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Abstract

This paper develops sign-based estimation methods for the parameters of a median regression in finite samples.
We introduce p-value functions that give the confidence one may have in a certain value of the parameter given
the realization of the sample and sign-based estimators that are the values associated with the highest confidence
(p-value). The sign-based estimators are thus obtained using the Hodges-Lehmann principle of test inversion.
They are expected to present the same robustness properties than the test statistics they come from and can
straightly be associated with the finite-sample-based inference procedure described in Coudin and Dufour (2007).
We also show they are median unbiased (under symmetry and estimator unicity) and present equivariance
features similar to the LAD estimator. Consistency under point identification and asymptotic normality are
provided and hold under weaker assumptions than the LAD estimator. However, small sample behavior is our
first interest. By a Monte Carlo study of bias and RMSE, we show sign-based estimators perform better than the
LAD in very heteroskedastic settings.

Key words : sign-based methods; median regression; test inversion; Hodges-Lehmann estimators; confidence
distributions; p-value function; least absolute deviations estimators; quantile regressions; sign test; simultaneous
inference; Monte Carlo tests; projection methods; non-normality; heteroskedasticity; serial dependence; GARCH;
stochastic volatility.

Journal of Economic Literature classification : C13, C12, C14, C15.

Résumé

Cet article propose des outils d’ estimation et d'inférence dans le cadre d’ une régression linéaire sur la médiane,
valides a distance finie sans recourir a des hypothéses paramétriques sur la distribution des erreurs. Nous
considérons la fonction p-value qui associe un degré de confiance a chaque valeur testée du paramétre étant
donné la réalisation de I’ échantillon. Nous calculons des fonctions p-value simulées a partir de tests de Monte
Carlo simultanés, puis des versions projetées pour chague composante individuelle du paramétre. Nous suivons
ensuite le principe d'inversion de test de Hodges-Lehmann et proposons d’ utiliser comme estimateur, la valeur
du paramétre associée au plus haut degré de confiance (a la plus forte p-value). L’ estimateur de signe hérite des
propriétés de robustesse des statistiques dont il est issu et peut étre associé a la procédure d’ inférence a distance
finie décrite dans Coudin et Dufour (2007). Il est aussi sans biais pour la médiane sous unicité et symétrie des
erreurs, et partage les propriétés d’invariance de I’ estimateur des moindres valeurs absolues (LAD). Il est enfin
convergent et asymptotiquement normal sous des conditions plus faibles que I’ estimateur LAD. En échantillon
fini, les simulations suggerent qu’il est plus performant en termes de biais et d’ erreur quadratique moyenne pour
des processus trés hétérogenes.

M ots clés : méthodes de signes ; régression sur lamédiane ; inversion de test ; estimateurs de Hodges-Lehmann ;
distribution de confiance ; fonctions p-value ; estimateur LAD ; régressions quantiles ; tests de signe ; inférence
simultanée ; test de Monte Carlo ; méthodes de projection ; non normalité; hétéroscédasticité; dépendance
sérielle ; GARCH ; volatilité stochastique.
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1. Introduction

Fisher’s fiducial distributions and other fiducial infererarguments [Fisher (1930), Buehler
(1983), Efron (1998)] are not commonly used in economeb@sause they require pivotal
test statistics with known distribution to be available.isTtondition is not fulfilled in gen-
eral, especially in semi-parametric or non-parametritrggs. However, in the context of
median regression, sign-based methods provide a way teraonsuch pivots and fiducial
inference tools can be developed. In this paper, we consite¥ence and estimation of the
parameter of a linear median regression under a weak conditd-median assumption. The
errors may be heteroskedastic, nonlinearly dependentpwihkibly noncontinuous distribu-
tions. We notice that, for any given sample size, the sigmsfam enables one to construct
test statistics with known nuisance parameter free digioh without requiring additional
parametric restrictions. This remark enables us to cocistiducial inference tools adapted
to multidimensional parameters. For this, we shall combige-based tests of simultaneous
hypothesis such as presented in Coudin and Dufour (2007),iméteasing level with pro-
jection techniques. First, we construct the realigzeglue function, which yields théegree
of confidencene may have in each possible value of the parameter. Settendarame-
ter value with the highest confidencee( the highesp-value) provides a Hodges-Lehmann
sign-based estimator [Hodges and Lehmann (1963)]. For eaiponent, a projectegat
value function provides a graphical illustration of thedrdnce summary.

Fisher introduced the fiducial probability as a frequentmipetitor to Bayesian pos-
terior probabilities. Ignored for a long time, fiducial iné&ce has recently enjoyed a re-
newed interest in the statistical literature with the idtrotion of confidence distributions
and similar inference methods [Hannig (2006) for a revieWwhe confidence distribution
is defined in the one-dimensional model as a distributionsghguantiles span all the pos-
sible confidence intervals [Schweder and Hjort (2002)]. TEteer authors introduced it as
a Neymanian interpretation of Fisher’s fiducial distribati This tool summarizes all the
inference results on the parameter and gives a graphiaaseptation of it. The confidence
distribution is related to thg-values for testing hypotheses of the foffa(3,) : 5 = 5,.
The realizedp-value can be seen as thegree of confidencene may have on the tested
value. These tools can be constructed whenever a pivotaasing function of the parame-
ter with known distribution is available. The sign transfoenables one to construct such

pivots without imposing parametric restrictions on the peemHowever, the sign-based sta-



tistics so constructed are discrete and only approximatédsnce distributions or realized
p-value functions can be obtained.

Then, we derive estimators and study their properties. Hsdgd Lehmann (1963) pro-
posed a general principle to directly derive estimatorsftest statistics for a given sample
size. They suggest to invert a test fy(5,) : 3 = [, and to choose the value of
which is "least rejected" by the test. First applied to thecd#lon’s signed rank-statistic
for estimating a shift or a location, this principle was a@alpfor a regression context by
Jureckova (1971), Jaeckel (1972) and Koul (1971). Therlatithors derived so-calles-
estimators from rank or signed-rank statistics. In a muntehsional context, this leads one
to select the value gf with the highestlegree of confidencee. with the highesp-value.
The sign-based estimators are obtained by using sign-bestsd They inherit some of the
attractive properties the tests they come from (robustises®del specification, gross errors
and heteroskedasticity). We shall see that they alteelgtoan be computed by minimiz-
ing quadratic forms of the constrained signs (with probigbine). So they have a classical
GMM form [Hansen (1982), and Honore and Hu (2004) for GMMistats involving signs].
We show that sign-based estimators are consistent and &syeafly normal under regu-
larity conditions weaker than the ones required by the LAfnestor usual theory [Powell
(1984), Weiss (1991), Fitzenberger (1997)h particular, asymptotic normality and consis-
tency hold for heavy-tailed disturbances that may not gssBeite variance. This interest-
ing property is entailed by the sign transformation. Sighsesiduals always possess finite
moments so no further restriction on the disturbance maosnsntequired to complete the
proofs. In finite samples also, LAD and sign methods exhiery\different features. The
simulation studies of bias and root mean squared error (RM&E)resent show that sign-
based estimators are more robust than the LAD estimatoeiprégsence of heteroskedastic-
ity. The class of sign-based estimators includes some apsases studied in the statistical
literature: Boldin, Simonova, and Tyurin (1997) deriv&@gn-estimatorgrom locally most
powerful test statistics fari.d. observations and fixed regressors. Instrumental versions o
sign-based estimators are presented in Honore and Hu (20@4)long and Tamer (2003).
Honore and Hu (2004) derived the so-calle@édian-based estimat@s an instrumental

GMM version of the quantile estimator. The authors motiggteuse the latter along with

10ther notable research on LAD estimators and their varimuisides: the efficient weighted LAD of
Zhao (2001), the smoothed LAD of Horowitz (1998), adaptadito allow for endogeneity [Amemiya (1982),
Powell (1983), Hong and Tamer (2003)], nonlinear functidioams [Weiss (1991)] and generalization to
guantile regressions [Koenker and Bassett (1978)].



other rank-based estimators for their general robustnegegies. However, the major ad-
vantage of signs upon ranks is to easily deal with heter@skeddisturbances. In the present
paper, we do not assume.d. disturbances. We derive various sign-based statisticasnd
sociated sign-based estimators depending on the setupy hderoskedastic and possibly
dependent schemes are covered and, when needed, an hedestility and autocorrelation
correction is included in the estimator criterion functiétestricting on.:.d. cases, Honore
and Hu (2004) observed in simulations that inference base@mk-based estimators per-
formed better than the median-based one. In particulaggtimates of the asymptotic stan-
dard errors of the median-based estimator, that they adatdog kernel, were too small and
the associated inference suffered from overrejection @il hypothesis. Deriving sign-
based estimators as Hodges-Lehmann estimators motivatesdefinitely combine them
to the finite sample inference method they come from, whiatteigeloped in Coudin and
Dufour (2007). The latter, based on the exact distributibthe corresponding sign-based
test statistics does not depend on any nuisance paramdtdoas control test levels in finite
samples under heteroskedasticity and nonlinear depeadénmknown form. It combines
Monte Carlo techniques [Dwass (1957), Barnard (1963) and y®006)], inversion and
projection techniques [Dufour (1990, 1997), Dufour andi&iv1998), Abdelkhalek and
Dufour (1998), Dufour and Jasiak (2001), Dufour and Taam@@05)]? It does not re-
quire one to estimate the error density at zero in contrasiis based on kernel estimates
of the LAD asymptotic covariance matixTherefore, when the test criteria are modified to
cover linear dependence, the resulting inference is asytioplly valid.

