efficient estimators of the micro-
parameters, sample size n = 200 and T = 20.
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The solid lines give the pdf of the semiparametrically efficient estimators of parameter γ (upper Panel, true
value 1) and parameter α (lower Panel, true value −0.5). The pdf is computed by a kernel density estimator.
Sample sizes are n = 200 and T = 20. The dashed lines in the two Panels give the pdf of a normal distribution
centered at the true value of the parameter and with variance equal to the semi-parametric efficiency bound
divided by nT.
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Figure 2: Distribution of the semiparametrically efficient estimators of the micro-
parameters, sample size n = 1000 and T = 20.
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The solid lines give the pdf of the semiparametrically efficient estimators of parameter γ (upper Panel, true
value 1) and parameter α (lower Panel, true value −0.5). The pdf is computed by a kernel density estimator.
Sample sizes are n = 1000 and T = 20. The dashed lines in the two Panels give the pdf of a normal distri-
bution centered at the true value of the parameter and with variance equal to the semi-parametric efficiency
bound divided by nT.
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Figure 3: Semiparametric efficiency bound of the micro-parameter γ2.
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Figure 4: Distribution of the efficient estimators of the macro-parameters, sample size
n = 200 and T = 20.
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The solid lines give the pdf of the efficient estimators of parameter µ (upper Panel, true value 0.1), parameter
ρ (central Panel, true value 0.5) and parameter σ2 (lower Panel, true value 0.25). The pdf is computed by a
kernel density estimator. Sample sizes are n = 200 and T = 20. The dashed lines in the three Panels give
the pdf of a normal distribution centered at the true value of the parameter and with variance equal to the
efficiency bound divided by T.

44



Figure 5: Distribution of the efficient estimators of the macro-parameters, sample size
n = 1000 and T = 20.
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The solid lines give the pdf of the efficient estimators of parameter µ (upper Panel, true value 0.1), parameter
ρ (central Panel, true value 0.5) and parameter σ2 (lower Panel, true value 0.25). The pdf is computed by a
kernel density estimator. Sample sizes are n = 1000 and T = 20. The dashed lines in the three Panels give
the pdf of a normal distribution centered at the true value of the parameter and with variance equal to the
efficiency bound divided by T.
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APPENDIX 1

Weak LLN and Slutsky Theorem

This Appendix provides asymptotic results for nonlinear panel models with common fac-

tor to show the uniform stochastic convergence:

sup
β∈B

∣∣∣∣∣
1

T

T∑
t=1

ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− E0 [ϕ (µt(β))]

∣∣∣∣∣
p→ 0, (A.1)

as n, T → ∞, where Yi,t = (yi,t, yi,t−1, · · · , yi,t−L)′, µt(β) = E0

[
a(Yi,t, ft(β), β)|ft

]
,

f̂n,t(β) is a consistent estimator of ft(β), B ⊂ Rq denotes the parameter set, and a and ϕ

are functions. The result in Lemma A.1 is proved in Appendix B.1 on the web-site.

Lemma A.1: Let matrix function a(Y, f, β) admit values in Rr×r. Assume:

(1) (i) Parameter set B ⊂ Rq is compact.

(ii) E0

[‖a(Yi,t, ft(β), β)‖9
]

< ∞, for any β ∈ B, E0

[
sup
β∈B

‖a(Yi,t, ft(β), β)‖4

]
< ∞ .

(iii) E0

[
sup
β∈B

∥∥∥∥
∂ vec[a(Yi,t, ft(β), β)]

∂β′

∥∥∥∥
4
]

< ∞.

(iv) For any β ∈ B: E0 [‖µt(β)− E0[a(Yi,t, ft(β), β)|ft, ..., ft−m]‖2] = O (m−α), for

some α > 0, as m →∞, where µt(β) = E0[a(Yi,t, ft(β), β)|ft].

(v) P [ξt ≥ u] ≤ C1 exp
(−C2u

δ
)

as u →∞, for some constants C1, C2, δ > 0, where

ξt = sup
β∈B

σ2
t (β) and σ2

t (β) = E0

[‖a(Yi,t, ft(β), β)‖2|ft

]
.

(vi) Condition (v) holds for ξt = sup
β∈B

σ̃2
t (β), where σ̃2

t (β) = E0

[
b(Yi,t, ft(β), β)2|ft

]

and b(Yi,t, ft(β), β) = sup
f :‖f−ft(β)‖≤η∗

∥∥∥∥
∂ vec[a(Yi,t, f, β)]

∂f ′

∥∥∥∥, η∗ > 0 .

(2) Function ϕ : Rr×r → R is Lipschitz and there exists τ > 2 such that E0 [|ϕ(µt(β))|τ ] < ∞ ,

for any β ∈ B.

(3) sup
1≤t≤T

sup
β∈B

‖f̂n,t(β)− ft(β)‖ = Op(T
−ρ), for ρ > 0.

(4) n, T →∞, such that T/n → 0.

Then, under Assumptions A.1-A.5, the uniform stochastic convergence (A.1) holds.
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Lemma A.1 follows from:

(a) The convergence of estimator f̂n,t(β) to ft(β), and the convergence of the cross-sectional

average
1

n

n∑
i=1

a(Yi,t, ft(β), β) to µt(β) = E0

[
a(Yi,t, ft(β), β)|ft

]
by a Weak LLN (WLLN)

conditional on ft, uniformly in t = 1, · · · , T and β ∈ B,

(b) The application of the Slutsky theorem with continuous function ϕ,

(c) The convergence of the time series average of ϕ(µt(β)) to the population expectation by

the WLLN, uniformly in β ∈ B.

Since the continuity point µt(β) for the application of the Slutsky theorem is stochastic,

we need the Lipschitz condition for ϕ in condition (2). Condition (1) (v) in Lemma A.1 is used

to apply Bernstein’s inequality [e.g., Bosq (1998), Theorem 1.2] to derive a large deviation

bound for
1

n

n∑
i=1

a(Yi,t, ft(β), β) − µt(β) uniformly in 1 ≤ t ≤ T and β ∈ B. Condition (1)

(vi), combined with condition (3), is used to show that
1

n

n∑
i=1

[
a(Yi,t, f̂n,t(β), β)− a(Yi,t, ft(β), β)

]

converges to zero, uniformly in 1 ≤ t ≤ T and β ∈ B. The uniform convergence in condi-

tion (3) is proved in Appendix 4 (see Lemma A.6), when f̂n,t(β) is the cross-sectional ML

estimator introduced in Section 3. Finally, the uniform convergence of
1

T

T∑
t=1

ϕ(µt(β)) to

E0 [ϕ(µt(β))] relies on a mixingale WLLN in Andrews (1988) and convergence results for

Near-Epoch Dependent processes in Davidson (1994).

Lemma A.1 is also valid for multivariate functions ϕ whose components satisfy condition

(2), in particular for the matrix identity mapping ϕ(x) = x, x ∈ Rr×r. However, the Lips-

chitz property in condition (2) prevents the application of Lemma A.1 when ϕ is the matrix

inversion ϕ(x) = x−1. Lipschitz condition (2) is relaxed in Lemma A.2, which is proved in

Appendix B.2.

Lemma A.2: Let a(Y, f, β) admit values in the set of symmetric matrices of dimension r,

and let U be the open subset of positive definite matrices. Assume:

(1) Conditions (1) (i)-(vi) of Lemma A.1 hold. Moreover:

(vii) µt(β) = E0

[
a(Yi,t, ft(β), β)|ft

] ∈ U , for any t and β ∈ B, P -a.s.

(viii) Condition (1) (v) of Lemma A.1 holds for ξt =

(
inf
β∈B

λt(β)

)−1

, where λt(β) is
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the smallest eigenvalue of matrix µt(β), for ξt = sup
β∈B

σt(β)

λt(β)
, and for ξt = sup

β∈B

σ̃t(β)

λt(β)
,

where σt(β) and σ̃t(β) are defined in Lemma A.1.

(2) Function ϕ : U → R is such that:

(i) ϕ is Lipschitz on any compact subset of U .

(ii) |ϕ(w)| ≤ C‖z‖τψ(z), for any w, z ∈ U such that w = (1+∆)z, ‖∆‖ ≤ 1/2 , where

constants C, τ satisfy C > 0, τ ≤ 2, and function ψ is such that E0[sup
β∈B

|ψ(µt(β))|4] < ∞ .

(3) sup
1≤t≤T

sup
β∈B

‖f̂n,t(β)− ft(β)‖ = Op(T
−ρ), for ρ > 0.

(4) n, T →∞ such that T/n → 0.

Then, under Assumptions A.1-A.5, the uniform stochastic convergence (A.1) holds.

Assumptions (1) (vii)-(viii) of Lemma A.2 involve a tail condition on the stationary distri-

bution of the smallest eigenvalue λt(β) of matrix µt(β) in a neighbourhood of 0. In condition

(2) (i), function ϕ is locally Lipschitz on compact subsets of U . The growth of |ϕ| outside

compact sets is bounded by condition (2) (ii). These conditions are sufficiently general to

accommodate functions ϕ used in Appendix 6 to derive the asymptotic properties of the esti-

mators.

Corollary A.3: Assume that conditions (1), (3) and (4) of Lemma A.2 hold. Let function ϕ

be either:

(A) The matrix inversion ϕ : U → Rr×r, ϕ(x) = x−1, or

(B) The mapping ϕ : U → Rs×s, ϕ(x) = (x11)−1 where x11 is the upper-left s-dimensional

block of x−1, s < r.

Then, the uniform stochastic convergence (A.1) holds.

Corollary A.3 is deduced from Lemma A.2 since the inversion mapping satisfies w−1 −
z−1 = −w−1 (w − z) z−1, for w, z ∈ U (see Appendix B.3).
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APPENDIX 2

Large deviation bounds for ML estimators in an i.i.d. framework

We provide two large deviation bounds for ML estimators in an i.i.d. framework. They

are used in Appendix 4 to derive the rate of convergence of the factor approximations through

a conditioning argument. Let us consider the ML estimator:

θ̂n = arg max
θ∈Θ

Ln(θ),

where Ln(θ) =
1

n

n∑
i=1

li (θ) and li (θ) = log h (yi, θ). Let L (θ) = E0 [li (θ)], where E0[.]

denotes expectation w.r.t. the true probability distribution P0. Let us assume:

i) Parameter set Θ ⊂ Rd is compact and convex.

ii) The observations yi, i = 1, ..., n, are i.i.d. with density h(yi, θ0), where θ0 is the true

parameter value.

iii) Parameter θ0 ∈ Θ is globally identified, that is, L (θ0) > L (θ) for any θ ∈ Θ, θ 6= θ0, and

locally identified, that is, the matrix J0 = E0

[
−∂2 log h(yi, θ0)

∂θ∂θ′

]
is non-singular.

iv) There exists γ > 2 such that:

R := E0

[
sup
θ∈Θ

∥∥∥∥
∂ log h(yi, θ)

∂θ

∥∥∥∥
γ]

< ∞.

