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ABSTRACT

The use of balanced sampling at the design stage of a survey requires the
knowledge of auxiliary information for any unit in the population. The samples
selected are such that the Horvitz-Thompson estimators of the auxiliary va-
riables match the known totals of those variables, resulting in a variance
reduction. In this paper, a method for computing optimal inclusion probabi-
lities for balanced sampling on given auxiliary variables is studied. We show
that the method formerly suggested by Tillé and Favre (2005) enables the
computation of inclusion probabilities that lead to a decrease in variance.
Since the target optimal inclusion probabilities usually depend on the va-
riable of interest, we propose to use estimates instead (e.g., arising from a
previous wave of the survey). A limited simulation study suggests that our
method performs well as compared to that suggested by Tillé and Favre
(2005).

Keywords : Balanced sampling ; Calibration ; Cube method ; Fixed-point algorithm ;
Variance approximation.



1 Introduction

A sampling design is said to be balanced if it leads to the selection of samples

such that the Horvitz-Thompson estimators of the totals for auxiliary va-

riables exactly match the known population totals. Many partial solutions

were proposed for balanced sampling, before Deville and Tillé (2004) intro-

duced the cube method. This sampling algorithm enables the selection of

balanced samples with any number of balancing variables, and any prescri-

bed set of inclusion probabilities. The algorithm has been programmed into

a SAS macro (Chauvet and Tillé, 2006, 2007) and is also available in the R

Sampling Package prepared by Matei and Tillé (2006).

Balanced sampling designs do not substitute for other classical and efficient

sampling techniques, such as unequal probability sampling for selecting pri-

mary sampling units (PSUs) in household surveys, or stratification in busi-

ness surveys. They may be thought of as a way to refine these techniques

and obtain a variance reduction, if auxiliary information is available at the

design stage. For example, the Cube method was used for the selection of the

PSUs in the 1999 French Master Sample (Bourdalle et al., 2000) with balan-

ced sampling on variables such as taxable net income and age groups. In this

paper, we propose to compute optimal inclusion probabilities for balanced

sampling designs by means of a fixed-point algorithm, previously suggested

by Tillé and Favre (2005). Under some conditions on the set of balancing

variables, we show that the resulting inclusion probabilities always lead to a

reduction in variance of the Horvitz-Thompson estimator. Whereas several

iterations of the fixed-point algorithm are usually needed to get the target in-

clusion probabilities, we note that the set of inclusion probabilities obtained
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after one iteration is close to the final one. Consequently, considering only

one iteration appears as a good trade-off between accuracy and simplicity. A

disadvantage of the studied method is that some knowledge on the variable

of interest is required, since quantities depending on the variable of interest

are needed for the fixed-point algorithm. If these quantities are unknown at

the design stage, we propose to use estimates arising from another survey

instead. Our simulation results suggest that the proposed method performs

well, as compared to the approximation originally proposed by Tillé and

Favre (2005).

The paper is organized as follows. The notation is defined in Section 2. The al-

gorithm for computing optimal inclusion probabilities is described in Section

3, and its properties are discussed. A limited simulation study is proposed in

Section 4. Our main conclusions are drawn in Section 5.

2 Notation and Balanced Sampling

Let U denote a finite labeled population of size N . Let S denote a random

sample selected in U by means of a sampling design p(·). Let πk denote the

inclusion probability of unit k, that is, the probability for unit k to be inclu-

ded in the sample S. Let πkl denote the probability for distinct units k and l

to be jointly in the sample. We note π = (π1, . . . , πk, . . . , πN)′ for the vector

of inclusion probabilities. We assume that
∑

k∈U πk = n, where n denotes the

given average sample size.

Let y denote some variable of interest. In this paper, we are interested in
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estimating the population total ty =
∑

k∈U yk. The Horvitz-Thompson (HT)

estimator is given by

t̂yπ =
∑
k∈U

yk
πk
Ik =

∑
k∈U

dkykIk,

where Ik = 1 if unit k has been selected in the sample and 0 otherwise, and

dk = 1/πk denotes the design weight. This is a design-unbiased estimator for

the total ty. We look for a vector π of inclusion probabilities that minimizes,

in some sense, the variance of the HT estimator. This variance is given by

the so-called Horvitz-Thompson (1952) formula :

V (t̂yπ) =
∑
k,l∈U

yk
πk

yl
πl

(πkl − πkπl). (1)

We assume that a vector xk = (x1k, · · · , xqk)′ of q auxiliary variables is known

at the design stage for each unit k in the population. The variables xk are

assumed without loss of generality to be linearly independent. The sampling

design may be improved by means of the cube method (Deville and Tillé,

2004) which enables the selection of balanced samples. The sampling design

p(·) is said to be balanced on variables x if the equations

t̂xπ = tx (2)

hold exactly, where tx gives the (vector) population total of variables xk. That

is, the HT-estimators exactly match the known population totals. Conse-

quently, the variance of the HT-estimator is zero for the balancing variables.