Finally, sign-based tests, projection-based confidergiems, projection-basegvalues
and sign-based estimators constitute a whole system e&imfe valid for any given sample
size under very weak distributional assumptions and asytioptly valid for linear depen-
dent errors.

The paper is organized as follows. Section 2 presents thesintheé sign-based sta-
tistics and the Monte Carlo tests. Section 3 is dedicated tdidence distributions and
p-value functions. In section 4, we introduce the sign-basonators, which are obtained

by maximizing thep-value function. Finite-sample properties of sign-basstith®ators are

2For alternative finite sample inference exploiting a quamgrsion of the same sign pivotality result which
holds if the observations at€-conditionally independent, see Chernozhukov, Hanseh,Jansson (2008).

30ther estimates of the LAD asymptotic covariance matriximaobtained by bootstrap procedures [design
matrix bootstrap in Buchinsky (1995, 1998), block bootstira Fitzenberger (1997), Bayesian bootstrap in
Hahn (1997)] and resampling methods [Parzen, Wei, and YiB84)].



established in section 5 and asymptotic properties in@e@i In section 7, we present a
simulation study of bias and RMSE. In section 8, we apply sigeed estimation for deriv-
ing robust estimates in two cases: first, in a financial setwpving large heteroskedasticity
(S.&P. index); second, in a cross-sectional regional detavbere the sample size is nec-
essarily small §-convergence of output levels across U.S. States). Se8tiooncludes.

Appendix A contains the proofs.

2. Framework

2.1. Model

We consider a stochastic proceSg;,«;) : 2 — RPF . ¢ = 1,2,...} defined on a

probability spacés?, 7, P), such thaty, andzx, satisfy a linear model of the form

w=x0+u, t=1,...,n, (2.1)

wherey, is a dependent variable; = (z:,... )" IS ap-vector of explanatory vari-
ables, andu; is an error process. The,’'s may be random or fixed. In the sequel,
y = (Y1,...,yn) € R™ will denote the dependent vectoX, = [zq,...,x,] then x p
matrix of explanatory variables, and= (uy,... ,u,) € R™ the disturbance vector. More-
over, Fy(-|z1,... ,x,) represents the distribution function of conditional onX. This
framework is also used in Coudin and Dufour (2007).

The traditional form of a median regression assumé&sarei.i.d. with median zero
Med(u¢|zy, ..., 2,) =0, t=1,... n. (2.2)

Here, we relax the assumption that thearei.;.d. and consider instead moment condi-
tions based on residual signs where the sign operatoiR — {—1,0,1} is defined as
s(a) = 1jo, yo0)(@) — L(—o,(a), With 14(a) = 1if a € Aandl(a) = 0if a ¢ A. For
convenience, ifi € R", we will note s(u), then-vector composed by the signs of its com-
ponents. We assume the following assumption holds.

Assumption 2.1 SIGN MOMENT CONDITION. FEl[s(us)xi] =0, fork=1,...,p, t =
1,...,n, andn € N.

Assumption 2.1 is fulfilled if the disturbances ared.. Now let us introduceadapted
sequenceS§ (v, F) = {v, F; : t =1, 2, ... } whereuv, is any measurable function of, =
(ye, ), Frisao-fieldin2, F, C F fors <t, o(Wy,... , W) C Fyando(Wy,... , W)



is thes-algebra spanned By, ... , W,. Assumption 2.1 is also fulfilled if the signs satisfy

a martingale difference with respect to the past inforrma#tp= o (W, ..., W,):
Els(u)|Foea] =0, Yt > 1. (2.3)

Assumption 2.1 covers many weakly dependent processeslinglusual linear dependent
processes, such atR(1) disturbances with normal innovations and mean zero. This ha
been pointed out by Fitzenberger (1997). Assumption 24 laédds whenu satisfies the
conditional mediangale condition defined in Coudin and Duf@007),i.c. when{s(u;) :

t =1, 2, ...} is a martingale difference with respect{t¢; = (W4, ..., Wi, X)}:

Assumption 2.2 WEAK CONDITIONAL MEDIANGALE . LetF, = o(uq,... ,u, X), for
t > 1. uin the adapted sequenc®u, F) is a strict mediangale conditional oA  with
respectto{ F; : t = 1,2,... } iff Plu; < 0]X] = Plu; > 0/X] and

Plu; < Oluy, ..., ug—1, X] = Pluy > 0|uq, ..., uy—q, X], fort > 1. (2.4)

This setup allows for discrete distributions with mass abz&Vhen the distributions af;,
possess a mass at zero, the sign operator is redefinéd, ds) = s(a) + [1 — s(a)?]s(V —
0.5), where V ~ (0,1) and is independent af. With no mass at zero and no matrix
X, this mediangale concept coincides with the one defined mtohi and Whang (2007)

together with other quantilegalésAssumption 2.1 is exploited to construct test statistics.

2.2. Sign-based statistics and Monte Carlo tests

For testingHy(5,) : B = By Vvs. Hi(B,) : B # B, in model (2.1), we consider general
quadratic forms involving the vector of the residual sigoisthe constrained modely —

XB):
60) DS(ﬁO? Qn) = S(y - Xﬁo)/XQn<5(y - Xﬁo)v X)X/S(y - XBO) (25)

where2,(s(y — X3,), X) is ap x p positive definite weight matrix that may depend on
the constrained signs. In Coudin and Dufour (2007), we dgeslalistribution-free Monte
Carlo tests. We briefly summarize it. If the disturbancesgathe mediangale Assumption
2.2, the sign-based statistics satisfying equation (2é&¥hown to be pivotal functions un-
der Hy(3,). The distribution of the statistic conditional on the reation of X, is perfectly

specified and can be simulated. Monte Carlo tests with cdettdevels are constructed

4Linton and Whang (2007) define that is a mediangale iE(w%(ut)U-‘t,l) = 0, Vt, whereF;_, =

o(up—1,up—2,...) andy (z) = 1 —1(_ 0 (z). The specification of the sign function which does not make
difference between a positive and a null number is clearpset to continuous distributions.



in the following way. For testingZy(3,) vs. Hi(53,) with level « € [0,1], we denote

DY = Dy(,) the observed statisticéD')”, ..., D) an N-vector of independent repli-
cates drawn from the same distributionas(3,) and(W© ... WY aN 4+ 1-vector

of i.i.d. uniform variables. A Monte Carlo test fdi,(3,) consists in rejecting the null

hypothesis whenever the empirigataluep* (3,) is smaller than, where
. NGy(z) +1
Ds( N\ _ N
(o) ==y +1
andGy(z) = 1 — %sz\; sp(z —TW) + & SVLS(TD — )5, (WO — WO with
si(r) = 1j9,00)(x), d(x) = 1. The empiricalp-value is based on a randomized tie-

(2.6)

breaking procedure which allows one to control the level nvitee statistics are discrete.
When the number of replicatés is such thaty(/V + 1) is an integer, the level of the Monte
Carlo test is equal tex for any sample sizer [see Dufour (2006)]. Next, simultaneous
confidence regions for the entire parameteare obtained by inverting those simultaneous
tests. The simultaneous confidence redign, ()

Ci_a(B) = {B7[pN°(8") = a},

which contains all the valuegs” with empiricalp-valueﬁﬁs (6*) [associated with the test of
Hy(8") : g = p*]higher tham has by construction levél-« for any sample size. Itis then
possible to derive general (and possibly nonlinear) tastiscanfidence sets by projection
techniques. For example, individual confidence intervadatained in such a way. Finally,
if Dg is an asymptotically pivotal function all previous resuitsld asymptotically. For a

detailed presentation, see Coudin and Dufour (2007).

3. Confidence distributions

In the one-parameter model, statisticians have defineditfedence distribution notion that
summarizes a family of confidence intervals; see SchwedeHgrt (2002). By definition,

the quantiles of a confidence distribution span all the jpssionfidence intervals of a real
(. The confidence distribution is a reinterpretation of theher fiducial distributions and
provides, in a sense, an analogue of Bayesian posterior lmfiblea in a frequentist setup
[see also Fisher (1930), Neyman (1941) and Efron (1998)]is $tatistical notion is not

commonly used in the econometric literature, for two reaséiirst, it is only defined in the
one-parameter case. Second, it requires that the tedtistde a pivot with known exact

distribution. Below we extend that notion (or an equivalémthultidimensional parameters.



