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Combining nonparametric and optimal linear time series

predictions

Sophie Dabo-Niang∗, Christian Francq†and Jean-Michel Zakoïan‡

Abstract: We introduce a semiparametric procedure for more efficient prediction of a strictly stationary

process admitting an ARMA representation. The procedure is based on the estimation of the ARMA

representation, followed by a nonparametric regression where the ARMA residuals are used as explanatory

variables. Compared to standard nonparametric regression methods, the number of explanatory variables

can be reduced because our approach exploits the linear dependence of the process. We establish con-

sistency and asymptotic normality results. A Monte Carlo study and an empirical application on stock

indices suggest that significant gains can be achieved with our approach.

Résumé: Nous introduisons une procédure semi-paramétrique afin de prévoir plus efficacement un pro-

cessus strictement stationnaire admettant une représentation ARMA. Cette procédure est fondée sur

l’estimation de la représentation ARMA, suivie d’une régression non paramétrique dans laquelle les résidus

ARMA sont utilisés comme variables explicatives. Par rapport aux méthodes standard de régression non

paramétrique, cette approche permet de réduire le nombre de variables explicatives car elle exploite la

dépendance linéaire du processus. On établit des résultats de convergence et de normalité asympto-

tique. Une étude par simulation et une application sur données d’indices boursiers montrent que des gains

d’efficacité significatifs peuvent être obtenus par cette méthode.
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1 Introduction

After three decades of non-linear time series models, the class of ARMA models remains

the most widely employed parametric family. Reasons can be found in the generality of

the class (when the noise is only assumed to be uncorrelated), the relative ease of imple-

mentation and the ability to provide optimal linear predictions. If a stationary processes

(Wt) is an ARMA process, its optimal linear prediction

EL(Wt | {Wu, u < t}) =

∞
∑

i=1

aiWt−i, (1.1)

is obtained from the ARMA model. However, ARMA models also have important draw-

backs. Their generality vanishes when strong assumptions (such as independence, martin-

gale difference) are made on the noise. The optimal linear prediction does not coincide, in

this case, with the optimal prediction

E(Wt | {Wu, u < t}) = φ(Wt−1,Wt−2, . . . ). (1.2)

Nonlinear models have been introduced to solve the problem, but they may be hard to

identify.

In situations where parametric families cannot be adopted with confidence, nonpara-

metric models offer an alternative. Nonparametric kernel regressors seem attractive be-

cause they aim at estimating the regression of the observed process Wt on its past values

Wt−1, . . . ,Wt−d,

r(Wt−1, . . . ,Wt−d) = E(Wt |Wt−1, . . . ,Wt−d) (1.3)

without requiring strong assumptions on the data generating process. The choice of the

number d of lags is however crucial for the following reason. When d is chosen too small, the

nonparametric predictions are likely to be far from the optimality, even when the number

of observations n increases to infinity. On the other hand when d is large, the method is

subject to the so-called curse of dimensionality (the kernel estimator converges at a rate

n2/(4+d) which is low when d is large).

In this work we consider a third approach to the problem of time series prediction, which

combines parametric and nonparametric methods. The idea is to utilize ARMA residuals

as regressors in the nonparametric approach, to forecast the subsequent behaviour of Wt.

More precisely, we consider two approaches. In the first one we use

r̃(Wt−1, . . . ,Wt−ℓ, ǫt−1, . . . , ǫt−m) = E(Wt |Wt−1, . . . ,Wt−ℓ, ǫt−1, . . . , ǫt−m) (1.4)
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as an approximation to the optimal prediction in (1.2), where ǫt = Wt−EL(Wt | {Wu, u <

t}) denotes the linear innovation of the stationary process (Wt). The use of a nonlinear re-

gression aims to account for the underlying nonlinear structure of Wt. On the other hand,

the use of linear innovations aims to alleviate the effects of the above-mentioned curse of

dimensionality. Since the ǫt’s are not observable, they are replaced by the residuals of

an ARMA model. For this method we will show that the rate of convergence approaches

n2/(4+ℓ+m), which seems advantageous compared to the traditional nonparametric regres-

sion when ℓ + m < d. In the second approach we use the decomposition of the optimal

prediction in (1.2) as the sum of the optimal linear prediction and the optimal (nonlinear)

prediction of the linear innovation process:

E(Wt | {Wu, u < t}) = EL(Wt | {Wu, u < t}) +E(ǫt | {ǫu, u < t}). (1.5)

The idea is to estimate the first term parametrically, and the second term nonparametri-

cally, in the right-hand side of (1.5). Again the innovations are replaced by residuals to

obtain a feasible predictor. Under slightly different assumptions than in the first method,

we will establish the consistency and asymptotic normality of the proposed estimator.

Our main motivation for using residuals in nonparametric estimators is parsimony.

It is well-known that, in view of the parsimony principle, the class of ARMA models is

preferable to the class of AR models (although both classes are dense in the set of the

stationary processes). This is precisely the idea which is behind the approaches based on

(1.4) and (1.5). If the same asymptotic precision is achieved with a first regression on

a large number of past values and a second regression on only few past values and past

linear innovations, it is reasonable to think that, in view of the curse of dimensionality, the

second regression will do a better job in finite samples.

The essential difficulty in the derivation of the asymptotic results is that variables

depending on a first-step estimator are included in the regressors and, for the method

based on (1.5), are also included in the regressand. To cope with this problem, the idea

is to interpret the ARMA residuals as noisy innovations, that is innovations that are

corrupted by the effect of the parameters estimation. We therefore need to establish general

asymptotic results for nonparametric regression based on "noisy time series". Specifically,

we consider the case where the time t observation is the sum of the realization of an

underlying stochastic process and a disturbance, which is allowed to depend on the sample

size n.
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The intuition behind this semiparametric method is simple and has obvious connections

with numerous methods already proposed in the literature, in particular i) the combination

of forecasts from individual models (see Timmermann (2006) and the references therein),

ii) the pre-whitening methods, like the one proposed by Carroll, Linton, Mammen and

Xiao (2002) for a regression model with autocorrelated errors, iii) the adaptive estimation

methods, like the one proposed by Xu and Phillips (2008) for the inference of AR models

with heteroscedasticity of unknown form (see also Phillips and Xu (2005), iv) the convex

combination of parametric and nonparametric predictions proposed by Einsporn and Birch

(1993) and Burman and Chaudhuri (1994) for possibly misspecified regression models (see

also Fan and Ullah (1999)), v) the Model-Robust Regression method proposed by Mays,

Birch, and Einsporn (2000), vi) the nonparametric correction factor proposed by Glad

(1998). The methods mentioned in v) and vi) have been developed to protect parametric

regressions against a model misspecification, which is not the concern of the present paper,

but these two methods are close in spirit to the semiparametric method we consider in the

present paper because they combine (additively in Mays et al. (2000) and multiplicatively

in Glad (1998)) a parametric fit of the raw data and a nonparametric fit of the parametric

residuals. In this sense, the method based on (1.5) can be viewed as a semiparametric

method of type iv)-vi) in which the parametric fit is the optimal linear predictor.

Our approach is also related to papers dealing with nonparametric regression, or density

estimation, in the presence of measurement error. Recent references on this topic are

Carroll, Maca and Ruppert (1999) and Schennach (2004), among others. In contrast to

those articles, the measurement error in our framework, that is the difference between the

innovation and the residual is not independent from the latter. More importantly, it also

depends on the sample size. Finally, it does not only concern the regressors but also the

regressand.

The paper is organized as follows. In Section 2 we consider nonparametric density

estimation and nonparametric regression for noisy data. Consistency and asymptotic nor-

mality are established under mixing assumptions on the unobserved stationary process,

and a control of the size of the noise in the data. Section 3 uses these results for Ker-

nel estimators based on ARMA residuals. Hybrid predictors, combining parametric and

nonparametric techniques, are studied. In Section 4, their finite sample properties are in-

vestigated by means of simulations. An application to stock return data is also presented.
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Concluding remarks are given in Section 5.

The symbol
L→ denotes convergence in distribution. For any function f : R

d → R, let

Di1...ikf(x) = (∂kf/∂xi1 . . . ∂xik)(x). The notation oP (1) is used for a sequence of random

vectors that converge to zero in probability. The notation Rn = OP (Sn) means that

Rn = SnTn for a sequence Tn which is bounded in probability.

2 Kernel estimators applied to noisy data

In this section we study the behavior of the kernel density and regression estimators when

they are computed on noisy data. This will be applied to ARMA residuals, considered as

noisy innovations. The section may however have its own interest.

Consider a strictly stationary process Z = (Zt)t∈Z where Zt = (Y ′
t ,X

′
t)
′, with Yt ∈ R

d0

and Xt ∈ R
d. Let g : R

d0 → R be a measurable function. Our goal is to estimate the

regression

r(x) = E (g(Yt) | Xt = x)

which is assumed to exist. We do not observe the process (Zt) but, instead, we have n

consecutive noisy observations of the form

Z̃1,n, . . . , Z̃n,n with Z̃ ′
t,n = (Ỹ ′

t,n, X̃
′
t,n) := (Y ′

t + V ′
t,n,X

′
t + U ′

t,n)

where the Vt,n and Ut,n are disturbance terms. Observe that the "noise" is present both

in the regressand and the regressors.

Let f = fX , fY and fZ be the densities of Xt, Yt and Zt. Since the seminal paper by

Rosenblatt (1956), kernel estimators have been extensively employed for nonparametrically

estimating f and r. Given a kernel K : R
d → R and a sequence of scalar bandwidths

(bn) > 0, the kernel density estimator of f(x) is defined by

f̃(x) =
1

nbdn

n
∑

t=1

K

(

x− X̃t,n

bn

)

. (2.1)

When f̃(x) 6= 0, the regression r(x) can be estimated by the Nadaraya-Watson estimator

r̃(x) =
ϕ̃(x)

f̃(x)
, ϕ̃(x) =

1

nbdn

n
∑

t=1

g(Ỹt,n)K

(

x− X̃t,n

bn

)

. (2.2)

It will be convenient to consider the pseudo-estimators

f̂(x) =
1

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

, r̂(x) =
ϕ̂(x)

f̂(x)
, ϕ̂(x) =

1

nbdn

n
∑

t=1

g(Yt)K

(

x−Xt

bn

)

(2.3)
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based on the non-observable variables Z1, . . . , Zn.

The main asymptotic properties of the latter estimators, when Z1, . . . , Zn are observed,

are available in the statistical literature (see e.g. the monographs by Prakasa Rao (1983),

Fan and Yao (2003)). We start by examining the consistency properties of the density and

regression estimators when applied to noisy data.

