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ABSTRACT

The Cube method proposed by Deville and Tillé (2004) enables the selection of
balanced samples : that is, samples such that the Horvitz-Thompson estimators of
auxiliary variables match the known totals of those variables. As an exact balan-
ced sampling design often does not exist, the Cube method generally proceeds in
two steps : a “flight phase” in which exact balance is maintained, and a “landing
phase” in which the final sample is selected while respecting the balance conditions
as closely as possible. Deville and Tillé (2005) derive a variance approximation for
balanced sampling that takes account of the flight phase only, whereas the lan-
ding phase can prove to add non-negligible variance. This paper uses a martingale
difference representation of the cube method to construct an efficient simulation-
based method for calculating approximate second-order inclusion probabilities. The
approximation enables nearly unbiased variance estimation, where the bias is pri-
marily due to the limited number of simulations. In a Monte Carlo study, the
proposed method has significantly less bias than the standard variance estimator,
leading to improved confidence interval coverage.

Keywords : Balanced sampling ; Cube method ; Inclusion probabilities ; Martingale.



1 Introduction

A balanced sampling design has the attractive feature that the Horvitz-

Thompson estimators of the totals for auxiliary variables, called balancing

variables, exactly match the known totals. Deville and Tillé (2004) introdu-

ced the cube method, which enables the selection of exact balanced samples if

such samples may be found, or approximate balanced samples otherwise. The

cube method proceeds in two phases : the flight phase, in which balancing

constraints are maintained exactly, and the landing phase, in which the balan-

cing constraints are successively relaxed until the sample is completed. In the

case of balanced sampling with maximum entropy, Deville and Tillé (2005)

proposed various variance approximations and associated variance estima-

tors, and compared their performance through a set of simulations.

The variance approximations proposed by Deville and Tillé (2005) do not

take into account the whole sampling process, as they ignore the contribu-

tions from the landing phase. In fact, the landing phase generates an additio-

nal term of variance that may not be negligible in many cases. For example,

if the balancing variables have high predictive power for the variable of in-

terest, then the contribution from the landing phase may represent a major

part of the variance.

In this paper, we propose a simulation-based approximation of the variance-

covariance matrix of the sampling design. The simulation method relies on

a martingale difference representation of the cube method. The proposed

simulation-based approximation is shown to be particularly efficient as com-

pared to a naive simulation-based approximation, which ignores the martin-

gale difference structure. The approximation enables the computation of a
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variance estimator that takes into account the whole sampling process. We

show that the resulting variance estimator has significantly less bias than the

standard variance estimator from Deville and Tillé (2005), leading to confi-

dence intervals with better coverage rates.

The paper is organized as follows. After defining notation in Section 2, we

present the simulation-based variance approximation and the resulting va-

riance estimator in Section 3. The martingale-difference based variance ap-

proximation is compared to the naive simulation-based approximation in

Section 4.1, and the variance estimator is compared to the standard estima-

tor of Deville and Tillé (2005) in Section 4.2 through a set of simulations. A

brief discussion follows in Section 5.

2 Balanced Sampling

Let U denote a finite, labeled population of size N . Let S denote a ran-

dom sample selected from U by means of a sampling design p(·). Let πk =

Pr [k ∈ S] denote the inclusion probability of unit k, and πkl = Pr [k, l ∈ S]

denote the second-order inclusion probability. Write π = (π1, . . . , πk, . . . , πN)′

for the vector of inclusion probabilities and I(S) = (I1, . . . , Ik, . . . , IN)′ for

the vector of sample membership indicators, where Ik = 1 if k ∈ S and 0

otherwise. The sampling design is assumed to be of fixed size. This implies

that
∑

k∈U πk = n =
∑

k∈U Ik, where n denotes the sample size.

The Horvitz-Thompson (1952) estimator,

t̂zπ =
∑
k∈U

zk
πk
Ik, (1)
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estimates without bias the finite population total tz =
∑

k∈U zk of the (vec-

tor) variable zk. In the particular case of a scalar variable of interest zk = yk,

the variance of the Horvitz-Thompson estimator may be obtained by means

of the Yates-Grundy (1953) formula :

Var
(
t̂yπ
)

= −1

2

∑
k,l∈U :k 6=l

∆kl

(
yk
πk
− yl
πl

)2

, (2)

where ∆kl = πkl − πkπl.

