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Sup-tests for linearity in a general nonlinear AR(1) model*

CHRISTIAN FRANCQ! LAJOS HORVATHAND JEAN-MICHEL ZAKOAN?

Abstract

We consider linearity testing in a general class of nonlinear time series model of order 1, involving
a nonnegative nuisance parameter which (i) is not identified under the null hypothesis and (ii)
gives the linear model when equal to zero. This paper studies the asymptotic distribution of the
Likelihood Ratio test and asymptotically equivalent supremum tests. The asymptotic distribution
is described as a functional of chi-square processes and is obtained without imposing a positive
lower bound for the nuisance parameter. The finite sample properties of the sup-tests are studied

by simulations.
Résumé

Nous étudions le test de I'hypothése de linéarité dans une classe générale de modéles non
linéaires de séries temporelles d’ordre 1, faisant intervenir un paramétre de nuisance positif ou nul
qui (i) n’est pas identifiable sous I’hypothése nulle et (ii) correspond au modéle linéaire lorsqu’il
est égal & zéro. Cet article étudie la loi asymptotique du test du rapport de vraisemblance
et de sup-tests asymptotiquement équivalents. La loi asymptotique est décrite comme une
fonctionnelle de processus chi-deux et est obtenue sans imposer de borne inférieure positive au

paramétre de nuisance. Les propriétés a distance finie de ces sup-tests sont étudiées par simulation.
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1 Introduction

Building nonlinear time series models is, in general, a difficult task which requires a large
amount of care. As can be seen from recent studies comparing the forecast accuracy
of linear AR models and nonlinear models on real macroeconomic time series, a careful
specification of the nonlinear models is required to produce forecasts that improve upon
linear forecasts (see Stock and Watson (1999), Terésvirta, van Dijk and Medeiros (2004)).

In general, nonlinear models (such as the Threshold AR (TAR), the Smooth Transition
Autoregressive (STAR) regime-switching or bilinear models) contain the linear one as par-
ticular case but often, some of the parameters are not identified when linearity holds. This
is, for example, the case of the threshold value in the TAR framework. This identifiability
problem results in parameter inconsistency and, if the series under consideration is close to
be linear, the nonlinear model is bound to produce forecasts that are unreliable compared
to linear ones. It is therefore essential to test first for linearity before fitting any particular
nonlinear model.

The aim of this paper is to consider linearity testing in a relatively general, first-order
nonlinear framework. Given the unlimited number of nonlinear models it is not possible
to nest all of them in a general class. Many of them, however, can be seen as particular

cases of a nonlinear AR(1) model of the form
Yy = po + {ao + boH (70, Yi-1)} Yic1 + &, & ~1ID(0,0?), (1.1)

for some function H defined on I' x R, for some set I' C R containing 0, and such that
H(0,-) = 0. Clearly, the specification of the function H may include more than one
parameter but we only need to underline the parameter 7y controlling the nullity of the
function H. Examples and precise assumptions will be given in the next sections. We
are interested in testing the linearity hypothesis by = 0. Problems of this nature, where
a nuisance parameter -y is present only under the alternative hypothesis, often occur
in econometric models and have been considered by many authors. See, among others,
Davies (1977, 1987), King and Shively (1993), Andrews and Ploberger (1995), Hansen
(1996), Stinchcombe and White (1998).

The contribution of this paper is to derive the asymptotic distribution of supremum
tests, namely the Likelihood Ratio (LR) test, and asymptotically equivalent sup-Wald and

Lagrange Multiplier (LM) tests, without bounding the nuisance parameter away from zero.



The difficulty is that, when ~y approaches zero the nonlinear term vanishes in (1.1) and
the Fisher information matrix becomes singular. In the literature, this problem is typi-
cally circumvented by imposing a lower bound for the nuisance parameter. We avoid this
restriction. To our knowledge, this is the first paper deriving the asymptotic distribu-
tion of a supremum test with a nuisance-parameter range implying a case of noninvertible
information matrix.

The paper is organized in the following way: Section 2 discusses the model and gives
stationarity conditions. Section 3 derives the asymptotic properties of the Least Squares
Estimator (LSE) of (ag,bg) under the null assumption of linearity, i.e. by = 0. Section
4 defines the LR, Wald and LM-type tests which are based on the LSE. The asymptotic
null distribution is derived. Section 4 also presents a Monte Carlo study, in which the
supremum tests enjoy good size and power properties. This study compares the powers
of the sup-tests and of tests based on expansions of the function H(-,y), which are often

used in practice. The appendix provides proofs of the results given in the paper.

2 Examples and stationarity conditions

Before turning to the framework of this paper, leaving the function H unspecified, it is
of interest to present special cases of (1.1) that have been popular in forecasting applica-
tions. See Tong (1990) and Terasvirta, van Dijk and Medeiros (2004) for a more complete
discussion.

One example is the exponential autoregressive (EXPAR) model introduced by Haggan

and Ozaki (1981) which, after reparameterization, is obtained for
H(jo,y) =1- e (2.1)

The parameter o is often referred to as the slope parameter. Model (1.1) includes
other smooth transition models, such as the Logistic Smooth Transition AutoRegres-
sive (LSTAR) model, introduced in the time series literature by Luukkonen, Saikko-
nen and Terdsvirta (1988). In this latter model, we have H(vp,y) = H(,¢y) =
(1 4+ e0W=¢))=1 _1/2 where ¢ is a location coefficient allowing for asymmetries in the

conditional mean of Y;. When ¢ = 0 the model is simply

1 1
H(O0:Y) = 7= — 5

= — 2.2
14+ e 0¥ 2 ( )



Letting the slope parameter 79 — oo, we obtain the two-regime Self-Exciting Threshold
AutoRegressive (SETAR) model of Tong and Lim (1980). The SETAR model will not
be covered by the results of this paper, however, because smoothness assumptions on the
function H will be required.

The existence of strictly stationary solutions to (1.1) can be investigated using Markov
chains theory. The following result is an immediate consequence of Tjgstheim (1990,

Theorem 4.1 and Lemma 6.1).

Theorem 2.1 Suppose that €; has a positive density function over the real line. Then, if

there exists r, K > 0 such that

sup |ag + boH (v0,y)| < K, ‘81|1p lag + boH (70,)| < 1
Y y|>r

there exists a strictly stationary and geometrically ergodic solution to model (1.1). More-

over, for any k > 1, if Ele|F < 0o then E|Y;|F < occ.

For example the EXPAR model admits a strictly stationary solution whenever |ag+bg| < 1
and g > 0. For other models, such as the LSTAR, ~y > 0 is not required for stationarity
but is a natural constraint for interpretation and identifiability (see e.g. Terésvirta et al
(2004)). For this reason we will take throughout a compact nuisance parameter space of

the form I' = [0,7]. Now we turn to the LS estimation.

3 Asymptotic properties of the LSE of 1y, ay and by, under

the linear model

Let Y7,...,Y,, be observations of a non anticipative strictly stationary solution of (1.1).