Under the compactness condition in i), condition iii) is equivalent to:

K := 2 inf
θ∈Θ:θ 6=θ0

KL (θ, θ0)

‖θ − θ0‖2 > 0, (A.2)

where KL (θ, θ0) = L (θ0)−L (θ) = E0

[
log

(
h (yi, θ0)

h (yi, θ)

)]
is the Kullback-Leibler discrep-

ancy between θ and θ0. Moreover, under condition iv):

Γ := sup
θ∈Θ

TrI(θ, θ0) = sup
θ∈Θ

E0

[∥∥∥∥
∂ log h(yi, θ)

∂θ

∥∥∥∥
2
]

< ∞,

where I(θ, θ0) = E0

[
∂ log h(yi, θ)

∂θ

∂ log h(yi, θ)

∂θ′

]
. Note that I(θ0, θ0) = J0 by the infor-

mation matrix equality, but matrix I(θ, θ0) differs in general from J0 for θ 6= θ0, even for

well-specified models.
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Lemma A.4: Under conditions i)-iv), there exist constants c1, c2, c3 > 0 (depending on d,

but independent of Θ and the parametric model) such that for any n and ε > 0:

P0

[∥∥∥θ̂n − θ0

∥∥∥ ≥ ε
]
≤ c1n

d exp

(
−c2nε2 K

1 + Γ/K
)

+ c3ε
γ−2R

K .

Proof: See Appendix B.4.

Lemma A.4 differs from large deviation bounds for ML estimators known in the literature

[e.g., Fu (1982), Chen, Shen (1998), Theorem 3], since Lemma A.4 makes explicit how the

bound with given threshold ε and sample size n depends on the true probability distribution 18.

This dependence is summarized by statistics K, Γ and R, and by exponent γ. In particular,

the coefficient of nε2 in the exponential term involves the ratio
K

1 + Γ/K . This ratio is an

increasing function of the Kullback-Leibler measure K, and and a decreasing function of the

second-order moment of the score Γ.

The large deviation bound in Lemma A.4 can be extended to models with nuisance pa-

rameters. Let the log-density li(θ) = log h(yi, θ) be parametrized by θ = (α, β), where

the parameter of interest is α ∈ A, and the nuisance parameter is β ∈ B. We consider the

concentrated ML estimator of parameter α defined by:

α̂n(β) = arg max
α∈A

Ln(α, β),

for any β ∈ B, where Ln(α, β) =
1

n

n∑
i=1

li (θ). Denote L(θ) = E0 [li(θ)], and Θ = A× B.

Lemma A.5: Assume:

i) Set A ⊂ RK is compact and convex, and set B ⊂ Rq is compact.

ii) The observations yi are i.i.d. with density h(yi, θ0), where θ0 = (α0, β0) is the true param-

eter value.

iii) For any given β ∈ B, the function L(α, β) is uniquely maximized w.r.t. α ∈ A at

α(β) = arg max
α∈A

L(α, β). The true values of parameters α0 ∈ A and β0 ∈ B satisfy

α0 = α(β0), and the matrix J(β) = E0

[
−∂2li(α(β), β)

∂α∂α′

]
is non-singular, for any β ∈ B.

iv) There exists γ > 2 such that R := E0

[
sup
θ∈Θ

∥∥∥∥
∂ log h(yi, θ)

∂θ

∥∥∥∥
γ]

< ∞.

18Moreover, compared to the results in Fu (1982), Lemma A.4 applies for multivariate parameter θ.
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Then, there exist constants c1, c2, c3 > 0 (depending on dimensions K and q, but independent

of A, B and the parametric model) such that for any n and ε > 0:

P

[
sup
β∈B

‖α̂n(β)− α(β)‖ ≥ ε

]
≤ c1V ol(B)

nK+q

εq
exp

(
−c2nε2 K

1 + Γ/K
)

+ c3ε
γ−2R

K ,

where:

K := inf
β∈B

inf
α∈A:α 6=α(β)

2KL(α, α(β); β)

‖α− α(β)‖2
> 0,

and KL(α, α(β); β) = L(α(β), β)−L(α, β) is the Kullback-Leibler discrepancy between α

and α(β) for given β ∈ B, the scalar Γ is given by:

Γ := sup
θ∈Θ

TrI(θ, θ0) = sup
θ∈Θ

E0

[∥∥∥∥
∂ log h(yi, θ)

∂α

∥∥∥∥
2
]

< ∞,

with I(θ, θ0) = E0

[
∂ log h(yi, θ)

∂α

∂ log h(yi, θ)

∂α′

]
, and V ol(B) =

∫

B
dλ is the Lebesgue mea-

sure of B.

Proof: See Appendix B.5.
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APPENDIX 3

Regularity conditions

The regularity conditions used to derive the large sample properties of the estimators are

given below.

H.1: The parameter sets B ⊂ Rq and Θ ⊂ Rp are compact. The true parameter values β0

and θ0 are interior points of B and Θ, respectively.

H.2: For any multi-index α ∈ Nq+K such that |α| ≤ 3:

E0

[
sup
β∈B

∣∣∣∣
∂|α| log h(yi,t|yi,t−1, f ; β)

∂α(β′, f ′)

∣∣∣∣
9

f=ft(β)

]
< ∞,

where K = dim(f). Moreover E0

[
sup
β∈B

∥∥∥∥
∂ft(β)

∂β′

∥∥∥∥
8
]

< ∞.

H.3: For any β ∈ B: (i) E0 [‖ft(β)− E0[ft(β)|ft, ..., ft−m]‖2] = O (m−α),

(ii) E0

[|E0

[
li,t(β)|ft

]− E0[li,t(β)|ft, ..., ft−m]|2] = O (m−α),

(iii) E0

[‖E0

[
Hi,t(β)|ft

]− E0[Hi,t(β)|ft, ..., ft−m]‖2
]

= O (m−α), as m → ∞, for some

α > 0, where li,t(β) = log h(yi,t|yi,t−1, ft(β); β) and Hi,t(β) =

[
−∂2 log h(yi,t|yi,t−1, f ; β)

∂(f ′, β′)′∂(f ′, β′)

]

f=ft(β)

.

H.4: Matrix I(t, β) = E0

[
Hi,t(β)|ft

]
is positive definite, for any t and β ∈ B, P -a.s.

H.5: P [ξt ≥ u] ≤ C1 exp
(−C2u

δ
)

as u →∞, for some constants C1, C2, δ > 0 and:

(i) ξt =

(
inf
β∈B

λt(β)

)−1

, where λt(β) is the smallest eigenvalue of matrix I(t, β);

(ii) ξt = sup
β∈B

E0

[|li,t(β)|2|ft

]
;

(iii) ξt = sup
β∈B

E0

[
sup

f :‖f−ft(β)‖≤η∗

∥∥∥∥
∂ log h(yi,t|yi,t−1, f ; β)

∂f

∥∥∥∥
2

|ft

]
, where η∗ > 0;

(iv) ξt = sup
β∈B

σt(β)

λt(β)
, where σ2

t (β) = E0

[‖Hi,t(β)‖2|ft

]
;

(v) ξt = sup
β∈B

σ̃t(β)

λt(β)
, where σ̃2

t (β) = E0

[
sup

f :‖f−ft(β)‖≤η∗

∥∥∥∥
∂3 log h(yi,t|yi,t−1, f ; β)

∂(f ′, β′)′∂(f ′, β′)∂f

∥∥∥∥
2

|ft

]
and

η∗ > 0.
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H.6: The process sup
β∈B

‖ft(β)‖ is such that P

[
sup
β∈B

‖ft(β)‖ ≥ u

]
≤ C3 exp (−C4u

%) as u →
∞, for some constants C3, C4, % > 0.

H.7: The set Fn ⊂ RK is compact and convex, for any n ∈ N, and is such that Bρn(0) ⊂ Fn,

where Bρn(0) denotes a ball in RK centered at 0 and with radius ρn = [(2/C4) log(n)]1/%.

H.8: There exists a constant a1 ≥ 0 such that:

Kt := inf
n≥1

inf
β∈B

inf
f∈Fn:f 6=ft(β)

[log(n)]a1
2KLt(f, ft(β); β)

‖f − ft(β)‖2
> 0,

for any t, P -a.s., where KLt(f, ft(β); β) = E0

[
log

(
h(yi,t|yi,t−1, ft(β); β)

h(yi,t|yi,t−1, f ; β)

)
|ft

]
is the

conditional Kullback-Leibler discrepancy between f and ft(β) given the factor path ft.

H.9: There exist constants γ ≥ 4 and a2 ≥ 0 such that:

Rt := sup
n≥1

[log(n)]−a2E0

[
sup
β∈B

sup
f∈Fn

∥∥∥∥
∂ log h(yi,t|yi,t−1, f ; β)

∂(f ′, β′)′

∥∥∥∥
γ

|ft

]
< ∞,

for any t, P -a.s. Moreover E0 [R2
t ] < ∞.

H.10: There exist constants C5, C6 > 0 and a3 > 1 such that P [ξt ≥ u] ≤ C5 exp
[−C6u

1/(a3−1)
]

as u →∞, where ξt =

( Kt

1 + Γt/Kt

)−1

and:

Γt := sup
n≥1

sup
β∈B

sup
f∈Fn

[log(n)]−a2 TrE0

[
∂ log h(yi,t|yi,t−1, f ; β)

∂f

∂ log h(yi,t|yi,t−1, f ; β)

∂f ′
|ft

]
.

H.11: The function G(Ft, θ) = log g(ft|ft−1; θ), where Ft = (ft, ft−1), is Lipschitz contin-

uous w.r.t. Ft ∈ R2K , and such that E0 [‖G(Ft(β), θ)‖κ] < ∞, κ > 2, for any β ∈ B and

θ ∈ Θ, and E

[
sup
θ∈Θ

sup
β∈B

∥∥∥∥
∂G(Ft(β), θ)

∂β

∥∥∥∥
]

< ∞ , E

[
sup
θ∈Θ

sup
β∈B

∥∥∥∥
∂G(Ft(β), θ)

∂θ

∥∥∥∥
]

< ∞.