We assume that a vector xk = (x1k, . . . , xqk)
′ of q auxiliary variables is known

at the design stage for each unit k in the population. Such auxiliary informa-

tion allows for possible gains in efficiency through the selection of balanced

samples, drawn via the cube method (Deville and Tillé, 2004). The sampling

design p(·) is said to be balanced on variables x if the equations

t̂xπ = tx (3)

hold exactly. That is, the Horvitz-Thompson estimator for the auxiliary vec-

tor x exactly matches the known vector of totals. The variables xk are called

the balancing variables. For example, the condition of fixed sample size is met

if the inclusion probability πk belongs to the vector xk of balancing variables.

If the equations (3) are satisfied, the variance of the Horvitz-Thompson esti-

mator is zero for any linear combination of the balancing variables x. As an

exact balanced sample generally cannot be found, the cube method enables

the selection of approximately balanced samples, proceeding in a flight phase

and a landing phase as noted above.

Several implementations of the cube method have been proposed in the lite-

3



rature. Algorithm 1 given in the appendix covers both the flight phase and

the landing phase. The flight phase given in Algorithm 1 corresponds to the

general flight phase as proposed by Deville and Tillé (2004) and described

by Chauvet and Tillé (2006, Algorithm 1). The variance estimation strategy

proposed in this paper may still be applied if the very fast implementation

of the flight phase proposed by Chauvet and Tillé (2006, Algorithm 2) is

used instead. The landing phase given in Algorithm 1 proceeds by succes-

sively relaxing the balancing constraints. A landing phase by means of an

enumerative algorithm could alternatively be used (see Tillé, 2006, p. 163),

but the variance estimation strategy proposed in §3.1 of this paper would

no longer be valid, since the martingale difference representation of the cube

method would not be maintained during the whole sampling process. Also,

the landing phase given in Algorithm 1 has the advantage of permitting the

selection of a balanced sample in a reasonable amount of time, even if the

number of balancing variables is large (see Tillé, 2006, p. 164).

Algorithm 1 proceeds in steps t = 0, 1, . . . , T from π0(S) = π to πT (S) =

I(S), the final sample. At each step, one or more coordinates of πt(S) are

randomly rounded to 0 or 1, and remain there forever. Let X = [x′k]k∈U , the

N × q matrix of auxiliary variables. During the flight phase, the balancing

equations remain exactly respected, that is :

X ′diag{π−1
k }k∈Uπt(S) = X ′1N

where 1N denotes the N × 1 vector of ones. When exact balance is no longer

possible, the constraints are relaxed successively in the landing phase. It is

thus necessary to order the balancing variables with respect to their relative
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importance, since the last balancing variables are removed first. We assume

that this ordering has been done prior to implementation of Algorithm 1.

The cube method belongs to the family of martingale algorithms (Tillé (2006),

p. 32). That is, the sequence {πt(S)}t=0,...,T , where T denotes the stopping

time of the algorithm, defines a discrete time martingale.

3 Variance estimation for balanced sampling

The variance of the Horvitz-Thompson estimator is given by formula (2).

Consequently, an unbiased variance estimator is given by

v
(
t̂yπ
)

= −1

2

∑
k,l∈S:k 6=l

∆kl

∆kl + πkπl

(
yk
πk
− yl
πl

)2

(4)

if all πkl = ∆kl+πkπl are strictly positive. Second-order inclusion probabilities

are, however, usually difficult to compute for a general balanced sampling

design. A particular case of balancing variables for which these probabilities

may be calculated is when xk = xk = πk, that is, when the constraint of

fixed sample size is the only balancing constraint. If this balanced sampling

design is performed with maximum entropy, Deville (2000) and Matei and

Tillé (2004) proposed an algorithm that enables the computation of the exact

second-order inclusion probabilities. In general, we resort to simulation for

computation of ∆kl.
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3.1 Simulation-based variance estimation

We consider two variance estimators, based on two different simulation-based

approximations of the design variance-covariance matrix,

∆ = [∆kl]k,l∈U = Var (I(S)) .