Recall that the function H is known a priori. Throughout we assume that
AO0: H(0,) =0 and H(v,-) is not identically 0, for any v > 0,

so that the standard AR(1) model is obtained for 79 = 0 but also for by = 0. Thus it is not
restrictive to assume g > 0 and interpret 7 as a nuisance parameter, which is not present
when by = 0. Notice also that by cannot be identified when vy = 0. For a given value ~
of v, the LSE of 6y = (o, ag,bp)’ coincides with the Gaussian quasi-maximum likelihood

estimator and is defined as any measurable solution of

0 := (ji, ., by) = arg max L, (f) = arg min Q,,(0),
0co 0co
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with
() = Vi — 11— {a+ bH(7, Yi1)} Vi

Assuming v > 0, the LSE of (ug,ag,bp)’ is explicitly given, when J, () is nonsingular, by

/lw P nil Z?:Q Y%
n v — _
o =1 )= Tt () YL VY : (3.1)
. y
bw n~! Z?ZQ Ythle(’Y) Y;‘/fl)
where
1 Unio Un11(v)
Jn(7) = Un,1,0 Un20 Un21(v) |>
Uni1(7) Un21(7) Un22(v)
n
Unij(7) =0~ "> Vi HI(7, Y1), (3.2)
t—2

for i = 1,2 and j = 0, 1,2, with the convention 0° = 1. J,,(v) is singular for v = 0. But
it can be shown that, under appropriate moment assumptions and Assumption A4 below,
when ~ > 0 the matrix J,(7) is almost surely invertible, at least for large n. See Chesher
(1984), Lee and Chesher (1986), Rotnitzky, Cox, Bottai and Robins (2000) for cases where
the information matrix is singular for any value of the nuisance parameter.

Under the constraint by = 0 the restricted LSE for (pg, ag) is simply

=

L n IS Y, - 1 U,
=5 =J! 2=z Tt R - S (3.3)

—1 n
n Y, Y Uni0 Unzo

s}

We will now derive asymptotic properties of the LS estimator under the linear model. We
assume that H admits second-order partial derivatives with respect to v, and we make the
following assumptions on the first and second partial derivatives Hy(v,y) = 0H (v,y)/0y

and Hy(v,y) = 0*H(y,y) /07,
Al: [Hi(v,y)| < K (Jy[* +1)
A2: [Hy(v,y)| < K (Jy[*2 +1)

A3: |Ha(y,y) — Ho(7,y)| < Ky = [ (ly|** + 1),  with some 1/2 <a <1,



where a1 > 0, as > 0, ag > 0 and K are constants. In the sequel we use the notation
K as a generic constant whose value can change. Conditions A1 and A2 are needed for
the existence of the limit process in Theorem 3.1 below. The proofs are based on Taylor
expansions of H(-,y) and A3 is used to control the remainder terms.

Elementary calculations show that A1-A3 hold for the EXPAR model with ay = 2,
oy = 4 and a3 = 6 and o = 1. Also, the LSTAR model satisfies A1-A3 with oy = 1,
oy = 2 and ag = 3 and o = 1. Similarly, for any constant ¢ and any 3 > 0, the generalized
EXPAR

H(y,y) =1—e =’

and the generalized LSTAR

1 y>0
= B 1 L , B
() =+ o —PegnG) 2 Vhere sign(y) =q¢ 0 y=0 ,
-1 y<0

satisfy A1-A3. Another example is the normal STAR model of Chan and Tong (1986),
defined by H(vy,y) = ®{y(y — ¢)} — 1/2, where ®(-) is the N'(0,1) cumulative distribution
function. In all these models, other nuisance parameters ¢ and/or 5 may be present, but
vanish under the linearity hypothesis by = 0. The results obtained in the sequel will hold
for any fixed values of ¢ and 3. Our method can be extended to the case when the other
nuisance parameters ¢ and 3 are also estimated from the sample. For the sake of simplicity,

we assume that the only unknown parameter in H(y,y) is 7.

We have
fy — Ho 51n,0,0 . S
_ H = Ko = n,0,0
&'y — Qo = Jn 1(7) Sn,l,O ’ _ = Jn ! (34)
. a — ag Sn1,0
by —bo Sn,1,1(7)
where

n

Snig(1) =n"" D@ HI (7, Yim).
t=2

We will also need to consider the sums

n
Toi(v) =n"') eV Hi(v, Y1),  i=12
t=2

Our first result establishes the weak convergence of the processes {Sy, i ;(7), Tn.i(7),y > 0}.

D07 .
For any 7 > 0, the symbol [:;” denotes the weak convergence in the Skorokhod space



D[0,7]. The existence of the variances of the S, ; ;(v) and T}, ;(y) requires E|Yp|" < oo
with k = 2 4+ 2max(a1, a2), i.e. Eleg|” < oo under Hy. For testing against EXPAR we
need Fel’ < oo and Fe§ < oo in the LSTAR model. However, the tightness condition,

which is used in the proof of the following theorem, requires a stronger moment condition.

Theorem 3.1 Let by = 0 and suppose E|Yy|" < oo with k = 2+ 2max(aq, e, a3). Then,
under A0-A3, for any 75 > 0,

l[@

D[0,7]
— W(l),/}Rx dW(F(:C)),/]RxH(’y,x) dW (F(x)),

(81,0,05 9n,1,0, S, 1,1 (V) T 1 (), Tr2(7))

[t aw(EW), [ atatr,n) aw(F).
R R
where W is a standard Brownian motion and F(z) = P(Yy < x).

For the next result we need the following assumption.

Ad4: For any constants K, Ky and any 0 <y <7,

P[Yy = K1\YoH(v,Yy) + Ko) <1 and  P[Yy = K1 YoH,(0,Yp) + K] < 1.

We can now state the following result, which is proved in the Appendix. By convention,

for v = 0 we set i, = fi, 4y = a, ’ylA)7 =0 and IA)WY}_lH(’y, ) =0.
Theorem 3.2 Under the assumptions of Theorem 3.1 and A4 we have

sup iy — po| = Op(n™'2),  sup |, — ji| = Op(n™/?),
0s7<y 0<y<7

sup |a — ao| = Op(n~?),  sup i, —a| = Op(n~Y%),  sup 4|b,| = Op(n=1?).
0<y<y 0<y<v 0<y<y
Now we turn to asymptotic properties of the constrained and unconstrained LS esti-
mators of o2, which are respectively defined by

o 1 - o 1o o ;
5 = - > (Vi—f—aY,1)?, 62 = - > {Yi—fiy =, Y1 =0, Y, 1 H(v, Y1)} (3.5)
t=2 t=2

The proof of the following result is in the Appendix.
Theorem 3.3 Under the assumptions of Theorem 3.2 we have

sup ]&3 —a?| = op(1).
0=y



4 Linearity testing

Given that model (1.1) involves four parameters, a natural idea would be to estimate the
parameters (po, ag, bp,vo) of the unconstrained model by QMLE. The asymptotic prop-
erties of this estimator could be derived when no identifiability problem arises, that is
boyo # 0. The constraint by # 0 is however an important restriction. When by = 0 the
parameter 7y is not identified, so that we do not know the behaviour of the QMLE when

the data generating process is an AR(1). Consequently the test of
Hy:by=0 against Hy:by#0

is not standard. We first consider a strategy based on setting an arbitrary value to ~.
Then the testing problem can be easily solved by a standard test, using for example the

Wald, Lagrange-Mutiplier (LM) or Likelihood-Ratio (LR) principle.