The sign transformation enables one to construct statistiich are pivots with known
distribution without imposing parametric restrictionstoe sample. Consequently, our setup
does not suffer from the second restriction. In that sectiwa briefly recall the initial
statistical concept and apply it to an example in univaniaggession. Then, we address the

extension to multidimensional regressions.

3.1. Confidence distributions in univariate regressions

Schweder and Hjort (2002) defined the confidence distribdtiothe real parametet such
a distribution depending on the observatidnsr), whose cumulative distribution function
evaluated at the true value @thas a uniform distribution whatever the true valugiofn a
formalized way, this can be expressed as follows:

Definition 3.1 CONFIDENCE DISTRIBUTION Any distribution with cumulativé’D(3)
and quantile functio”'D~!(3), such that

Ps[8 < CD N asy;2)] = P5[OD(Biys2) < o] = o (3.1)

for all « € (0,1) and for all probability distributions in the statistical rdel, is called a
confidence distribution of.

(—oo, C'D~'(«a)] constitutes a one-sided stochastic confidence intervhlaoiterage prob-
ability «,> and the realized confiden€&D(3,;y; x) is the p-value of the one-sided hy-
pothesisH;(G,) : [ < [, versusH{(3,) : [ > [, when the observed data are
y, . The realizedp-value when testing?y(5,) : 8 = B, versusH,(3,) : 5 # 5,

is 2min{CD(f,),1 — CD(5,)}. Those relations are stated in Lemma 2 of Schweder and
Hjort (2002): the confidence of the statement¥ 3," is the degree of confidenceD(5,)

for the confidence interval — co, CD~!(CD(5,))], and is equal to the-value of a test
of Hi(8,) : B < By v.s. Hi(B,) : B > (,. Hence, tests and confidence intervalsioare
contained in the confidence distribution. Schweder andtHfl02) also note that, since
the cumulative functior®’ D(3) is an invertible function ofs and is uniformly distributed,
C'D(() constitutes a pivot conditional on Reciprocally, whenever a pivot increases with
3 (for example a continuous statisfi{5) with cumulative distribution functior that is

independent of} and free of any nuisance parametdf)QT(ﬁ)) is uniformly distributed

>for continuous distributions, just note th&4[ < CD~'(a)] = Ps{CD(3) < CD(CD *(«a))} =
Ps{CD(B) <al} =a



and satisfies conditions for providing a confidence distitiou Let 3 be such a continu-

ous real statistic increasing withwith a free of nuisance parameter distribution. A test of
. . ~obs . . ~ obs

Hy: 3 < B, isrejected whem  is large, withp-value Ps [3 > 5 |. Then,

Py l8> 3" = 1= F5 (5"") = CD(B,) (3.2)

WhereF@O(B) is the sampling distribution of. Consequently, simulated sampling distri-
butions and simulated realizedvalues as presented previously yield a way to construct
simulated confidence distributions.

The sampling distribution and the confidence distributioe &undamentally dif-
ferent theoretical notions. The sampling distribution he tprobability distribution of
3 obtained by repeated samplings whereas the confidencébudiiin is an ex-post ob-
ject which contains the confidence statements one can hatwe oalue ofs giveny, z, BObS.

Randomized confidence distributions for discrete stasfi last remark relates to discrete
statistics. Confidence distributions based on discretesstatcannot lead to a continuous
uniform distribution. Approximations must be used. Schereahd Hjort (2002) proposed

half correction. For discrete statistics, they used
~ obs 1 ~ obs
CD(By) = Py [8 > 5] + 5P, [6 = 5™, (33)

We rather use randomization as in section 2. The discretistata? is associated with an
auxiliary onel/;, which is independently, uniformly and continuously disited over0, 1].

Lexicographical order is used to order ties.
~ obs ~ obs
CD(By) = Py|8 > 37" + PUY > Us) Py, [8 = 57). (3.4)

Simulated confidence distributions and illustratiobet us consider a simple example to

illustrate those notions. In the modgl= fz; + w;, i =1,...,n, (u;, ;) “ N(0, I), the

Student sign-based statistic

ST = Do

is a pivotal function and decreases withThe simulated confidence distribution®fjiven

the realizationy, x is _— . —
CD(ﬂo) =1- Fb’o(SST(ﬁo))a (3.5)

with FBO a Monte Carlo estimate of the sampling distribution 67 under
Hy(B,) : 6 = p,. Figure 1 presents a simulated confidence distribution tatiaa
function for 3, given 200 realizations dfu;, z;) based or5ST. The Monte Carlo estimate
of F’ﬂo is obtained from 9999 replicates 857" underHy(3,). TestingH;(5,) : § < .1 at
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Figure 1. Simulated confidence distribution cumulativection based on SST.

10% can be done by readidgD(.1), which equals the-value of Hy, here .88. The test ac-
ceptsH;. Further,(—oo, .15] constitutes a one-sided confidence intervalfovith level .95.

Realized-value functions for discrete statisticdnother interesting object is the realized
value function when testing point hypothedés 3,). The latter is a simple transformation

of theC'D cumulative function. The simulated realizedialue is given by
psst(8y) = 2min{CDssr(8y), 1 = CDssr(By)}- (3.6)

Consider now the statisti§ ' = SST?2. SF is a pivotal function but not a monotone func-
tion of 5 contrary toSST. An entire confidence distribution cannot be recovered ffm
because of this lack of monotonicity. However, fhgalue function can be constructed us-
ing equation (2.6). Figure 2 compargsalue functions based ofiST and SF'. Inverting
the p-value function allows one to recover half of the confidenttridbution and conse-
guently half of the inference results¢. the two-sided confidence intervals. For example,
[—.12, .14] constitutes a confidence interval with le@8l% for both statistics. The-value
function provides then an interesting summary on the avigilanference. Especially, it
gives the confidence degree one can have in the statetnent3,. Finally, thep-value
function has an important advantage over the confidencetison: it is straightforwardly

extendable to multidimensional parameters.



The spread of the-value function is also related to tiparameter identificationWhen
thep-values are low (or high) whatever the value®fone may expect the parameter to be
badly identified either because there exists a set of obsenedly equivalent parameters,
then, thep-values are high for a wide set of values; either because thees not exist any

value satisfying the model and then th&alues are small everywhere. To illustrate that

—rs—ssT
0.9r
0.8
0.7}
o 06
3
|§0.5—
%04
0.3r
0.2/
0.1r
8504 030201 0 01 02 03 04 o 85 04 030201 0 01 02 03 04 05
beta beta
(a) Example 1: well identified case (b) Example 2: badly identified case

Figure 2. Simulateg@-value functions based on SST and SF

point, let us consider another example (example 2) wherdirtster; observations satisfy
yi = B+, 0= 1,0, (uzi) <

N(0, I) and then, followings, y; = [yx; +
wi, t=mn1+1,...,n1 + no, (u;, ;) w N(0, I), with 3, = —.5 and3, = .5. The model
yi = Br; +ug, i =1,...,n1 + ng, is misspecified. In Figure 2 (b), we notice the spread of
thep-value function based ofiF’ is large which we can interpret as a lack of identification:

the set of observationally equivaleris not reduced to a point.

3.2. Simultaneous and projection-baseg-value functions in multivari-

ate regression
If p > 2, the confidence distribution notion is not defined anymorewever, simulated
realizedp-values for testing?,(3,) can easily be constructed from tHé" statistic and more

generally from any sign-based statistic which satisfiesaggun (2.5). Simulateg-values
lead to a mapping for which we have a 3-dimensional repraientforp = 2. Consider

10



the modely; = Bz + Bas +wi, i = 1,... 0, (ui, 215, T2) ~ N(0,13), B = (8", 8%) =
0,0,y = (Y1, Yn) s = (ur,...,up), 21 = (211, ..., 21), 2 = (T21, ..., Ta,) and

X = (z1,22). Let Dg (B, (X'X)™") = s'(y — XB)X(X'X) ' X's(y — XB). In Figure 3,
we compute the simulatgévalue functiony (3,) for testingHy(3,) on a grid of values
of 3,, using NV replicates of the sign vect ~Ds(ﬁo) allows one to construct simultaneous
confidence sets fo = (', 3*) with any level. By construction, the confidence region

Ci_a defined
() defined as Croa(B) = {BIF25 (B) = a). 3.7)

has levell — « [see Dufour (2006)]. Hence, by constructiar, () corresponds to the

intersection of the horizontal plan at ordinatevith the envelope oﬁﬁs (8,)- For higher

simulated
p-values

.'.IY
Al /Illl‘
m ‘w

NIA

il i

V \
it

beta2 . : betal

Figure 3. Simulateg-value functions based on Sk € 200, N = 9999).

dimensionsy > 2), a complete graphical representation is not availablenamg. However,

one can consider projection-based realigaglue functions for each individual component

11



of the parameter of interest in a similar way than projectiased confidence intervals.
For this, we apply the general strategy of projection on thraglete simultaneous-value

function. The projected-based realizedgalue function for the component is given by:

Proj.gly (05) = max i [(65, 53] (3.8)

0

Figure 4 presents projection-based confidence intervathéindividual parameters of the
previous 2-dimensional examplé-—.22,.21] is a 95% (conservative) confidence interval
for g'. [-.38,.02] is a95% (conservative) confidence interval f6f. Testings' = 0 is

accepted a5% with p-valuel.0. Testing3* = 0 is accepted &% with p-value.06.