2.1 Consistency

Establishing consistency requires some technical assumptions which we are listing here.

Let ‖ · ‖ denote any norm on R
d or R

d0 .

A1: K is a density with respect to the Lebesgue measure,
∫

Rd uK(u)du = 0,
∫

Rd ‖u‖2K(u)du < ∞ and lim‖u‖→∞ ‖u‖dK(u) = 0. In addition K satisfies the

Lipschitz condition |K(u) −K(v)| < C‖u− v‖ for some constant C.

A2: The strong mixing coefficients of the process Z, defined by

αZ(k) = sup
A∈σ(Zu,u≤t), B∈σ(Zu,u≥t+k)

|P (A ∩B) − P (A)P (B)| ,

are such that
∞
∑

h=0

{αZ(h)} ν
2+ν <∞ for some ν > 0.

A3: The vector x ∈ R
d is such that f(x) > 0. The functions fZ , f and ϕ := rf

are twice derivable with continuous and bounded second order derivatives. We have

E|g(Yt)|2+ν < ∞, and supu

∫

|g(y)|2+νfZ(y, u)dy < ∞, where ν is defined in A2.

There exists some constant C such that |g(y′) − g(y)| < C‖y′− y‖ for all y, y′ ∈ R
d0 .

A4: bn → 0 and nb
d(1+ ν

2+ν )
n → ∞ as n → ∞, for the constant ν > 0 involved

in A2–A3.

An assumption similar to supx

∫

|g(y)|2+νfZ(y, x)dy < ∞ is also made in Mack and Sil-

verman (1982). Note that Pham (1986) and Carrasco and Chen (2002) have shown that,

for a wide class of processes, the mixing conditions made in Assumption A2 are satisfied.

On the disturbance terms, we make the following assumption.

B1: There exists τ < 1 such that

n
∑

t=1

‖Ut,n‖ +

n
∑

t=1

‖Vt,n‖ +

n
∑

t=1

(‖Yt‖ + ‖Vt,n‖) ‖Ut,n‖ = OP (nτ ).
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We will see that this situation arises with τ = 1/2 when the kernel estimators are applied

to residuals of parametric models.

Theorem 2.1 Under Assumptions A1–A4 and B1, the kernel density and regression es-

timators based on the noisy observations satisfy

f̃(x) = f(x) + oP (1) and r̃(x) = r(x) + oP (1), (2.4)

whenever nb
(1+d)/(1−τ)
n → ∞. When bn = cn−1/{d+4+dν/(2+ν)}, c > 0, and τ <

{1 + dν/(2 + ν)} / {d+ 4 + dν/(2 + ν)},

f̃(x) − f(x) = OP

(

n−2/{d+4+dν/(2+ν)}
)

, (2.5)

r̃(x) − r(x) = OP

(

n−2/{d+4+dν/(2+ν)}
)

. (2.6)

In the proof below we use the fact that under the assumptions of this proposition, except

B1, (2.4), (2.5), and (2.6) hold for the pseudo-estimators obtained by replacing f̃(x) and

r̃(x) by f̂(x) and r̂(x). Such a result is standard and can be obtained under many other

assumptions (see e.g. Bosq (1996) or Härdle (1990)). This proposition thus shows that

the asymptotic behavior of the kernel estimators is not affected by the presence of small

disturbances. Note also that for an exponential mixing rate αZ(h) = O(ρh) with ρ ∈ (0, 1),

the constant ν > 0 can be chosen arbitrarily small, so that the rate of convergence (2.5)–

(2.6) is arbitrarily close to the optimal rate OP

(

n−2/(d+4)
)

of the case of identically and

independently distributed (iid) variables (Zt).

Proof. In this proof and the subsequent ones, C denotes a generic positive constant whose

exact value is unimportant and may vary from line to line.

Under A1–A4 we have1

f̂(x) = f(x) + oP (1) and r̂(x) = r(x) + oP (1) (2.7)

and for bn = cn−1/{d+4+dν/(2+ν)}, c > 0

max{f̂(x) − f(x), r̂(x) − r(x)} = OP

(

n−2/{d+4+dν/(2+ν)}
)

. (2.8)

1For the convenience of the reader, and also because we have not been able to find a reference establishing

these results with exactly the same assumptions, a complete proof of (2.7)–(2.8) is available from the

authors.
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Now, by A1 and B1 we have

∣

∣

∣
f̃(x) − f̂(x)

∣

∣

∣
≤ 1

nbdn

n
∑

t=1

∣

∣

∣

∣

K

(

x−Xt − Ut,n

bn

)

−K

(

x−Xt

bn

)∣

∣

∣

∣

≤ C

nbdn

n
∑

t=1

∥

∥

∥

∥

Ut,n

bn

∥

∥

∥

∥

= OP

(

nτ−1b−d−1
n

)

. (2.9)

The right-hand side of the last equality tends to zero when nb
(1+d)/(1−τ)
n → ∞. The first

consistency in (2.4) then follows from (2.7) and the triangular inequality

∣

∣

∣
f̃(x) − f(x)

∣

∣

∣
≤
∣

∣

∣
f̃(x) − f̂(x)

∣

∣

∣
+
∣

∣

∣
f̂(x) − f(x)

∣

∣

∣
.

In view of this inequality and (2.8), the optimal rate is reached since nτ−1b−d−1
n =

o(n−2/{d+4+dν/(2+ν)}) for bn = cn−1/{d+4+dν/(2+ν)}, which entails (2.5).

We now consider the consistency of the regressor r̃(x) = ϕ̃(x)/f̃ (x). First note that

(2.7) implies

|ϕ̂(x) − ϕ(x)| = oP (1). (2.10)

We have

ϕ̃(x) − ϕ̂(x) =
1

nbdn

n
∑

t=1

{g(Yt + Vt,n) − g(Yt)}K
(

x−Xt

bn

)

+
1

nbdn

n
∑

t=1

g(Yt + Vt,n)

{

K

(

x−Xt − Ut,n

bn

)

−K

(

x−Xt

bn

)}

. (2.11)

The assumptions made in A1 entail that K := supu |K(u)| < ∞. By the Lipschitz

condition in A3 we have |g(x)| = |g(x) − g(0) + g(0)| ≤ C(‖x‖ + 1). Using A3, we then

obtain

|ϕ̂(x) − ϕ̃(x)| ≤ C

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

‖Vt,n‖ +
C

nbd+1
n

n
∑

t=1

|g(Yt + Vt,n)| ‖Ut,n‖

≤ CK

nbdn

n
∑

t=1

‖Vt,n‖ +
C2

nbd+1
n

n
∑

t=1

(‖Yt‖ + ‖Vt,n‖ + 1) ‖Ut,n‖ .

Thus, in view of B1,

|ϕ̂(x) − ϕ̃(x)| = OP

(

nτ−1b−d−1
n

)

. (2.12)

The consistency of the numerator of r̃(x) = ϕ̃(x)/f̃(x) follows from (2.10) and (2.12). The

consistency of the denominator has already been established. The second equality of (2.4)

then follows by Slutsky’s lemma.
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From (2.8), (2.12) and the consistency of f̂(x), we obtain

ϕ̃(x) − ϕ(x) = ϕ̃(x) − ϕ̂(x) + {r̂(x) − r(x)} f̂(x) + r(x)
{

f̂(x) − f(x)
}

= OP

(

n−2/{d+4+dν/(2+ν)}
)

under the assumptions of the theorem on bn and τ . Under the same conditions,

r̃(x) − r(x) =
ϕ̃(x) − ϕ(x)

f̃(x)
+ ϕ(x)

f(x) − f̃(x)

f(x)f̃(x)

= OP

(

n−2/{d+4+dν/(2+ν)}
)

which completes the proof. 2

2.2 Asymptotic normality of the regression estimator

The previous assumptions are strengthened as follows.

A1’: Assumption A1 holds and the Kernel function K is three times differentiable with

bounded derivatives, and the first two derivatives are integrable.

A2’:
∞
∑

h=0

h̺ {αZ(h)} ν
2+ν <∞, where ν > 0 and ̺ > ν

2+ν .

A3’: Assumption A3 holds with fZ(y, x) ≤ CfY (y), for some positive constant C, for

all x ∈ R
d, y ∈ R

d0 . For all h > 0, the vector (Z ′
t, Z

′
t−h) = (Y ′

t ,X
′
t, Y

′
t−h,X

′
t−h)

admits a continuous density fZh,Z0 such that fZh,Z0(y, x, ỹ, x̃) ≤ CfYh,Y0(y, ỹ), for

some positive constant C, for all x, x̃ ∈ R
d, y, ỹ ∈ R

d0 , where fYh,Y0 denotes the

density of (Y ′
t , Y

′
t−h).

When fZ(y, x) ≤ CfY (y), the function fZ(y, x) is said to be uniformly in the order of

fY (y). Note that this assumption, together with E|g(Yt)|2+ν < ∞, entails the condition

supu

∫

|g(y)|2+νfZ(y, u)dy <∞ in A3. When Zt is gaussian and Yt ∈ R, one can take

C = (2π)−d0/2
∣

∣Var(Yt) − Cov(Yt,Xt)Var(Xt)
−1Cov(Xt, Yt)

∣

∣

−1/2
.

A4’: For the constants ̺ and ν involved in A2’ and A3 we have, as n→ ∞,

nb4+d
n → 0, nb

ν(4+d)
̺(2+ν)
n → ∞, nb

d(1+ ν
2+ν )

n → ∞.
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For a real random variable X and a constant s > 0, let ‖X‖s =
{∫

|x|sdP (x)
}1/s

. For

a random vector X = (X1, . . . ,Xk)′, let ‖X‖s =
∥

∥

∥

∑k
i=1 |Xi|

∥

∥

∥

s
.

B2: There exist nonnegative numbers τ0 and τ1, positive constants ζ1, ζ2, γ1, γ2, γ3 with

1
ζ1

+ 1
ζ2

= 1 and 1
γ1

+ 1
γ2

+ 1
γ3

= 1, sequences of positive random variables (µt), (ρt),

(hn), (kn), (ut,n) and (vt,n), a constant C > 0 and a constant ρ ∈ (0, 1), a sequence

of integers (an), such that

an → ∞ and an = o(
√

nbdn) as n→ ∞,

and

‖Vt,n‖ ≤ ρt + knvt,n, ‖Ut,n‖ ≤ µt + hnut,n, (2.13)

where

kn = OP (n−τ0), hn = OP (n−τ1), max{ρt, µt} ≤ Cρt a.s.,

max
{

‖Yt‖ζ1 , ‖vt,n‖ζ1
,
∥

∥u3
t,n

∥

∥

ζ2
, ‖vt,n‖γ1

, ‖Yt‖γ1 ,
∥

∥u2
t,n

∥

∥

γ2

}

≤ C.