We assume that the variables x are fixed prior to computing inclusion pro-

babilities. That is, we assume that the balancing variables do not depend on
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the π-vector of inclusion probabilities. Note that our set-up does not a priori

cover the situation when a variable

xak = πk1(k ∈ U1) (3)

belongs to the balancing variables, where U1 is a subset of units in U , and

1(k ∈ U1) equals 1 if k belongs to the domain U1, and 0 otherwise. Balancing

on variable xak is equivalent to impose a condition of fixed size in domain

U1. For example, the condition of global fixed sample size is met if xak = πk,

that is, if U1 = U . It is shown in Section 3.2 that this assumption may be

partially relaxed.

As an exact balanced sample may usually not be found, the cube method

enables the selection of approximately balanced samples. The algorithm may

be split into two phases, called the flight phase and the landing phase. At

each step of the flight phase, one unit is either selected in the sample or

definitely rejected. The result of the flight phase is given by a vector π∗ =

(π∗1, · · · , π∗k, · · · , π∗N)′, where π∗k equals 1 if unit k has been selected in the

sample, 0 if unit k has been rejected from the sample, and lies between 0

and 1 otherwise. At the end of the flight phase, the balancing equations are

exactly respected. That is,

∑
k∈U

xk
πk
π∗k =

∑
k∈U

xk. (4)

In the case where some units are neither selected nor rejected after the flight

phase, the landing phase consists in defining a sampling design among the

remaining units, so that the inclusion probabilities are exactly respected and
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the variance due to the landing phase is minimized. Let I = (I1, · · · , Ik, · · · , IN)′

be the vector that gives the result of the landing phase. Then

Ep(I) = π (5)

and ∑
k∈S

xk
πk
'
∑
k∈U

xk, (6)

where Ep(·) denotes the expectation with respect to the sampling design.

Equation (5) states that the inclusion probabilities are exactly respected.

Equation (6) implies that the sample is only approximately balanced, as the

HT-estimator t̂xπ usually does not exactly match the real total tx. If the

sample is not exactly balanced, the sampling weights may be adjusted by

means of calibration techniques (Deville and Särndal, 1992). The resulting

calibration estimator of ty is given by

t̂yw =
∑
k∈S

dkF (λ′xk)yk, (7)

where F (·) denotes the calibration function and λ is a q-vector of Lagrange

multipliers. A special case of (7) is obtained under the linear function F (u) =

1 + u which leads to the generalized regression estimator

t̂y,greg =
∑
k∈S

wkyk, (8)

where wk = dk

[
1 +

(
tx − t̂xπ

)′
T̂−1xk

]
denotes the calibrated weight, with

T̂ =
∑
k∈S

dkxkx
′
k. Deville and Tillé (2004, section 8) give a short comparison

of balanced sampling and calibration. They advocate for their joint use, since

balanced sampling enables a reduction in the variability of the final weights,
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while calibration enables to match the known totals exactly.

A variance approximation is also provided by Deville and Tillé (2005). They

suppose that the sampling design is exactly balanced, and performed with

maximum entropy among sampling designs balanced on the same balancing

variables, with the same inclusion probabilities. Then, under an additional

assumption of asymptotic normality of the multivariate HT-estimator under

Poisson sampling, they derive the following variance approximation :

Vapp(t̂yπ) =
N

N − q
∑
k∈U

b(πk) (yk − y∗k(π))
2
, (9)

where q denotes the number of balancing variables, b(πk) = 1/πk − 1 and

y∗k(π) = x′k β(π) is a weighted prediction of yk obtained with the balancing

variables, with

β(π) =

(∑
l∈U

b(πl)xlx
′
l

)−1∑
l∈U

b(πl)xlyl

Other slightly different approximations are proposed in Deville and Tillé

(2005), but their simulation results suggest that approximation (9) performs

well among variance approximations that may be computed in the case of

any set of inclusion probabilities.

3 Optimal Allocation for Balanced Sampling

In many cases, inclusion probabilities are fixed and chosen to be proportional

to an auxiliary variable known for any unit in the population at the design
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stage. Unequal probability sampling is then an efficient sampling design for

estimating the total ty if the variable of interest y is approximately propor-

tional to this auxiliary variable. However, if some information on variable

y is known at the design stage, it may be of interest to look for inclusion

probabilities that minimize, at least approximately, the variance of the HT-

estimator t̂yπ. In what follows, section 3.1 mainly consists in a recall of Tillé

and Favre (2005), apart from equation (12) which was only stated by these

authors, and for which we give an explicit proof.