4.1 Setting an arbitrary value v

Fixing an arbitrary value of + for the nuisance parameter, a convenient form for the Wald-
type, LM-type and LR-type statistics is given by

52— 63 o° — 0
, LM, (y) =n

0~_2
oy

W,(y)=n

Q>

2
The form of these statistics is obtained under normal errors, but we do not make this
assumption in the sequel. The expression for the LR statistic is the standard one. For the
Wald statistic, the standard expression is

62
W, (y) = nﬁ, where 657 = &3J_1(fy)(3,3),

by
where J1(v)(3,3) denotes the (3,3) element of the matrix J,!(y). The form given in
(4.1) for W, (), and similarly for LM, (), relies on the linearity of the model when -~
is fixed. See for example Godfrey (1988), Gouriéroux and Monfort (1995). Notice that
W,,(0) = LM, (0) = LR,,(0) = 0 because 62 and 62, as defined in (3.5), are equal when
v = 0.

For every v > 0, the three statistics W,,(v), LM, () and LR,,(), are asymptotically

X3 distributed under Hy. Note that the tests based on those statistics are in general

consistent, even for alternatives such that vy # ~. However this procedure may lack



of power for alternatives where 7y is far from ~. In other words, the test statistics are
sensitive to 7 so this coefficient cannot be selected in a completely arbitrary way if it is
not known. On the other hand, when =g is unknown, then its LS estimator 4 can be found
by minimizing 63 over I' = [0,7]. A plug-in approach seems natural, but the asymptotic

null distribution of W, (%), LR,,(¥), and LM,,(¥) is no longer x3.

4.2 Using supremum statistics

The sup-LR statistic is defined by

~2

LR, = :161113 LR, (v) = nlog %, where 62 = ;Iel{; &3 = Qn(0).
Sup-Wald and LM statistics can similarly be defined as
=2 _ 22 =2 _ 22
0°—0 o —0
W,, = sup Wn(’Y) =N LM,, = sup LMn(’Y) =Ny
~ver g yel g

Note that the sup-LR statistic is actually the conventional LR statistic, i.e. LR, =
LR, (¥) where 4 = arginf,er é)’% is the LS estimator of 7p. In the next theorem we will
obtain the asymptotic null distribution of the LR, LM and Wald statistics. Given that
W,, > W, (y) for any n, the same inequality holds asymptotically for any 7, and the
asymptotic distribution of W, is expected to be different from the x?(1). Figure 1 reveals
an important difference between the two distributions.

The sup-Wald statistic is also the conventional Wald statistic. This is less straight-
forward than it is for the LR statistic because the model is no longer linear when -~ is
not fixed, so it is not obvious that a form equivalent to (4.1) holds for the standard Wald

statistic. However we have

R 52-62 5o
W. (A4) = A A W
n(’)’) _n&g =n 5’2 =n &2 - n
b g

noting that 6% = &%. The same remark holds for the LM statistic.
The main result of this paper is the following, providing the asymptotic null distribution

of the supremum test statistics.

Theorem 4.1 Suppose the conditions of Theorem 3.3, in particular the null hypothesis
Hy, hold. Then, for any v >0

W, = sup W, (y) = W := sup W(y),
~€[0,7] ~7€(0,7]



Distribution of W and of W, and W,(0.5) under Hq for n=100

0.8

0.6

0.4

0.0

Figure 1: For the EXPAR model, kernel density estimator of the distribution of W,,(0.5) (in dotted line)
and limiting distribution of W,,(0.5) (the x7 distribution in thin full line), kernel density estimator of the
distribution of W, = sup.¢(9,100) Wn(7) (in dashed line) and kernel density estimator of the distribution
of W (i.e. the limiting distribution of W, in thick full line). The density estimators are obtained by
computing the statistics on N = 5,000 independent replications of N'(0,1) simulated samples of length

n = 100 for the first two kernel density estimators, and of length 500 for the last one.

where for v > 0,

W =
) 72D() Var(Yo) |

with

Z(7) = /R H{H(y,2) + 1} dW(F(x)),

V(y) = Cou(Yy, Yo{H (v, Yo) + 1}),

A(v) = EYEEYyH (v, Yy) — EYoEYZH(v,Yp),

D(v) = Var(Yy) Var(YoH (v, Yp)) — { Cou(Yy, Yo H (v, Yp)) }>.
Moreover,

sup LM, (y) = sup W(v), sup LR, (y) = sup W(y).

~v€[0,7] ~v€(0,7] ~v€[0,7] ~v€(0,7]



Contrary to the standard situation (v fixed) where the asymptotic distribution is a x?(1)

whatever the model, the law of W depends on the model, through the function H.
Notice that W(7y) is not defined when v = 0 because D(0) = 0. However, the limiting

distribution of W(v) when v — 0 is nondegenerate and is that of a x?(1). Lemma A.7

below shows that we can define W(0) as

lim W(y) = W(0),

v—0
where the limit exists with probability one. It is clear that the law of W(0) is not the

limiting distribution of W, (0), which is always equal to zero. In other words,

lim lir% W, (v) =0, as., but lin%] lim W, () ~ x*(1).
n y— Y n

It is important to notice that we do not require that v be bounded away from zero.
The supremum can be taken over all possible values of the nuisance parameter, instead of
restricting v to a compact subset excluding 0 as it is done when testing for structural change
(see Andrews, 1993). Note that the framework of the present paper is quite different from
that of Andrews (1993). When testing for a structural break, it seems necessary to bound
the nuisance parameter away from zero. The reason is that the asymptotic distribution of
the test statistic indexed by the nuisance parameter m, say, is a function of a Brownian
Bridge. Thus, when taking the supremum over the full range of values of 7, the statistic
diverges under the null hypothesis (see Andrews, Corollary 1, 1993). In our setup, the
asymptotic distribution of the tests statistics indexed by v is a process whose supremum
is well-behaved for all possible values of the nuisance parameter belonging to a bounded
set. !

This theorem can be adapted to deal, more generally, with statistics of the form
g{Wy,(7),y € [0,7]}) for arbitrary functions g which are continuous with respect to
the uniform metric (and likewise for LM,,(-) and LR, (:)). The use of a function g that
differs from the sup function can depend on the alternatives of interest. See Andrews and

Ploberger (1994) for discussion of different statistics of this form.

4.3 Model without intercept
When the intercept is not present in Model (1.1), i.e. when

Y; = {ao +boH (70, Yi-1)} Yii1 + &, € ~1ID(0,0?), (4.2)

!We thank a referee for pointing out to us the difference between the two kinds of testing problems.

10



the results are slightly different. The tests statistics are still of the form (4.1) but with

i . . 1
0° = min — Z(Yt - aY},l)Q, 0,2y = min — Z{Yt —aY;1 — b1 H(y, Yt,l)}Q.
t=2

ab N

We give them without proof, keeping the previous notations with obvious adaptations.

Theorem 4.2 Suppose that Hy : by = 0 in Model (4.2). Let the assumptions of Theorem
3.1 be satisfied. Then, the results of Theorem 4.1 continue to hold with

{V(0)Z(y) — V() Z(0)}*
o?D(7)EY{ ’

W) =
V(v),Z() as in Theorem 4.1, and D(vy) = EYZEYZ?H?(v,Yo) — {EYZH (v, Y0)}?.