H.12: P [ζt ≥ u] ≤ C7 exp
(−C8u

1/χ
)
, as u →∞, for some constants C7, C8, χ > 0, where

ζt = sup
θ∈Θ

sup
β∈B

sup
F :‖F−Ft(β)‖≤η∗

∥∥∥∥
∂G(F, θ)

∂F

∥∥∥∥, η∗ > 0, and G(Ft, θ) = log g(ft|ft−1; θ) .

H.13: Assumptions H.11 and H.12 are satisfied for G(Ft, θ) =
∂2 log g(ft|ft−1; θ)

∂θ∂θ′
,

=
∂2 log g(ft|ft−1; θ)

∂θ∂f ′t
, and =

∂2 log g(ft|ft−1; θ)

∂θ∂f ′t−1

.
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H.14: E0

[∥∥∥∥
∂ log g(ft|ft−1; θ0)

∂θ

∥∥∥∥
ν]

< ∞, ν > 2.

Assumption H.1 is a standard condition on parameter sets and true parameter values. As-

sumptions H.2-H.6 concern the micro log-density and the pseudo-true factor values. Specifi-

cally, Assumption H.2 requires finite higher-order moments for log h(yi,t|yi,t−1, f ; β) and its

derivatives w.r.t. β and f , evaluated at f = ft(β), uniformly in β ∈ B. Similarly, finite higher

moments for ∂ft(β)/∂β′ uniformly in β are required. Under Assumption H.3, the pseudo-true

factor value ft(β), and the conditional expectation of li,t(β) = log h(yi,t|yi,t−1, ft(β); β) and

Hi,t(β) =

[
−∂2 log h(yi,t|yi,t−1, f ; β)

∂(f ′, β′)′∂(f ′, β′)

]

f=ft(β)

given the factor path ft, can be approximated

by the conditional expectation given a finite number of past factor values. Assumption H.4

implies the concavity of the cross-sectional likelihood function E0

[
log h(yi,t|yi,t−1, f ; β)|ft

]

w.r.t. (f, β), at f = ft(β) and β ∈ B, P -a.s. Since I(t, β0) = I(t), where matrix I(t) is

defined in (3.10), Assumption H.4 strengthens identification Assumptions A.6 and A.7 for

micro-parameter β. Assumption H.4 is equivalent to the condition λt(β) > 0, for any t and

β ∈ B, P-a.s., on the smallest eigenvalue of matrix I(t, β). Assumption H.5 (i) is a tail condi-

tion on the stationary distribution of process ξt =

(
inf
β∈B

λt(β)

)−1

. This condition is satisfied,

when the factor paths associated with very small λt(β) for some β are sufficiently unfre-

quent. Assumptions H.5 (ii)-(v) are similar tail conditions for the stationary distributions of

process ξt = sup
β∈B

E0

[|li,t(β)|2|ft

]
as well as processes involving the derivatives of the micro

log-density function. Assumptions H.1-H.5 are used in Appendix A.6.2 to prove the uni-

form convergence of the likelihood function L∗nT (β) defined in (3.5), and of its second-order

derivative w.r.t. β, using Lemmas A.1, A.2 and Corollary A.3 given in Appendix A.1.

Assumptions H.6-H.10 are used in Lemma A.6 to derive the uniform rate of convergence

of the factor approximations (see Appendix A.4). Specifically, Assumption H.6 concerns the

tail of the stationary distribution of the process sup
β∈B

‖ft(β)‖. The parameter set Fn is allowed

to grow at a logarithmic rate as n →∞. Assumption H.7 gives a lower bound on this growth

rate. Under Assumptions H.6 and H.7, the pseudo-true factor value ft(β) is in Fn, for any

1 ≤ t ≤ T and β ∈ B, with probability approaching 1 at rate O(T/n2). Assumption H.8

concerns the identifiability of the factor values. For any given n, the conditional Kullback-

Leibler discrepancy between f ∈ Fn and ft(β) given ft is bounded from below by a quadratic
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function proportional to the squared distance ‖f − ft(β)‖2, uniformly in β ∈ B. The scale

factor converges to zero at a logarithmic rate, as parameter set Fn grows. Assumption H.9

introduces a uniform bound on the higher-order moments of the score of the log-density w.r.t.

factor value f ∈ Fn and parameter β ∈ B. The moment of order γ ≥ 4 is allowed to

diverge at a logarithmic rate as Fn grows. The logarithmic rates in Assumptions H.8 and H.9

imply an upper bound on the growth rate of set Fn. Assumption H.10 is a tail condition on

the stationary distribution of the process
Kt

1 + Γt/Kt

in a neighbourhood of 0. The quantity

Kt

1 + Γt/Kt

involves the measure of Kullback-Leibler discrepancy Kt, and the measure Γt of

second-order moment of the score of the log-density w.r.t. ft, which are functions of the factor

path ft. Assumption H.10 is satisfied when the probability mass of Kt in a neighbourhood of

zero, and the probability mass for large values of the ratio Γt/Kt, are small.

Finally, Assumptions H.11-H.14 concern the macro log-density and its derivatives w.r.t.

factor values and macro-parameter θ. Specifically, Assumption H.11 requires finite moments

for log g(ft(β)|ft−1(β); θ) and its first-order derivatives w.r.t. β and θ. Assumption H.12

is a condition on the right tail of process ζt. This assumption is used to prove a WLLN

for time series averages with true factor values replaced by cross-sectional estimators (see

Lemma A.8 in Appendix 4). Assumption H.14 is a bound on the moment of the macro-score
∂ log g(ft|ft−1; θ0)

∂θ
of order ν > 2. Assumptions H.11-H.14 imply the uniform convergence

of L1,nT (β, θ) [see (3.6)] and the Hessian
∂2L1,nT (β, θ)

∂θ∂θ′
, uniformly in β ∈ B, θ ∈ Θ, as

well as the asymptotic normality of the score
∂L1,nT (β0, θ0)

∂θ
in the proof of Proposition 5

(see Appendix 6). These assumptions are also used to prove the asymptotic efficiency of the

estimator of θ in Proposition 7.
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APPENDIX 4

Uniform rate of convergence of the cross-sectional factor approximations

Let us derive the uniform rate of convergence of the cross-sectional approximations of the

factor values:

f̂n,t(β) = arg max
f∈Fn

n∑
i=1

log h (yi,t|yi,t−1, f ; β) ,

where set Fn ⊂ RK is compact and tends to RK when n →∞ as defined in Assumption H.7.

A.4.1 Uniform rate of convergence

Lemma A.6: Under Assumptions A.1-A.5, H.1, H.6-H.10, and if n, T → ∞ such that

T b/n = O(1) for a b > 1:

sup
1≤t≤T

sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ = Op

(√
(log n)a

n

)
,

a = 2a1 + a2 + a3 > 0, where a1, a2, a3 are defined in Assumptions H.8-H.10.

The logarithmic factor in the uniform convergence rate of f̂n,t(β) depends on three param-

eters. Parameter a3 controls the tail of the distribution of information measure
Kt

1 + Γt/Kt

in

a neighbourhood of zero (see Assumption H.10). Parameters a1 and a2 describe the effect of

the expanding parameter set Fn on the identifiability and higher-order moments of the score

(see Assumptions H.8 and H.9). The uniform rate of convergence in Lemma A.6 is valid

when cross-sectional dimension n increases faster than time dimension T .

A.4.2 Proof of Lemma A.6

Let εn =

√
r
(log n)a

n
, where r > 0 is a constant. We have to show that for any η > 0,

there exists a value of r such that P

[
sup

1≤t≤T
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn

]
≤ η, for large n and

T such that T b/n = O(1), b > 1. We have:

P

[
sup

1≤t≤T
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn

]
≤ TP

[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn

]

= TE

[
P

[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]]
.

(A.3)
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Conditional on factor path ft, the estimator f̂n,t(β) is the ML estimator of “parameter” ft

given the “nuisance” parameter β, computed on the sample (yi,t, yi,t−1), i = 1, ..., n. This

sample is i.i.d. conditional on ft. Thus, the strategy of the proof is to first use the large devia-

tion result in Lemma A.5 in Appendix 2 to get a bound for P

[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]
,

as a function of ft. Then, we compute the expectation of this bound w.r.t. ft.

i) Bound of P

[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]

Let us first consider the realizations of ft such that ft(β) ∈ Fn for any β ∈ B. We

apply Lemma A.5 with li(θ) = log h(yi,t|yi,t−1, f ; β), i = 1, ..., n, and θ = (f, β) ∈
Fn × B. Conditions i) and ii) are implied by Assumptions H.1 and H.7, and A.1-A.2, re-

spectively. Condition iii) is satisfied since Assumption H.8 implies that ft(β) is the unique

maximizer of Lt(f, β) = E0

[
log h(yi,t|yi,t−1, f ; β)|ft

]
w.r.t. f ∈ Fn, and that matrix

E0

[
−∂2 log h(yi,t|yi,t−1, ft(β); β)

∂f∂f ′
|ft

]
is non-singular, for any β ∈ B. Condition iv) of

Lemma A.5 is implied by Assumption H.9 and:

E0

[
sup
β∈B

sup
f∈Fn

∥∥∥∥
∂ log h(yi,t|yi,t−1, f ; β)

∂(f ′, β′)′

∥∥∥∥
γ

|ft

]
≤ [log(n)]a2Rt.

Moreover, from Assumption H.8 we know that:

inf
β∈B

inf
f∈Fn:f 6=ft(β)

2KLt(f, ft(β); β)

‖f − ft(β)‖2
≥ [log(n)]−a1Kt,

and:

sup
β∈B

sup
f∈Fn

TrE0

[
∂ log h(yi,t|yi,t−1, f ; β)

∂f

∂ log h(yi,t|yi,t−1, f ; β)

∂f ′
|ft

]
≤ [log(n)]a2Γt,

from Assumptions H.9-H.10. Then, from Lemma A.5 we have:

P

[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]

≤ c1
nK+q

εq
n

exp

(
−c2nε2

n

[log(n)]−a1Kt

1 + [log(n)]a1+a2Γt/Kt

)
+ c3ε

γ−2
n [log(n)]a1+a2

Rt

Kt

≤ c1

rq/2
nK+3q/2 exp

(
−c2r[log(n)]a3

Kt

1 + Γt/Kt

)
+ c3

rγ/2−1

nγ/2−1
[log(n)]a1(γ−1)+(a2+a3)γ/2−a3

Rt

Kt

,
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for any factor path such that ft(β) ∈ Fn for any β ∈ B, where c1, c2, c3 are constants inde-

pendent of ft and n, T . Thus, we get:

P

[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]

≤ c1

rq/2
nK+3q/2 exp

(
−c2r[log(n)]a3

Kt

1 + Γt/Kt

)
+ c3

rγ/2−1

nγ/2−1
[log(n)]a1(γ−1)+(a2+a3)γ/2−a3

Rt

Kt

+1

{⋃

β∈B
[ft(β) ∈ F c

n]

}
, P -a.s.. (A.4)

ii) Integrating out the factor path

By integrating out the factor path ft, we get from (A.3) and (A.4):

P

[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn

]

≤ c1

rq/2
TnK+3q/2E

[
exp

(
−c2r[log(n)]a3

Kt

1 + Γt/Kt

)]

+c3T
rγ/2−1

nγ/2−1
[log(n)]a1(γ−1)+(a2+a3)γ/2−a3E

[Rt

Kt

]
+ TP

[⋃

β∈B
[ft(β) ∈ F c

n]

]

=: I1,n,T + I2,n,T + I3,n,T .