In the following result, we establish the asymptotic distribution of r̂(x) under two sets of

assumptions. The first one is simpler, but it cannot be used for the application developed

in Section 3 since, as we shall see, the real number involved in B1 is τ = 1/2 when the

noisy data consist of ARMA residuals.

Theorem 2.2 Assume A1’-A4’ and either

1. B1 with n2τ−1b
−(2+d)
n → 0,

or

2. B2 with, for k = 1, 2,
1) n−τ0+

1
2 b

d
2
( 1

ζ2
− 1

ζ1
)

n → 0, 2) nρ2anb
−(2k+d)+ 2d

ζ2
n → 0,

3) n−1ρ2anb
−(2k+d)
n → 0, 4) n1−2k τ1b

−(2k+d)+ 2d
γ3

n → 0,

5) n1−2τ0ρ2anb
−(2k+d)+ 2d

ζ2
n → 0, 6) n1−2(τ0+k τ1)b

−(2k+d)+ 2d
γ3

n → 0,

7) nρ2anb
−(6+d)
n → 0, 8) n1−6τ1b−(6+d)

n → 0,

9) n1−2τ0ρ2anb
−(6+d)
n → 0, 10) n1−2(τ0+3τ1)b−(6+d)

n → 0. (2.14)

Then, letting F2(x) = ϕ2(x) − f(x)r2(x),

√

nbdn {r̃(x) − r(x)} L→ N
(

0,
F2(x)

f2(x)

∫

Rd

K2(u)du

)

. (2.15)

9



It should be noted that, under A1’-A4’, the asymptotic distribution of r̂(x) is exactly the

same as in (2.15). Hence, the asymptotic behavior of regression estimator is not affected

by the presence of a "small" noise in the data.

Before proving this result, we establish the following technical lemma.

Lemma 2.1 Let (Xt) be as in Section 2 and let the density f of Xt satisfy A3. Let γ > 1

and H : R
d → R

+ such that
∫

Rd H
γ (t) dt < ∞, and let (bn) be a sequence of positive

numbers such that bn → 0 as n→ ∞. Then we have

∥

∥

∥

∥

H

(

x−Xt

bn

)∥

∥

∥

∥

γ

= O

(

b
d
γ
n

)

.

Proof. We have, by the change of variable formula

∥

∥

∥

∥

H

(

x−Xt

bn

)∥

∥

∥

∥

γ

=

{
∫

Rd

Hγ

(

x− u

bn

)

f(u)du

} 1
γ

=

{

bdn

∫

Rd

Hγ (t) f(x− bnt)dt

} 1
γ

.

Note that f is bounded under A3. When n → ∞ the latter integral converges to

f(x)
∫

Rd H
γ (t) dt by the dominated convergence theorem. The conclusion follows. 2

Proof of Theorem 2.2. Asymptotic normality of regression estimators under strong

mixing assumptions were first established by Robinson (1983). Under A1 and A2’-A4’

we have2

√

nbdn {r̂(x) − r(x)} L→ N
(

0,
F2(x)

f2(x)

∫

Rd

K2(u)du

)

. (2.16)

We have

r̂(x) − r̃(x) =
ϕ̂(x) − ϕ̃(x)

f̂(x)
− ϕ̃(x)

f̂(x) − f̃(x)

f̂(x)f̃(x)
. (2.17)

Under B1, by (2.9), (2.12) and (2.17),

√

nbdn(r̂(x) − r̃(x)) = OP

(

nτ−1/2b−d/2−1
n

)

= oP (1). (2.18)

Thus (2.15) follows, in view of (2.16), under the first set of assumptions.

Now suppose that B2 holds. We will show that
√

nbdn(r̂(x)− r̃(x)) converges to zero in

probability, which, by (2.16), will be sufficient to prove (2.15). In view of (2.17) it suffices

to prove that

√

nbdn |ϕ̂(x) − ϕ̃(x)| = oP (1) and
√

nbdn

∣

∣

∣
f̂(x) − f̃(x)

∣

∣

∣
= oP (1). (2.19)

2A proof is available from the authors.
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In view of (2.11) and using A3 we have

√

nbdn |ϕ̂(x) − ϕ̃(x)| ≤ C
√

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

‖Vt,n‖

+
C

√

nbdn

n
∑

t=1

|g(Yt + Vt,n)|
∣

∣

∣

∣

K

(

x−Xt − Ut,n

bn

)

−K

(

x−Xt

bn

)∣

∣

∣

∣

:= S1 + S2. (2.20)

With the notation K = supu |K(u)| introduced in the proof of Theorem 2.1, we have

S1 ≤ C
√

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

(ρt + knvt,n)

≤ CK
√

nbdn

n
∑

t=1

ρt +
Ckn
√

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

vt,n. (2.21)

The first term in the right-hand side of the last inequality converges to 0 in probability

by B2 and A4’ (implying nbdn → ∞). Moreover, using successively the Hölder inequality,

Lemma 2.1 and B2 we find

E

{

1
√

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

vt,n

}

≤ C
√

nbdn

n
∑

t=1

∥

∥

∥

∥

K

(

x−Xt

bn

)∥

∥

∥

∥

ζ2

‖vt,n‖ζ1

≤ Cb
d/ζ2
n

√

nbdn

n
∑

t=1

‖vt,n‖ζ1
= O

(

n1/2b
d
2
( 1

ζ2
− 1

ζ1
)

n

)

.

From B2 and 1) in (2.14) we deduce that the second term in (2.21) converges to 0 in

probability. It follows that

S1 = oP (1). (2.22)

To handle S2 we will make a third-order Taylor expansion of the Kernel function around

(x−Xt)/bn. Write Ut,n = (U1,t,n, . . . , Ud,t,n)′. We have

K

(

x−Xt − Ut,n

bn

)

= K

(

x−Xt

bn

)

− 1

bn

d
∑

i=1

Ui,t,nDiK

(

x−Xt

bn

)

+
1

2b2n

d
∑

i,j=1

Ui,t,nUj,t,nDijK

(

x−Xt

bn

)

− 1

6b3n

d
∑

i,j,k=1

Ui,t,nUj,t,nUk,t,nDijkK

(

x−Xt,n

bn

)

,
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where Xt,n is between Xt and Xt + Ut,n. Thus, using the vector norm ‖a‖ =
∑ |ai|,

∣

∣

∣

∣

K

(

x−Xt − Ut,n

bn

)

−K

(

x−Xt

bn

)∣

∣

∣

∣

≤ 1

bn
‖Ut,n‖

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
1

2b2n
‖Ut,n‖2

d
∑

i,j=1

∣

∣

∣

∣

DijK

(

x−Xt

bn

)∣

∣

∣

∣

+
1

6b3n
‖Ut,n‖3

d
∑

i,j,k=1

∣

∣

∣

∣

DijkK

(

x−Xt,n

bn

)∣

∣

∣

∣

.

Hence, with the elementary inequality (|a| + |b|)k ≤ 2k(|a|k + |b|k),

S2 ≤ C
√

nbdn

n
∑

t=an

1

bn
|g(Yt + Vt,n)| (µt + hnut,n)

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
C

√

nbdn

n
∑

t=an

1

b2n
|g(Yt + Vt,n)| (µ2

t + h2
nu

2
t,n)

d
∑

i,j=1

∣

∣

∣

∣

DijK

(

x−Xt

bn

)∣

∣

∣

∣

+
C

√

nbdn

n
∑

t=an

1

b3n
|g(Yt + Vt,n)| (µ3

t + h3
nu

3
t,n)

d
∑

i,j,k=1

∣

∣

∣

∣

DijkK

(

x−Xt,n

bn

)∣

∣

∣

∣

+
C

√

nbdn

an
∑

t=1

(1 + ‖Yt‖ + ‖Vt,n‖)

:= S21 + S22 + S23 + S24, (2.23)

where the last term follows from the fact that the kernel function is bounded and from the

Lipschitz condition on g. We have

S21 ≤ C

bn
√

nbdn

n
∑

t=an

(1 + ‖Yt‖ + ρt)µt

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
Chn

bn
√

nbdn

n
∑

t=an

(1 + ‖Yt‖ + ρt)ut,n

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
Ckn

bn
√

nbdn

n
∑

t=an

vt,nµt

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
Chnkn

bn
√

nbdn

n
∑

t=an

vt,nut,n

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

:= S211 + hnS212 + knS213 + hnknS214. (2.24)

Because the derivatives of K are bounded and ρt and µt are O(ρt) with probability one,

we have

S211 ≤ Cρan

bn
√

nbdn

n
∑

t=an

‖Yt‖
d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+OP

(

ρan

bn
√

nbdn

)

. (2.25)

Denote by S∗
211 the first term of the right-hand side of this equality. It is easy to check

that A1’ entails
∫

|DiK (t)|γ dt < ∞ for any power γ ≥ 1. Using Lemma 2.1 and by the
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Hölder inequality, we have

E(S∗
211) ≤ Cρan

bn
√

nbdn

n
∑

t=an

‖Yt‖ζ1

d
∑

i=1

∥

∥

∥

∥

DiK

(

x−Xt

bn

)∥

∥

∥

∥

ζ2

≤ Cρanb
d
ζ2
n

bn
√

nbdn

n
∑

t=an

‖Yt‖ζ1
≤ Cρannb

d
ζ2
n

bn
√

nbdn
= o(1),

where the last equality follows from 2) in (2.14) with k = 1. Thus, noting that S∗
211 ≥ 0,

we have S∗
211 = oP (1). Using 3) with k = 1 and (2.25) we then obtain S211 = oP (1). By

Lemma 2.1 and the Hölder inequality, we have

E(S212) ≤ 1

bn
√

nbdn

n
∑

t=an

(1 + ‖Yt‖γ1
+ ‖ρt‖γ1

) ‖ut,n‖γ2

d
∑

i=1

∥

∥

∥

∥

DiK

(

x−Xt

bn

)∥

∥

∥

∥

γ3

≤ Cb
−1− d

2
+ d

γ3
n√

n

n
∑

t=an

(1 + ‖Yt‖γ1
+ Cρt) ‖ut,n‖γ2

= O

(

b
−1− d

2
+ d

γ3
n

√
n

)

.