It can be noted that the asymptotic distribution depends on constants and {Z(v),~ > 0},

which is a zero mean Gaussian process with covariance kernel
K(7,7") = BZ()Z(Y) = 0’ B [Y§ {H (v, Yo) + 1} {H (Y, Yo) + 1}] -

It is interesting to see that in general, unless if EYyH(v,Yy) = 0, the distribution of the
process {W(~),~y > 0} is not simply obtained from that of Theorem 4.1 with ug replaced
by 0.

4.4 Implementation

We now focus on the practical implementation of the tests of this paper. For simplicity, we
present the results for Model (4.2) without intercept. Some of the results of this section

are not new but are given for the reader’s convenience.

4.4.1 Computation of the test statistics

We focus on the LM statistic which is very easy to compute. Following Godfrey (1988),

the LM, () test can be implemented as follows:

1) fit an AR(1), compute the residuals & and the residual sum of squares RSS = n&?,

2) regress linearly €, on Y;_1 and Y;_1H(v,Y;—1), compute the residual sum of squares

RSS, and the uncentered determination coefficient R% of the regression.

11



Noting that the residuals of the second regression are also the residuals of the regression
of Y; on Y,y and Y;_1H(v,Y;—1), we have RSS, = n&%, which gives LM, (v) = nR?Y =
n(RSS — RSS,)/RSS.

For the computation of the LM, statistic we can replace 2) by
2’) compute the residual sum of squares RSS; = né? of the nonlinear regression model
€& =cY 1 FO0Y, 1 H(7,Y 1) + €.

We have LM,, = n(RSS — RSS;)/RSS.

4.4.2 Computation of the critical values

In view of (A.19) below, and following Hansen (1996), one can approximate the distribution
of sup,cpo5] Wn(7) by that of

e — {Va(0)Z5(7) = Va(9) Z5(0)}
sup Wn(’Y)a Wn('Y) = )
~v€[0,7] Dy (7)Un 2,0
where V,,(0) = Up 2.0, Va(7) = Un2.1(7) + Up 2,0, where Uy, 2 ;(7) and Dy, (7y) are defined by

(3.2) and (A.20), and where {Z; (), > 0} is, conditionally on the observation Y7,...,Y,,

a zero mean Gaussian process with covariance kernel
ol 70 5N
Kn(v,7') = BZ,(1)Z,(7) = S V2 H{Hy Y1) + 1IHHE, Y1) + 1}
t=2
The conditional distribution of sup.¢jo 5 W\n(’y) can be obtained by the following algo-
rithm. Fori=1,...,N:

(i) generate a N'(0,1) sample egi), . ’67(5);

(if) set 2\ () =n V2, Yo 1 {H (7, Y1) +1};

n

(iii) set w (y) = {Vn(O)Z,(f) (v) — Vn(’Y)Zr(zi) (0)}2D71(’7)Un_,%,0;

o~

(iv) compute sup,ejoz w) (7).
Conditional on Y1, ...,Y,, the sequence sup ¢y 5] \/7\\755) (7),i=1,..., N constitutes an iid
sample of the random variable sup, ¢ Wn('y) At the nominal level «, the common
critical value ¢, of the tests of rejection regions

{ sup Wy () >ca}, { sup LM, () >ca} or { sup LR, (v) >ca}

v€[0,7] v€[0,7] v€[0,7]

will be defined as being the empirical (1 — «)-quantile of the artificial sample

o~

SUP,¢[07] w (@) (7),i=1,...,N.

12



4.4.3 Cases where the limiting law is parameter-free

We now describe a situation where the previous algorithm (i)-(iv) can be avoided, and the

critical values of the test can be obtained once and for all. Assume that

H(v.y) = b(v), (4.3)

for some integer k£ and some measurable function h(-). Note that the previous assumption
is satisfied in the EXPAR case (2.1) with & = 2, and in the LSTAR case (2.2) with k =1,
when the location parameter ¢ = 0.

Denote by 012/0 the variance of Y. Let V(v), D(y) and K (v,~') be obtained by replacing
Yy by J;OlYo and o2 by 1 in the definition of V(v), D(v) and K(v,~') given in Theorem
4.2, and let the process {Z(7y) = U_IJ;OlZ(’yJ{/Ok),’Y > 0}. By (4.3) we conclude

V(y) =03, V(yok), D()=oay,D(yok), K(v,7) =03 K(yo¥,, 7o)

and {Z (7),y > 0} is a zero mean almost surely continuous Gaussian process with covari-

ance kernel K(v,~'). We thus have

sup  W(y) = sup  W(yoy,) = sup W(y),
v€(0, a;o’“ﬂ ~e(0, a;o’“ﬂ v€(0,7]

where

= —2

D(7)E(oy, Y§)

Note that when ¢, is Gaussian, the moments V(v), D(v) and E(U;O2Y02), as well as the
distribution of the process Z (+), do not depend on any unknown parameter. In particular

the kernel is explicitly given by

1

—y2/2
_271'6 v 2qy.

K(v,9) = /y2{H(%y) +1IHH®,y) +1}

We deduce that in the Gaussian case, i.e. when ¢; is Gaussian, the asymptotic distribution

of
1< 1 ’
A2 2
S = — —| =
w Wi =13 (3]
~€[0,6477] t=1 t=1
is parameter-free under Hy (i.e. does not depend on ag and o2). In consequence, the

distribution of SUP, ¢ (0,547 W,.(7) can be approximated by that of the Wald statistic W,
Y
obtained by replacing Y1,...,Y, by a N'(0,1) sample €1, ..., €, in Wy, = sup, ¢ (o, 57 Wn(7)-
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Based on empirical quantiles over N = 100,000 independent replications of W,, with
n = 500, Table 1 displays approximated critical values for the EXPAR model (2.1). Note
that in this model the regressor Y;_j exp (—nyf_l) — 0 in probability as v — co. More
precisely, straightforward computation shows that var {Y} exp (—'thQ)} =1+ 47)73/ 2~
0.0lvarY; when v = 5 and Y; ~ AN(0,1). Thus, for an EXPAR model with parameter
lap + bo| < 1 (which, by Theorem 2.1, guarantees the stationarity) and o such that
~vovar(Y;) > 5, the part of the variance which is explained by the nonlinear term is low.
This heuristic argument and Monte Carlo experiments lead us to think that any choice of 7
between 2 and 5 is suitable. Note that when 7 — 0 the critical value of the sup-test tends
to the critical value of a standard test, i.e. the (1 — a)-quantile of the x? distribution.
Approximated critical values of the sup-tests based on the LSTAR model (2.2) are given
in Table 2. Note that, in view of the remark given after Theorem 4.2, Tables 1 and 2 are

also valid for the model with intercept (1.1) when the intercept 1o = 0.