Since

E
[
(I(S)− π) (I(S)− π)′

]
= ∆,

an obvious, unbiased simulation-based estimator of ∆ is given by

∆SIM =
1

C

C∑
c=1

(I(Sc)− π) (I(Sc)− π)′ , (5)

where S1, . . . , Sc, . . . , SC are C independent replicates of the sample. These

replicates may be selected by Algorithm 1.

The corresponding variance estimator for a given sample S is then obtained

by plugging (5) into (4),

vSIM
(
t̂yπ
)

= −1

2

∑
k,l∈S:k 6=l

∆SIM,kl

∆SIM,kl + πkπl

(
yk
πk
− yl
πl

)2

. (6)

This estimator is no longer exactly unbiased, because the unbiased approxi-

mations of the ∆kl enter non-linearly. The estimator also has greater variance

than v due to the simulation. Both the bias and the additional variance can

be made arbitrarily small for sufficiently large C.

We now propose an alternative simulation-based approximation for ∆ that

uses the martingale structure of the sampling algorithm. Specifically, note
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that

I(S) = πT (S) = π+
T∑
t=1

δt(S), (7)

where the innovations {δt(S)}t=1,...,T are given in Algorithm 1. By construc-

tion, {δt(S)} is a martingale difference (MD) sequence with respect to the

sequence of sigma-fields Ft−1 = σ (δ0(S), δ1(S), . . . , δt−1(S)), and so these

random vectors are uncorrelated and have mean zero. Hence,

∆ = Var (I(S)) = Var (πT (S))

=
∑T

t=1 Var (δt(S))

=
∑T

t=1 E [Var (δt(S) | Ft−1)]

= E
[∑T

t=1 λ
∗
1t(S)λ∗2t(S)ut(S)u′t(S)

]
,

the last equality following from Step 3 of Algorithm 1. Consequently the ∆

matrix is unbiasedly estimated by

∆MD =
1

C

C∑
c=1

T∑
t=1

λ∗1t(Sc)λ
∗
2t(Sc)ut(Sc)u

′
t(Sc), (8)

where S1, . . . , Sc, . . . , SC are C independent replicates of the sample, selected

by Algorithm 1.

The corresponding variance estimator for a given sample S is then obtained

by plugging (8) into (4),

vMD

(
t̂yπ
)

= −1

2

∑
k,l∈S:k 6=l

∆MD,kl

∆MD,kl + πkπl

(
yk
πk
− yl
πl

)2

. (9)

A key question is whether the MD-based approximation is any better than
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the standard simulation-based approximation, SIM. Note that

(I(S)− π)(I(S)− π)′ =
T∑
r=1

T∑
t=1

δr(S)δ′t(S)

=
T∑
t=1

E [δt(S)δ′t(S) | Ft−1]

+
T∑
t=1

(δt(S)δ′t(S)− E [δt(S)δ′t(S) | Ft−1])

+
∑
r 6=t

δr(S)δ′t(S)

=
T∑
t=1

λ∗1t(S)λ∗2t(S)ut(S)u′t(S) + Λ1(S) + Λ2(S),

so that

∆SIM = ∆MD +
1

C

C∑
c=1

Λ1(Sc) +
1

C

C∑
c=1

Λ2(Sc)

= ∆MD + Λ1 + Λ2. (10)

Clearly E [Λ1] = E [Λ2] = 0. Equation (10) implies, in some sense, that one

part of the variability of ∆SIM vanishes in ∆MD, since the two random terms

Λ1 and Λ2 are omitted. The sign of the covariance between ∆MD and Λ1 +Λ2

would be necessary to make this point rigorous ; unfortunately we have not

found a tractable approach for computation of this covariance. However,

our simulation results on a small population suggest that our approximation

performs particularly well : see Section 4.1.
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3.2 Maximum entropy variance estimation