Thus, 4) with k = 1 in (2.14) entails hnS212 = oP (1). For the same reasons, 5) with k = 1

entails knS213 = oP (1), and 6) with k = 1 entails hnknS214 = oP (1). Thus, in view of

(2.24), we have shown that S21 = oP (1). By exactly the same arguments, 2)-6) with k = 2

entail S22 = oP (1). For S23 we use the boundedness of the third derivatives (A1’) and

conclude similarly using the convergence 7)-10) in (2.14). Finally,

S24 ≤ C
√

nbdn

an
∑

t=1

(1 + ‖Yt‖ + ρt) +
Ckn
√

nbdn

an
∑

t=1

(1 + ‖Yt‖ + vt,n) := S241 + knS242.

We have

‖S24i‖1 ≤ Can
√

nbdn
= o(1), i = 1, 2

which proves that S24i = oP (1) and thus that S24 = oP (1). Therefore we have

S2 = oP (1). (2.26)

In view of (2.22) and (2.20) this proves that the first equality in (2.19) holds. The second

equality follows along the same lines and the proof of Theorem 2.2 is complete. 2

3 Kernel estimators applied to ARMA residuals

Many non linear processes admit ARMA representations (see e.g. Romano and Thombs

(1996), Francq, Roy and Zakoïan (2005) and the references therein). This is not very
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surprising because, from the Wold theorem, any purely non deterministic second-order

stationary process (Xt) has an infinite MA representation, which can be closely approxi-

mated by finite order ARMA models. The noise in these ARMA representations is only

the linear innovation of (Xt) and is not an iid sequence (otherwise (Xt) would be a linear

process). These representations are referred to as weak ARMA representations, by oppo-

sition to the standard strong ARMA representations where the noise is supposed to be

iid.

In this section we will show how the weak ARMA residuals can be used in nonparametric

predictors. Density estimators based on residuals of time series models have already been

studied by Robinson (1983) and Liebscher (2001), among others. Such residual-based

estimators can be used to obtain adaptive estimators (see Drost Klaassen and Werker,

1997) and to obtain
√
n-consistent plug-in estimators for functionals of a density (see

Schick and Wefelmeyer, 2004). Our framework here is quite different, since we study the

asymptotic behavior of kernel estimators of autoregressions when lagged values of ARMA

residuals are taken as explanatory variables (in Section 3.2) and when the ARMA residuals

constitute the dependent variable (in Section 3.3).

3.1 Weak ARMA residuals

We now introduce the assumptions we need. Let W = (Wt)t∈Z be a real second-order

stationary ARMA(p, q) process such that

Wt +

p
∑

i=1

φiWt−i = ǫt +

q
∑

i=1

ψiǫt−i, ∀t ∈ Z. (3.1)

The parameter θ0 = (φ1, . . . , φp, ψ1, . . . , ψq)
′ is unknown and we observe a sample

W1,W2, . . . ,Wn of W . For any θ = (θ1, . . . , θp+q)
′ ∈ R

p+q, define two polynomials by

Φθ(z) = 1 + θ1z+ · · · + θpz
p and Ψθ(z) = 1 + θp+1z + · · · + θp+qz

q. For any δ > 0, let the

compact set

Θδ = {θ ∈ R
p+q; the zeros of Φθ(z) and Ψθ(z) have moduli ≥ 1 + δ}.

We make the following assumptions.

C1. ǫ = (ǫt) is a strictly stationary sequence of uncorrelated random variables with zero

mean and variance σ2 > 0.
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C2. θ0 belongs to the interior of Θδ, and the polynomials Φθ0(z) and Ψθ0(z) have no zero

in common.

C3. φp and ψq are not both equal to zero (by convention φ0 = ψ0 = 1).

The sequence of the α−mixing (strong mixing) coefficients of some process (U) = (Ut)t∈Z is

denoted by {αU (h)}h≥0. We will consider, alternatively, the following mixing assumptions.

C4. The process (W, ǫ) satisfies Model (3.1), the moment condition E|Wt|4+2ν < ∞ (or

equivalently E|ǫt|4+2ν <∞) and the mixing condition

∞
∑

h=0

{αW,ǫ(h)}
ν

2+ν <∞ for some ν > 0.

C5. The process (W, ǫ) satisfies Model (3.1), with E|Wt|4+2ν <∞ and

∞
∑

h=0

{αǫ(h)}
ν

2+ν <∞ for some ν > 0.

For all θ ∈ Θ, let ǫt(θ) = Ψ−1
θ (B)Φθ(B)Wt and et(θ) = Ψ−1

θ (B)Φθ(B)(Wt11≤t≤n),

where B denotes the backshift operator. Note that ǫt(θ) is not computable from the

sample, but it is introduced for theoretical purpose. Let θ̂n be a Least Squares Estimator

(LSE) satisfying, almost surely,

Qn(θ̂n) = min
θ∈Θδ

Qn(θ) where Qn(θ) =
1

2n

n
∑

t=1

e2t (θ). (3.2)

The ARMA(p, q) residuals are then defined by ǫ̂t = et(θ̂n) for t = 1, . . . , n. Francq and

Zakoïan (1998) have shown that the LSE is strongly consistent and asymptotically normal

under C1-C4. We will need the additional technical lemma, giving the behavior of the

weak ARMA residuals.

Lemma 3.1 If C1-C3 and either C4 or C5 hold then

ǫ̂t = ǫt + st +OP (n−1/2) with |st| ≤ Cρt, (3.3)

where the constants ρ ∈ (0, 1) and C only depend on the initial values W0, . . . , W1−p, ǫ0,

. . . , ǫ1−q. Moreover
∑n

t=1 |ǫt − ǫ̂t| = OP (n1/2).

Proof. Write st = st(θ0), where st(θ) = et(θ) − ǫt(θ). A Taylor expansion of et(·) around

θ0 yields

ǫ̂t = et(θ̂n) = st + ǫt(θ0) + (θ̂n − θ0)
′ ∂et
∂θ

(θ∗),
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where θ∗ is between θ̂n and θ0. It is shown in Francq and Zakoïan (1998, Lemma 1

and Theorem 2, and 2000, Lemmas A.1 and A.2) that supθ∈Θ |st(θ)| ≤ Cρt, where C

is a measurable function of the initial values, that ∂et

∂θj
(θ) =

∑t−1
i=1 ci,j(θ)Wt−i with ci :=

maxj∈{1,...,p+q} supθ∈Θ ‖ci,j(θ)‖ = O(ρi), and that
√
n(θ̂n − θ0) = OP (1) under C4. The

same results can be obtained following the same lines of proof under C5. The proof of

(3.3) follows. Now

n
∑

t=1

|ǫt − ǫ̂t| ≤
n
∑

t=1

|st| +
∥

∥

∥θ̂n − θ0

∥

∥

∥

n
∑

t=1

∑

i≥1

ci |Wt−i| , (3.4)

and the conclusion follows from the
√
n-consistency of θ̂n and the fact that

E
∑n

t=1

∑

i≥1 ci |Wt−i| ≤ Cn
∑

i≥1 ρ
i = O(n). 2

3.2 Nonparametric prediction based on past observables and ARMA

residuals

Because we will now consider different regressions, we need to modify the notation of Sec-

tion 2 for the regression functions r(x) and r̃(x). Let ℓ and m be two integers such

that d := ℓ + m 6= 0. Recall that the ǫ̂t are the residuals of the LSE of the weak

ARMA(p, q) model (3.1). With some abuse of notation and obvious conventions, write

r̃ {Wt | (Wt−1, . . . ,Wt−ℓ, ǫ̂t−1, . . . , ǫ̂t−m) = x} for the kernel estimator of the regression of

Wt on Wt−1, . . . ,Wt−ℓ, ǫ̂t−1, . . . , ǫ̂t−m evaluated at x = (x1, . . . , xd)
′. For any real sequence

(Xt) and k < ℓ, let X
t−ℓ
t−k = (Xt−k,Xt−k−1, . . . ,Xt−ℓ).

Our first main result in this section is the following, showing that under mild regularity

conditions, a kernel regression on ARMA residuals is equivalent to a (theoretical) regression

on (non observed) linear innovations.

Theorem 3.1 Assume that A1 and C1–C4 hold true and that for all integers d1 and

d2, and all indices t1, . . . , td1 , t
′
1, . . . , t

′
d1

of Z, the vector (Wt1 , . . . ,Wtd1
, ǫt′1 , . . . , ǫt′d2

) has

a strictly positive density fZ which is uniformly in the order of each of its marginal

densities. Assume also that the functions fZ(z1, . . . , zd1+d2) and (z2, . . . , zd1+d2) 7→
∫

z1fZ(z1, . . . , zd1+d2)dz1 are twice derivable, with continuous and bounded second order

derivatives. Then

(i) If bn → 0 and nb
2(1+d)
n → ∞ as n→ ∞,

r̃
{

Wt | (Wt−ℓ
t−1, ǫ̂

t−m
t−1 ) = x

}

→ E
{

Wt | (Wt−ℓ
t−1, ǫ

t−m
t−1 ) = x

}

, in probability.
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(ii) If, in addition, A1’, A2’ and A4’ hold with Z = (W, ǫ), if E|Wt|s < ∞ with

s ≥ 4 + ν and s > 6d/(d − 2), d > 2, and if n2b6+d
n → ∞ hold,

√

nbdn

[

r̃
{

Wt | (Wt−ℓ
t−1, ǫ̂

t−m
t−1 ) = x

}

− E
{

Wt | (Wt−ℓ
t−1, ǫ

t−m
t−1 ) = x

}]

L→ N



0,
Var

{

Wt | (Wt−ℓ
t−1, ǫ

t−m
t−1 ) = x

}

f(x)

∫

Rd

K2(u)du





where f is the density of (Wt−ℓ
t−1, ǫ

t−m
t−1 ).

Concerning the assumptions, the following remark can be made. For a purely non deter-

ministic strong ARMA process with innovations admitting a positive density over R, the

vector (Wt, . . . ,Wt−ℓ, ǫt−1, . . . , ǫt−m) has also a positive density. This a not necessarily the

case for a general weak ARMA model (3.1) because the distribution of W is not entirely

defined by the distribution of ǫ and the ARMA coefficients.