Table 1: Asymptotic critical values of the sup-tests of the hypothesis Hy : bg = 0 in the EXPAR
model (2.1)-(4.2) with ¢, ~ N(0,0?).

o xia-o) ~

0.04 0.08 0.12 016 02 04 06 038 1 2 3 4 5
1% 6.6 6.8 69 69 71 72 75 77 79 80 84 86 88 88
5% 3.8 4.0 41 41 42 43 45 47 48 50 53 54 56 5.7
10% 2.7 28 29 29 30 31 33 34 36 37 40 41 43 43

Table 2: As Table 1, for the LSTAR model (2.2)-(4.2).

a  xji-a) 2]

0.04 0.08 012 016 02 04 06 08 1 2 3 4 5
1% 6.6 66 66 66 66 66 67 67 68 69 7.1 72 73 7.3
5% 3.8 3.9 3.9 3.9 39 39 39 40 40 41 43 44 44 44
10% 2.7 2.7 2.7 2.7 27 27 28 28 29 29 31 31 32 32
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4.5 Monte Carlo experiments

For testing linearity against smooth transition autoregressive models, such as the LSTAR,
the test (hereafter LST) proposed by Luukkonen et al (1988) is the most commonly used
(see Tong, 1990, and Granger and Teradsvirta, 1993). When applied to the LSTAR model
(2.2), the simplest version of the LST test, denoted by 1-LST, consists in testing a; = 0
in the auxiliary model

Y =agYi1 + a1Y + & (4.4)

This auxiliary model is obtained from the Taylor expansion H(vy,y) = ~y/4 + o() and
a reparameterization of the model (see Luukkonen et al, 1988). The second-order Taylor
expansion of H(v,y) is the same as the first one: H(v,y) = yy/4 + o(7?). The third-order
Taylor expansion H(v,y) = vy/4 — v3y>/48 + o(y?) leads to the 2-LST version, which

consists in testing a; = a9 = 0 in the auxiliary model
Vi = a1 + a1 Vi + a4 e (4.5)

These tests are extremely simple and easy to implement, their critical values being re-
spectively the quantiles x?(1 — a) and x3(1 — ). The same approach can be used for
the EXPAR model (2.1), and leads to the 1-LST test of a; = 0 in the auxiliary model
Y = aoYi—1 + a1Y;3_1 + ¢, and the 2-LST test of a; = as = 0 in the auxiliary model
Vi =aoYi—1 + a1 | +aY? | +e.

The sup and LST tests of linearity have been applied to N = 1,000 independent
simulations of size n = 100 of model (4.2), for different non linear terms H (7o, Y;—1)
and different values of the parameters ag, by and ~y. Two versions of the sup-tests are
considered, corresponding to ¥ = 2 and 7 = 5. The critical values of these tests are taken
from Table 1 and Table 2. Table 3 displays the relative frequency of rejection of the null
Hy : by = 0 at the nominal level o = 1%, 5% and 10%. With the designs I and II, in which
the null hypothesis holds, the relative rejection frequency over the N = 1,000 replications
is almost always within the 0.05 significant limits, which are 0.3% and 1.7% for a = 1%,
3.6% and 6.4% for o = 5%, and 8.1% and 11.9% for o« = 10%. The rare exceptions are
displayed in bold type in Table 3. For the designs IIT and IV, the null hypothesis does not
hold and, as expected, the sup-tests are more powerful than the LST tests. In Table 3 the
highest rejection frequencies are underlined. One can see that the rejection frequencies of

the LM, LR and Wald tests are systematically in the increasing order, both under the null
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and under the alternative, which is a well known (see e.g. Godfrey, 1988) consequence of
the forms of the test statistics. In summary, all the tests well control the error of the first
kind, the sup-tests are more powerful than the LST tests and are not too sensitive to the
choice of 7. Note however that the LST tests remain very attractive for their simplicity

and their relative good performance.

Appendix

Proof of Theorem 3.1. The first step is the convergence of the finite dimensional
distributions. Note that the sequences of variables involved in the Sy ;(v) and T}, ;(7)
are square-integrable stationary martingale differences. The conclusion follows from the
central limit theorem of Billingsley (1961).

It remains to show that the sequences are tight. We have, by the independence between

¢; and Y;_1, for some 7; between v and v/,

n

2
L <\/7E{Sn,1,l(’7) - Sn,l,l(’}/)}) = E[sz{H(fy’ YVO) — H(,Y/’ 1/0)}2]

n—1
= E[YZH? (71, Yo)l(y —+)?

< KENF([Yol™ + 1A (v =) < K(v—+)2,

where the last inequalities follow from A1 and the existence of E(YZ ') under by = 0.
For any +' € (0,7), forgetting the asymptotically irrelevant factor n/(n — 1), we simi-

larly have

2
E <g{Tn,1<v> - Tn,m’)}) = E[Yg{H1(v,Y0) — Hi(¥,Y0)}’]

= BE[YFH3(m,Yo)|(y —7)?

< KE[YF(|Yo|* + 1)%(v —+)? < K(v—+")%

b (g{T”Q(V) N T”v2(7/)}> = E[Y7{Ha(v,Yo) — Ha(v/', Y0)}?]

< KEYZ([Yo|™ + 1)%(y —)** < K(v— ')

The tightness follows from Theorem 12.3 of Billingsley (1968, p. 95). To complete the

proof let us show that the limiting Gaussian process has the form given by the theorem.
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Table 3: Empirical size and power of tests of the linearity hypothesis Hy at the nominal level a.

The rejection frequency are computed on N = 1,000 independent replications of simulations of

length n = 100.

Model «

1%
I 5%
10%
1%
II 5%
10%

1%
II1 5%
10%
1%
v 5%
10%

Sup-tests 7 = 2

W LM
1.3 1.0
5.7 4.6
10.6 9.4
14 1.0
5.9 5.1
10.7 10.2
6.3 44
19.0 16.8
27.5 25.8
24.9 20.9
48.1 45.8
61.9 60.7

LR
1.1
5.1
9.8
1.4
5.6
10.4

5.3

17.6
26.5
22.6
47.0
61.6

Sup-tests ¥ = 5

W LM LR

1.3
5.4
10.1
1.5
6.7
10.8

5.7

16.9
27.2
26.3
50.5
64.2

0.8
4.4
9.4
1.0
5.6
10.4

4.3

14.8
25.9
22.4
48.2
62.9

1.1
4.7
10.1
1.1
6.0
10.5

4.9

15.9
26.5
24.2
49.5
63.6

W
1.0
4.9
9.2
1.5
5.8
11.6

1.4
7.0
13.2
18.2
40.4
094.5

1-LST

LM
0.9
4.5
8.5
1.3
5.1
11.0

1.0
6.4
12.8
16.5
38.9
53.4

LR
1.0
4.8
9.1
1.4
5.5
11.3

1.1
6.7
13.0
17.2
39.6
53.9

W
1.2
9.5
10.9
1.1
5.9

2-LST

LM
0.8
4.2
9.9
0.7
5.3

12.4 11.3

5.3

14.5
22.5
19.8
40.2
53.2

3.9

12.6
21.0
14.8
37.0
50.8

LR
1.0
4.8
10.3
0.7
5.7
11.8

4.4

13.5
21.9
17.8
39.1
01.7

[: EXPAR model under Hy: Model (2.1)-(4.2) with ag = by = 0, ¢ ~ N (0,1)
IT: LSTAR model under Hy: Model (2.2)-(4.2) with ag = by =0, ¢, ~ N(0,1)
III: EXPAR model under Hy: Model (2.1)-(4.2) with ag = by = v = 0.4, & ~ N(0,1)

IV: LSTAR model under Hy: Model (2.2)-(4.2) with ag = by = 0.4,70 = 4, €, ~ N(0,1)
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The processes +/nT,;(y) and /nSn;;(v), i, = 0,1, are in the form
n~1/2 2?12 etl(y, Yi—1) with some function ¢. Since ¢ and Y;_; are independent, we get
that for any -y, v/

n n
E {n1/2 > el (v, Yi)n 2D edda(o, Ys—l)} = E () E{t1(7,Y0)l2(v', Y0) }
t=2 5=2

= o2 /R (v, y)la(y, y)dE (y).