3.1 Optimal allocation for an approximation of the va-

riance

An optimal vector π of inclusion probabilities should minimize the variance

given in formula (1), under the constraints that

0 ≤ πk ≤ 1 for any unit k ∈ U (10)

and ∑
k∈U

πk = n. (11)

Unfortunately, the variance formula (1) depends on second-order inclusion

probabilities, and the link between the first and the second-order inclusion

probabilities is intricate in case of balanced sampling, even in particular

cases ; see Chen et al. (1994); Deville (2000); Matei and Tillé (2005) for

the special case of balanced sampling on the sample size with maximum en-

tropy, also denominated in the literature as rejective sampling (Hájek, 1964).
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Following Tillé and Favre (2005), we thus propose to minimize the variance

approximation (9) instead. This leads to the Approximated Optimization Pro-

blem (AOP) : seek for inclusion probabilities that minimize (9), under the

constraints (10) and (11). The solution to this problem satisfies the system

of equations

πl = n
|yl − y∗l (π)|∑

m∈U
|ym − y∗m(π)|

for any l ∈ U, (12)

where y∗l (π) = x′l

( ∑
m∈U

bmxmx′m

)−1 ∑
m∈U

bmxmym and bl = 1/πl − 1. The

proof is given in Appendix A. This system of equations may not be used to

compute directly the optimal inclusion probabilities, since both parts of each

equation depend on π. Intuitively, this formula states that if the absolute

value of the residual |ek| = |yk − y∗k(π)| is large, the inclusion probability of

unit k should be large, too. Conversely, a small inclusion probability should

be associated with a small residual. In other words, there is no need to give

large inclusion probabilities for units k such that yk may be well predicted

by the balancing variables, and attention should be paid to the remaining

units instead.

A fixed-point algorithm may be used to compute the inclusion probabilities

associated with formula (12), but the value of the variable of interest y is

required for any unit in the population, and such detailed information is

unknown at the design stage. This first set of inclusion probabilities is thus

difficult to compute in practice.
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3.2 Generalization of the Approximated Optimization

Problem

To overcome this difficulty, we propose a generalization of this optimization

problem. Assume that a categorical variable z is known. This may be one

of the balancing variables or any additional variable available at the design

stage for any unit in the population. This variable defines a partition of the

population into J non-overlapping subsets U1, . . . , UJ of sizes N1, . . . , NJ ,

respectively, where J denotes the number of categories of the variable. Then

we impose that the target inclusion probabilities satisfy the following system

of equations :

πk = αj for any unit k ∈ Uj, j = 1, . . . , J. (13)

That is, inclusion probabilities are assumed to be equal inside each subset Uj.

The variance approximation given in formula (9) may then be alternatively

written as

Vapp(t̂yπ) ≡ V (α) =
N

N − q

J∑
j=1

b(αj)
∑
k∈Uj

(yk − ỹk(α))2, (14)

where α = (α1, . . . , αJ)
′, b(αj) = 1/αj − 1 and

ỹk(α) = x′k(
J∑
j=1

b(αj)Aj)
−1

J∑
j=1

b(αj)c1j(y)

with Aj =
∑

k∈Uj
xkx

′
k and c1j(y) =

∑
k∈Uj

xkyk. The General Approximated

Optimization Problem (GAOP) may then be described as follows : find the

J×1 vector α that minimizes (14) under the constraints (10), (11) and (13).
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Such a vector satisfies the system of equations

αj = n
σj(α)∑J

i=1Niσi(α)
, (15)

where

σj(α) =
1

Nj

∑
k∈Uj

(yk − ỹk(α))2. (16)

The proof is similar to that of (12), and is thus omitted. Note that the AOP is

a special case of our setting, obtained when J = N . In practice, the domains

associated to the variable z should be chosen so that the quantities needed

for the computation of the inclusion probabilities may be either known or

accurately estimated from an external source, see section 3.3.

Once again, we note that the formula (15) may not be directly used to com-

pute optimal inclusion probabilities since both parts in (15) depend on the

unknown α. The fixed-point Algorithm 1 may be used instead.

Algorithm 1 : Fixed-point algorithm to compute optimal inclusion probabi-
lities

1. Initialize with any vector α0 = (α0
1, . . . , α

0
J)
′.

2. At step t, compute αt = (αt1, . . . , α
t
J)
′ such that

αtj = n
σj(α

t−1)∑J
i=1Niσi(αt−1)

for any j = 1, . . . , J.

3. The procedure ends at step T when Maxj‖αtj − αt−1
j ‖ is lower than a

pre-specified bound ε.

The following result states that Algorithm 1 always lead to a reduction in
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variance, as compared to the variance associated with the original α0-vector.

Theorem 1 At any step t of the fixed point Algorithm 1, V (αt) ≤ V (αt−1).

The proof is given in Appendix B. As a consequence, the sequence (αt)t∈N

tends to a local minimum, and the approximated variance is always impro-

ved if the inclusion probabilities are given by the fixed-point algorithm. With

the simulations performed and a bound of ε = 10−6, very few iterations are

required, so that α1 provides a good approximation of the target vector of

inclusion probabilities.