Let us now bound these three terms.

(a) To bound I1,n,T we use the next Lemma A.7.

Lemma A.7: Let ξ be a positive random variable such that P [ξ ≥ u] ≤ C1 exp (−C2u
%) as

u → ∞, for some constants C1, C2, % > 0. Then E[exp (−uξ−1)] ≤ C̃1 exp
(
−C̃2u

%/(1+%)
)

as u →∞, for some constants C̃1, C̃2 > 0.

Proof: See Appendix B.6.

From Assumption H.10 and Lemma A.7, and using T/nγ/2−1 = O(1), we have for some

constants c4, c5 > 0:

I1,n,T ≤ c1

rq/2
c4TnK+3q/2 exp

(−c5(c2r)
1/a3 log(n)

) ≤ c1

rq/2
c4n

γ/2−1+K+3q/2−c5(c2r)a3 = o(1),

if r >
1

c2

(
γ/2 + K + 3q/2− 1

c5

)1/a3

.

(b) From Assumptions H.9 and H.10, E

[Rt

Kt

]
≤ E

[R2
t

]1/2
E

[K−2
t

]1/2
< ∞. Then,

from the condition T b/n = O(1) for b > 1, and since γ ≥ 4, we get I2,n,T = o(1).
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(c) Finally, from Assumptions H.6 and H.7, we have:

P

[⋃

β∈B
[ft(β) ∈ F c

n]

]
≤ P

[
sup
β∈B

‖ft(β)‖ ≥ ρn

]
≤ C3 exp (−C4ρ

%
n) ≤ C3n

−2.

Since T/n2 = o(1), we get I3,n,T = o(1). This completes the proof of Lemma A.6.

A.4.3 Uniform WLLN with factor approximations

The uniform rate of convergence of cross-sectional factor approximations (Lemma A.6)

can be used to derive uniform WLLN when the true factor values are replaced by their ap-

proximations.

Lemma A.8: Let Ft := (ft, ft−1) and assume that function G(F, θ) is such that:

(i) G(F, θ) is Lipschitz continuous w.r.t. F ∈ R2K , for any θ ∈ Θ.

(ii) For any β ∈ B and θ ∈ Θ: E0 [‖G(Ft(β), θ)‖κ] < ∞, κ > 2, E

[
sup
θ∈Θ

sup
β∈B

∥∥∥∥
∂vec[G(Ft(β), θ)]

∂β′

∥∥∥∥
]

< ∞ ,

and E

[
sup
θ∈Θ

sup
β∈B

∥∥∥∥
∂vec[G(Ft(β), θ)]

∂θ′

∥∥∥∥
]

< ∞.

(iii) P [ζt ≥ u] ≤ c1 exp
(−c2u

1/χ
)
, as u → ∞, for some constants c1, c2, χ > 0, where

ζt = sup
θ∈Θ

sup
β∈B

sup
F :‖F−Ft(β)‖≤η∗

∥∥∥∥
∂vec[G(F, θ)]

∂F

∥∥∥∥, η∗ > 0.

Then, under Assumptions A.1-A.5, H.1, H.3 (i), H.6-H.10, and if n, T → ∞ such that

T b/n = O(1) for a b > 1:

sup
θ∈Θ

sup
β∈B

∣∣∣∣∣
1

T

T∑
t=1

G(f̂n,t(β), f̂n,t−1(β), θ)− E0 [G(ft(β), ft−1(β), θ)]

∣∣∣∣∣ = op(1).

Proof: See Appendix B.7.

Lemma A.8 is used in the proofs of Proposition 1 (Appendix 5), Proposition 3 (Appendix

6) and Proposition 7.
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APPENDIX 5

Proof of Proposition 1

We have:

l
(
yT ; β, θ

)
=

∫
· · ·

∫
exp

{
T∑

t=1

n∑
i=1

log h (yi,t|yi,t−1, ft; β) +
T∑

t=1

log g (ft|ft−1; θ)

}
T∏

t=1

dft.

Let us now expand the integrand w.r.t. ft around f̂nt (β), t = 1, ..., T , and define:

ψnt (ft, ft−1) =
n∑

i=1

log h (yi,t|yi,t−1, ft; β)−
n∑

i=1

log h
(
yi,t|yi,t−1, f̂nt (β) ; β

)

+
1

2

√
n

(
ft − f̂nt (β)

)′
Int (β)

√
n

(
ft − f̂nt (β)

)

+ log g (ft|ft−1; θ)− log g
(
f̂nt (β) |f̂n,t−1 (β) ; θ

)
.

Then:

l
(
yT ; β, θ

)
=

T∏
t=1

n∏
i=1

h
(
yi,t|yi,t−1, f̂nt (β) ; β

) T∏
t=1

g
(
f̂nt (β) |f̂n,t−1 (β) ; θ

)

∫
· · ·

∫
exp

{
−1

2

T∑
t=1

√
n

(
ft − f̂nt (β)

)′
Int (β)

√
n

(
ft − f̂nt (β)

)}

exp

{
T∑

t=1

ψn,t (ft, ft−1)

}
T∏

t=1

dft.

Let us introduce the change of variable:

Zt =
√

n [Int (β)]1/2
(
ft − f̂nt (β)

)
⇐⇒ ft = f̂nt (β) +

1√
n

[Int (β)]−1/2 Zt.

Then:

l
(
yT ; β, θ

)

=

(
2π

n

)TK/2 T∏
t=1

[det Int (β)]−1/2
T∏

t=1

n∏
i=1

h
(
yi,t|yi,t−1, f̂nt (β) ; β

) T∏
t=1

g
(
f̂nt (β) |f̂n,t−1 (β) ; θ

)

1

(2π)TK/2

∫
...

∫
exp

{
−1

2

T∑
t=1

Z
′
tZt

}

exp

{
T∑

t=1

ψn,t

(
f̂n,t (β) +

1√
n

[In,t (β)]−1/2 Zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 Zt−1

)}
T∏

t=1

dZt.
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Thus, function ΨnT (β, θ) is defined by the Gaussian integral:

exp

[(
T

n

)
ΨnT (β, θ)

]

=
1

(2π)TK/2

∫
...

∫
exp

{
−1

2

T∑
t=1

Z
′
tZt

}

exp

{
T∑

t=1

ψn,t

(
f̂n,t (β) +

1√
n

[In,t (β)]−1/2 Zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 Zt−1

)}
T∏

t=1

dZt,

which can be made explicit by expanding function exp
{∑T

t=1 ψn,t

}
in a power series of Zt,

t = 1, ..., T .

To simplify the notation, let us consider the one-factor case, K = 1. Then:

exp

[(
T

n

)
ΨnT (β, θ)

]

= E

[
exp

{
T∑

t=1

ψn,t

(
f̂n,t (β) +

1√
n

[In,t (β)]−1/2 Zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 Zt−1

)}]
,

where the expectation is taken with respect to a multivariate standard normal distribution for

Z := (Z1, ..., ZT )
′
. Expanding ψn,t at order 1/n yields:

ψn,t

(
f̂n,t (β) +

1√
n

[In,t (β)]−1/2 Zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 Zt−1

)

=
1

6

1√
n

[In,t (β)]−3/2 K3,nt(β)Z3
t +

1

24

1

n
[In,t (β)]−2 K4,nt(β)Z4

t + ...

+
1√
n

D10,nt(β, θ) [In,t (β)]−1/2 Zt +
1√
n

D01,nt(β, θ) [In,t−1 (β)]−1/2 Zt−1

+
1

2

1

n
D20,nt(β, θ) [In,t (β)]−1 Z2

t +
1

2

1

n
D02,nt(β, θ) [In,t−1 (β)]−1 Z2

t−1

+
1

n
D11,nt(β, θ) [In,t (β)]−1/2 [In,t−1 (β)]−1/2 ZtZt−1 + ...,

where:

Km,nt(β) =
1

n

n∑
i=1

∂m log h

∂fm
t

(
yi,t|yi,t−1, f̂nt (β) ; β

)
, m = 3, 4, ...,

and:

Dpq,nt(β, θ) =
∂p+q log g

∂f p
t ∂f q

t−1

(
f̂nt (β) |f̂n,t−1 (β) ; θ

)
, p, q = 0, 1, 2, ... .

By expanding the exponential function exp
{∑T

t=1 ψn,t

}
, and computing the expectation

w.r.t. Z, it is seen that terms of orders n−1/2, n−3/2, ... involve odd power moments of
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standard normal variables, which are zero. Thus, we get:

exp

[(
T

n

)
ΨnT (β, θ)

]
= 1 +

T

n
L2,nT (β, θ) + op(T/n),

where:

L2,nT (β, θ) =
1

8

1

T

T∑
t=1

[In,t (β)]−2 K4,n,t(β) +
1

2

1

T

T∑
t=1

[In,t (β)]−1 D20,nt(β, θ)

+
1

2

1

T

T∑
t=1

[In,t−1 (β)]−1 D02,nt(β, θ) +
5

24

1

T

T∑
t=1

[In,t (β)]−3 K2
3,nt(β)

+
1

2

1

T

T∑
t=1

D2
10,nt(β, θ) [In,t (β)]−1 +

1

2

1

T

T∑
t=1

D2
01,nt(β, θ) [In,t−1 (β)]−1

+
1

2

1

T

T∑
t=1

[In,t (β)]−2 D10,nt(β, θ)K3,n,t(β)

+
1

2

1

T

T∑
t=2

[In,t−1 (β)]−2 D01,nt(β, θ)K3,n,t−1(β)

+
1

T

T∑
t=1

[In,t−1 (β)]−1 D10,n,t−1(β, θ)D01,nt(β, θ). (A.5)

From Lemma A.6 in Appendix 4, we know that sup
1≤t≤T

sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ = Op(T

−ρ), for

a ρ > 0. Then, by applying Lemmas A.1-A.2 in Appendix A.1, and Lemma A.8 in Appendix

4, we get L2,nT (β, θ) = Op(1) uniformly in β ∈ B and θ ∈ Θ. Proposition 1 follows.