Thus we computed the covariance structure of the limiting Gaussian process. So it is
enough to show that the stochastic integrals in the limit have the same covariance structure.

It is easy to see that

E /}R (37, 9)dW (F(y)) /R 0oy, 2)dW (F(z)) = /R (1) (7 9)dF (),

and therefore the representation is established.

O

Before proving Theorem 3.2, we establish the following lemmas. A proof is given for
the reader’s convenience but can be found elsewhere in a much more general framework

(see for example Pétscher and Prucha (1989)).

Lemma A.1 Let (Z;(v)) denote a strictly stationary and ergodic real-valued process with

E|\Zy(7)| < oo, for any v € T where I is a real compact set. Assume that
Ze(v) = Ze(7)] < Ar ]y =+|7, (A.1)

where o > 0 and (Ay) is a strictly stationary and ergodic process with EAy < co. Then

n

1
sup |—

Zi(v) — EZo(7)
~el | T

t=1

— 0 a.s.

Proof. The compact set I is covered by m balls B(v;,d) of center ~;, i = 1,...,m, and

radius 6 > 0. We have

1

n
sup | = » Zi(v) — EZo(7)
yelr |1

t=1

< Cin + Con + C3n,

where

Z& — Zu(v:)

Z@% — EZo(vi)

Clp, =  max sup
=1 Y€ B (y:.6)

)

Conp = max 5

C3p =  Max sup |EZo(vi) — EZo(v)|-
=1, M e B(5;,6)
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By (A.1) and the ergodic theorem

1 n
cin < (WE ZAt — 0*FAy and ¢, — 0 as.
t=1

Condition (A.1) entails that |FZy(y) — EZo(Y')| < EAp |y —+'|*. Thus ¢z, < §*FAg and

the conclusion follows.

O

Lemma A.2 Under the assumptions of Theorem 3.2 we have |Syio| = Op(n=2), for

1=0,1, and
sup |Sn,1,1(7)| = Op(n="/?), sup [T, ;(v)| = Op(n= %) for j=1,2.
v€[0,7] v€[0,7]

Proof. This is a direct consequence of Theorem 3.1.

Lemma A.3 Under the assumptions of Theorem 3.2 we have

sup |Unij(v) — EY{H (v,Yp)| — 0, a.s., i=1,2, j=0,1,2.

v€[0,7]

Moreover, for any 0 > 0 there exists € > 0 such that

lim sup M—EY&H{(O,YO) <94, a.s.

700 ye(0,€] ¥

Proof. First note that the expectations in (A.3) exist by Al and

Yo H' (v, Y0) < KY'YG (Yol + 1),

(A.2)

(A.3)

(A.4)

(A.5)

which is integrable because FE|Yp|?T2%1 < oco. The convergence in (A.3) follows, using

Lemma A.1 and Assumptions A1-A3. The following expansions around v = 0 hold. For

some vy, 5 € (0,7),
VN PNy
Unaa0) = 30 3 YEREh(0.Yi0) + 50 3 Va0, Yeon)

1=
Un,iz2(v) = " ZYQZAHQ(% Yi-1)
=2

2 n )
= LN Y {H (2, Yir) + H(va, Yio) Ha (v, Yio1)-
t=2

19

(A.6)



Hence

n

Un.i ‘ 1 . .
sup Unin) EYyH1(0,Yp)| < |= > ¥ 1 Hi(0,Y:1) — EY{Hy(0,Yp)
Y€(0,¢] v "=
n
i i
+ sup [=— > Yy Ha(v1,Yi1)).
76[0,5} 2n ; '

By the ergodic theorem

1 <. .
EZYZ_lHl(O,Yt_l) — EY{H(0,Y)), a.s.
t=2

Moreover, by A2 and because E|e|?T%2 < oo,

1 < . K . A
=Y Y, Yiey)| € — SV (Vi 1) = KEYJ([Yia|? +1) < o0, aus.

t=2 t=2
It follows that a.s.
U, ,
nh_)ngo 81(10p] %(7) — EYyH (0,Y))| < eK. (A.7)
veE(0,e

Now in view of (A.6), by A1-A2 and another Taylor expansion of H(-,Y;_1) around 0 we

have, for some v3 € (0, 13),

U, . 1 <. .
sup %(”)—EY&H%(OM <|=> Vi H(0,Yi) — EYHT(0,Y0)
7€(0,€] v "=
Vg e
+ sup | = Y 2H, (vs, Yio1)Ha(vs, Vi)
76(076] n t=2
1~
+ sup | =V H(va, Yy 1)Ha(v1,Yi 1)
76(076] n t=2
1 < . .
< |- DY H(0,Yim) — EYGH(0,Y))

t=2

1 oy
e 'EZYZl(\Yt—l\O‘l ) ([Yiea ] +1)
t=2

Thus, by arguments already given, a.s.

Un,i,Q (’Y)

v — EY{H?(0,Yy)| < eK.

lim sup
0 e(0,¢]

This, together with (A.7), shows that (A.4) holds for e sufficiently small. The proof of

Lemma A.3 is complete.
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Recall that
Dy(y) = det{Jn(7)}
= {Un22(7) = U2 1 i)V HUn20 = Ul 10} = {Un21(7) = Un1,0Un11 (1)}, (A.8)

and let D(vy) = det{J(v)} where

J(V) = Uio Us g UQJ(’Y) ) Ui,j(’)’) = EY()iHj(’Yv YO)'
Urai(v) Uza(v) U22(7)
Let also A = det{JM} where
1 Uy UY
1 ir7]
J(l) = ULO UQ’O U2(’11) ) UZ(J) = E%H{ (0’}/0)'

1 1 1
o o) ol
Lemma A.4 Under the assumptions of Theorem 3.2 we have

sup |Dn(y) —D(y)| — 0, a.s., (A.9)
v€[0,7]

and D(vy) > 0 for any v > 0. Moreover, for any § > 0 there exists € > 0 such that

lim sup
70 ye(0,€]

Dn(Q’Y) — A‘ <4, a.s. (A.10)
Y

where A > 0.

Proof. The convergence in (A.9) follows from Lemma A.3, and (A.5) for the existence of

the expectations. We have

Dy,
.
Y
Un — Uﬁ
<Var(Yp) 22(7) " 1107) - Var{YOHl(O,YO)}‘
Uy, — Up10Un 2
+ ‘ ,2,1(’)/) ’y ,1,0 ,1,1(’}/) _ COV{YO, }/Z]Hl(o, YO)}
Un,22(v) = Up 1 1(7)
+ > L |Un,2,0 — Us,l,o — Var(Yp)|
+2\ 21(7) . 1,0Un,11(7)] 21(7) : 1,0Un11(7) — Cov{Yy, YoH1(0,Yo)}| .
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Note that by (A.4), for € sufficiently small

<K

f— )

lim sup a.s. (A.11)

0 ye(0,¢]

Un,i,j (7)
»yj

Then the convergence in (A.10) straightforwardly follows from Lemma A.3. Note that

D(v) =Var{YyH (v, Y)}Var(Yy) — Cov*{YoH (v,Yp), Yo},

A =Var{YyH{(0,Yy)}Var(Yy) — Cov*{YyH,(0,Yp), Yo}.