We now consider the problem of the choice of the categorical variable z

whose categories are used to partition the population into domains with

equal probabilities inside. Both the AOP and the GAOP should give com-

parable results if the absolute value of the residuals |ek| = |yk − y∗k(π)| are

approximately equal inside domains U1, . . . , UJ . That is, the population U

should be sorted according to the |ek| variable, and the domains separated

by the fractiles of this variable. Since these residuals are practically unknown

at the design-stage, an alternative consists in using the available auxiliary

information. For example, qualitative variables used in the vector xk of balan-

cing variables could also be used to define the domains. Also, we previously

assumed that the balancing variables did not depend on the inclusion proba-

bilities, and in particular that no constraint on fixed size was involved in the

balancing problem. This latter assumption may be relaxed if the domains

inside which fixed sample size is required are used as the domains U1, . . . , UJ

in the GAOP. Let us suppose that the categorical variable z defining the
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domains belongs to the balancing variables. The corresponding balancing

equations may be written as

∑
k∈S

1(k ∈ Uj)
πk

=
∑
k∈U

1(k ∈ Uj) (17)

for any domain Uj, j = 1, . . . , J, and the joint application of equations (13)

and (17) leads to

n(Sj) = αjNj, (18)

where n(Sj) denotes the size of the sub-sample Sj = S ∩ Uj. The set of

equations (18) impose that the sample size is fixed inside each domain Uj,

but since αjNj may not be an integer the balancing constraints (18) will

usually be respected to within about one unit. Note that the summation of

equations (18) leads to

n(S) =
∑J

j=1 n(Sj) =
∑J

j=1 αjNj

=
∑

k∈U πk = n

by application of equation (11), so that if z belongs to the balancing variables,

the condition of global fixed sample size will be exactly respected.

3.3 Practical implementation of the Optimization Pro-

blem

Once again, we note that some knowledge about the variable of interest y

is needed in the fixed-point algorithm. More specifically, the knowledge of

Aj =
∑

k∈Uj
xkx

′
k, c1j(y) =

∑
k∈Uj

xkyk and c2j(y) =
∑

k∈Uj
y2
k is needed

for any subset Uj. Though some of these quantities are usually unknown at
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the design stage, they may be replaced by estimated quantities. This is a

common practice to take advantage of accurate estimated totals to improve

the estimators arising from a survey, see Berger et al. (2009). For example,

these estimated totals may be obtained from a previous wave or occasion of

the survey, or from a larger survey ; household surveys conducted in France

are usually calibrated on estimates arising from the Labour Force Survey.

Let us suppose that another sample Sp has been selected in U with inclusion

probabilities πp = (πp1, . . . , π
p
k, . . . , π

p
N)′. Let σ̂j(α) be obtained from (16) by

replacing Aj, c1j(y) and c2j(y) with Âp
j =

∑
k∈Sp

j

xkx′k
πp

k
, ĉp1j(y) =

∑
k∈Sp

j

xkyk

πp
k

and ĉp2j(y) =
∑

k∈Sp
j

y2k
πp

k
respectively, where Spj = Sp ∩ Uj. Algorithm 2 may

then be used to compute approximately optimal inclusion probabilities, that

we denote

π̂T = (π̂T1 , . . . , π̂
T
k , . . . , π̂

T
N)′ (19)

where π̂Tk = α̂Tj for any unit k ∈ Uj, j = 1, . . . , J . Since the exact quantities

Aj, c1j(y) and c2j(y) are not used in Algorithm 2, the computed inclusion

probabilities do not necessarily lead to an optimal solution. However, the use

of unbiased estimators Âj, ĉ1j(y) and ĉ2j(y) should lead to a strong reduction

of the variance of the Horvitz-Thompson estimator, even if this variance is

not minimized (see section 4.2).

We now briefly discuss the alternative solution proposed by Tillé and Favre

(2005). For simplicity, we assume that the same variable of interest y and

auxiliary variables x are collected in both the samples Sp and S. First, esti-

mated residuals

êk1 = yk − x′kB̂
p (20)
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Algorithm 2 : Fixed-point algorithm to compute approximately optimal in-
clusion probabilities

1. Initialize with any vector α̂0 = (α̂0
1, . . . , α̂

0
J)
′.

2. At step t, compute α̂t = (α̂t1, . . . , α̂
t
J)
′ such that

α̂tj = n
σ̂j(α̂

t−1)∑J
i=1Niσ̂i(α̂

t−1)
for any j = 1, . . . , J.

3. The procedure ends at step T when Maxj‖α̂tj − α̂t−1
j ‖ is lower than a

pre-specified bound ε.

are computed for units k ∈ Sp, where

B̂p =

(∑
k∈Sp

1− πpk
(πpk)

2
xkx

′
k

)−1 ∑
k∈Sp

1− πpk
(πpk)

2
xkyk.