APPENDIX 6

Efficiency bound and efficient estimators

Let us derive the efficiency bound and prove the asymptotic efficiency of the estimators

introduced in Section 4. We first give in Section A.6.1 a preliminary Lemma, used in Section

A.6.2 to derive the efficiency bound (proof of Proposition 3). Then, the asymptotic properties

of the estimators of the micro-parameters and the factor values are derived in Sections A.6.3

and A.6.4, respectively (proofs of Propositions 5 and 6, respectively).

62



A.6.1 A preliminary Lemma

Lemma A.9: Let the estimator
(
β̃nT , θ̃nT

)
be defined by:

(
β̃nT , θ̃nT

)
= arg max

β∈B,θ∈Θ
LnT (β, θ) ,

where B ⊂Rq and Θ ⊂ Rp are compact sets, and:

LnT (β, θ) = L∗nT (β) +
1

n
L1,nT (β, θ) +

1

n2
ΨnT (β, θ) ,

is such that:

(1) (i) L∗nT (β) converges in probability to a function L∗(β), uniformly in β ∈ B;

(ii)L1,nT (β, θ) converges in probability to a functionL1(β, θ), uniformly in β ∈ B, θ ∈ Θ .

(2) (i) Function β → L∗(β) is uniquely maximized at the interior point β0 ∈ B;

(ii) Function θ → L1(β0, θ) is uniquely maximized at the interior point θ0 ∈ Θ.

(3) (i) The matrix −∂2L∗nT (β)

∂β∂β′ is well-defined and converges in probability to I∗ (β), uni-

formly in β ∈ B, with I∗0 := I∗ (β0) positive definite; (ii) The matrix −∂2L1,nT (β,θ)

∂θ∂θ′ is

well-defined and converges in probability to I1,θθ (β, θ), uniformly in β ∈ B, θ ∈ Θ,

with I1,θθ := I1,θθ (β0, θ0) positive definite; (iii) supβ∈B,θ∈Θ

∥∥∥∂2L1,nT (β,θ)

∂β∂β′

∥∥∥ = Op(1) and

supβ∈B,θ∈Θ

∥∥∥∂2L1,nT (β,θ)

∂β∂θ′

∥∥∥ = Op(1).

(4) (i) 


√
nT

∂L∗nT (β0)

∂β√
T

∂L1,nT (β0,θ0)

∂θ


 d−→ N





 0

0


 ,


 I∗0 0

0 I1,θθ





 ;

(ii) sup
β∈B,θ∈Θ

∂L1,nT (β, θ)

∂β
= Op(1).

(5) (i) sup
β∈B,θ∈Θ

ΨnT (β, θ) = Op(1); (ii) sup
β∈B,θ∈Θ

∥∥∥∥
∂ΨnT (β, θ)

∂ (β′, θ′)′

∥∥∥∥ = Op(1).

Moreover, let:

β̂∗nT = arg max
β∈B

L∗nT (β) .
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Then, if n, T →∞ such that T/n → 0, the estimators β̃nT and θ̃nT are consistent and jointly

asymptotically normal:


√

nT
(
β̃nT − β0

)

√
T

(
θ̃nT − θ0

)

 d−→ N





 0

0


 ,


 (I∗0 )−1 0

0 I−1
1,θθ





 .

Moreover, β̃nT and β̂∗nT are asymptotically equivalent, that is,
√

nT
(
β̃nT − β̂∗nT

)
= op(1).

Proof: See Appendix B.8.

A.6.2 Proof of Proposition 3

The efficiency bound B∗ is the asymptotic variance-covariance matrix of the ML estimator(
β̃nT , θ̃nT

)
= arg maxβ∈B,θ∈Θ LnT (β, θ), where LnT (β, θ) is defined in Corollary 2. This

asymptotic variance-covariance matrix is derived by applying Lemma A.9. Let us verify the

conditions of Lemma A.9.

Condition (1) of Lemma A.9: We have:

L∗nT (β) =
1

nT

T∑
t=1

n∑
i=1

log h
(
yi,t|yi,t−1, f̂nt (β) ; β

)
. (A.6)

This converges to L∗ (β) = E0 [log h (yi,t|yi,t−1, ft (β) ; β)] in probability, uniformly in β ∈
B, by using Lemma A.1 in Appendix 1, with a(Yi,t, ft, β) = log h(yi,t|yi,t−1, ft; β) and ϕ

corresponding to the identity mapping. Indeed, condition (1) of Lemma A.1 is implied by

Assumptions H.1, H.2, H.3 (ii), H.5 (ii)-(iii), and condition (3) of Lemma A.1 is implied by

Lemma A.6. Further:

L1,nT (β, θ) = −1

2

1

T

T∑
t=1

log det Int (β) +
1

T

T∑
t=1

log g
(
f̂nt (β) |f̂n,t−1 (β) ; θ

)
, (A.7)

converges to:

L1 (β, θ) = −1

2
E0 [log det Iff (t; β)] + E0 [log g (ft (β) |ft−1 (β) ; θ)] ,

uniformly in θ ∈ Θ, β ∈ B, where Iff (t; β) = E0

[
−∂2 log h

∂f∂f ′
(yi,t|yi,t−1, ft (β) ; β) |ft

]
[use

Lemma A.8 in Appendix A.4.3 and Assumptions H.1, H.3 (i), H.6-H.12].
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Condition (2) of Lemma A.9: Statement (i) follows from Assumptions A.6 and H.1.

Statement (ii) follows from Assumptions A.8 and H.1, by usingL1 (β0, θ) = E0 [log g (ft|ft−1; θ)],

up to a constant in θ.

Condition (3) of Lemma A.9: From (A.6), we get by differentiation:

∂L∗nT (β)

∂β
=

1

nT

T∑
t=1

n∑
i=1

∂ log h

∂β

(
yi,t|yi,t−1, f̂nt (β) ; β

)

+
1

nT

T∑
t=1

∂f̂nt (β)
′

∂β

n∑
i=1

∂ log h

∂ft

(
yi,t|yi,t−1, f̂nt (β) ; β

)

︸ ︷︷ ︸
=0

=
1

nT

T∑
t=1

n∑
i=1

∂ log h

∂β

(
yi,t|yi,t−1, f̂nt (β) ; β

)
,

and:

∂2L∗nT (β)

∂β∂β ′
=

1

nT

T∑
t=1

n∑
i=1

∂2 log h

∂β∂β ′

(
yi,t|yi,t−1, f̂nt (β) ; β

)

+
1

nT

T∑
t=1

n∑
i=1

∂2 log h

∂β∂f
′
t

(
yi,t|yi,t−1, f̂nt (β) ; β

) ∂f̂nt (β)

∂β ′
.

By differentiating the f.o.c.
n∑

i=1

∂ log h

∂ft

(
yi,t|yi,t−1, f̂nt (β) ; β

)
= 0 w.r.t. β, we get:

n∑
i=1

∂2 log h

∂ft∂β ′

(
yi,t|yi,t−1, f̂nt (β) ; β

)
+

n∑
i=1

∂2 log h

∂ft∂f
′
t

(
yi,t|yi,t−1, f̂nt (β) ; β

) ∂f̂nt (β)

∂β ′
= 0.

Let us introduce the notation:

Îββ(t) := − 1

n

n∑
i=1

∂2 log h

∂β∂β ′

(
yi,t|yi,t−1, f̂nt (β) ; β

)
,

and similarly Îβf (t), Îff (t). Then we get:

∂f̂nt (β)

∂β ′
= −Îff (t)

−1Îfβ(t),

and

−∂2L∗nT (β)

∂β∂β ′
=

1

T

T∑
t=1

[
Îββ(t)− Îβf (t)Îff (t)

−1Îfβ(t)
]
.
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Thus, condition (3i) is satisfied with I∗0 = E [Iββ(t)− Iβf (t)Iff (t)
−1Ifβ(t)] by applying

Corollary A.3 in Appendix 1, case (B). Indeed, condition (1) of Lemma A.2 is implied by

Assumptions H.1-H.5, and condition (3) of Lemma A.2 is implied by Lemma A.6.

Moreover, from (A.7) we have:

∂L1,nT (β, θ)

∂θ
=

1

T

T∑
t=1

∂ log g

∂θ

(
f̂nt (β) |f̂n,t−1 (β) ; θ

)
,

and:
∂2L1,nT (β, θ)

∂θ∂θ′
=

1

T

T∑
t=1

∂2 log g

∂θ∂θ′

(
f̂nt (β) |f̂n,t−1 (β) ; θ

)
.

Thus, condition (3ii) is satisfied with I1,θθ = E
[
−∂2 log g

∂θ∂θ′ (ft|ft−1; θ0)
]

(use Lemmas A.6-A.7

and Assumption H.13).

Condition (4) of Lemma A.9: Let us first consider the approximated score w.r.t. β. We

have:
√

nT
∂L∗nT (β0)

∂β
=

1√
nT

T∑
t=1

n∑
i=1

∂ log h

∂β

(
yi,t|yi,t−1, f̂nt (β0) ; β0

)
.

By the mean-value Theorem:

√
nT

∂L∗nT (β0)

∂β
=

1√
nT

T∑
t=1

n∑
i=1

∂ log h

∂β
(yi,t|yi,t−1, ft; β0)

+
1√
nT

T∑
t=1

n∑
i=1

∂2 log h

∂β∂f
′
t

(
yi,t|yi,t−1, f̃t; β0

)(
f̂nt (β0)− ft

)
,

where f̃t are mean values. Using the notation:

Ĩβf (t) = − 1

n

n∑
i=1

∂2 log h

∂β∂f
′
t

(
yi,t|yi,t−1, f̃t; β0

)
,

and the expansion of f̂nt (β0):

√
n

(
f̂nt (β0)− ft

)
= −Īff (t)

−1 1√
n

n∑
i=1

∂ log h

∂ft

(yi,t|yi,t−1, ft; β0) , (A.8)

where Īff (t) is based on a mean value f̄t, we get:

√
nT

∂L∗nT (β0)

∂β
=

1√
T

T∑
t=1

[
1√
n

n∑
i=1

∂ log h

∂β
(yi,t|yi,t−1, ft; β0)

− Ĩβf (t)Īff (t)
−1 1√

n

n∑
i=1

∂ log h

∂ft

(yi,t|yi,t−1, ft; β0)

]
.
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Then, we get:

√
nT

∂L∗nT (β0)

∂β
=

1√
T

T∑
t=1

[
ψβ(t)− Iβf (t)Iff (t)

−1ψf (t)
]
+ op(1), (A.9)

where:

ψ(t) :=


 ψβ(t)

ψf (t)


 =

1√
n

n∑
i=1




∂ log h
∂β

(yi,t|yi,t−1, ft; β0)

∂ log h
∂ft

(yi,t|yi,t−1, ft; β0)


 .