The non-negativity of D(y) and A follows from the Cauchy-Schwarz inequality. Moreover,
D(y) =0 and A = 0 are precluded by Assumption A4.

Lemma A.5 Under the assumptions of Theorem 3.2 we have, for any § > 0

n n

1
> S aYi i H(y,Yio1) = Y &Y 1 Hi(0,Y;)
t=2 t=2

n~1/? sup
Y€(0,€]

lim lim P
e—0n—oo

>6] =0.

Proof. By the mean-value theorem we have, for some v € (0,7),

n n

n 2
S e@YitH(y, Y1) =7 ) @Ye tHi(0, Y1) + 5 3 @Yio1 Ha(v, Vi),

t=2 t=2 t=2
Thus
1 — ° €
n!2 sup =% @i H(y,Yi) = Y @i Hi(0,Yi)| < 5 sup vi|Toa(y)]
76(076] ’7 t=2 t=2 ’76[076]

In view of Lemma A.2, by definition of a variable bounded in probability, the conclusion

follows.

Lemma A.6 Under the assumptions of Theorem 3.2

M' =0p(1)
: )

sup
v€(0,7]

Proof. For any § > 0 we have

Sh
P sup VnSn1,1(7)
7€(0,7] v

' > 5) < Cl,n((s, 6) + C2,n(57 6) + 03:”(5)
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where € is an arbitrary point of the interval (0,7], and

ﬁsn,l,lm‘ y 5> |

y

c1n(0,€) =P < sup 3

YE(eT]

n n

_ 1
com(d,€) =P (n V% sup |=> Vi 1H(7,Yio1) — Y eYi1Hy(0,Yi )
1€, |7 1= =2

- )
5]
Theorem 3.1 and the continuous mapping theorem show that

VnSn11(7) ~ sup
v vE(eA]

_
3 )

Cg}n((S) =P <

1 n
7n Z €Y 1H1(0,Y;_1)
=2

sup
v€E(e]

%/}RyH(%y)dW(F(y))', as n — oo.

Since the limit is finite with probability one we get for any ¢ > 0

lim lim ¢ (6, €) = 0.
§—00 N—00

By Lemma A.5 we have for all §

lim lim ¢9,,(0,€) = 0.
e—0n—oo

The central limit theorem of Billingsley (1961), for square-integrable stationary martingale
differences, yields that, as n — oo,
o0

Z= S (0.Yi) 5 o [y (0.9)aW (Fo)
t=2

— o
Thus we have

lim lim ¢3,(0) = 0.

§—00 N—00
For all 7 > 0 let us chose 4, such that lim, .oc3,(6;) < 7, let €, > 0 such that
Enﬂoocln(éﬂ e;) < 7, and let 0¥ > 0 such that Hnﬁmcl,n(&, €7) < 7. Because c1 (-, €),

can(-,€), and c3p(-) are decreasing functions, we have

M' > 5) < lim ¢1 (0, €7) + €20 (0, €7) + €3, (5) < 37T

lim P | sup
~

for all § > max{d,,d*}. The conclusion follows.
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Proof of Theorem 3.2. Denote by J;i(v) = (J* (y )) the matrix of cofactors of J,, (7).

n,%,J

By (3.4) we have

\/ﬁldw—ao!
ST ( D] UIn2a(y IIVnSn00l + 175 2 2(NIIVRSn 100+ 15 2 sNIIVRSn 11 (1)}
(A.12)

Note that D being a continuous function, we have inf. (. 51 D(v) > 0, for any € > 0. Thus,

in view of
inf [Dy(y)] > inf D(y) — sup |Dn(y) — D(v)]
y€le] Y€ y€le]
we have
1
sup =0p(1
~vE[e,F] ‘D ( )‘ )

by Lemma A.4. Moreover by Lemma A.3 sup,c(c ) |Un.ij(7)| = Op(1), for i = 1,2 and
J = 0,1,2. Thus sup,¢(c 5 |/ ;;(7)] = Op(1). Then it follows from (A.12) and Lemma
A.2 that sup,¢(c 5 Gy — a0l = Op(n~1'/2) for all € > 0. Now we have
A
inf v 2|D,(y)| > A— sup |y ?Dn(y) — A| > =,
Y€(0,€] ~v€(0,€] 2

a.s. for n sufficiently large and e sufficiently small, by Lemma A.4. Thus, for such n and

€ we have a.s.

sup v/n|ay — aol

76(0=5}
| Tn2.1(7)] |5 2.2(7)]
Vn|Sno0| sup # + sup # sup |vn.Sn,10|
~€E(0,€] v ~v€E(0,€] v ~v€E(0,€]
Jn S
© sup BAPTIGD] sup |vVnSna1(7)] .
~v€(0,¢€] Y ~v€(0,€] Y

It follows from (A.11) and Lemmas A.2 and A.6 that sup,c( g |ay — aol = Op(n~1/2) for
e small enough. Thus we have shown that sup, ¢ |Gy — aol = Op(n=1/2) for all 5 > 0.
We prove that sup.c (o5 |y — o] = Op(n=1/2) for all 7 > 0 by the same arguments.

Turning to IA)7 we have by (3.4), with by = 0, for n sufficiently large and e sufficiently

small
Jna1 (Y I 3.2y
sup v/n|vb, |<— VnlSn 00| sup a0l + sup EE sup |v/nSp1,0l
~v€(0,€] ~v€(0,€] Y ~v€(0,€] Y ~v€(0,€]
Sh
1l sup ,1,m>|}.
~v€(0,€] Y
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By the arguments already given we thus find that sup.cio+ [v0,] = Op(n=1?).

— 5n,00Un1,0}/{Un20 — U72L7170} = Op(n_1/2) which allows to

Finally, @ —ag = {Sn,1,0
conclude that

sup |a, —a| < sup |a, — ag| + |@ — aol = Op(n~1?).
7€(0,7] ve(07
The same arguments allow to prove that sup,c 5 |y — 1| = Op(n='/?). The proof of

Theorem 3.2 is now complete.

Proof of Theorem 3.3. We have

1 X .
= Z{et + (o — fiy) + (a0 — dy) Vi1 — byYi  H(y,Yi1)}?

n :
1 — 1 & 1 2 i
——> & +(a—ay)’ =Y V2 + 62— ZYﬁ V(7 Yim1) + (a0 = dy) D eYi
n t= t=2 t 2 t=2
2 — 2 — n—1
- b'yg &Y 1H(v,Yi—1) — (ap — &'y)b'yg Z Yt2—1H('Ya Y1) + (po — ﬂ'y)z
t=2 t=2

2 & 2 - 2 ¢
ZGt + E(ao —ay) Z:Y;f—l - bvﬁ ;Y;—lH(%Y}—l)}

+(M0_ﬂw){_
L

——Zet (ap — ay) Un20+{7bw}

~ Sn ~ s U'n, n — 1 A
- Qﬁvbww — 2(ao — Gy )7y ’?1 o), (o — fin)?

ny
. . . U,
+ 2(po — fiy) {Sn,O,O + (ao — ay)Un,1,0 — ’ybyi’{’;w) } .