0.9" 0.9"
0.8" 0.8
(%]
3 T
S 0.6/ > 0.6
T &
(o
505 B 05f
Q °
804 2 04
o a
L 03f 0.3f
0.2 0.2/
0.1 0.11
85 04 03 02 01 0 01 02 03 04 0f -85 -04 030201 0 01 02 03 04 05
betal beta2
(a) Projection-basegvalues fors! (b) Projection-basegvalues for3?

Figure 4. Projection-basedvalues.

Controlled inference using simulated confidence distrdngiand realizegh-values. Sim-
ulated confidence distribution and realizedalues are Monte Carlo-based tools. Hence
derived tests control the nominal size only fos such thato(N + 1) € N; see Dufour

(2006): b
PipN°(By) < a] =a Vasuchthat(N + 1) € N.

If a(N + 1) ¢ N, only bounds on the significance level are known, but theyarg close
to o whenN is sufficiently large:

I(a(NNtrll) it I P[p%s(3,) < a] <« Vasuchthat(N +1) ¢ N,

Contrary to tests, simulated confidence distributions aalizexdp-values are not evaluated

at a given significance level but rather on a range of significance levéds, ..., a4).

12



Hence, one must choose carefuNythe number of replicates in order to control the signifi-
cance level for all the;’s, i.e. chooseV sufficiently large to havéN + 1)a; € N, Vo, €
(v, ..., a4). In the previous illustrationsV = 9999 which insures that the significance
levels are controlled at .0001.

4. Sign-based estimators

Sign-based estimators complete the above system of ierdntuition suggests to con-
sider values with the highest confidence degfeg,with the highesp-values. Estimators
obtained by that sort of test inversion constitute multieinsional extensions of the Hodges-

Lehmann principle.

4.1. Sign-based estimators as maximizers of thevalue function

Hodges and Lehmann (1963) presented a general principlerieecestimators by test in-
version; see also Johnson, Kotz, and Read (1983). SuppaseR and T'(u,, W) is a
statistic for testing: = 1, againstu > p, based on the observatiohg. Suppose further
that 7'(, W) is nondecreasing in the scalar Given a known central value af(u,, W),
saym(u,) [for exampleEw T (1, W)], the test rejects = 1, whenever the observeldis
larger than, sayn (). If that is the case, one is inclined to prefer higher values.drhe
reverse holds when testing the oppositenlfi,) does not depend qm, [m(x,) = mg], an
intuitive estimator ofu (if it exists) is given byu* such thafl'(*, W) equalsm, (or is very
close tomy). 1* may be seen as the valueofvhich is most supported by the observations.

This principle can be directly extended to multidimensigrarameter setups through
p-value functions. Leti € RP. Consider testind?(5,) : 5 = (3, versusH,(5,) : 0 = 5,
with the positive statistid@’. A test based off’ rejectsH,(3,) whenT'(3,) is larger than a
certain critical value that depends on the test level. Thienasor of 3 is chosen as the value
of 3 least rejected when the levelof the test increases. This corresponds to the highest
p-value. If the associategtvalue for Hy(53,) is p(8,) = G(Ds(6,)|6,), whereG(z|3,) is
the survival function ofDs(3,), i.e. G(z|5,) = P[Ds(5,) > ], the set

M1 = arg max p((3) (4.2)
BERP

constitutes a set of Hodges-Lehmann-type estimators. yide-estimators maximize the

p-value function. There may not be a unique maximizer. In t@se, any maximizer is

13



consistent with the data.

4.2. Sign-based estimators as solutions of optimization problems

When the distribution of’(/3,) and the correspondingvalue function do not depend on
the tested valug,, maximizing thep-value is equivalent to minimizing the statisiig ).
This point is stated in the following proposition. Let us denF'(z|3,) the distribution of

T(5,) wheng = 3, and assume this distribution is invarianttgAssumption 4.1).

Assumption 4.1 INVARIANCE OF THE DISTRIBUTION FUNCTION
F(z|3,) = F(z) VzeR", VG, € R,

Let us define

M; = argmax p(3). (4.2)
BERP

My = argmin T'((). (4.3)
BERP

Then, the following proposition holds.

Proposition 4.1 Under Assumption 4.10/1 and M2 are equal with probability one.

Maximizing p(/3) is equivalent (in probability) to minimizin@'(3) if Assumption 4.1 holds.
Under the mediangale Assumption 2.2, any sign-basedtstdfis does satisfy Assumption
4.1. Consequently,

3,(£2,) € argmin s'(Y — XB)X 2, (s(Y — XB), X)X's(Y — XB) = Mo(Y, X, D§")

BERP (44)
equals (with probability one) a Hodges-Lehmann estimassed onDg((2,,3). Since
Dgs(£2,, ) is non-negative, problem (4.4) always possesses at leastalation. As signs
can only take 3 values, for fixed the quadratic function can take a finite number of values,
which entails the existence of the minimum. If the solutiemot unique, one may add
a choice criterion. For example, one can choose the smalbdgion in terms of a norm
or use a randomization. Under conditions of point identiftog any solution of (4.4) is a
consistent estimator.

The whole argmin set of (4.4) remains informative in modath sets of observationally
equivalent values of [see Chernozhukov, Tamer, and Hong (2006)]. The identifiatlife
of those models is a set instead of a point value. Any infexepproach relying on the con-
sistency of a point estimator (which assumes point ideatifit), gives misleading results,

but the estimation of the whole set can be exploited. Let nsné that the Monte Carlo

14



sign-based inference method [Coudin and Dufour (2007)] da¢gely on identification
conditions and leads to valid results in any case.
The sign-based estimators studied by Boldin, Simonova, gadi(1997), are solutions

f R
° B,(I,) € arggé'ﬁg (Y - XB)XX's(Y — X3) = arg rﬁnelﬂrg SB(3), (4.5)

and

B.I(X' X)) e arg min, S(Y = XB)X(X'X) ' X's(Y — XB) = arg min SF(3). (4.6)

For heteroskedastic independent disturbances, we inteogkeighted versions of sign-
based estimators that can be more efficient than the basg defeed in (4.5) or (4.6).
Weighted sign-based estimators are sign-based analogwesighted LAD estimator [see
Zhao (2001)]. The weighted LAD estimator is given by

By AR = a;gginz dily; — 7. 4.7)
eRp p

The weighted sign-based estimators are solutions of

,@SX € argmin §'(Y — X3)X(X'X)"'X'D's(Y — Xf) (4.8)
BERP

whereX = diag(dy, ... ,d,)X and(d;), i =1,..., n € R™. Weighted sign-based estima-
tors that involve optimal estimating functions in the seos&odambe (2001) are solutions
of ~DX* , /

B, € argmgn Y - XB)X*(X*X*) ' X*D's(Y — X) (4.9
whereX = dz’ag(fl(0|)?)ef.. , /»(01X)) X and f,(0|X),t = 1,...,n, are the conditional
disturbance densities evaluated at zero. The inherentgmmotf such a class of estimators is

to provide good approximations ¢f(0| X )’s. Densities of normal distributions can be used.

4.3. Sign-based estimators as GMM estimators

Sign-based estimators have been interpreted in the lirerats GMM estimators exploit-
ing the orthogonality condition between the signs and th@aaatory variables [see Hon-
ore and Hu (2004)]. In our opinion, a strictly GMM interpreta hides the link with the
testing theory. That is the reason why we first introduced-bigsed estimators as Hodges-
Lehmann estimators. The quadratic form (4.4) refers toequitusual moment conditions.
The sign transformation evacuates the unknown paramdtatsaffect the error distribu-
tion. It validates nonparametric finite-sample-basedreriee when mediangale Assump-
tion holds. However, in settings where only the sign-monoamdition 2.1 is satisfied, the

GMM interpretation of sign-based estimators still appies entails useful extensions.
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For autocorrelated disturbances, an estimator based on @ $ign-based statistic
Ds(3,J;1) can be used:
Ba(J;") € argmin /(Y — XB)X[Ju(s(Y = X3), X)I "' X's(Y = XB),  (4.10)
cRP

whereJ, (s(Y — X 3), X) accounts for the dependence among the signs and the explanat
variables. 3 appears twice, first in the constrained signs, second in gightvmatrix. In
practice, optimizing (4.10) requires one to invert a newrirat, for each value off whereas
problem (4.6) only requires one inversion®fX. In practice, this numerical problem may
quickly become cumbersome similarly to continuously updpG&GMM. We advocate to use
a two-step method: first, solve (4.6) and obtajn((X’X)~'); compute thenf;l(s(Y —
XB3,((X'X)™1)), X) and finally solve,

B e argmin s'(Y = XA)X[J(s(Y = XB,), )] X's(Y = X).  (411)

The 2-step estimator is not a Hodges-Lehmann estimator amgyrilowever, it is still con-
sistent and share some interesting finite-sample properité classical sign-based estima-

tors. The properties of sign-based estimators are studidebinext section.