Another variance approximation is provided by Deville and Tillé (2005). They

assume that the balanced sampling is performed with maximum entropy, and

that the sampling design is exactly balanced. Then, under an assumption of

asymptotic normality of the multivariate Horvitz-Thompson estimator t̂zπ

under Poisson sampling, they derive the following variance approximation :

VarDT (t̂yπ) =
N

N − q
∑
k∈U

πk(1− πk)
(
yk
πk
− y∗k
πk

)2

, (11)

where

y∗k = x′k

(∑
l∈U

πl(1− πl)
xlx

′
l

π2
l

)−1∑
l∈U

πl(1− πl)
xlyl
π2
l

is a weighted prediction of yk obtained with the q balancing variables xk.

Other slightly different approximations are proposed in Deville and Tillé

(2005), but their simulation results suggest that approximation (11) performs

well among variance approximations that may be computed in case of any

set of inclusion probabilities. A variance estimator is obtained through a

substitution of each total in (11) by its Horvitz-Thompson estimator, using

a plug-in principle. The resulting estimator is

vDT (t̂yπ) =
n

n− q
∑
k∈S

(1− πk)
(
yk
πk
− ỹ∗k
πk

)2

, (12)

where

ỹ∗k = x′k

(∑
l∈S

(1− πl)
xlx

′
l

π2
l

)−1∑
l∈S

(1− πl)
xlyl
π2
l

.

The hypothesis of exact balancing assumed by Deville and Tillé (2005) im-

plies that approximation (11) accounts for the variance due to the flight
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phase only. Consequently, the variance estimator given in (12) may lead to

serious bias in variance estimation if the variance due to the landing phase

is appreciable. With the method we propose, the whole sampling process is

taken into account in the variance estimation.

4 Results of the numerical studies

4.1 Comparison of the two simulation-based approxi-

mations

We first consider the two simulation-based approximations, ∆SIM and ∆MD,

for a small finite population in which exact computation of ∆ is possible.

The population U is of size N = 10. Two balanced designs are considered,

one of size n = 3 and one of size n = 5. For each design, the inclusion

probability vector π is obtained by drawing z1, . . . , zN as independent and

identically distributed Uniform(0,0.2) random variables. Then define πk =

nzk/
∑

k∈U zk. We consider the sampling design with xk1 = 1 and xk2 = πk

as balancing variables. This is not an exact balanced sampling design.

Since the population is of very small size, the complete support of the design

can be enumerated, and the design probabilities can be computed exactly. It

turns out that there are 84 possible samples, with probabilities of selection

ranging from 3.47×10−5 to 3.91×10−2. Further, ∆ can be computed exactly.

The two simulation-based approximations ∆SIM and ∆MD given by formulas

(5) and (8), respectively, are compared. Following Deville and Tillé (2005),

we note that if we approximate ∆ by ∆approx, the worst-case variance ap-
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proximations are given when the ratio

y′∆approxy

y′∆y

is far from one, with extreme values given by

min
y

y′∆approxy subject to y′∆y = 1,

and

max
y

y′∆approxy subject to y′∆y = 1.

In turn, these optimization problems correspond to choosing the smallest and

largest nonnegative general eigenvalues αmin and αmax, respectively, where

the general eigenvalues are the roots of the polynomial det [∆approx − α ∆].

See Deville and Tillé (2005, p. 576) and Harville (1997, pp. 562, 581). A

good approximation of the ∆ matrix should give general eigenvalues αmin

and αmax close to 1.

These general eigenvalues for ∆SIM and ∆MD, computed with varying num-

bers of simulations ranging from C = 50 to C = 10, 000, are given in Figure 1

with a logarithmic scale for the eigenvalues. We note that with the proposed

MD approximation, αmin and αmax converge quickly to 1 as the number of si-

mulations grows. That is, the matrix ∆MD converges quickly to ∆. Moreover,

the matrix ∆MD systematically outperforms the matrix ∆SIM , regardless of

the number of simulations used.
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Figure 1 – Largest and smallest nonnegative general eigenvalues versus
number of simulations, C. The blue, solid curves correspond to the proposed
approximation (MD), and the red, dashed curves to the usual simulation-
based approximation (SIM).