Proof. To use the results of Section 2 we set

Zt = (Wt−ℓ
t , ǫt−m

t−1 )′, Z̃t,n = (Wt−ℓ
t , ǫ̂t−m

t−1 )′, Ut,n = (0, . . . , 0, ǫt−m
t−1 − ǫ̂

t−m
t−1 )′,

Vt,n = 0, and Yt = Wt. Using (3.4), we obtain

n
∑

t=1

{‖Ut,n‖ + ‖Vt,n‖ + (‖Yt‖ + ‖Vt,n‖) ‖Ut,n‖}

≤
m
∑

j=1

n
∑

t=1







Cρt +
∥

∥

∥
θ̂n − θ0

∥

∥

∥

∑

i≥1

ci |Wt−j−i|







(1 + |Wt|)

= OP (n1/2).

Thus B1 holds with τ = 1/2. Because αZ(h) ≤ αW,ǫ(h − max{ℓ,m}), Assumption A2 is

satisfied. Assumption A3 is satisfied because of conditions assumed in the proposition.

Since d(1 + ν/(2 + ν)) < 2(1 + d) for all ν > 0, A4 is satisfied. Then, the convergence of

probability follows from (2.4) of Theorem 2.1.

Now we turn to the asymptotic normality. In view of Theorem 2.2, it suffices to verify

that assumptions A3’, B2 and (2.14) are satisfied. Assumption A3’ is directly implied

by the conditions made in the proposition. Let us turn to B2. Obviously one can take

ρt = kn = vt,n = 0 in (2.13). Thus τ0 can be chosen arbitrarily large. To derive the second

inequality of (2.13), let us write, as in the proof of Lemma 3.1,

ǫ̂t − ǫt = st + (θ̂n − θ0)
′∂et
∂θ

(θ∗) = st −
∂Qn

∂θ′
(θ0)J

−1
n

∂et
∂θ

(θ∗)
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where the matrix Jn =
[

∂2

∂θ∂θ′Qn(θ∗n,ij)
]

is non-singular for sufficiently large n, the θ∗n,ij and

θ∗ being between θ0 and θ̂n. Thus, using the multiplicativity of the norm ‖A‖ =
∑ |aij |,

we obtain

|ǫ̂t − ǫt| ≤ |st| +
∥

∥

∥

∥

∂Qn

∂θ′
(θ0)

∥

∥

∥

∥

∥

∥J−1
n

∥

∥

∥

∥

∥

∥

∂et
∂θ

(θ∗)

∥

∥

∥

∥

,

and thus

‖Ut,n‖ ≤
m
∑

j=1

|st−j | +
∥

∥J−1
n

∥

∥

∥

∥

∥

∥

∂Qn

∂θ′
(θ0)

∥

∥

∥

∥

m
∑

j=1

∥

∥

∥

∥

∂et−j

∂θ
(θ∗)

∥

∥

∥

∥

= µt + hnut,n

with µt =
∑m

j=1 |st−j |, hn =
∥

∥J−1
n

∥

∥

∥

∥

∥

∂Qn

∂θ (θ0)
∥

∥

∥ and ut,n =
∑m

j=1

∥

∥

∥

∂et−j

∂θ (θ∗)
∥

∥

∥ . It is shown in

Francq and Zakoïan (1998) that
√
n∂Qn

∂θ (θ0) converges in distribution to a non degenerated

gaussian distribution and that Jn converges almost surely to a non-singular matrix J .

Therefore hn = OP (n−1/2), and one can take τ1 = 1/2. Using arguments given in the

proof of Lemma 3.1 and the Minkowski inequality we obtain

∥

∥

∥

∥

∂et
∂θ

(θ∗)

∥

∥

∥

∥

ζ

≤
∞
∑

i=1

p+q
∑

j=1

sup
θ∈Θ

|ci,j(θ)| ‖Wt−i‖ζ ≤ C,

for all ζ such that E|Wt|ζ <∞. We deduce that the moment conditions of B2 are satisfied

if Wt admits moments of order ζ1, 3ζ2, γ1 and 2γ2. Since ζ1 = 3ζ2 with ζ−1
1 + ζ−1

2 = 1 if

and only if ζ1 = 4, a moment of order 4, at least, is required for Wt.

Because τ0 can be chosen arbitrarily large, the conditions 1), 6), 9) and 10) in (2.14)

are always satisfied.

With an = [(log n)2] (the integer part of (log n)2) we have nkρan → 0 as n → ∞ for

all k. Thus 2), 3), 5) and 7) in (2.14) are also always satisfied. Because nb2n → ∞ it

is easy to see that Condition 4) with k = 1 entails Condition 4) with k = 2. Condition

4) with k = 1 is satisfied when γ3 < 2d/(2 + d). Since γ3 must also be strictly greater

than 1, this is only possible when d > 2. Taking γ1 = 2γ2 the required moment condition

is E|Wt|3γ3/(γ3−1) < ∞. Note that the minimum of the function γ3 7→ 3γ3/(γ3 − 1) is

6d/(d − 2) on (1, 2d/(2 + d)). It is thus possible to find a suitable γ3 when Wt admits

moments of order greater than 6d/(d − 2). Condition 8) is satisfied when n2b6+d
n → ∞,

which completes the proof. 2
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3.3 Linear prediction plus nonlinear prediction of ARMA residuals

An alternative estimator can be constructed as follows. Note that under C2, (ǫt) is the

linear innovation process of (Wt), that is

Wt = EL(Wt | {Wu, u < t}) + ǫt

and that the σ-fields generated by {Wu, u < t} and {ǫu, u < t} coincide. It follows that

(1.5) holds true. Let ŴL
t denote the linear prediction of Wt based on the estimated ARMA

model,

ŴL
t = −

t−1
∑

i=1

π̂iWt−i, where

∞
∑

i=0

π̂iz
i = Ψ−1

θ̂n
(z)Φθ̂n

(z), |z| ≤ 1. (3.5)

Write r̃(x) = r̃ {ǫ̂t | (ǫ̂t−1, . . . , ǫ̂t−d) = x} for the kernel estimator of the regression of ǫ̂t on

ǫ̂t−1, . . . , ǫ̂t−d evaluated at x = (x1, . . . , xd). The use of

W̃t = ŴL
t + r̃(ǫ̂t−1, . . . , ǫ̂t−d)

as an estimator of E(Wt | {Wu, u < t}) is legitimated by the following result.

Theorem 3.2 Let A1, C1–C3 and C5 hold true. For all integer d1, the vector

(ǫt, . . . , ǫt−d1) is assumed to have a strictly positive density fǫ which is uniformly in

the order of each of its marginal densities, and the functions fǫ(x1, . . . , xd1+1) and

(x2, . . . , xd1+1) 7→
∫

x1fǫ(x1, . . . , xd1+1)dx1 are supposed to be twice derivable, with con-

tinuous and bounded second order derivatives. Then

(i) If bn → 0 and nb
2(1+d)
n → ∞,

r̃
{

ǫ̂t | ǫ̂
t−d
t−1 = x

}

→ E
{

ǫt | ǫ
t−d
t−1 = x

}

, in probability, as n→ ∞.

(ii) If, in addition, A1’, A2’ and A4’ hold with Z = ǫ, if d > 2 and E|Wt|s <∞ with

s ≥ 4 + ν and s > 6d/(d − 2), if n2b6+d
n → ∞ hold,

√

nbdn

[

r̃
{

ǫ̂t | ǫ̂
t−d
t−1 = x

}

− E
{

ǫt | ǫ
t−d
t−1 = x

}]

L→ N



0,
Var

{

ǫt | ǫ
t−d
t−1 = x

}

f(x)

∫

Rd

K2(u)du





where f is the density of ǫ
t−d
t−1.

Note that the assumptions are slightly weaker than those of Theorem 3.1, since no

assumption is made on the density or the mixing coefficients of (W, ǫ). Note also that
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when (ǫt) is a strong noise, fǫ is uniformly in the order of its marginal densities if and only

if ǫt admits a bounded density.

Proof. We now set Zt = ǫ
t−d
t , Yt = ǫt, Z̃t,n = ǫ̂

t−d
t , Vt,n = ǫt − ǫ̂t, Ut,n = ǫ

t−d
t−1 − ǫ̂

t−d
t−1. Thus

n
∑

t=1

{‖Ut,n‖ + ‖Vt,n‖ + (‖Yt‖ + ‖Vt,n‖) ‖Ut,n‖}

≤ C

n
∑

t=1

ρt +
∥

∥

∥θ̂n − θ0

∥

∥

∥

n
∑

t=1

∑

i≥1

ci |Wt−i| +
d
∑

j=1

n
∑

t=1







Cρt +
∥

∥

∥θ̂n − θ0

∥

∥

∥

∑

i≥1

ci |Wt−j−i|







×







1 + |ǫt| + Cρt +
∥

∥

∥
θ̂n − θ0

∥

∥

∥

∑

i≥1

ci |Wt−i|







= OP (n1/2),

by arguments already used to prove (3.4). In particular we used the fact that E|ǫt||Wt′ |
are E|Wt||Wt′ | finite for any t, t′. We also argue that the LSE is

√
n-consistent under C5

(see Francq and Zakoïan, 1998). The consistency follows as in the proof of Theorem 3.1.

To show the asymptotic normality, an adaptation of the proof of Theorem 3.1 is needed.

One can take ‖Vt,n‖ ≤ ρt + knvt,n with ρt = |st|, kn =
∥

∥J−1
n

∥

∥

∥

∥

∥

∂Qn

∂θ (θ0)
∥

∥

∥
and vt,n =

∥

∥

∂et

∂θ (θ∗)
∥

∥, and we still have ‖Ut,n‖ ≤ µt + hnut,n with µt =
∑d

j=1 |st−j |, hn = kn and

ut,n =
∥

∥

∥

∑d
j=1

∂et−j

∂θ (θ∗)
∥

∥

∥ . The arguments given in the proof of Theorem 3.1 then show

that one can take τ0 = τ1 = 1/2 in B2, and that the moment conditions of B2 are satisfied

if Wt admits moments of orders ζ1, 3ζ2, γ1 and 2γ2.

Convergence 1) in (2.14) only requires the condition ζ1 > 2, which can be satisfied when

Wt admits a moment of order greater than 4. By already given arguments, conditions 2),

3), 5), 7) and 9) in (2.14) are always satisfied. Moreover, Condition 4) is satisfied when

γ3 < 2d/(2 + d), which requires d > 2 and the moment condition E|Wt|s < ∞ with

s > 6d/(d − 2). Noting that Condition 6) is entailed by Condition 4, and Condition 10)

by Condition 8), we conclude as in the proof of Theorem 3.1. 2

3.4 Implementation

For simplicity, assume that W1−d, . . . ,Wn is observed, and consider the one-step ahead

prediction of Wn+1. Three predictors of Wn+1 can be investigated:

1) the purely nonparametric estimator

ŴNP
n+1 = r̂ (Wn, . . . ,Wn−d+1) ,
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where r̂ is defined by (2.3), replacing Xt by (Wt−1, . . . ,Wt−d), Yt by Wt and g by the

identity function;

2) the purely parametric estimator ŴL
n+1 defined by (3.5);

3) the mixed predictor of Section 3.3

ŴM
n+1 = ŴL

n+1 + r̃ (ǫ̂n, . . . , ǫ̂n−d+1) ,

where the ǫ̂t’s are the ARMA residuals and r̃ is defined by (2.2), replacing X̃t,n by

(ǫ̂t−1, . . . , ǫ̂t−d), Ỹt,n by ǫ̂t and g by the identity function.