Then, a linear model

|êk1|2 = x′kψ+ εk (21)

is postulated to predict the link between the square residuals and the auxi-

liary variables, where ψ is a q-vector of unknown parameters and the εk’s are

residuals. An estimator ψ̂
p
of the vector ψ is obtained from sample Sp, to

get estimated square residuals

|êk2|2 = x′kψ̂
p

(22)

for any unit k ∈ U . Finally, the optimal inclusion probabilities are estimated

by

π̂TFk = n
|êk2|∑
l∈U |êl2|

. (23)

If the quantities computed in (23) are larger than 1, Tillé and Favre (2005)
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propose to set the concerned inclusion probabilities to 1, while the other

inclusion probabilities are recalculated. The method proposed by Tillé and

Favre is less computer-intensive than the method that we propose, since no

fixed-point algorithm is required for the computation of the inclusion probabi-

lities. However, formula (22) may lead to negative estimated square residuals

for some units in U . In that case, the associated inclusion probabilities may

be set to 0, which results in biased HT-estimators. Moreover, the quality of

the prediction given in (22) highly depends on the predictive power of the

auxiliary variables xk for the residuals. If this predictive power is poor, the

estimated inclusion probabilities given in (23) may fall far from the optimal

probabilities, resulting in a possible loss of efficiency. The method proposed

by Tillé and Favre (2005) as well as the proposed method are compared in

section 4 into a small simulation study.

4 A simulation study

We conducted a limited simulation study to test the performance of the

procedures described in section 3. We first generated a finite population of

size N = 1 000 containing 6 variables : three variables of interest y1, y2 and y3

and three auxiliary variables x0, x1 and x2. First, the values of the variable x0

were generated independently from a uniform distribution. The population

U was divided into four groups U1, . . . , U4 according to the quartiles of the

x0-values, and the population x1k and x2k were generated as

x1k =

 1 if k ∈ U1 ∪ U2

2 otherwise
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and

x2k =

 1 if k ∈ U1 ∪ U3

2 otherwise

Given the values of these auxiliary variables, the y1, y2 and y3-values were

generated inside each group Uj according to the model

yhk = φhj + ηjk, h = 1, . . . , 3. (24)

The ηjk’s were generated according to a normal distribution with mean 0

and variance σ2
j . The vector of model parameters φh = (φh1, φh2, φh3, φh4)

was set to φ1 = (0.5, 0.5, 1.5, 1.5) for variable y1, φ2 = (0.5, 1.5, 0.5, 1.5) for

variable y2 and φ3 = (0.2, 0.75, 1.25, 2.0) for variable y3. That is, y1 and y2 are

related to the auxiliary variables x1 and x2 respectively, whereas the variable

y3 is related to the interaction of variables x1 and x2. This last variable

of interest is meant to evaluate (to some extent) the performance of the

computed inclusion probabilities when the auxiliary information used is not

fully adequate. We used two possible values for the vector σ = (σ1, σ2, σ3, σ4),

namely σ(1) = (0.2, 0.3, 0.4, 0.5) and σ(2) = (0.4, 0.6, 0.8, 1.0).

4.1 Simulation 1 : optimal inclusion probabilities

We first assume that, for each variable of interest yh, h = 1, . . . , 3, the needed

quantities Aj, c1j(yh) and c2j(yh) are exactly known. These quantities are

given in Table 1.

The inclusion probabilities are assumed to be equal inside each group Uj. For

each variable of interest yh, h = 1, . . . , 3, we note αhj for the common inclu-

sion probability for units in Uj and αh = (αh1, αh2, αh3, αh4)
′. Algorithm 1 is
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Table 1 – Exact quantities needed for the computation of optimal inclusion
probabilities with Algorithm 1, for the vectors σ(1) and σ(2)

U1 U2 U3 U4

Aj

(
250 250
250 250

) (
250 500
500 1000

) (
1000 500
500 250

) (
1000 1000
1000 1000

)
σ(1)

y1 (122.16, 122.16) (124.53, 249.05) (752.32, 376.16) (754.93, 754.93)
c′1j(·) y2 (129.39, 129.39) (376.65, 753.31) (236.70, 118.35) (765.42, 765.42)

y3 (63.75, 63.75) (188.15, 376.30) (620.97, 310.49) (1004.64, 1004.64)
y1 68.68 80.71 609.69 632.32

c2j(·) y2 76.41 587.50 99.26 649.67
y3 26.56 161.68 425.57 1059.42

σ(2)

y1 (119.31, 119.31) (124.05, 248.11) (754.65, 377.32) (759.85, 759.85)
c′1j(·) y2 (133.78, 133.78) (378.31, 756.62) (223.40, 111.70) (780.83, 780.83)

y3 (65.00, 65.00) (188.80, 377.60) (616.94, 308.47) (1009.29, 1009.29)
y1 92.92 136.29 744.27 827.01

c2j(·) y2 109.35 652.56 222.84 864.91
y3 58.11 222.91 540.47 1219.11

initialized with equal probabilities α0
h = (0.1, 0.1, 0.1, 0.1)′ (EQUAL). Also,

two other sets of inclusion probabilities are computed : (i) probabilities α1
h

obtained after the first step (FSTEP) of Algorithm 1 and (ii) probabilities αTh
obtained at the end (LSTEP) of Algorithm 1. The corresponding α vectors

are presented in Table 2. In line with formula (12), we note that the opti-

mal inclusion probabilities lead to larger sample sizes in domains where the

variable of interest is highly dispersed, or more precisely in domains where

the balancing variables have a lower explanatory power. The values taken

by the variance approximation in formula (9) for the three different sets of

inclusion probabilities are presented in Table 3, as well as the totals of the

variables of interest. As expected, the approximated variance obtained with

the final inclusion probabilities is systematically lower than the approximated
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variance obtained with the initial equal inclusion probabilities. The FSTEP

and LSTEP inclusion probabilities give almost identical approximated va-

riance, since the two sets of inclusion probabilities are very close in any case

considered in the simulation, see Table 2. Though the results obtained after

the first step may depend on the initial α0
h, the vector α1

h may be expected

to give a good compromise between variance reduction and low algorithmic

complexity.