Let us now consider the approximated score w.r.t. θ. By the mean-value Theorem, we have:

√
T

∂L1,nT (β0, θ0)

∂θ
=

1√
T

T∑
t=1

∂ log g

∂θ

(
f̂nt (β0) |f̂n,t−1 (β0) ; θ0

)

=
1√
T

T∑
t=1

∂ log g

∂θ
(ft|ft−1; θ0)

+

√
T

n

(
1

T

T∑
t=1

∂2 log g

∂θ∂f
′
t

(
f̃t|f̃t−1; θ0

)√
n

(
f̂nt (β0)− ft

)

+
1

T

T∑
t=1

∂2 log g

∂θ∂f
′
t−1

(
f̃t|f̃t−1; θ0

)√
n

(
f̂n,t−1 (β0)− ft−1

))
.

By using T b/n = O(1), b > 1, Assumption H.13 and Lemmas A.6 and A.8, it follows that:

√
T

∂L1,nT (β0, θ0)

∂θ
=

1√
T

T∑
t=1

∂ log g

∂θ
(ft|ft−1; θ0) + op(1). (A.10)

Thus, from (A.9) and (A.10) we deduce:



√
nT

∂L∗nT (β0)

∂β√
T

∂L1,nT (β0,θ0)

∂θ


 =

1√
T

T∑
t=1


 (ψβ(t)− Iβf (t)Iff (t)

−1ψf (t))

∂ log g
∂θ

(ft|ft−1; θ0)


 + op(1).

By using E
[
ψ(t)|yt−1, ft

]
= 0, V

[
ψβ(t)− Iβf (t)Iff (t)

−1ψf (t)
]

= E
[
Iββ(t)− Iβf (t)Iff (t)

−1Ifβ(t)
]

and a CLT for martingale difference sequence, we get (4i).

Condition (5) of Lemma A.9: Condition (i) is implied by Proposition 1.

From Lemma A.9 we deduce the efficiency bound.

A.6.3 Proof of Proposition 5

From Lemma A.9, it follows that
√

nT
(
β̃nT − β̂∗nT

)
= op(1). The conclusion follows.
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A.6.4 Proof of Proposition 6

We have:

√
n

(
f̂nT,t − ft

)
=
√

n
(
f̂n,t(β0)− ft

)
+

∂f̂n,t

(
β̇nT

)

∂β ′
√

n
(
β̂∗nT − β0

)
,

where β̇nT is a mean value. The second term in the RHS is Op(1/
√

T ) from Proposition 5.

Thus, point i) follows from expansion (A.8). Point ii) follows from Lemma A.6.

APPENDIX 7

Proof of Proposition 10

A.7.1 Higher-order asymptotic expansion of the cross-sectional factor approximations

By conditioning on the factor path (ft), we can apply results on higher-order expansion

of the ML estimator in the iid case. From Gouriéroux, Monfort (1995), Section 23.1.2, we

get:

f̂n,t = ft +
1√
n

An,t +
1

n
Bn,t + op(1/n), (A.11)

where:

An,t = Iff (t)
−1 1√

n

n∑
i=1

∂ log h (yi,t|yi,t−1, ft)

∂ft

,

and:

Bn,t = Iff (t)
−2

(
1√
n

n∑
i=1

∂2 log h (yi,t|yi,t−1, ft)

∂f 2
t

+ Iff (t)

) (
1√
n

n∑
i=1

∂ log h (yi,t|yi,t−1, ft)

∂ft

)

+
1

2
Iff (t)

−3K3(t)

(
1√
n

n∑
i=1

∂ log h (yi,t|yi,t−1, ft)

∂ft

)2

.

Conditionally on the factor path, the statistics An,t, t varying, are a martingale difference

sequence with E
[
A2

n,t|ft

]
= Iff (t)

−1. Moreover:

E
[
Bn,t|ft

]
= Iff (t)

−2

[
K1,2(t) +

1

2
K3(t)

]
= B(t), say.
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A.7.2 Asymptotic expansion of the CSA estimator

The CSA log-likelihood function is LCSA
nT (θ) = L∗nT +

1

n
L1,nT (θ), where L∗nT is indepen-

dent of θ and

L1,nT (θ) =
1

T

T∑
t=1

log g
(
f̂n,t, θ

)
.

Thus, the first-order condition for the CSA estimator θ̂nT = θ̂CSA
nT is:

1

T

T∑
t=1

∂ log g

∂θ

(
f̂n,t, θ̂nT

)
= 0.

Let us expand this first-order condition w.r.t. both f̂n,t and θ̂nT up to op(1/n), and replace

expansion (A.11). Since n ¿ T 3/2, it is enough to keep terms which are at most of second-

order in
(
f̂n,t − ft

)
and

(
θ̂nT − θ0

)
. We get:

0 =
1

T

T∑
t=1

∂ log g (ft, θ0)

∂θ
+

1

T

T∑
t=1

∂2 log g (ft, θ0)

∂θ2

(
θ̂nT − θ0

)

+
1

T

T∑
t=1

∂2 log g (ft, θ0)

∂θ∂f

(
1√
n

An,t +
1

n
Bn,t

)
+

1

2T

T∑
t=1

∂3 log g (ft, θ0)

∂θ3

(
θ̂nT − θ0

)2

+
1

T

T∑
t=1

∂3 log g (ft, θ0)

∂θ2∂f

(
θ̂nT − θ0

) (
1√
n

An,t +
1

n
Bn,t

)

+
1

2nT

T∑
t=1

∂3 log g (ft, θ0)

∂θ∂f 2
A2

n,t + op(1/n). (A.12)

Now, we use that:

1

T

T∑
t=1

∂2 log g (ft, θ0)

∂θ∂f
Bn,t +

1

2T

T∑
t=1

∂3 log g (ft, θ0)

∂θ∂f 2
A2

n,t

= E

[
∂2 log g (ft, θ0)

∂θ∂f
E

[
Bn,t|ft

]]
+

1

2
E

[
∂3 log g (ft, θ0)

∂θ∂f 2
E

[
A2

n,t|ft

]]
+ op(1)

= E

[
B(t)

∂2 log g (ft, θ0)

∂θ∂f

]
+

1

2
E

[
Iff (t)

−1∂3 log g (ft, θ0)

∂θ∂f 2

]
+ op(1),

and:

1

T

T∑
t=1

∂3 log g (ft, θ0)

∂θ2∂f

(
θ̂nT − θ0

) (
1√
n

An,t +
1

n
Bn,t

)

=

[
1

T
√

n

(
1√
T

T∑
t=1

∂3 log g (ft, θ0)

∂θ2∂f
An,t

)
+

1

n
√

T

(
1

T

T∑
t=1

∂3 log g (ft, θ0)

∂θ2∂f
Bn,t

)]√
T

(
θ̂nT − θ0

)

= Op

(
1

T
√

n

)
+ Op

(
1

n
√

T

)
= op(1/n).
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Thus, the expansion in (A.12) simplifies to:

0 =
1

T

T∑
t=1

∂ log g (ft, θ0)

∂θ
+

1

T

T∑
t=1

∂2 log g (ft, θ0)

∂θ2

(
θ̂nT − θ0

)
+

1√
n

1

T

T∑
t=1

∂2 log g (ft, θ0)

∂θ∂f
An,t

+
1

2T

T∑
t=1

∂3 log g (ft, θ0)

∂θ3

(
θ̂nT − θ0

)2

+
1

n
E

[
B(t)

∂2 log g (ft, θ0)

∂θ∂f

]
+

1

2n
E

[
Iff (t)

−1∂3 log g (ft, θ0)

∂θ∂f 2

]
+ op(1/n). (A.13)

By multiplying (A.13) by
√

T and solving for
√

T
(
θ̂nT − θ0

)
, we get:

√
T

(
θ̂nT − θ0

)
=

(
− 1

T

T∑
t=1

∂2 log g (ft, θ0)

∂θ2

)−1 {
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

+
1√
n

(
1√
T

T∑
t=1

∂2 log g (ft, θ0)

∂θ∂f
An,t

)

+
1

2
√

T

(
1

T

T∑
t=1

∂3 log g (ft, θ0)

∂θ3

)[√
T

(
θ̂nT − θ0

)]2

+

√
T

n
E

[
B(t)

∂2 log g (ft, θ0)

∂θ∂f

]
+

√
T

2n
E

[
Iff (t)

−1∂3 log g (ft, θ0)

∂θ∂f 2

]

+op(
√

T/n)
}

. (A.14)

Let us now expand the inverse matrix in the RHS:
(
− 1

T

T∑
t=1

∂2 log g (ft, θ0)

∂θ2

)−1

=

(
I1,θθ +

1√
T

1√
T

T∑
t=1

[
−∂2 log g (ft, θ0)

∂θ2
− I1,θθ

])−1

= I−1
1,θθ − I−2

1,θθ

1√
T

(
1√
T

T∑
t=1

[
−∂2 log g (ft, θ0)

∂θ2
− I1,θθ

])

+op(
√

T/n), (A.15)

where we used 1/T = o(
√

T/n). By plugging (A.15) into (A.14), we get:

√
T

(
θ̂nT − θ0

)
= I−1

1,θθ

(
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)

− 1√
T

I−2
1,θθ

(
1√
T

T∑
t=1

[
−∂2 log g (ft, θ0)

∂θ2
− I1,θθ

])(
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)

+
1√
n

I−1
1,θθ

(
1√
T

T∑
t=1

∂2 log g (ft, θ0)

∂θ∂f
An,t

)
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+
1

2
√

T
I−1
1,θθ

(
1

T

T∑
t=1

∂3 log g (ft, θ0)

∂θ3

) [√
T

(
θ̂nT − θ0

)]2

+

√
T

n
I−1
1,θθ

(
E

[
B(t)

∂2 log g (ft, θ0)

∂θ∂f

]
+

1

2
E

[
Iff (t)

−1∂3 log g (ft, θ0)

∂θ∂f 2

])

+op(
√

T/n).

By iterating this expansion, it is seen that:

1

2
√

T
I−1
1,θθ

(
1

T

T∑
t=1

∂3 log g (ft, θ0)

∂θ3

) [√
T

(
θ̂nT − θ0

)]2

=
1

2
√

T
I−3
1,θθE

[
∂3 log g (ft, θ0)

∂θ3

] (
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)2

+ op(
√

T/n).