The mixed predictor of Section 3.2 could be implemented as well, but for the numerical

illustrations we have chosen to concentrate on that of Section 3.3.

3.5 Testing the nullity of the autoregression function of the linear inno-

vation process

Note that if the observed process (Wt) is a strong ARMA model, or more generally if

the linear innovation process (ǫt) of (Wt) is a sequence of martingale differences, then the

following null hypothesis holds :

H0 : r (ǫt−1, . . . , ǫt−d) := E (ǫt | ǫt−1, . . . , ǫt−d) ≡ 0.

It is important to test for H0 because, if H0 holds then the mixed predictor defined in 3)

of Section 3.4 has no chance to improve the purely linear predictor 2). Conversely, when

H0 is rejected the linear model is not optimal in terms of prediction mean squared error

(MSE), and it is worth considering the alternative predictors 1) and 3).

The problem of testing a particular specification of a regression against a nonparametric

alternative has been intensively studied in the literature (for recent references see Gao and

Tong (2002), Hall and Yatchewa (2005), and the references therein). For iid observations,

Härdle and Mammen (1993) proposed a goodness-of-fit test based on a distance between a

Nadaraya-Watson estimator and the specification of the regression under the null. Kreiss,

Neumann and Yao (2008) (denoted by KNY hereafter) extended the test to a time series

context. If the linear innovations were observed, the test statistic of KNY would be in our

framework

Sn =

∫

Rd

{

1

nbdn

n
∑

t=1

ǫtK

(

x− (ǫt−1, . . . , ǫt−d)

bn

)

}2

ω(x)dx
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where ω(·) is a weight function, which is ω(·) ≡ 1 in the forthcoming applications. Because

the ǫt are not observed, it is natural to replace Sn by the statistic

S̃n =

∫

Rd

{

1

nbdn

n
∑

t=1

ǫ̂tK

(

x− (ǫ̂t−1, . . . , ǫ̂t−d)

bn

)

}2

ω(x)dx (3.6)

where the ǫ̂t’s are the ARMA residuals obtained in the purely parametric prediction step.

It is clear that the kernel and bandwidth involved in (3.6) are not necessarily the same as

those involved in the mixed and purely nonparametric predictors (but in our applications

we employed the same parameters). Note that when ω(·) ≡ 13 and the kernel K is the

gaussian density, we simply have

S̃n =
1

2dπd/2n2bdn

n
∑

t=1

n
∑

s=1

ǫ̂tǫ̂s

d
∏

i=1

exp

(

−(ǫ̂t−i − ǫ̂s−i)
2

4b2n

)

.

KNY showed that, under a set of regularity conditions, the asymptotic distribution of

nb
d/2
n (Sn − ESn) is gaussian under the null. The approximation of the finite-sample dis-

tribution of Sn by a normal distribution is however too crude in practice, and Härdle and

Mammen (1993) and KNY implement the wild bootstrap to determine the critical values

of their tests. We employed exactly the same resampling scheme as in KNY to obtain the

critical value t∗α of a test of critical region {S̃n > t∗α}. More precisely, conditionally on

ǫ̂1, . . . , ǫ̂n, the critical value t∗α is defined as the (1 − α) quantile of the distribution of the

bootstrap statistic

S∗
n =

∫

Rd

{

1

nbn

n
∑

t=1

ξtǫ̂tK

(

x− (ǫ̂t−1, . . . , ǫ̂t−d)

bn

)

}2

ω(x)dx,

where the ξt’s are iid N (0,1), and are independent of the ǫ̂t’s.

4 Numerical illustrations

We first investigate the performance of the three procedures presented in Section 3.4 on

simulated data. Then we present an illustration to the prediction of the volatility of stock

market returns.

4.1 Monte Carlo experiments

We propose an illustrative example based on a chaotic process (see May (1976)). Let

ǫt = ut −
1

2
+ ηt, ut = 4ut−1(1 − ut−1), t ≥ 1 (4.1)

3With constant weights, the test enjoys the property of scale invariance.
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where u0 has the arc-sinus density f(x) = π−1{x(1− x)}−1/2 on the interval [0, 1], (ηt)t≥1

is an iid sequence, independent of u0, with mean 0 and finite variance σ2
η. Since f is the

invariant density of (ut), this process is stationary. We have Eǫt = 0 and, since ut and

1 − ut have the same law,

Cov(ǫt, ǫt−1) = Cov(ut, ut−1)

= Cov{4ut−1(1 − ut−1), ut−1} = Cov(ut, 1 − ut−1) = 0.

The same symmetry argument shows that Cov(ǫt, ǫt−h) = 0 for all h 6= 0. Therefore

(ǫt) is a white noise. Consequently, given {ǫu, u ≤ t}, the best linear predictor of ǫt+h

is equal to zero, for any horizon h. However, in general, the best (nonlinear) predictor

is quite different. For illustrative purpose, Figure 1 displays the scatter plot of the pairs

(ǫt−1, ǫt), for t = 1, . . . , 1 000, obtained by simulation, and the nonlinear regression obtained

by tedious computation, in the case where ηt is uniformly distributed over [−0.6,−0.4].

This example illustrates the, possibly dramatic, differences between linear and nonlinear

predictions of a given weak ARMA process. One can interpret the ratio

τ :=
Var ut

Var ǫt
=

Varut

Varut + σ2
η

=
1
8

1
8 + σ2

η

as the proportion of the deterministic part in the noise.

To illustrate our method, we will therefore simulate for different values of θ the MA(1)

process Wt = ǫt − θǫt−1, where the noise (ǫt) is given by (4.1). We will compare three

predictors: the purely nonparametric predictor defined in 1) of Section 3.4 with d = 1, the

MA(1) predictor, and the mixed predictor defined in 3) Section 3.4. For the implementation

of the nonparametric predictors we used the function sm.autoregression() contained in

the package sm of the statistical software R (see http://cran.r-project.org/). We simulated

N = 50 independent replications of a simulation of length n+m of the MA(1) process Wt.

For each replication, the first n = 500 simulated values served to adjust the 3 predictors,

and the lastm = 100 values were used to compare the actual simulated values and their one-

step ahead predictions. Figure 2 compares the distributions of the Nm = 5000 prediction

errors obtained with the 3 predictors. As expected, the parametric estimator is slightly

superior to the purely nonparametric one when |θ| is large and the deterministic proportion

τ is not too important (lower panel), whereas the purely nonparametric predictor is often

more accurate than the MA(1) predictor when τ is high (upper panels). The distribution of
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the purely nonparametric predictor presents however more extreme values. In all situations

considered in Figures 2, the mixed predictor is always more accurate and seems to cumulate

the advantages of the linear and nonparametric predictors. To summarize, the predictor

can be ranked, in decreasing order of efficiency, as

ŴM ≻ ŴL ≻ ŴNP when |θ| ∼ 1 and τ ≪ 1

and ŴM ≻ ŴNP ≻ ŴL otherwise. The simulations clearly show the superiority of our

approach on this model.

4.2 Volatility prediction for stock market returns

Our application concerns daily returns of the following world stock market indices : BEL 20

(Brussels), CAC 40, DAX, FTSE, HSI (Hong Kong), Nikkei, NSE (India), SMI (Swiss) ,

IGBM (Madrid), SP500, SP TSX (Toronto) and SSE (Shanghai), from January 2, 1991

to July 3, 2009 (except for the indices for which such historical data do not exist). The

number of observations varies from n = 1130 for the BEL 20 index (which begins on

February 11, 2005) to n = 4591 for the HSI index. Standard models for such financial

series are weak white noises of the form rt = σtηt where rt is the log-return, ηt is an iid

noise, with variance equal to 1, and σ2
t is the so-called volatility. For the GARCH-type

models, σt is a measurable function of {rs, s < t}.
In the sequel, we compare the prediction of the volatility (that is the prediction of

the squared returns) obtained with the parametric, nonparametric, and mixed methods of

Section 3.4. 4

Denote by Wt, t = 1, . . . , n the sequence of the squared returns. In a first set of

experiments, for the purely linear predictor, as well as for the parametric component of

the mixed predictor, a MA(1) model has been chosen. Results not reported here, based

on the test of Section 3.5, show that the assumption that the best predictor is provided by

the MA(1) model is clearly rejected on the data.

To compare the effective predictions of the different methods, a part of the observations

is used to fit the predictors and a part is reserved for forecasting exercises. Consider the

case when n is an even number of the form n = 2k (the case when n is odd is handled

4For the purely nonparametric predictor, and also for the nonparametric component of the mixed

predictor, we used the default implementation of the R function sm.autoregression().
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similarly). For t = 1, . . . , k, we used Wt, . . . ,Wt+k−1 to define predictors of Wt+k with the

methods 1)-3) of Section 3.4. Table 1 indicates that the root mean squared error (RMSE)

of prediction is lower with the mixed method for all asset.

In a second set of experiments, we use an ARMA(1,1) as parametric predictor of Wt,

both for the purely parametric and mixed methods. Note that an ARMA(1,1) for the

squared returns is obtained when the returns follow a GARCH(1,1), that is the most

widely-used model for such financial series.

The first four columns of Table 2 give the p-values of the KNY test that the regression

of Wt on Wt−1, . . . ,Wt−d is constant. This assumption is clearly rejected. The next

four columns give the p-values of the KNY-type test of the null hypothesis that the best

predictions of the ARMA(1,1) residuals by d past values are identically equal to zero. One

can see that the assumption that the ARMA(1,1) model is optimal is rejected for five series

at least for one d. Table 3 gives the prediction RMSE of the different methods. For the

series for which the tests of Table 2 do not reject the assumption that the best predictor

is ARMA(1,1), the purely linear prediction is indeed the best, in general. The mixed

predictor can however improve the purely linear predictor when the tests of Section 3.5

reject the assumption that the ARMA(1,1) predictor is optimal. Finally, note that the

purely non parametric method is always far from the optimal method.