Table 2 – Three sets of inclusion probabilities obtained with the fixed-point
algorithm for three variables of interest, for the vectors σ(1) and σ(2)

σ(1) σ(2)

EQUAL (0.1, 0.1, 0.1, 0.1) (0.1, 0.1, 0.1, 0.1)
y1 FSTEP (0.055, 0.079, 0.121, 0.145) (0.055, 0.079, 0.121, 0.145)

LSTEP (0.055, 0.079, 0.121, 0.145) (0.055, 0.079, 0.121, 0.145)
EQUAL (0.1, 0.1, 0.1, 0.1) (0.1, 0.1, 0.1, 0.1)

y2 FSTEP (0.056, 0.081, 0.119, 0.144) (0.056, 0.081, 0.119, 0.144)
LSTEP (0.056, 0.081, 0.119, 0.144) (0.056, 0.081, 0.119, 0.144)
EQUAL (0.1, 0.1, 0.1, 0.1) (0.1, 0.1, 0.1, 0.1)

y3 FSTEP (0.063, 0.085, 0.119, 0.133) (0.061, 0.085, 0.120, 0.134)
LSTEP (0.061, 0.085, 0.120, 0.134) (0.061, 0.085, 0.120, 0.134)

Table 3 – Total of the variables of interest and variance approximation for
three sets of inclusion probabilities

σ(1) σ(2)

y1 y2 y3 y1 y2 y3

Total 1 000.31 1 007.10 1 064.71 1 000.62 1 014.21 1 066.92
Variance EQUAL 1 269.97 1 347.95 1 277.54 5 079.87 5 391.80 5 004.06

Approximation FSTEP 1 129.58 1 189.98 1 149.92 4 518.31 4 759.92 4 494.06
LSTEP 1 129.58 1 189.98 1 149.69 4 518.31 4 759.92 4 493.99

The formula (9) which is minimized to compute optimal inclusion probabili-
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ties only gives an approximation for the true variance, under conditions that

may fail in practice. For example, Deville and Tillé (2005) assume that the

sampling design is exactly balanced, which is often unlikely to occur. Thus,

it seems of interest to compare the performances of the different sets of inclu-

sion probabilities with respect to the exact variance. We selected B = 10 000

samples of size n = 100, by balanced sampling on variables x1 and x2 by

means of the Cube method, with the procedures EQUAL and LSTEP. Un-

der each procedure, we computed the calibrated after balancing estimator,

given by (7). As a measure of variability of an estimator , we used the Monte

Carlo Mean Square Error (MSE) given by

MSEMC(t̂yw) =
1

10 000

B∑
b=1

(
t̂yw(Sb)− ty

)2
, (25)

where t̂yw(Sb) denotes the estimator t̂yw in the b-th sample Sb, b = 1, . . . , 10 000.

Let t̂(EQUAL)
yw and t̂

(LSTEP )
yw denote the estimator t̂yw under EQUAL and

LSTEP, respectively. In order to compare the relative variability of the esti-

mators, using t̂(EQUAL)
yw as the reference, we used the following measure :

RE =
MSEMC(t̂

(LSTEP )
yw )

MSEMC(t̂
(EQUAL)
yw )

. (26)

Table 4 shows the RE for the three variables. It is clear that the computed

inclusion probabilities lead to a more efficient estimator in all the scenarios

with a value of RE varying from 0.89 to 0.92.
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Table 4 – Relative Efficiency of the optimal vector of inclusion probabilities

y1 y2 y3

σ(1) 0.91 0.92 0.89
σ(2) 0.89 0.90 0.92

4.2 Simulation 2 : approximately optimal inclusion pro-

babilities

We conducted another simulation study to take into account the practical

situation when the needed quantities Aj, c1j(yh) and c2j(yh) are unknown.

That is, the computation of optimal inclusion probabilities by means of Al-

gorithm 1 requires some knowledge on the variable of interest y, that may

not be available at the design stage. In that case, we assume that some in-

formation has been collected on a sample Sp, prior to the selection of the

sample S. That is, a sample Sp is first selected in U , and the values of the

variables of interest yhk and of the auxiliary variables xk are measured for

any unit k ∈ Sp. The needed quantities are then replaced by unbiased esti-

mates Âp
j , ĉp1j(yh) and ĉp2j(yh) (see section 3.3), and approximately optimal

inclusion probabilities π̂Tk given in (19) are obtained by means of Algorithm

2. The sample S is then selected by means of balanced sampling with inclu-

sion probabilities π̂Tk . Alternatively, the method proposed by Tillé and Favre

(2005) may be used instead of Algorithm 2 to obtain inclusion probabilities

π̂TFk given by (23), and then to select the sample S.