The conclusion follows from the weak law of large numbers, Lemmas A.2, A.3 and A.6 and

Theorem 3.2.
O
Lemma A.7 If the conditions of Theorem 5.3 are satisfied, then
Iim W(y) = W(0) a.s.
710
where
2
W(0) = {V(0) [gyH1(0,y) AW (F(y)) — EYF H1(0,Y0) [y dW (F(y)) — AoW (1)}
AVar(Yp) ’

Ay = EYZEYoH,(0,Yy) — EYoEYZH(0,Yy) and A is defined before Lemma A.J.
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Proof. The dominated convergence theorem and Assumptions AO and A1 entail that

D(;) A
v

as v —0.

Also, the same arguments show that, when v — 0

QH(’Ya YO)
Y

V) VO _ gy

— EY{H,(0,Yp),
5

A

v
Next we show that

Z() ; Z(0) _ %/Ryﬂ(%y)dw(p(y)) — o-/]RyHl(O,y)dW(F(y)) (A.13)

2 H(V? YO)

H(v, Y
M—EYOEYoiﬁAL
Y Y

a.s. as v | 0. We define the following process on [0,7]:

u(y) = /Ry%H(%y)dW(F(y)) if 0<y<7%

and
w0) = [ vV EE).
The assertion in (A.13) is established if we show that u(7y) is almost surely continuous on

[0,7%]. It follows from the definition that wu(7y) is a centered Gaussian process. Also,

2
E{u(y) —u(0)}* = /R {y (%H(%y) - Hl(O,y)>} dF(y)

and

EH( _ _ b N _ . 2l "

SHny) = H(0.y) = By, y) + g Ha(v'y) = Hi(0,y) = yHa (v y) + 5 Ha(7, )
for some ~* and y** between 0 and . Thus, conditions AQ and A2 yield

E{u(y) = u(0)}* < Cy*

for some constant C. On the other hand, for all 0 < v <~/ <7 we have

E{u(y) —u(y)} =/IR {y <1H(%y) - %H(v’,y)> }2 dF (y)

y

§2/R(yH(%y)—151(7’,@/))2”@)

y

2 f (G5
(%)
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for some constant C'. Thus we have

<

911/2 Y 0=79<+9'<7
Ay, = [ {u(r) - u()}?] cr=r o .
=21 0<y <y <7

=

Following Adler (1990) we provide an upper bound for the minimal number of d-balls of
radius € which cover [0,7]. According to Theorem 1.1 in Adler (1990, p.4), it is enough
to show that the number of d-balls is bounded by a polynomial function of 1/e. The
center of the first ball is at 0 and it covers the interval [0,e/C]. Then the centers of the
other balls are ¢/C + ie?/C?, 1 < i < [§C/e?] + 1. Indeed, when 4/ = ¢/C + ie?/C? and
v =¢/C+ (i —1)e2/C? then d(7,7") < C(y —7)/y = €2/(Cv) < e. Since the number of
covering cloud d-balls is bounded by a multiple of 1/€2, the almost sure continuity of u(v)

is established. Thus (A.13) holds. The conclusion then follows from

v v v

D
22 pyp

{V(O)zm—zm) _ V)=V 7y _ A JW(U}2
W(v) = :

Proof of Theorem 4.1. By (3.1)-(3.3) we have

5 7 7 jn J12
oy — 0 =—J, L2 (7)by, where J,(v) = w ()
JHY) Un22(9)

Considering 62 and 62 as values of a same function at the points (8,b,)" and (4,0)’

respectively, a second-order Taylor expansion gives, for any v > 0

0~_2

I
Q>
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when Ee? < co. Thus we have

3
Wa(y) =0~
U?an 1(’7)(37 3)
~ 2
R
62{Un22(7) = T2 ()00 T2 (7))
B 2
{nl/QZn(’Y) = (Vaa (), Va2 (7)) 1% (S 0.0, 5”71’0)/}
52{Un2(7) — J21(7) I " T2(7)} ’
{022, (1) (0) = Vi (1)n"/2Z,(0) — Ay (7)n1/28, 0,0}
62(Un20 — Up 1 0)Dn(7)

: (A.14)

where for ¢ = 1,2,
1
Vi) = =D YE{HG YY) +1}, Va() = Vaz(y) = Vaa () Vaa (0),
t=2

An(Y) = Un2,0Un1,1(7) = Uni,0Un2.1(7),

Dy (v) = det{Jn(7)} = {Un22(7)=UZ 11V HUn20-U 1.0} ~{Un21(7)=Un,1.0Un,1,1(7) }?

Zn(y) =0y &Y {H(v, Y1) + 1}

A straightforward adaptation of Theorem 3.1 shows that for any 7 > 0,
n n D0, 7] xRxR
(2. LS00 W3 ) T (20, (1), W(0).
where

w, {Val"(Yo e Zeth 1H1(0, Y1) — Cov(Yo, YoH1 (0, o)) WZeth |
t=2

" 2
~An~1? Zet} {02 AVar(Yy)} 7,
t=2

and W(0) is defined in Lemma A.7. Note that the same Brownian motion is used in the

definitions of Z(y) and W(0). Thus we get that for all 0 <y <7

«r DI AIxR
(Wan(7),Wy) = (W(y),W(0)) (A.15)
In view of (A.15) we have
( sup. Wn(v),WfL) — < sup. W('Y),W(O)> : (A.16)
V€M) Y€yl
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By (A.14), Lemmas A.3 and A.5 and Theorems 3.2 and 3.3 we have for all § > 0

lim lim P < sup [Wp(v) —Wi|> 5) =0. (A.17)

emin=oo \yelod

Also by Lemma A.7 we have for all § > 0

lim P | sup |[W(y) —W(0)| >0 | =0. (A.18)
=0 ~v€[0,¢€]

For any fixed x € R and all § > 0 and 0 < € < 7, we have

P < sup W, (vy) < x) <P ( sup Wy, (v) <z, W} < :C+6>
7€[0,7] v€le]

+P ( sup |[W,(y) — W;| > 5) :
~v€E[0,€]

Using (A.16) and (A.17), we obtain for all 7 > 0

lim P( sup W, (y) < x) <P ( sup W(y) <z, W(0) < x—l—é) +7
e \elol v€le]

<P < sup W(7) Sx—l—é) +P < sup |W(y) — W(0)] >5> +7
7€[0,7] V€[0,¢]
for € small enough. Using (A.18), we obtain
lim P < sup W, (y) < x) <P ( sup W(v) < x—l—é) + 27.
e el v€[0,7]

Since the inequality holds for all § and 7, we have

e \vel0,4] v€[0,7]

lim P ( sup W, (y) < :c> <P ( sup W(r) < x) .

Using similar arguments, we obtain

lim inf P < sup W, (vy) < x) >P < sup W(v) < 3:) )
e v€[0,7] v€[0,7]

Thus the proof is complete.

O

Proof of Theorem 4.2. The arguments of the proof of Theorem 4.1 can be used, replacing

(A.14) by

_ {Un2on?Sn1.1(7) — Un,2,1(7)n1/25n,1,0}2
6»2yDn(7)Un,2,0
2
{Vn 2(0)77‘1/2271('7) - Vn 2(7)”1/2271(0)}

= ! - ’ , A.19
J'QyDn(’Y)Un,Z,O ( )

W, (7)
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where

Dy(v) = Un,Q,OUn,QQ('Y) - Us,z,l('Y)- (A.20)
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