4.2 Comparison with the Deville-Tillé variance estima-

tor

Some numerical studies adapted from Deville and Tillé (2005) are considered

to assess the proposed MD variance estimator. We consider balanced sam-

pling designs in two different populations. In each population, the inclusion

probabilities are generated by using a uniform distribution.

Balanced design 1 : The population U1 is of size N = 40. The design consi-

dered has unequal probabilities and n = 15. For k ∈ U1, define

z2k = k, z3k = k−1, z4k = k−2

and let z̄i = N−1
∑

k∈U1
zik, s2

zi = (N−1)−1
∑

k∈U1
(zik− z̄i)2 denote the usual

empirical mean and variance for i = 2, 3, 4. Then x′k = (x1k, x2k, x3k, x4k),

where x1k = πk and

xik =
zik − z̄i
szi
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for i = 2, 3, 4. This is not an exact balanced sampling design.

Balanced design 2 : The population U2 is of size N = 30. The design consi-

dered has unequal probabilities and n = 10. Define xk1 = 1, xk2 = 1 if

k ∈ {1, . . . , 15} and 0 otherwise, xk3 = 1 if k ∈ {11, . . . , 25} and 0 otherwise,

and xk4 = 1 if k ∈ {1, . . . , 5} ∪ {21, . . . , 30} and 0 otherwise. This is not an

exact balanced sampling design.

In each population, five variables of interest y1, . . . , y5 are generated according

to the linear regression model

yjk = β1 + β2x2k + β3x3k + β4x4k + σjεk, (13)

for j = 1, . . . , 5. The εk’s were generating according to a normal distribution

with mean 0 and variance 1. For population U1, β1 = β2 = β3 = β4 = 1. For

population U2, β1 = 0 and β2 = β3 = β4 = 1. In each case, the coefficient σj

was chosen to give a model R2 (coefficient of determination) approximately

equal to 0.1 for y1, 0.2 for y2, and so on.

Our objective is to estimate the variance of the Horvitz-Thompson estimator

of the totals of the five y-variables of interest. The methods considered in-

cluded the proposed Martingale Difference variance estimator (MD) and the

approximation given by Deville and Tillé (DT). The ∆MD matrix in (8) was

obtained from a separate simulation run of C = 100, 000 samples. The same

simulation run was used to compute the variance of the Horvitz-Thompson

estimators.
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As a measure of bias of a point estimator θ̂ of a parameter θ, we used the

Monte Carlo percent relative bias (RB) given by

RBMC(θ̂) = 100×
B−1

∑B
b=1 θ̂(b) − θ
θ

where B = 2, 000 independent samples are selected according to the balanced

sampling design, and θ̂(b) gives the value of the estimator for the bth sample.

As a measure of variance of an estimator θ̂ we used the Monte Carlo percent

relative stability (RS) given by

RSMC(θ̂) = 100×

√
B−1

∑B
b=1(θ̂(b) − θ)2

θ
.

When θ = Var
(
t̂yjπ

)
, j = 1, . . . , 5, we have θ̂ equal to either vMD(t̂yjπ) or

vDT (t̂yjπ), j = 1, . . . , 5.

We also assess the coverage of confidence intervals computed using the t

distribution with n − q degrees of freedom, where q denotes the number of

balancing variables. The results are given in Tables 1 and 2 for populations

U1 and U2, respectively.

In each of the two populations, the relative bias of the DT estimator increases

as the R2 of the model increases, whereas the MD estimator remains approxi-

mately unbiased. As a consequence, the DT estimator is also outperformed

by the simulation-based variance estimator in terms of confidence interval er-

ror rates, especially when R2 is high. Our interpretation is that R2 measures

the relative importance between the variance due to the flight phase and the

variance due to the landing phase in the overall variance. When R2 is small,

the balancing variables have little explanatory power for the variable y. The
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variance due to the flight phase is then high (close to the variance obtained

in case of a simple fixed-size sampling strategy) and dominates the overall

variance. When R2 becomes larger, the balancing variables have more and

more explanatory power for the variable of interest, and the importance of

the variance due to the flight phase in the overall variance decreases. The

extreme case is when R2 = 1. The variable of interest y is then perfectly

explained by the balancing variables. In this case, the variance due to the

flight phase is 0. Because only the flight phase is taken into account in the

DT variance estimator, it is therefore more and more negatively biased as R2

increases. This effect is seen in both U1 and U2.