We selected B = 10, 000 samples Spb , b = 1, . . . , 10 000 by simple random

sampling of size n0 = 50 (respectively, n0 = 100). Then, several sets of
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inclusion probabilities are computed for any unit k ∈ U . The inclusion pro-

babilities are equal inside each group Uj. For each sample Spb , Algorithm

2 is initialized with equal probabilities α̂0
h = (0.1, 0.1, 0.1, 0.1)′ (EQUAL).

Two other sets of inclusion probabilities are computed : (i) probabilities α̂Tbh
obtained at the end (APPROX) of Algorithm 2, and (ii) probabilities α̂TFbh
associated to the method of Tillé and Favre (MODEL). Then, a sample

Sb, b = 1, . . . , 10 000 of size n = 100 is selected by balanced sampling on va-

riables x1 and x2 by means of the Cube method, with the procedures EQUAL,

APPROX and MODEL.

To compare the approximately optimal inclusion probabilities associated to

the procedures APPROX and MODEL with the true, optimal inclusion pro-

babilities associated to the LSTEP procedure (see section 4.1), we used the

Monte Carlo Mean (MEAN), given by

MEANMC

(
α̂

(.)
h

)
=

1

10 000

B∑
b=1

α̂
(.)
bh. (27)

We present in Table 5 the Monte Carlo Mean obtained with APPROX and

MODEL and a size of n0 = 50 for the prior sample. The results obtained with

n0 = 100 were almost identical, and are thus omitted. Clearly, the Monte

Carlo Bias associated to the proposed method is negligible so that APPROX

may be expected to give results close to that of LSTEP. On the other hand,

the Monte Carlo Bias associated to MODEL is non-negligible, except for

the variable y3, which may result in a loss of efficiency. To evaluate the

performances of each procedure, we computed for each of them the calibrated

after balancing estimator, given by (7). As a measure of variability of an

estimator , we used the Monte Carlo Mean Square Error (MSE) given by
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equation (25) where t̂yw(Sb) denotes the estimator t̂yw in the b-th sample Sb,

b = 1, . . . , 10 000. Let t̂(EQUAL)
yw , t̂(APPROX)

yw and t̂(MODEL)
yw denote the estimator

t̂yw under EQUAL, APPROX and MODEL, respectively. In order to compare

the relative variability of the estimators, using t̂(EQUAL)
yw as the reference, we

used the following measure :

RE =
MSEMC(t̂

(.)
yw)

MSEMC(t̂
(EQUAL)
yw )

. (28)

The results are presented in Table 6. Once again, we note that the inclusion

probabilities computed with APPROX lead to a more efficient estimator than

EQUAL, with values of RE ranging from 0.88 to 0.95. We note that the RE

is closer to one when the sample size decreases. That is, a smaller size of

the external survey used to estimate the needed quantities results in a loss

of accuracy of the computed inclusion probabilities, as could be expected.

Therefore, we advocate for the use of domains in which these needed quanti-

ties may be precisely estimated. Also, we note that MODEL gives quite poor

results since it is outperformed by APPROX in all cases, and by EQUAL in

10 out of 12 cases.

5 Concluding remarks

In this paper, we studied the problem of computation of inclusion proba-

bilities in the context of balanced sampling. We showed that, under some

conditions on the vector of balancing variables, the fixed-point algorithm ear-

lier suggested by Tillé and Favre (2005) to compute inclusion probabilities

systematically leads to a decrease of the variance of the Horvitz-Thompson

estimator. This algorithm requires that some quantities may be known from
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Table 5 – Optimal inclusion probabilities given by Algorithm 1 and Monte
Carlo Mean of the approximately optimal inclusion probabilities given by
Algorithm 2 or by the method of Tillé and Favre for three variables of interest,
obtained with n0 = 50 for the vectors σ(1) and σ(2)

σ(1) σ(2)

LSTEP (0.055, 0.079, 0.121, 0.145) (0.055, 0.079, 0.121, 0.145)
y1 APPROX (0.055, 0.079, 0.121, 0.144) (0.055, 0.079, 0.121, 0.144)

MODEL (0.047, 0.084, 0.126, 0.143) (0.047, 0.084, 0.126, 0.143)
LSTEP (0.056, 0.081, 0.119, 0.144) (0.056, 0.081, 0.119, 0.144)

y2 APPROX (0.056, 0.081, 0.119, 0.144) (0.056, 0.081, 0.119, 0.144)
MODEL (0.047, 0.086, 0.124, 0.143) (0.047, 0.086, 0.124, 0.143)
LSTEP (0.061, 0.085, 0.120, 0.134) (0.061, 0.085, 0.120, 0.134)

y3 APPROX (0.061, 0.085, 0.121, 0.134) (0.061, 0.085, 0.120, 0.134)
MODEL (0.061, 0.086, 0.120, 0.133) (0.060, 0.085, 0.121, 0.134)