5. Finite sample properties of sign-based estimators

In this section, finite sample properties of sign-basedredtirs are studied. Sign-based
estimators share invariance properties with the LAD edbhmand are median-unbiased if
the disturbance distribution is symmetric and some addiliassumptions on the form of
the solution set. The topology of the argmin set of the oation problem 4.4 does not
possess a simple structure. In some cases it is reducedrigla point like the empirical
median of2p + 1 observations. In other cases, it is a set. More generaéyatgmin set is a
union of convex sets but it is natpriori either convex nor connex. To see that it is a union

of convex sets just remark that the reciprocal image fixed signs is convex.

5.1. Invariance

Sign-based estimators share some attractive equivanmaoperties with LAD and quantile
estimators [see Koenker and Bassett (1978)]. It is straoghtrd to see that the following
proposition holds.

Proposition 5.1 INVARIANCE. If 3(Y, X) € M,(Y, X, DE"), i.e. is a solution of 4.4),
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then
A3(Y,X) € My,(\Y,X,DZ), VYieR (5.12)
BY,X)+7v € My(Y 4+ Xv,X,DI"), VyeRP (5.13)
Aflﬁ(Y, X) € My(Y, XA, Dg"), for any nonsingulak x k£ matrix A. (5.14)

To prove this property, it is sufficient to write down the difént optimization problems.
Equation (5.12) states a form of scale invariancey i rescaled by a certain factas,
rescaled by the same one is solution of the transformed gmobEquation (5.13) states a
form of location invariance, while (5.14) states a repar@meation invariance with respect
to the design matrix: the transformation Gris given by the inverse of the reparameteriza-

tion scheme.

5.2. Median unbiasedness

Moreover, if the disturbance distribution is assumed toyrersetric and the optimization
problems to have a unique solution then sign-estimatormaiian unbiased.

Proposition 5.2 MEDIAN UNBIASEDNESS If u ~ —u and the sign-based estimatdris
the unique solution of minimization problerh4), then/3 is median unbiased, that is,

Med(B —B30) =0

wheref,, is the true value.

6. Asymptotic properties

We demonstrate consistency when the parameter is identifiddr weaker assumptions
than the LAD estimator, which validates the use of sign-tbastimators even in settings
when the LAD estimator fails to converge. Their finite-saenpéhavior also presents useful

features. Finally, sign-based estimators are asymptiyticarmal.

6.1. Identification and consistency

We show that the sign-based estimators (4.4) and (4.11)oasstent under the following
set of assumptions:
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Assumption 6.1 MIXING. {W; = (ys, x}) }i=12.. IS a-mixing of size—r/(r — 1) with

r > 1.

Assumption 6.2 BOUNDEDNESS x; = (z14,...,2y) and Elzy ™™ < A < oo, h =
L,...,p,t=1,....n, Vn € N.

Assumption 6.3 COMPACTNESS [ € Int(©), where© is a compact subset & .
Assumption 6.4 REGULARITY OF THE DENSITY.

1. There are positive constanfs andp; such that, for aln € N,

Pf:(0|X) > fr] > p1, ¥t =1,...,n, a.s.
2. f;(.|X) is continuous, for alh € N for all ¢, a.s.

Assumption 6.5 POINT IDENTIFICATION CONDITION. V¢ > 0,37 > 0 such that
el
lim inf ;anm > 70 £,(0lzy, ... x) > fr] > 0.

n—oo

Assumption 6.6 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. (2,(f) is symmet-
ric definite positive for all5 in ©.

Assumption 6.7 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX NEAR [3,. (2,(f) is

symmetric definite positive for al in a neighborhood of,,.

Then, we can state the consistency theorem. The assumpt®ngerpreted just after.

Theorem 6.1 CONSISTENCY. Under model 2.1) with the Assumptions 2.1, 6.1-6.6, any
sign-based estimator of the type,

3,(92,) € argmin s'(Y — X)X 2,(s(y — XB3), X) X's(Y — Xp), (6.15)
BERP

o 325(2,) € argmin /(Y — XB)X 02, (s(y — XB), X)X's(Y — XB), (6.16)
BeRP

where3 stands for any (first step) consistent estimatoppfs consistentﬁis defined in
equation 6.16 is still consistent if Assumption 6.6 is replaced by Assiongb.7.

Let us interpret precisely Assumptions 6.1-6.7 and comfg@@m to the ones required for
LAD and quantile estimator consistency [see Fitzenberg@@7) and Weiss (1991) for the
most general setups]. Assumptions on mixing (6.1), conmasst (6.3) and point identifi-

cation (6.4, 6.5, 6.6) are classical. The mixing setup 6riesded to apply a generic weak
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law of large numbers [see Andrews (1987) and White (2001)ak used by Fitzenberger
(1997) to show LAD and guantile estimator consistency wigtisnary linearly dependent
processes. It covers, among other processes, stationarydAdrdtirbances with continu-
ously distributed innovations. Point identification is yideed by Assumptions 6.5 and 6.4.
Assumption 6.5 is similar to Condition ID in Weiss (1991). Asgtion 6.4 is usual in the
LAD estimator asymptotic$.It is analogous to Fitzenberger (1997)’s conditions (il a
c) and Weiss (1991)’s CD condition. It implies that there iswyh variation around zero
to identify the median. It restricts the setup for some 'babeoti heteroskedasticity in the
disturbance process but not in the usual (variance-basay) 8o-callediffusivity, #(0)
can indeed be seen as an alternative measure of dispersipteddo median-unbiased es-
timators. It measures the vertical spread of a density raltaa its horizontal spread and is
involved in Cramér-Rao-type lower bound for median-unbiassoators [see Sung, Stan-
genhaus, and David (1990) and So (1994)]. Besides, in Assong.6 and 6.7, the weight
matrix (2, is supposed to be invertible for estimators obtained in ¢aep whereas only a
local invertibility is needed for two-step sign-estimatoOne difference with the LAD as-
ymptotic properties relies on Assumption 6.2. For sign @iaacy, only the second-order
moments ofr; have to be finite, which differs from Fitzenberger (1997) velupposed the
existence of at least third-order moments. And above allda@ot assume the existence
of second-order moments on the disturbanced he disturbances indeed appear in the ob-
jective function only through their sign transforms whiabspess finite moments up to any
order. Consequently, no additional restriction should bgased on the disturbance process
(in addition to regularity conditions on the density). Tag®ints will entail a more general
CLT than the one stated for the LAD/quantile estimators izdfiberger (1997) and Weiss
(1991).

6.2. Asymptotic normality

Sign-based estimators are asymptotically normal. Thesladéds under weaker assumptions
than the ones needed for LAD estimator asymptotic normasign-based estimators are
specially adapted for heavy-tailed disturbances that nmypossess finite variance. The
assumptions we need are the following ones.

6Assumption 6.4 can be slightly relaxed covering error tewits mass point if the objective function
involves randomized signs instead of usual signs

19



Assumption 6.8 UNIFORMLY BOUNDED DENSITIES dfy < 4oosuchthatVvn €

N,V € R,
sup | SN, ... wa)| < fu, @s.

Under the conditions 2.1, 6.1, 6.2 and 6.8, we can d€fiit8, the derivative of the limiting

objective function ats:

L(B) = Tim S Blrat f(0 — Bo)ler, - w)] = m Lo(B). (6.47)

where

La(®) = = 3 Bl (w15~ o)k, - )], (6.18)

t
The other assumptions are merely used to show asymptoticatioy.

Assumption 6.9 MIXING WITH 7 > 2. {W; = (y;, 7}) }+=1.2.... iS a-mixing of size-r/(r—
2) withr > 2.

Assumption 6.10 DEFINITE POSITIVENESS OFL,,. L,(3,) is positive definite uniformly

inn.

Assumption 6.11 DEFINITE POSITIVENESS OFJ,.. J, = E[: Y0 s(uy)z.ls(us)] is
positive definite uniformly in and converges to a definite positive symmetric mafrix

Then, we have the following result.

Theorem 6.2 ASYMPTOTIC NORMALITY. Under the conditions for consistency (2.1,
6.1-6.6), and 6.9-6.11, we have:

STV(B(20) = Bo) 5 N(O, T,) (6.19)
where
Sp = [Ln(ﬁO)QnLn(ﬁO)]71Ln(ﬁO)QanQnLn<50)[Ln(ﬁO)QnLAﬁO)]il
and

L.(By) = %ZE[xtx;ft(mxl,...,xn)}. (6.20)

Remark that wheii2, = J-', we have
[Ln(Bo) i Lu(Bo)] " 2/m(B, (1) — B) % N(O, L,). (6.21)

This corresponds to the use of optimal instruments and egfsient estimation.B(jn—l)
has the same asymptotic covariance matrix as the LAD esimiBus, performance differ-

ences between the two estimators correspond to finite-gaf@glures. This result contra-
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dicts the generally accepted idea that sign procedure$vineoheavy loss of information.
There is no loss induced by the use of signs instead of alesedliies.