5 Conclusion

The basic idea behind the semiparametric method studied in this paper is to improve linear

parametric predictions by predicting non parametrically what is not linearly predictable.

We considered two approaches using ARMA models to capture the linear part of the

process, and nonparametric regressions involving ARMA residuals to capture the nonlinear

part. In order to avoid the curse of dimensionality inherent to nonparametric estimation, a

small number of regressors seems reasonable, whereas the orders p and q of the parametric

model are allowed to be relatively large. Compared to a purely nonparametric regressor of

the form E (Xt | Xt−1, . . . ,Xt−d) , such a mixed method presents the advantage of being

able to take into account mid-term linear dynamics. This mixed method could thus be

worth considering for time series whose dynamics can not be well taken into account by a

very small number of lagged values of the observed process (as it is the case for MA and
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mixed ARMA models or for seasonal models) and, at the same time, exhibit nonlinearities.

This method could be also of interest to distinguish or compare the purely linear and the

purely nonlinear dynamics.

In this paper regularity conditions were given for consistency and asymptotic normality

of the residual-based nonparametric regressor. We established intermediate results which

are also applicable in a more general context of triangular arrays of noisy observations.

We presented simulation experiments, and an illustration to the volatility prediction of 12

stock market indices, in which the mixed method outperforms both the linear predictor

and the purely nonparametric predictor.

The R code used for the numerical illustrations is available on the web pages of the

authors.
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Figure 1: Scatter plot of 1,000 pairs (ǫt, ǫt−1), simulated from (4.1) with ηt uniformly distributed over

[−0.6,−0.4]. The full line is the theoretical (nonlinear) regression of ǫt on ǫt−1.

Table 1: RMSE of the MA(1), nonparametric (NP) and mixed (Mixed) predictions. For
each series, the smallest RMSE is underlined.

MA(1) NP Mixed
d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

BEL 8.365 9.165 8.901 8.592 8.856 8.446 8.274 8.387 8.435
CAC 6.739 6.764 6.767 6.746 6.635 6.720 6.631 6.617 6.604
DAX 7.131 7.133 7.077 6.973 6.949 7.044 6.948 6.886 6.871
FTSE 5.229 5.246 5.234 5.230 5.236 5.174 5.074 5.146 5.149
HSI 9.100 9.359 9.244 9.177 9.189 8.879 8.861 8.775 8.786
Nikkei 7.971 7.973 7.975 7.961 7.975 7.904 7.888 7.902 7.910
NSE 13.790 13.693 13.545 13.654 13.540 13.705 13.532 13.587 13.557
SMI 4.845 4.974 5.025 5.017 4.948 4.794 4.776 4.764 4.742
IGBM 7.694 7.777 8.392 8.242 7.792 7.556 7.636 7.631 7.663
SP500 6.232 6.244 6.292 6.349 6.261 6.141 6.142 6.158 6.195
SPTSX 6.634 6.963 7.061 7.214 7.232 6.620 6.666 6.630 6.607
SSE 8.476 8.625 8.628 8.563 8.596 8.565 8.534 8.481 8.435
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Figure 2: Comparison of the prediction errors of the purely nonparametric, the purely parametric, and

the mixed predictors. The simulated process is the MA(1) Wt = ǫt−1 + θǫt−1, with θ = 0.9 or θ = 0.1,

where (ǫt) is the weak white noise (4.1) in which ηt ∼ N (0, σ2
η) with ση = 0.01 (deterministic proportion

τ = 99.9%), ση = 0.1 (τ = 92.5%) and ση = 0.5 (τ = 33.3%).

Table 2: Test that the optimal predictor is a constant and test that the optimal predictor
is ARMA(1,1): p-value of the tests of null hypotheses HW

0 (d) : E(Wt |Wt−1, . . . ,Wt−d) ≡
EWt and Hǫ

0(d) : E(ǫt | ǫt−1 . . . , ǫt−d) ≡ 0, where the ǫt’s are approximated by ARMA(1,1)
residuals. In the last four columns, the p-values are underlined when they are less than
5%.

HW
0

(d) Hǫ
0
(d)

d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4
BEL 0 0 0 0 0.814 0.320 0.342 0.304

CAC 0.006 0 0 0 0.818 0.518 0.318 0.428

DAX 0.026 0 0 0 0.128 0.232 0.272 0.238

FTSE 0 0 0 0 0.008 0.062 0.242 0.274

HSI 0 0 0 0 0.062 0.022 0.004 0.012

Nikkei 0.004 0 0 0 0.160 0.030 0.090 0.116

NSE 0.016 0.002 0 0 0.814 0.338 0.194 0.046

SMI 0 0 0 0 0.762 0.292 0.268 0.384

IGBM 0.004 0 0 0 0.642 0.558 0.286 0.188

SP500 0.016 0 0 0 0.380 0.174 0.228 0.246

SPTSX 0 0 0 0 0.410 0.358 0.310 0.286

SSE 0.178 0.006 0 0 0.226 0.164 0.026 0.052
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Table 3: RMSE of the ARMA(1,1), nonparametric (NP) and mixed (Mixed) predictions.
For each series, the smallest RMSE is underlined.

ARMA(1, 1) NP Mixed
d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

BEL 7.632 9.165 8.901 8.592 8.856 7.742 8.087 7.694 7.647
CAC 6.177 6.764 6.767 6.746 6.635 6.205 6.275 6.167 6.209
DAX 6.512 7.133 7.077 6.973 6.949 6.516 6.586 6.598 6.540
FTSE 4.753 5.246 5.234 5.230 5.236 4.769 4.804 4.774 4.752
HSI 8.733 9.359 9.244 9.177 9.189 8.702 8.737 8.725 8.687
Nikkei 7.338 7.973 7.975 7.961 7.975 7.311 7.318 7.352 7.347
NSE 13.505 13.693 13.545 13.654 13.540 13.497 13.453 13.434 13.422
SMI 4.480 4.974 5.025 5.017 4.948 4.502 4.533 4.513 4.489
IGBM 7.322 7.777 8.392 8.242 7.792 7.308 7.538 7.432 7.360
SP500 5.613 6.244 6.292 6.349 6.261 5.612 5.692 5.637 5.617
SPTSX 6.243 6.963 7.061 7.214 7.232 6.268 6.302 6.322 6.279
SSE 8.234 8.625 8.628 8.563 8.435 8.303 8.270 8.596 8.293
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Combining nonparametric and optimal linear time series

predictions:
complementary results

A Proof of (2.7) and (2.8).

The dominated convergence theorem entails that, under A1 and A3,

E f̂(x) − f(x) =
1

bdn

∫

Rd

K

(

x− y

bn

)

f(y)dy − f(x)

=

∫

Rd

K (t) {f(x− bnt) − f(x)} dt → 0 (A.1)

when bn → 0.
By stationarity, we have

Var f̂(x) =
1

nb2d
n

n−1
∑

h=−n+1

(

n− |h|
n

)

Cov

{

K

(

x−Xt

bn

)

,K
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x−Xt−|h|
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)}

.

Davydov’s inequality (1968) entails
∣

∣

∣

∣
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∥

∥
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)∥

∥

∥

∥

2

2+ν

{αX(|h|)} ν
2+ν .

Note that, in view of the Lipschitz condition A1, the density K is (uniformly) continuous.
Thus it is bounded and satisfies

∫

K2+ν (t) dt <∞. Thus, using A1–A3 and Lemma 2.1,

Var f̂(x) → 0 as nb
d(1+ ν

2+ν )
n → ∞. The first part of (2.7) is shown.

Now we will show that ϕ̂(x) = ϕ(x)+oP (1). The second part of (2.7) will follow, using
the Slutsky lemma. With the arguments used to handle Var f̂(x) we obtain

Var ϕ̂(x) ≤ C

nb2d
n

∥

∥

∥

∥

g(Yt)K
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under A1–A4. Now note that
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where x∗ is between x and x− bnt, which shows that the bias of ϕ̂(x) tends to zero. The
proof of (2.7) is complete.

A Taylor expansion yields

f(x− bnt) = f(x) − bnt
′∂f

∂x
(x) +

b2n
2
t′
∂2f

∂x∂x′
(x∗)t,

where x∗ is between x and x− bnt. Using (A.1), A1 and A3, we obtain

Ef̂(x) − f(x) = O(b2n) and Var f̂(x) = O

(

n−1b
−d(1+ ν

2+ν )
n

)

. (A.2)

Thus

E
{

f̂(x) − f(x)
}2

= O
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b4n + n−1b
−d(1+ ν

2+ν )
n

)

is asymptotically minimal for bn = O
(

n−1/{4+d+dν/(2+ν)}
)

. We obtain the result for the
regression estimator by the same arguments. We deduce that (2.8) holds. 2

B Proof of (2.16).

Write

√

nbdn{r̂(x) − r(x)} =

√

nbdn{ϕ̂(x) − ϕ(x)}
f̂(x)

− ϕ(x)

√

nbdn{f̂(x) − f(x)}
f̂(x)f(x)

, (B.1)

and let Hn(x) =
(

√

nbdn{f̂(x) − f(x)},
√

nbdn{ϕ̂(x) − ϕ(x)}
)′
. For any c = (c1, c2)

′ ∈ R
2,

letting gc(Yt) = c1 + c2g(Yt), we have
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where Sn =
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t=1 xn,t,
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1
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− bdn{c1f(x) + c2ϕ(x)}
}

.