Table 6 – Relative Efficiency for two vectors of inclusion probabilities com-
puted with respect to prior information known from a past survey

n0 = 50 n0 = 100
y1 y2 y3 y1 y2 y3

σ(1) APPROX 0.93 0.95 0.95 0.88 0.91 0.89
MODEL 1.13 1.20 1.31 1.00 1.04 0.98

σ(2) APPROX 0.93 0.89 0.94 0.92 0.88 0.90
MODEL 1.13 1.22 1.17 1.03 1.01 0.96

an external source. If not, we proposed an alternative algorithm where the

needed quantities are estimated. This situation is not uncommon in practice ;

since most surveys are periodic, it may be of interest to take advantage of

the previous waves of a survey. Results from a limited simulation study have

shown that, even in the latter case, a significant decrease of the variance may

be expected.

Further investigation on the matter is needed. First, the case where the balan-

cing variables include some fixed-size constraints on domains is not covered
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by our set-up, if these domains do not coincide with those used in the GAOP.

Such constraints are frequently needed, for example if a given level of pre-

cision is required for certain subdivisions of the population. Secondly, the

approximation of variance of Deville and Tillé (2005) used to compute the

inclusion probabilities is unlikely to hold if the assumption of maximum en-

tropy is not satisfied. A practical way to increase the entropy of a sampling

design is to sort the population randomly before the sampling. However, this

preliminary randomization step is not systematically included in the sam-

pling process. The case where the population is sorted with respect to some

known auxiliary variable before balanced sampling is a matter for further

research.

A Proof of equation (12)

To simplify the notation, we note b(πk) ≡ bk. First note that the optimization

problem is equivalent to find the vector b = (b1, . . . , bN)′ that minimizes

W0(b) =
∑
k∈U

bk
(
yk − y0

k(b)
)2

where y0
k(b) = x′k

(∑
l∈U blxlx

′
l

)−1∑
l∈U blxlyl, under the constraints :

bk ≥ 0 for any unit k ∈ U (29)

and ∑
k∈U

1

bk + 1
= n. (30)
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The partial derivative of W0(b), with respect to bl, is equal to

∂W0(b)

∂bl
=
(
yl − y0

l (b)
)2

+ 2
∑
k∈U

bk
(
yk − y0

k(b)
) ∂ (yk − y0

k(b))

∂bl
. (31)

Since y0
k(b) may alternatively be written as y0

k(b) = x′kA(b)−1c(b), with

A(b) =
∑

l∈U blxlx
′
l and c(b) =

∑
l∈U blxlyl, and since xk does not depend

on bl, we have

∂y0k(b)

∂bl
= x′k

(
∂(A(b)−1)

∂bl
c(b) + A(b)−1 ∂c(b)

∂bl

)
= x′k

(
−A(b)−1 ∂A(b)

∂bl
A(b)−1c(b) + A(b)−1 ∂c(b)

∂bl

)
= x′kA(b)−1xl (yl − x′lA(b)−1c(b)) .

By inserting this last expression into (31), we obtain

∂W0(b)
∂bl

= (yl − y0
l (b))

2

−2
[∑

k∈U bk(yk − y0
k(b))x′k

]
A(b)−1xl (yl − x′lA(b)−1c(b))

= (yl − y0
l (b))

2

since
∑

k∈U bk(yk − yk(b))x′k = 0. Then under the constraint (30), we get

(yl − y0
l (b))

2 − γ 1
(bl+1)2

= 0

⇔ (yl − y0
l (b))

2 − γπ2
l = 0

⇔ πl =
√
γ|yl − y∗l (π)|

where γ denotes a Lagrange multiplier. The result follows by application of

constraint (11).
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B Proof of Theorem 1

For any t = 0, . . . , T , denote bt = (b(αt1), . . . , b(α
t
i), . . . , b(α

t
I))
′. Let u =

(u1, . . . , ui, . . . , uI)
′ be any I × 1 vector, and

W1(u) =
N

N − q

I∑
i=1

Niuiσ
2
i (α

t−1).

The minimization of W1(u) in u, subject to

I∑
i=1

Ni

ui + 1
= n (32)

leads to u = bt. Since bt−1 also satisfies equation (32), we have

W1(b
t) ≤ W1(b

t−1) = V (αt−1). (33)

Now, let

W2(β) =
N

N − q

I∑
i=1

b(αti)
∑
k∈Ui

(yk − x′kβ)2

where β denotes a q × 1 vector. This is a standard fact that W2(β) is mini-

mized by βt =
(∑I

i=1 b(α
t
i)Ai

)−1∑I
i=1 b(α

t
i)c1i(y). Consequently, we obtain

W2(β
t) ≤ W2(β

t−1) (34)

where βt−1 =
(∑I

i=1 b(α
t−1
i )Ai

)−1∑I
i=1 b(α

t−1
i )ci(y). Since W2(β

t) = V (αt)

and W2(β
t−1) = W1(b

t), the result follows by a joint application of (33) and

(34).
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