Note again that we do not require that the disturbance psocasance be finite. We
only assume that the second-order momentsoéire finite and the mixing property of
{W;, t =1,...} holds. This differs from usual assumptions for LAD asymigtobrmal-
ity.” This difference comes from the fact that absolute valueshefdisturbance process
are replaced in the objective function by their signs. Ssigas possess finite moments at
any order, one sees easily that a CLT can be applied withoufuatiner restriction. Conse-
guently, asymptotic normality, such as consistency, hfdeeavy-tailed disturbances that
may not possess finite variance. This is an important thieatetdvantage of sign-based
rather than absolute value-based estimators arfdrtiori, rather than least squares esti-
mators. Estimators for which asymptotic normality holdsbauinded asymptotic variance
assumption (for example OLS) are not accurate in heavgé#iings because the variance is
not a measure of dispersion adapted to those settings. &stsnfor which the asymptotic
behavior relies on other measures of dispersion, like tffiesilrity, help one out of trouble.

The form of the asymptotic covariance matrix simplifies unskeonger assumptions.
When the signs are mutually independent conditionakopmediangale Assumption 2.2],

both 3, ((X'X)™) andﬁ(jgl) are asymptotically normal with variance
Sn =" [La(Bo)| 7 E [(1/n) 320y wewi] [Ln(B0)] "
If uis ani.i.d. process and is independentX®f thenf;(0) = f(0), and

1 n\—1

In the general casg,(0) is a nuisance parameter even if condition 6.8 implies tharntbe
bounded.

All the features known about the LAD estimator asymptotitidaor apply also for
the SH AC estimator; see Boldin, Simonova, and Tyurin (1997). For edamasymptotic
relative efficiency of thes H AC' (and LAD) estimator with respect to the OLS estimator is
2/ if the errors are normally distribute¥ (0, 2), butSH AC (such as LAD) estimator can
have arbitrarily large ARE with respect to OLS when the diséimce generating process is
contaminated by outliers.

’See Fitzenberger (1997) for the derivation of the LAD asytig$ in a similar setup and Koenker-
Bassett(1978) or Weiss (1991) for a derivation of the LADmagtotics under sign independence
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6.3. Asymptotic or projection-based sign-confidence intervals?

In section 4, we introduced sign-based estimators as Heldgiamann estimators associated
with sign-based statistics. By linking them with GMM settngve then derived asymptotic
normality. We stressed that sign-based estimator asyrmoptotmality holds under weaker
assumptions than the ones needed for the LAD estimator. efdrer sign-based estima-
tor asymptotic normality enables one to construct asynmptests and confidence intervals.
Thus, we have two ways of making inference with signs: we catlie Monte Carlo (finite-
sample) based method described in Coudin and Dufour (208&)s@bsection 2.2- and the
classical asymptotic method. Let us list here the main diffees between them. Monte
Carlo inference relies on the pivotality of the sign-basedistic. The derived tests are valid
(with controlled level) for any sample size if the mediamgAssumption 2.2 holds. When
only the sign moment condition 2.1 holds, the Monte Carlorgrfiee remains asymptoti-
cally valid. Asymptotic test levels are controlled. Besidassimulations, the Monte Carlo
inference method appears to perform better in small sarntipdesclassical asymptotic meth-
ods, even if its use is only asymptotically justified [see Gowhd Dufour (2007)]. Nev-
ertheless, that method has an important drawback: its ctatipoal complexity. On the
contrary, classical asymptotic methods which yield testh wontrolled asymptotic level
under the sign moment condition 2.1 may be less time conguniime choice between both
is mainly a question of computational capacity. We pointtbat classical asymptotic infer-
ence greatly relies on the way the asymptotic covarianceixn#tat depends on unknown
parameters (densities at zero), is treated. If the asymptovariance matrix is estimated
thanks to a simulation-based method (such as the bootdtrap)the time argument does

not hold anymore. Both methods would be of the same order opatational complexity.

7. Simulation study

In this section, we compare the performance of the signebasgmators with the OLS and

LAD estimators in terms of asymptotic bias and RMSE.

7.1. Setup

We use estimators derived from the sign-based statistidss, (X'X)~!) and Dg(3, Jh
when a correction is needed for linear serial dependenceow&der a set of general DGP’s
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to illustrate different classical problems one may enceuimtpractice. We use the following

linear regression model: .
Yr = 180 + uy, (7.1)

wherez; = (1, z24, x3:) andg, are3 x 1 vectors. We denote the sample sizévlonte Carlo
studies are based oyl generated random samples. Table 1 presents the casesaredsid

In a first group of examples (A1-A4), we consider classicaependent cases with
bounded heterogeneity. In a second one (B5-B8), we look aepsas involving large het-
eroskedasticity so that some of the estimators we considgmnat be asymptotically normal
neither consistent anymore. Finally, the third group (C9)d4 tledicated to autocorrelated
disturbances. We wonder whether the two-stépAC' sign-based estimator performs better
in small samples than the non-corrected one.

To sum up, cases Al and A2 presentd. normal observations without and with con-
ditional heteroskedasticity. Case A3 involves a sort of weaklinear dependence in the
error term. Case A4 presents a very debalanced scheme ingigm ageatrix (a case when
the LAD estimator is known to perform badly). Cases B5, B6, B7 ana®@&ther cases of
long tailed errors or arbitrary heteroskedasticity andinear dependence. Cases C9to C11
illustrate different levels of autocorrelation in the erterm with and without heteroskedas-

ticity.

7.2. Bias and RMSE

We give biases and RMSE of each parameter of interest in Taduhel 2ve report a norm of
these three values. = 50 andS = 1000. These results are unconditional &n

In classical cases (A1-A3), sign-based estimators havghtgihe same behavior as the
LAD estimator, in terms of bias and RMSE. OLS is optimal in cAge However, there is
no important efficiency loss or bias increase in using sigatead of LAD. Besides, if the
LAD is not accurate in a particular setup (for example witghty debalanced explanatory
scheme, case A4), the sign-based estimators do not sudfartire same drawback. In case
A4, the RMSE of the sign-based estimator is notably smalken those of the OLS and the
LAD estimates.

For setups with strong heteroskedasticity and nonstatyotiaturbances (B5-B8), we
see that the sign-based estimators yield better resultskibdn LAD and OLS estimators.
Not far from the (optimal) LAD in case of Cauchy disturband®@S)( the signs estimators are

the only estimators that stay reliable with nonstationagance (B6-B8). No assumption
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Table 1. Simulated models.

Al NormalHOM:  (za4, w30 u) S N(0,15), t=1,...,n

A2:  NormalHET:  (way, s dy) ~ N(0,Is)

up = min{3, max[0.21, |zo|]} X U, t=1,...,n
A3: Dep.-HET, Tjt = ppis1+vl, j=1,2,
Py =5 up = min{3, max[0.21, |z ||} x v},

o
(Vv v N0, 13), t=2,...,n
v3 andv? chosen to insure stationarity.

A4:  Deb. design mat.: zo, ~ B(1,0.3), 3, "< A7(0,.012),
w "B N(0,1), 24, g independent, = 1, . .., n.

B5:  Cauchy dist.: (@, x34) ~ N(0, L),
wp "5 Cxy,ug, independentt = 1,.. ., n.

B6: Stoc. Volat.: (o, xa) e N(0, I3), us = exp(w/2)e with
wy = 05wy + vy, wheree, "< N(0,1), v <y X2(3),
x¢, ug, independentt = 1,..., n.

B7:  Nonstat. (@, x3t, €)' i N(,I3), t=1,...,n,

GARCH(L1):  w = oyer, 0F = 0.8u2 | +0.802 ;.
B8: Exp. Var.: (@2, 3¢, €)' g N(0, I3), uy = exp(.2t)e;.
CO:  ARWHOM,  (wapa3ed) ~N(O0,I3),t=2,....n,

Pu = D Ut = P Ut—1 + Vyi
(21,231) ~ N(0, I2), v} insures stationarity.

C10: AR(1)HET, Tjt = pptis1+ v, j=1,2
Pu =9, : up = min{3, max[0.21, |zo|]} X G,
Pz = -5 Uy = pyUi—1 + vy,

2 i.1.d
(i v vd) RN, I3), t=2,...,n
v?, v} andv¥ chosen to insure stationarity.