Thus, by replacing the expression of B(t), we deduce the asymptotic expansion of the CSA

estimator:

√
T

(
θ̂CSA

nT − θ0

)
= I−1

1,θθ

(
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)

− 1√
T

I−2
1,θθ

(
1√
T

T∑
t=1

[
−∂2 log g (ft, θ0)

∂θ2
− I1,θθ

])(
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)

+
1√
n

I−1
1,θθ

(
1√
T

T∑
t=1

∂2 log g (ft, θ0)

∂θ∂f
An,t

)

+
1

2
√

T
I−3
1,θθE

[
∂3 log g (ft, θ0)

∂θ3

] (
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)2

+

√
T

n
I−1
1,θθ

(
E

[
Iff (t)

−2

(
K1,2(t) +

1

2
K3(t)

)
∂2 log g (ft, θ0)

∂θ∂f

]

+
1

2
E

[
Iff (t)

−1∂3 log g (ft, θ0)

∂θ∂f 2

])
+ op(

√
T/n). (A.16)

A.7.3 Asymptotic expansion of the GA estimator

The GA log-likelihood function is LGA
nT (θ) = L∗nT +

1

n
L1,nT (θ)+

1

n2
L2,nT (θ), where [see

Appendix 5, equation (A.5)]:

L2,nT (θ) =
1

2T

T∑
t=1

I−1
nt

∂2 log g

∂f 2

(
f̂n,t, θ

)
+

1

2T

T∑
t=1

I−1
nt

[
∂ log g

∂f

(
f̂n,t, θ

)]2

+
1

2T

T∑
t=1

I−2
nt

∂ log g

∂f

(
f̂n,t, θ

)
K3,nt.
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From the first-order condition for the GA estimator, we deduce the asymptotic expansion:

√
T

(
θ̂GA

nT − θ0

)
= I−1

1,θθ

(
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)

− 1√
T

I−2
1,θθ

(
1√
T

T∑
t=1

[
−∂2 log g (ft, θ0)

∂θ2
− I1,θθ

])(
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)

+
1√
n

I−1
1,θθ

(
1√
T

T∑
t=1

∂2 log g (ft, θ0)

∂θ∂f
An,t

)

+
1

2
√

T
I−3
1,θθE

[
∂3 log g (ft, θ0)

∂θ3

] (
1√
T

T∑
t=1

∂ log g (ft, θ0)

∂θ

)2

+

√
T

n
I−1
1,θθ

(
E

[
Iff (t)

−2 (K1,2(t) + K3(t))
∂2 log g (ft, θ0)

∂θ∂f

]

+E

[
Iff (t)

−1∂ log g (ft, θ0)

∂f

∂2 log g (ft, θ0)

∂f∂θ

]
+E

[
Iff (t)

−1∂3 log g (ft, θ0)

∂θ∂f 2

])

+op(
√

T/n). (A.17)

Proposition 10 follows from (A.16) and (A.17).

APPENDIX 8

Proofs of Propositions 11 and 12

A.8.1 Asymptotic expansion of the log-likelihood function (Proof of Proposition 11)

Let us write the density of the sample of observations yT (given an initial condition) as:

l(yT ; θ) =

∫
· · ·

∫
l(yT |FT ; θ)

∏
t

g(Ft|Ft−1; θ)
∏

t

dFt, (A.18)

where:

l(yT |FT ; θ) =

∫
· · ·

∫
exp

{∑
i

∑
t

log h̃(yi,t|yi,t−1; at) +
∑

t

log l(at|Ft; θ)

} ∏
t

dat

∝ 1

(det ∆)T/2

∫
· · ·

∫
exp

{∑
i

∑
t

log h̃(yi,t|yi,t−1; at)

−1

2

∑
t

(at − α− γFt)
′ ∆−1 (at − α− γFt)

} ∏
t

dat.
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By applying the argument in the proof of Proposition 1 (see Appendix 5) to the conditional

density l(yT |FT ; θ) and replacing it into (A.18), we get:

l(yT ; θ) ∝
∏

t

∏
i

h̃(yi,t|yi,t−1, ân,t)

·
∫
· · ·

∫ ∏
t

g(ân,t|Ft; θ) exp

[
T

n
ΨnT (θ)

] ∏
t

g(Ft|Ft−1; θ)
∏

t

dFt

∝
∫
· · ·

∫ ∏
t

g(ân,t|Ft; θ) exp

[
T

n
ΨnT (θ)

] ∏
t

g(Ft|Ft−1; θ)
∏

t

dFt,

(A.19)

where ΨnT (θ) is such that:

exp

[
T

n
ΨnT (θ)

]
= E

[
exp

{
T∑

t=1

ψn,t

(
ân,t +

1√
n

Σ̂
1/2
n,t Zt

)}]
, (A.20)

the expectation is w.r.t. the standard Gaussian vector (Z ′
1, · · · , Z ′

T )′, the matrix Σ̂n,t is defined

by:

Σ̂n,t =

(
− 1

n

n∑
i=1

∂2 log h̃

∂at∂a′t
(yi,t|yi,t−1; ân,t)

)−1

,

and the function ψn,t(at) is given by:

ψn,t(at) =
∑

i

log h̃(yi,t|yi,t−1; at)−
∑

i

log h̃(yi,t|yi,t−1; ân,t) +
n

2
(at − ân,t)

′Σ̂−1
n,t(at − ân,t)

−1

2

[
(at − α− γFt)

′ ∆−1 (at − α− γFt)− (ân,t − α− γFt)
′ ∆−1 (ân,t − α− γFt)

]
.

Let us now compute the term ΨnT (θ). By expanding ψn,t

(
ân,t +

1√
n

Σ̂
1/2
n,t Zt

)
at order

1/n we have:

ψn,t

(
ân,t +

1√
n

Σ̂
1/2
n,t Zt

)
=

1

6
√

n

m∑

l,p,q=1

K̂n,t (l, p, q)
(
Σ̂

1/2
n,t Zt

)
l

(
Σ̂

1/2
n,t Zt

)
p

(
Σ̂

1/2
n,t Zt

)
q

+
1

24n

m∑

l,p,q,r=1

K̂n,t (l, p, q, r)
(
Σ̂

1/2
n,t Zt

)
l

(
Σ̂

1/2
n,t Zt

)
p

(
Σ̂

1/2
n,t Zt

)
q

(
Σ̂

1/2
n,t Zt

)
r

− 1√
n

(ân,t − α− γFt)
′ ∆−1Σ̂

1/2
n,t Zt − 1

2n
Z ′

tΣ̂
1/2
n,t ∆−1Σ̂

1/2
n,t Zt + op(1/n),

where:

K̂n,t (l, p, q) =
1

n

n∑
i=1

∂3 log h̃

∂al,t∂ap,t∂aq,t

(yi,t|yi,t−1; ân,t),

K̂n,t (l, p, q, r) =
1

n

n∑
i=1

∂4 log h̃

∂al,t∂ap,t∂aq,t∂ar,t

(yi,t|yi,t−1; ân,t).
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By expanding the exponential function and computing the Gaussian integral in (A.20), we

get:

exp

[
T

n
ΨnT (θ)

]
= 1 +

1

2n

T∑
t=1

(ân,t − α− γFt)
′ ∆−1Σ̂n,t∆

−1 (ân,t − α− γFt)

− 1

2n

T∑
t=1

Tr
(
Σ̂n,t∆

−1
)
− 1

6n

T∑
t=1

m∑

l,p,q,r=1

K̂n,t (l, p, q)

·E
[(

Σ̂
1/2
n,t Zt

)
l

(
Σ̂

1/2
n,t Zt

)
p

(
Σ̂

1/2
n,t Zt

)
q

(
Σ̂

1/2
n,t Zt

)
r

] [
∆−1 (ân,t − α− γFt)

]
r
+

T

n
BnT + op(T/n),

where BnT is independent of both the factor values Ft and the parameter θ, and:

E

[(
Σ̂

1/2
n,t Zt

)
l

(
Σ̂

1/2
n,t Zt

)
p

(
Σ̂

1/2
n,t Zt

)
q

(
Σ̂

1/2
n,t Zt

)
r

]
=

∂4

∂λl∂λp∂λq∂λr

exp

(
1

2
λ
′
Σ̂n,tλ

)∣∣∣∣
λ=0

= Σ̂n,t,lpΣ̂n,t,qr + Σ̂n,t,lqΣ̂n,t,pr + Σ̂n,t,lrΣ̂n,t,pq.

Then, by using the symmetry of K̂n,t (l, p, q) w.r.t. l, p, q, we get:

m∑

l,p,q,r=1

K̂n,t (l, p, q) E

[(
Σ̂

1/2
n,t Zt

)
l

(
Σ̂

1/2
n,t Zt

)
p

(
Σ̂

1/2
n,t Zt

)
q

(
Σ̂

1/2
n,t Zt

)
r

] [
∆−1 (ân,t − α− γFt)

]
r

= 3Λ̂
′
n,t∆

−1 (ân,t − α− γFt) ,

where Λ̂n,t is a (m, 1) vector with elements:

Λ̂n,t,r =
m∑

l,p,q=1

K̂n,t (l, p, q) Σ̂n,t,lpΣ̂n,t,qr, r = 1, ..., m.

Thus, we get:

exp

[
T

n
ΨnT (θ)

]
= 1 +

T

n
AnT (θ) +

T

n
BnT + op(T/n), (A.21)

= exp

(
T

n
AnT (θ) +

T

n
BnT + op(T/n)

)
, (A.22)

where:

AnT (θ) =
1

2T

T∑
t=1

(ân,t − α− γFt)
′ ∆−1Σ̂n,t∆

−1 (ân,t − α− γFt)

− 1

2T

T∑
t=1

Λ̂
′
n,t∆

−1 (ân,t − α− γFt)− 1

2

1

T

T∑
t=1

Tr
(
Σ̂n,t∆

−1
)

.
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By replacing (A.22) into (A.19), it is seen that the term BnT is irrelevant for maximization

w.r.t. θ. By replacing (A.21) into (A.19), we get:

l(yT ; θ) ∝
∫
· · ·

∫ ∏
t

g(ân,t|Ft; θ)
∏

t

g(Ft|Ft−1; θ)
∏

t

dFt

+
T

n

∫
· · ·

∫ ∏
t

g(ân,t|Ft; θ)AnT (θ)
∏

t

g(Ft|Ft−1; θ)
∏

t

dFt + op(T/n).