The MD variance estimator has considerable variability, in terms of percent

relative stability, partly due to the small sample size considered in these

examples. The DT variance estimator has low variability, but its extreme

bias makes this point irrelevant in all cases except y1 for population U1,

where DT has low bias. In this case, the relative stability of DT (29.3%) is

comparable to that of MD (33.8%).

Note that the variance of the Horvitz-Thompson estimator may be decom-

posed as follows :

Var
(
t̂yπ
)

= Var
(
E
[
t̂yπ |πT (F )(S)

])
+ E

[
Var

(
t̂yπ |πT (F )(S)

)]
= VF + VL,

where πT (F )(S) stands for the sequence πt(S) at the end of the flight phase,

t = T (F ). The term VF stands for the variance due to the flight phase,

whereas the term VL stands for the variance due to the landing phase. The

term VL is ignored in the DT estimator, which results in a negatively-biased

estimator. However, Var
(
t̂yπ |πT (F )(S)

)
is highly unstable, since the units
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remaining at the end of the flight phase as well as their number are random.

As a consequence, the MD estimator which helps in tracking the term VL

is also highly variable. This variability is needed to achieve approximately

correct confidence interval coverage.

5 Conclusion

In this paper, a new variance estimator for balanced sampling, using a mar-

tingale difference representation of the cube method, is proposed. This es-

timator is shown to perform well as compared to a naive simulation-based

variance estimator that does not use the martingale structure. Unlike the

Deville and Tillé (2005) variance estimator, which ignores sampling varia-

tion due to the landing phase, the proposed estimator takes into account the

complete sampling process and leads to essentially unbiased variance estima-

tors, and corresponding confidence intervals with proper coverage. Numerical

results support our findings.
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Appendix : Algorithm 1 for implementation of

the cube method

Define the balancing matrix A = (a1, . . . , ak, . . . , aN), where ak = xk/πk.

First initialize with π0(S) = π and A(0) = A. Next, at time t = 0, . . . , T ,

repeat the three following steps.

Step 1 :

Denote πt(S) = [πt,1(S), . . . , πt,k(S), . . . , πt,N(S)]′. Let E(t) = F (t)∩KerA(t),

where

F (t) = {v ∈ Rn : vk = 0 if πt,k(S) is an integer.}

– If E(t) 6= {0}, then generate any vector ut(S) 6= 0 in E(t), random or not.

Put A(t+ 1) = A(t).

– IfE(t) = {0}, letmt denote the largest integer such that F (t)∩KerAmt(t) 6=

{0}, where Amt(t) denotes the matrix given by the first mt rows of A(t).

Generate any vector ut(S) 6= 0 in F (t) ∩ KerAmt(t), random or not. Put

A(t+ 1) = Amt(t).

Step 2 :

Compute the scalars λ∗1t(S) and λ∗2t(S), which are the largest values of λ1t
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and λ2t such that

0 ≤ πt(S) + λ1tut(S) ≤ 1, 0 ≤ πt(S)− λ2tut(S) ≤ 1,

where the inequalities are interpreted element-wise. Note that λ∗1t(S) > 0

and λ∗2t(S) > 0.

Step 3 :

Select πt+1(S) = πt(S) + δt(S), where

δt(S) =

 λ∗1t(S)ut(S) with probability q(t)

−λ∗2t(S)ut(S) with probability 1− q(t)

and q(t) = λ∗2t(S)/(λ∗1t(S) + λ∗2t(S)).

The procedure ends at step T , when πT (S) has only integer (0–1) compo-

nents. It follows from Proposition 1 of Deville and Tillé (2004, p. 897) that

the number of steps T is no greater than the size N of the population.
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