Cll: AR(L)-HOM, ({L‘Q’t, T3 t, V%L)/ ~N(0,I3),t =2,...,n,
pu=-9" U = pyut—1 + Vi,
(z21,231) ~ N(0, 1), v{ insures stationarity.
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Table 2. Simulated bias and RMSE.

n = 50 oLS LAD SF 2SSHAC

S = 1000 Bias RMSE | Bias RMSE | Bias RMSE| Bias RMSE
Al: By .003 142 .002 179 | .002 .179 | .004  .178
By .003 149 .006 184 | .004 .182 | .004  .182

By | -.002 149 | -.007 186 | -.006 .185 | -.007 .183

||8]I* .004 254 .009 316 | .007 .315 | .009  .313

A2: By | -.003 136 .000 .090 | -.000 .089 |-.000 .089
By | -.0135 230 | -.006 218 | -.010 .218 | -.010 .218

B .002 142 | -.001 095 | -.001 .092 |-001 .092

18| 014 .303 .007 254 | .010 .253 | .010 .253

A3: By .022 167 .018 108 | .025 .107 | .023  .107
By | -1.00 228 .005 215 | .003  .214 | .002 .215

B .001 .150 .005 105 | .007 .104 | .007  .105

el .022 .320 .019 263 | .026 .261 | .024  .262

Ad: By | -.001 174 .007 2102 | .010 .2181| .008 .2171
By | -.016 313 | -.011 375 | -.021 .396 | -.021 .394

By | -.100 14.6 077 18.4 | .014 7.41 | .049 7.40

18| 101 14.6 .078 185 | .027 7.42 | .054 7.41

B5: By 16.0 505 .001 251 | .004 .248 | .003  .248
By | -3.31 119 .015 264 | .020 .265 | .020 .265

By | -2.191 630 .000 256 | .003 .258 | .001  .258

18| 26.0 817 .015 445 | 021 445 | .020  .445

B6: By | -.908 296 | -1.02 274 | .071 228 | .083 2.28
B 2.00 37.6 3.21 68.4 | .058 2.38 | .069 2.39

By 1.64 59.3 2.59 91.8 |-101 2.30 | -.089 2.29

18| 2.73 76.2 4.25 118 | .136 4.02 | .139  4.02

B7: Bo -127 3289 | -.010 7.85 | -.008 3.16 | -.028 3.17
By | -81.4 237 .130 11.2 | -086 3.80 | -.086 3.823

By | -31.0 1484 | -314 12.0 | -.021 3.606| -.009 3.630

18| 154 4312 .340 18.2 | .089 6.12 | .091 6.15

BS: By | <—1019 >10% | <-10° >10 | 312 567 | .307 5.67
By | >1019  >10"% | >10° >10 | .782 540 | .863 5.46

By | < =101 >10 | < —-10° >10' | 696 552 | .696 5.55

8| | >10° >101°| >101° >10'°)| 1.09 958 | 1.15 9.63

C9: By .005 279 .001 .308 | .003 .309 | .004 .311
By | -.002 163 | -.005 201 | -.004 .200 |-.005 .199

B .001 165 | -.004 204 | .003 .198 | .002  .198

13| .006 .363 .007 420 | .006  .418 | .006  .419

C10: By | -.013 284 | -.010 315 | -.015 .314 | -.014 .314
By | -.009 182 | -.009 220 | -.011 .218 | -.011 .219

By .008 .189 011 222 | .007 .215 | .007 .215

18| .018 .387 .018 444 | 020 439 | .019  .439

C11: By .070 1.23 | -.026 308 | .058 1.26 | .053 1.27
By | -.000 .268 .005 214 | -.005 .351 | -.008 .354

B .001 273 | -.004 210 | .002  .361 |-.001 .361

18| .070 1.29 .027 430 | .059 1.36 | .054 1.37

* ||.|| stands for the euclidian norm.
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on the moments of the error term is needed for sign-basemwastis consistency. All that
matters is the behavior of their signs.

When the error term is autocorrelated (C9-C11), results aredniXVhen a moderate
linear dependence is present in the data, sign-based &sting@ave good results (C9, C10).
But when the linear dependence is stronger (C11), that is rgelanue. TheSH AC' sign-
based estimator does not give better results than the noeeted one in these selected
examples.

To conclude, sign-based estimators are robust estimatoch hess sensitive than the
LAD estimator to various debalanced schemes in the exmanatriables and to het-
eroskedasticity. They are particularly adequate when apuaiman heteroskedasticity or
nonlinear dependence is suspected in the error term, etlenefror term fails to be station-
ary. Finally, the HAC correction does not seem to increasg#rformance of the estimator.
Nevertheless, it does for tests. We show in Coudin and Duf2@@7%) that using a HAC-
corrected statistic allows for the asymptotic validity bétMonte Carlo inference method

and improves the test performance in small samples.

8. lllustrations

In this section, we go back to the two illustrations presermeCoudin and Dufour (2007)
where sign-based tests were derived, with now estimationima. The first application is
dedicated to estimate a drift on the Standard and Poor’s Csitegferice Index (§P), 1928-
1987. In the second one, we search a robust estimate of thefratconvergence between
output levels across U.S. States during the 1880-1988¢asimg Barro and Sala-i Martin
(1991) data.

8.1. Drift estimation with stochastic volatility in the error term

We estimate a constant and a drift on the Standard and Poamp@Xite Price Index (SP),
1928-1987. That process is known to involve a large amouhetdroskedasticity and have
been used by Gallant, Hsieh, and Tauchen (1997) and Valé@hbaifour (2004) to fit a
stochastic volatility model. Here, we are interested irusilestimation without modeling
the volatility in the disturbance process. The data setistss a series of 16,127 daily
observations of P, then converted in price movemenys,= 100[log(SP;) — log(SP;-1)]

and adjusted for systematic calendar effects. We considerdel involving a constant and
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a drift,
yy=a+bt+u, t=1,...,16127, (8.2)

and we allow that{u; : ¢t = 1,...,16127} exhibits stochastic volatility or nonlinear het-
eroskedasticity of unknown form. White and Breush-Pagas fesheteroskedasticity both
reject homoskedasticity af%.®

We compute both the basigF' sign-based estimator and tb&f AC' version with the
two-step method. They are compared with the LAD and OLS edém Then, we redo
a similar experiment on two subperiods: on the year 1929 (@&krvations) and the last
90 days of 1929, which roughly corresponds to the four lasttimoof 1929 (90 observa-
tions). Due to the financial crisis, one may expect data tolirevan extreme amount of
heteroskedasticity in that period of time. We wonder at Wwipoint that heteroskedasticy
can bias the subsample estimates. The Wall Street krachreddoetween October, 24th
(Black Thursdayand October, 29thBlack Tuesday Hence, the second subsample cor-
responds to the period just before the krach (Septembex)krdich period (October) and
the early beginning of the Great Depression (November armgiber). Heteroskedasticity
tests reject homoskedasticity for both subsamples.

In Table 3, we report estimates and recall #&: confidence intervals fag andb ob-
tained by the finite-sample sign-based meth&d @nd SH AC);*° and by moving block
bootstrap (LAD and OLS). The entire set of sign-based estirmas reported;.e., all the
minimizers of the sign objective function.

First, we note that the OLS estimates are importantly biasetare greatly unreliable
in the presence of heteroskedasticity. Hence, they aragpstrted for comparison sake.
Presenting the entire sets of sign-based estimators enabte compare them with the LAD
estimator. In this example, LAD and sign-based estimatiedd yery similar estimates. The
value of the LAD estimator is indeed just at the limit of théssef sign-based estimators.
This does not mean that the LAD estimator is included in thetsign-based estimators,
but, there is a sign-based estimator giving the same valtleedsAD estimate for a certain
individual component (the second component may differg)e €asy way to check this is
to compare the two objective functions evaluated at the stionates. For example, in the
90 observation sample, the sign objective function evatliat the basic sign-estimators is
4.75 x 1073, and at the LAD estimat& 10 x 10~2; the LAD objective function evaluated at

8See Coudin and Dufour (2007): White: 439\(@alue=.000) ; BP: 2781p¢value=.000).

91929: White: 24.2p-values: .000 ; BP: 126;-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,
p-values: .004; BP: 1.7¢-values: .18.

10see Coudin and Dufour (2007)
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Table 3. Constant and drift estimates.

Whole sample Subsamples
Constant parameter (a) (16120 obs) 1929 (291 obs) 1929 (90 obs)
Set of basic sign-based .062 (.160, .163)* (-.091, .142)
estimators (SF) [-.007, .105]*  [-.226, .521] [-1.453, .491
Set of 2-step sign-based .062 (.160, .163) (-.091, .142)
estimators (SHAC) [-.007, .106] [-.135, .443] [-1.030, .362]
LAD .062 163 -.091
[.008, .116] [-.130, .456] [-1.223, 1.040]
oLS -.005 224 -.522
[-.056, .046] [-.140, .588] [-1.730, .685]
Drift parameter ( b) x107° x1072 x1071
Set of basic sign-based | (-.184,-.178) (-.003, .000) (-.097, -.044)
estimators (SF) [-.676, .486] [-.330, .342] [-.240, .305]
Set of 2-step sign-based (-.184,-.178) (-.003, .000) (-.097, -.044)
estimators (SHAC) [-.699, .510] [-.260, .268] [-.204, .224]
LAD -.184 .000 -.044
[-.681,.313] [-.236, .236] [-.316, .229]
oLS .266 -.183 .010
[-.228,.761] [-.523, .156] [-.250, .270]

* Interval of admissible estimators (minimizers of the sign objective function).
** 95% confidence intervals.

the LAD estimate i210.4 and at one of the sign-based estimat&s 5. Both are close but

different.