To establish the asymptotic normality of c′Hn(x), for c 6= 0, we will verify the conditions for
a Central Limit Theorem for triangular arrays. Notice that the strong mixing coefficients
αn(h) of the process (xn,t)t∈Z are such that αn(h) ≤ αZ(h). By stationarity, we have

1

n
VarSn =

n−1
∑

h=−n+1

(

n− |h|
n

)

Cov(xn,t, xn,t−|h|). (B.3)

2



Davydov’s inequality (1968) and a direct extension of Lemma 2.1 entail

∣
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∣
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bdn
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∥
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Now we will show that

∣

∣Cov(xn,t, xn,t−|h|)
∣

∣ ≤







C if h = 0

Cbdn if |h| > 0.
(B.5)

First considering the case h = 0, we have

Var(xn,t) ≤ 1

bdn

∫

g2
c (y)K

2
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bn
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fZ(y, u)dydu

=

∫
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2 (v) fZ(y, x− vbn)dydv

≤ C

∫

g2
c (y)K

2 (v) fY (y)dydv < +∞,

where the second inequality follows from A3’ and the last one from A1 and A3. This
establishes (B.5) in the case h = 0. Now we consider the case h > 0 which will be sufficient
to conclude. Note that

Egc(Yt)K

(

x−Xt

bn

)

= c1b
d
n

∫

K(v)f(x− vbn)dv

+c2b
d
n

∫

g(y)K(v)fZ(y, x− vbn)dydv
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d
nf(x) + c2b

d
nϕ(x) + o(bdn). (B.6)

It follows that

|Cov(xn,t, xn,t−h)|

≤ 1

bdn
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≤ Cbdn,

using A3’ and the Schwarz inequality. Now we consider a truncation of the right-hand
side of (B.3). Let ς = d/(4 + d). We have, by (B.5) and A4’
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The last inequality follows from {αZ(|h|)} ν
2+ν = O(h−(̺+1)), which is a consequence of

A2’, and from a standard comparison with an integral. It follows that

lim
n→∞

1

n
VarSn = lim

n→∞
Var xn,t = E(g2

c (Yt) | Xt = x)f(x)

∫

Rd

K2(u)du,

where the second equality is a consequence of (B.6). Thus, applying a CLT for triangular
sequences of mixing sequences (see e.g. the book by Davidson (1994) and the references
therein),

n−1/2Sn
d
; N

(

0, {c21f(x) + 2c1c2ϕ1(x) + c22ϕ2(x)}
∫

Rd

K2(u)du

)

.

Now we have, in view of (A.2) and a similar expression for the difference Eϕ̂(x) − ϕ(x),
by A4’,

Rn = c1

√

nbdn{Ef̂(x) − f(x)} + c2

√

nbdn{Eϕ̂(x) − ϕ(x)} = o(1).

Thus, (B.2) entails that c′Hn(x) has the same asymptotic distribution as n−1/2Sn. Finally,
in view of (B.1) and (2.7)

√

nbdn {r̂(x) − r(x)} has the same asymptotic distribution as
c′Hn(x) with c = (−r(x)/f(x), 1/f(x))′, which completes the proof of (2.16). 2

C Simulations of the model of Section 4.1.

Figure 3 plots simulations of the noise (ǫt) and of the weak MA(1) process (Wt). The
empirical autocorrelation functions are in accordance with the theoretical second-order
structure of the two simulated processes. In particular, on the basis of the correlogramm,
a practitioner would certainly select the MA(1) as a plausible model. One can observe that
the distribution of the noise is symmetric, whereas that of the MA(1) is clearly asymmetric.
Such an asymmetry is not possible for a MA(1) process with an iid symmetric noise. The
simulated trajectories displayed in Figure 3 correspond to a noise with a deterministic
proportion τ = 92.6%. The asymmetry is of course less marked when the deterministic
proportion τ is smaller or when the MA(1) parameter θ is close to 0.

D Complements on the stock index data of Section 4.2.

Figure 6 displays the autocorrelation functions of the returns. In this figure, the dotted
lines ±1.96/

√
n define the standard significance band in which the autocorrelations of an

iid noise should stay with asymptotic probability 95%. These significance bands, obtained
from an application of the well-known standard Bartlett’s formula, are not valid when the
observations are uncorrelated but not independent, as it is the case for GARCH processes,
and more generally for weak white noises. Significant bands obtained from the generalized
Bartlett’s formula recently proposed by Francq and Zakoïan (2009), are given in full lines.
Given that most of the autocorrelations fall into the generalized Bartlett’s bands, it is
reasonable to consider the returns as weak white noises. This is in agreement with the
standard economic theory which asserts that such stock returns should be martingale
differences. In view of Figure 7, displaying the autocorrelation functions of the squares of
the returns, it is however clear that the squares of the returns are correlated.
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Simulation of the noise
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Figure 3: A simulation of the weak white noise ǫt defined by (4.1) with ηt ∼ N (0, σ2
η) and ση = 0.1,

and a simulation of the MA(1) process Wt = ǫt−1 + 0.9ǫt−1. The right panels display the autocorrelation

functions of the two simulations.
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Figure 4: World financial indices between January 2, 1991 and July 3, 2009.
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Figure 6: Autocorrelation functions of the series of the returns.

Figures 8-10 display, for each index, the Nadaraya-Watson estimator r̂(x) of the re-
gression r(x) = E(Wt | Wt−k = x) for the lag k = 1 and k = 7. The dotted lines are 95%
confidence bands for the regression, deduced from (2.16). It is interesting to note that the
general allure of all these regressions is that of increasing functions. This is in accordance
with the usual finding of strong positive correlations for the squared returns.
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Figure 7: Autocorrelation functions of the squares of the returns.
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Figure 8: Nadaraya-Watson estimator r̂(x) of the regression r(x) = E(Wt | Wt−1 = x), where Wt denotes

the squares of the returns.
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Figure 9: As Figure 8, but for the lag 2 regression r(x) = E(Wt | Wt−2 = x).
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Figure 10: As Figure 8, but for the higher lag regression r(x) = E(Wt | Wt−7 = x).
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Figure 11: Non parametric estimator of r(x) = E(ǫt|ǫt−1 = x) where ǫt is the MA(1) error term.

The first columns of Table 4 give the p-values of the KNY test that the regression of Wt

on Wt−1, . . . ,Wt−d is constant. This assumption is clearly rejected, confirming the visual
aspect of the regressions displayed in Figures 8–10, and also the strong autocorrelations
of (Wt) displayed in Figure 7. The last columns of Table 4 concern the test described in
Section 3.5 that the best predictor is the MA(1) model. Since the assumption is clearly
rejected, the MA(1) predictor is likely to be beaten by a purely non parametric predictor
or by a mixed-predictor. Figure 11 confirms the output of the tests, since numerous
regressions have a "smile" form which leads to predict a positive ǫt (and thus a larger
volatility) when the innovation ǫt−1 is far from zero. The asymmetry of the smile indicates
that the volatility increases more when Wt−1 is higher than when it is lower than expected.
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Table 4: Test that the optimal predictor is a constant and test that the optimal predictor
is MA(1): p-value of the tests of null hypotheses HW

0 (d) : E(Wt |Wt−1, . . . ,Wt−d) ≡ EWt

and Hǫ
0(d) : E(ǫt | ǫt−1 . . . , ǫt−d) ≡ 0, where the ǫt’s are approximated by MA(1) residuals.

HW
0 (d) Hǫ

0(d)
d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

BEL 0 0 0 0 0.010 0 0 0
CAC 0.006 0 0 0 0.084 0 0 0
DAX 0.026 0 0 0 0.370 0 0 0
FTSE 0 0 0 0 0.070 0 0 0
HSI 0 0 0 0 0 0 0 0
Nikkei 0.004 0 0 0 0.002 0 0 0
NSE 0.016 0.002 0 0 0.118 0.014 0.002 0
SMI 0 0 0 0 0.044 0 0 0
IGBM 0.004 0 0 0 0.088 0 0 0
SP500 0.016 0 0 0 0.008 0 0 0
SPTSX 0 0 0 0 0.006 0 0 0
SSE 0.178 0.006 0 0 0.998 0.128 0 0

E R code

This section contains programs written in the R language (see http://cran.r-project.org/).
We begin with three auxiliary routines: the function K() for the multivariate gaussian
kernel, the function rn() for the Nadaraya-Watson regressor of Y on the columns of X at
the point x with the bandwidth h, and the function bandwidth.x() for an approximation
of the local optimal bandwidth at the point x (as described in Bosq, 1996, Chapter 2).

# Gaussian Kernel

K<- function (x) prod(dnorm(x))

# Nadaraya-Watson estimator

rn<- function (x,h,X,Y) {

n<-length(Y)

dum<-sapply(1:n,function (i) K((x-X[i,])/h))

sum(Y*dum)/sum(dum) }

# approximation of the local optimal bandwidth at the point x

bandwidth.x<- function (x,X) {

n<-length(X[,1]); d<-length(X[1,]); sdv<-sd(X[,1])

f<-prod(dnorm(x,sd=sdv))

dum<-(sum(x^2)/sdv^4 -d/sdv^2)^2/d

c0<-(dum*f*(2*sqrt(pi))^2)^(-1/(d+4))

c0*n^(-1/(d+4)) }

Given a time series W[1:n], the function prevNP() uses the function rn() to compute the
non parametric Nadaraya-Watson predictor of W[n+1] as function of d past values.

# nonparametric prediction of W[n+1] as a function of x=(W[n], ..., W[n-d+1])

prevNP<- function (W,d) {

n<-length(W); x<-W[n:(n-d+1)]
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X<-matrix(nrow=(n-d),ncol=d)

for (j in(1:d))X[,j]<-W[(d+1-j):(n-j-delay)]

h<- bandwidth.x(x,X)

prev<-rn(x,h,X,W[(d+1+delay):n]) }

The function prevPara.arma11() uses the function arma() of the library tseries to com-
pute the ARMA(1,1) prediction of W[n+1].

## ARMA(1,1) prediction

library(tseries)

prevPara.arma11<- function (W){

n<-length(W) # (y_t-c)-a*(y_{t-1}-c)=e_t+b*e_{t-1}

arma11<-arma(W,coef=c(0.9,-0.85,mean(W)*0.1))

ahat<-as.numeric(arma11$coef[1])

bhat<-as.numeric(arma11$coef[2])

chat<-as.numeric(arma11$coef[3])/(1-ahat)

prev<-chat+bhat*arma11$residuals[n]+ahat*(W[n]-chat) }

The function prevMixte.arma11() provides a mixed prediction, sum of an ARMA(1,1)
prediction of W[n+1] and of a non parametric prediction of res[n+1].

## mixed ARMA(1,1) + nonparametric prediction

prevMixte.arma11<- function (W,d,fact=2.5) {

n<-length(W)

arma11<-arma(W,coef=c(0.9,-0.85,mean(W)*0.1))

ahat<-as.numeric(arma11$coef[1])

bhat<-as.numeric(arma11$coef[2])

chat<-as.numeric(arma11$coef[3])/(1-ahat)

prev<-chat+bhat*arma11$residuals[n]+ahat*(W[n]-chat)

res<-arma11$residuals[2:n]

res.tronc<-pmax(pmin(res,fact*sd(res)),-fact*sd(res))# to deal with outliers

res<-res.tronc

n<-length(res); x<-res[n:(n-d+1)]

X<-matrix(nrow=(n-d),ncol=d)

for (j in(1:d))X[,j]<-res[(d+1-j):(n-j)]

h<- bandwidth.x(x,X)

prevres<-rn(x,h,X,res[(d+1):n])

prevmixtes<-max(prevres+prev,0); prevmixtes }
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