Thus, the (nT -standardized) log-likelihood function LnT (θ) is such that:

LnT (θ) = L∗nT +
1

n
L1,nT (θ) +

1

n2
L2,nT (θ) + op(1/n

2),

where L∗nT is constant in θ,

L1,nT (θ) =
1

T
log

(∫
· · ·

∫ ∏
t

g(ân,t|Ft; θ)
∏

t

g(Ft|Ft−1; θ)
∏

t

dFt

)

=
1

T
log

(
1

[(2π)m+J(det ∆)(det Ω)]T/2

∫
· · ·

∫
exp

{
−1

2

∑
t

(ân,t − α− γFt)
′
∆−1

· (ân,t − α− γFt)− 1

2

∑
t

(Ft − µ− ΦFt−1)
′ Ω−1 (Ft − µ− ΦFt−1)

} ∏
t

dFt

)
,

and:

L2,nT (θ) =

∫
· · ·

∫ ∏
t

g(ân,t|Ft; θ)AnT (θ)
∏

t

g(Ft|Ft−1; θ)
∏

t

dFt

∫
· · ·

∫ ∏
t

g(ân,t|Ft; θ)
∏

t

g(Ft|Ft−1; θ)
∏

t

dFt

.

By applying Lemma A.9 (Appendix 6), parameter θ is estimated at rate 1/
√

T and an efficient

estimator is obtained by maximizing the criterion function L1,nT (θ). Proposition 11 follows.

A.8.2 Granularity adjustment (Proof of Proposition 12)

By replacing (A.22) into (A.19) we get:

l(yT ; β, θ)

∝ 1

(det ∆)T/2

∫
· · ·

∫
exp

{
−1

2

∑
t

(ân,t − α− γFt)
′ ∆−1

(
Im − 1

n
Σ̂n,t∆

−1

)
(ân,t − α− γFt)

− 1

2n

∑
t

Λ̂
′
n,t∆

−1 (ân,t − α− γFt)− 1

2n

∑
t

Tr
(
Σ̂n,t∆

−1
)}

·
∏

t

g(Ft|Ft−1; θ)
∏

t

dFt · (1 + op(T/n)).
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Now, since:

−1

2
(ân,t − α− γFt)

′ ∆−1

(
Im − 1

n
Σ̂n,t∆

−1

)
(ân,t − α− γFt)− 1

2n
Λ̂
′
n,t∆

−1 (ân,t − α− γFt)

= −1

2

(
ân,t − α− γFt +

1

n
ξ̂n,t

)′
Ψ−1

n,t

(
ân,t − α− γFt +

1

n
ξ̂n,t

)
+ op(1/n),

where:

Ψ̂n,t = ∆ +
1

n
Σ̂n,t and ξ̂n,t =

1

2
Λ̂n,t,

and:

det Ψn,t = det(∆) det

(
Im +

1

n
Σ̂n,t∆

−1

)
= det(∆)

(
1 +

1

n
Tr

(
Σ̂n,t∆

−1
)

+ Op(1/n
2)

)

= det(∆) exp

(
1

n
Tr

(
Σ̂n,t∆

−1
)

+ op(1/n)

)
,

we get:

l(yT ; β, θ) ∝ 1∏
t

(det Ψn,t)
1/2

·
∫
· · ·

∫
exp

{
−1

2

∑
t

(
ân,t − α− γFt +

1

n
ξ̂n,t

)′
Ψ−1

n,t

(
ân,t − α− γFt +

1

n
ξ̂n,t

)}

∏
t

g(Ft|Ft−1; θ)
∏

t

dFt · (1 + op(T/n)).

Thus, we get equation (5.7), and the conclusion follows.

APPENDIX 9

Factor ordered qualitative model

A.9.1. Identification

i) Let us first consider the two-state case, K = 2. The transition matrix πt = [πlk,t] is:

πt =


 G

(
c1−γ1ft−α1

σ1

)
1−G

(
c1−γ1ft−α1

σ1

)

G
(

c1−γ2ft−α2

σ2

)
1−G

(
c1−γ2ft−α2

σ2

)

 .
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By reparametrizing coefficients α1 and α2, we can assume c1 = 0. The transition matrix

becomes:

πt =


 G

(
−γ1ft+α1

σ1

)
1−G

(
−γ1ft+α1

σ1

)

G
(
−γ2ft+α2

σ2

)
1−G

(
−γ2ft+α2

σ2

)

 .

We can also scale the parameters to get σ1 = σ2 = 1:

πt =


 G (−γ1ft − α1) 1−G (−γ1ft − α1)

G (−γ2ft − α2) 1−G (−γ2ft − α2)


 .

Finally, by standardizing the factor, we can set γ1 = 1 and α1 = 0:

πt =


 G (−ft) 1−G (−ft)

G (−γ2ft − α2) 1−G (−γ2ft − α2)


 .

Then, the values of the factor ft are identified by the first row of the transition matrix, t =

1, ..., T . The values of γ2, α2 are identified by the second row, when T ≥ 2.

ii) Let us now consider the case K > 2. The l-th row of the transition matrix is:
[
G

(
c1 − γlft − αl

σl

)
, G

(
c2 − γlft − αl

σl

)
−G

(
c1 − γlft − αl

σl

)
, ..., 1−G

(
cK−1 − γlft − αl

σl

)]
,

for l = 1, ..., K. As above, we can first set c1 = 0:
[
G

(
−γlft + αl

σl

)
, G

(
c2 − γlft − αl

σl

)
−G

(
−γlft + αl

σl

)
, ..., 1−G

(
cK−1 − γlft − αl

σl

)]
.

(A.23)

Second, by normalizing the factor values and the thresholds, we can set γ1 = σ1 = 1 and

α1 = 0 in the first row. Then, the transition matrix has a first row given by:

[G (−ft) , G (c2 − ft)−G (−ft) , ..., 1−G (cK−1 − ft)] ,

and row l is given by (A.23) for l ≥ 2. From the first row, we can identify the factor value ft

and the K − 2 thresholds c2, ..., cK . Then, the values of γl, αl, σl are identified by the row l,

for l = 2, ..., K, when (K − 1)T ≥ 3.

A.9.2 Semi-parametric efficiency bound [Proof of Equation (6.4)]

We have:

log h (yi,t|yi,t−1, ft; β) =
K∑

k=1

K∑

l=1

1 {yi,t = k, yi,t−1 = l} log πlk (ft, β) ,
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where πlk (ft, β) = G
(

ck−γlft−αl

σl

)
−G

(
ck−1−γlft−αl

σl

)
. Thus:

−∂2 log h (yi,t|yi,t−1, ft; β)

∂ (β′ , f ′)
′
∂ (β ′ , f ′)

=
K∑

k=1

K∑

l=1

1 {yi,t = k, yi,t−1 = l} 1

πlk (ft, β)
Jlk (ft, β) ,

where:

Jlk = − ∂2πlk

∂ (β ′ , f ′)
′
∂ (β ′ , f ′)

+
1

πlk

∂πlk

∂ (β ′ , f ′)
′

∂πlk

∂ (β ′ , f ′)
.

The conditional information matrix is given by:

I(t) = E0

[
−∂2 log h (yi,t|yi,t−1, ft; β0)

∂ (β ′ , f ′)
′
∂ (β′ , f ′)

∣∣∣∣∣ ft

]
=

K∑

k=1

K∑

l=1

E0

[
1 {yi,t = k, yi,t−1 = l} |ft

] 1

πlk,t

Jlk,t,

where πlk,t = πlk(ft, β0), Jlk,t = Jlk(ft, β0) and all functions are evaluated at the true param-

eter and factor values. Under Assumption A.1:

E0

[
1 {yi,t = k, yi,t−1 = l} |ft

]
= E0

[
E0

[
1 {yi,t = k} |yi,t−1 = l, ft

]
1 {yi,t−1 = l} |ft

]

= πlk,tP
[
yi,t−1 = l|ft

]
= πlk,tP

[
yi,t−1 = l|ft−1

]
= πlk,tµl,t−1,

where µl,t−1 = P
[
yi,t−1 = l|ft−1

]
. It follows that:

I(t) =
K∑

l=1

µl,t−1Il,t,

where:

Il,t =
K∑

k=1

Jlk,t =
K∑

k=1

1

πlk,t

∂πlk,t

∂
(
β ′ , f

′
t

)′ ∂πlk,t

∂
(
β ′ , f

′
t

) . (A.24)

Then, the semi-parametric efficiency bound is (I∗0 )−1, where I∗0 = E0 [Iββ(t)− Iβf (t)Iff (t)
−1Ifβ(t)].

In the two-state logit model, we have β = (γ2, α2)
′ and

Πt =


 1− Λ (ft) Λ (ft)

1− Λ
(
β
′
xt

)
Λ

(
β
′
xt

)


 , (A.25)

where xt = (ft, 1)
′

and Λ(x) = 1/ (1 + e−x) is the logistic function. Since πl1,t = −πl2,t for

l = 1, 2, we have:

Il,t =

(
1

πl2,t

+
1

1− πl2,t

)
∂πl2,t

∂ (β ′ , ft)
′

∂πl2,t

∂ (β ′ , ft)
=

1

πl2,t (1− πl2,t)

∂πl2,t

∂ (β ′ , ft)
′

∂πl2,t

∂ (β ′ , ft)
, l = 1, 2.
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Since dΛ(x)
dx

= Λ(x) [1− Λ(x)] , we deduce:

Il,t = πl2,t (1− πl2,t) ξl,tξ
′
l,t, l = 1, 2,

where ξ1,t = (0, 0, 1)
′ and ξ2,t = (ft, 1, γ2)

′
. Thus, we have:

Iββ (t) = µ2,t−1π22,t (1− π22,t)


 f 2

t ft

ft 1


 , Iβf (t) = µ2,t−1π22,t (1− π22,t) γ2


 ft

1


 ,

Iff (t) = µ1,t−1π12,t (1− π12,t) + µ2,t−1π22,t (1− π22,t) γ2
2 .

We deduce formula (6.4).

A.9.3 Numerical computation of the semi-parametric efficiency bound

The semi-parametric efficiency bound (I∗0 )−1 can be approximated numerically by Monte-

Carlo integration. Let (ft : t = −h,−h + 1, ..., T ) be a simulated factor path of length S =

T + h + 1. We define µt−1,S by:

µ
′
t−1,S = e

′
Π−h,SΠ−h+1,S · · ·Πt−1,S, t = 1, ..., T,

where e = (1/K, ..., 1/K)
′
, and

IS(t) =
K∑

l=1

µl,t−1,SIl,t,S, t = 1, ..., T.

Matrices Il,t,S and Πt,S correspond to the matrices in (A.24) and (A.25), respectively, based

on the simulated factor values. Then we approximate matrix I∗0 by

I∗0,S =
1

T

T∑
t=1

[
IS,ββ(t)− IS,βf (t)IS,ff (t)

−1IS,fβ(t)
]
,

for large T and h.
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