Finally, two-step sign-based estimators and basic sigedbastimators yield the same

estimates. Only confidence intervals differ. Both methodsirdeed expected to give dif-

ferent results especially in the presence of linear deparede

8.2. Arrobust sign-based estimate gf-convergence across US States.

One field suffering from both a small number of observatiomd possibly very heteroge-
neous data is cross-sectional regional data sets. Leastesgmethods may be misleading
because a few outlying observations may drastically infteeghe estimates. Robust meth-
ods are greatly needed in such cases. Sign-based estimaoobust (in a statistical sense)
and are naturally associated with a finite-sample inferetceéhe following, we examine
sign-based estimates of the ratedatonvergence between output levels across U.S. States
between 1880 and 1988 using Barro and Sala-i Martin (1994) dat

In the neoclassical growth model, Barro and Sala-i MartirB(d3estimated the rate of

(-convergence between levels of per capita output acrodd.®eStates for different time
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periods between 1880 and 1988. They used nonlinear leaastesjio estimate equations of
the form

(1/T)In(yi,o/yi,e-1) = a — [In(y;,—7)] x [(1 — e P)/T] + 20 + €7

i=1,...,48, T =8, 10 0r20, t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980,
1988. Their basic equatiordoes not include any other variables but they also consider a
specification with regional dummiekdq. with reg. dun). Thebasic equatiorassumes that
the 48 States share a common per capita level of personahaeb steady state while the
second specification allows for regional differences iagyestate levels. Their regressions
involve 48 observations and are run for each 20-year or Hd-geriod between 1880 and
1988. Their results suggestiaconvergence at a rate somewhat abtf¥ea year but their es-
timates are not stable across subperiods, and vary greathy-f0149 to .0431 (for thieasic
equation. This instability is expected because of the successidroables and growth pe-
riods in the last century. However, they may also be due toqoder observations behaving
like outliers and influencing the least squares estimatesurdey of potential data problem

is performed and regression diagnostics are summarizeabile #. It suggests the presence
of highly influential observations in all the periods but oaitliers are clearly identified in
periods 1900-1920, 1940-1950, 1950-1960, 1970-1980 af@-1988. These two effects

Table 4. Summary of regression diagnostics.

Period Heterosked.* Nonnormality** Influent. obs.**  Possible outliers**
Basiceq. EqQReg. Dum.
1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breush-Pagan tests for heteroskedasticity are perforrhatllebst one test rejects at
5% homoskedasticity, a "yes" is reported in the table, else a "-" is reporteen wdsts are both
nonconclusive.

** Scatter plots, kernel density, leverage analysis, studendized ataidized residuals 3, DFbeta
and Cooks distance have been performed and lead to suspicions fasrnuality, outlier or high
influential observation presence.
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are probably combined. We wonder which part of that varighi$ really due to business
cycles and which part is only due to the nonrobustness df $ggmres methods. Further, we
would like to have a stable estimate of the rate of convergansteady state. For this, we
use robust sign-based estimation with (3, (X’'X)~"). We consider the following linear

equation: . T
(1/T) In(ys,¢/yi,1—7) = a + y[In(y;,—7)] + ;0 + € (8.3)

wherez;'s contain regional dummies when included, and we computdgds-Lehmann
estimate for3 = —(1/7) In(yT + 1) for both specifications. We also provi®é%-level
projection-based CI, asymptotic Cl and projection-basedlue functions for the parameter
of interest. Results are presented in Table 5 where Barro aladi $&rtin (1991) NLLS

results are reported. Sign estimates are more stable taahdquares ones. They vary

Table 5. Regressions for personal income across U.S. Si8i&3;1988.

Period Basic equation Equation with regional dummies
5SIGN ,BNLLS *okok ,BSIGN ﬁNLLS sk
1880-1900 .0012 .0101 .0016 .0224
[-.0068, .0123Ff [.0058, .0532f* [-.0123,.0211] [.0146, .0302]
1900-1920 .0184 .0218 .0163 .0209
[.0092,.0313] [.0155,.0281] [-.0088,.1063] [.0086,.0332]
1920-1930 -.0147 -.0149 -.0002 -.0122
[-.0301, .0018] [-.0249, -.0049] [-.0463,.0389] [-.0267,.0023]
1930-1940 .0130 .0141 .0152 .0127
[.0043, .0234] [.0082,.0200] [-.0189,.0582] [.0027,.0227]
1940-1950 .0364 .0431 .0174 .0373
[.0291, .0602] [.0372, .0490] [.0083,.0620] [.0314,.0432]
1950-1960 .0195 .0190 .0140 .0202
[.0084, .0352] [.0121,.0259] [-.0044,.0510] [.0100,.0304]
1960-1970 .0289 .0246 .0230 .0131
[.0099, .0377] [.0170,.0322] [-.0112,.0431] [.0047,.0215]
1970-1980 .0181 .0198 0172 .0119
[.0021, .0346] [-.0315,.0195] [-.0131,.0739] [-.0273,.0173]
1980-1988 -.0081 -.0060 -.0059 -.0050
[-.0552, .0503] (.0130) [-.0472,.1344] (.0114)

* Projection-base®5% ClI.
** Asymptotic 95% CI.
*** Columns 2 and 4 are taken from Barro and Sala-i Martin (1991).

betweerj—.0147,.0364] whereas least squares estimates vary betj{we@n49, .0431]. This
suggests that at leak2% of the least squares estimates variability between suibgseare
only due to the nonrobustness of least squares methods! ¢asas but two, sign-based
estimates are lower (in absolute values) than the NLLS dBessequently, we incline to a
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lower value of the stable rate of convergence.

In graphics 6(a)-8(f) [see Appendix A.1], projection-b@gpevalue functions and optimal
concentrated sign-statistics are presented for basit equatiorover the period 1880-1988.
The optimal concentrated sign-based statistic reportsihanal value ofDg for a giveng
(letting a varying). The projection-basedvalue function is the maximal simulateevalue
for a given( over admissible values af Those functions enable us to perform testsion
95% projection based confidence intervals fopresented in Table 5 are obtained by cutting
the p-value function with thep = .05 line. The sign estimate reaches the highesalue.
Remark that contrary to asymptotic methods, the estimataotiait the middle point of any
confidence interval. Besides, tharalue function gives some hint on the degree of precision.
The g parameter seems precisely estimated in the period 30-éQ@fsg@hic 7(b)], whereas
in the period 80-88, the same parameter is less precisaast and the-value function

leads to a wider confidence intervals [see graphic 8(f)].

9. Conclusion

In this paper, we introduce inference tools that can be #&ssacwith the Monte Carlo
based system presented in Coudin and Dufour (2007)p4tvedue function (and its indi-
vidual projected versions) which gives a visual summaryliaha inference available on a
particular parameter, and Hodges-Lehmann-type signdbesttmators. The-value func-
tion associates to each value of the parameter the degreenfiience one may have in
that particular value. It extends the confidence distrduttoncept to multidimensional
parameters and relies on a reinterpretation of the Fishecifitidistributions. The para-
meter values the less rejected by tests (given the samgleatéan and the sample size)
constitute Hodges-Lehmann sign-based estimators. Thsiseators are associated with
the highestp-value. Hence, they are derived without referring to aswtiptconditions
through the analogy principle. However, they turn out to Qaeiealent (in probability) to
usual GMM estimators based on signs. We then present gepreyadrties of sign-based
estimators (invariance, median unbiasedness) and thetiomsdunder which consistency
and asymptotic normality hold. In particular, we show thghsbased estimators do require
less assumptions on moment existence of the disturbanaesiual LAD asymptotic the-
ory. Simulation studies indicate that the proposed estirsatre accurate in classical setups

and more reliable than usual methods (LS, LAD) when arhjitheterogeneity or nonlinear
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dependence is present in the error term even in cases thatanag LAD or OLS consis-
tency failure. Despite the programming complexity of sigased methods, we recommend
combining sign-based estimators to the Monte Carlo sigedasethod of inference when
an amount of heteroskedasticity is suspected in the datavhad the number of available
observations is small. We present two illustrative appilices of such cases. In the first one,
we estimate a drift parameter on the Standard and Poor’s Caitagerice Index, using the
1928-1987 period and various shorter subperiods. In thenskene, we provide robust es-
timates for the3-convergence between the levels of per capita personaneacross U.S.
States occurred between 1880 and 1988.

Appendix

A. Proofs

Proof of Proposition 4.1 We show that the set&/1 and M2 are equal with probability
one. First, we show that i € M2 then it belongs tal/1. Second, we show that if does
not belong tal/2, neither it belongs ta/1.

If 3 € M2 then, )
Ds(8) < Ds(B), VB € R, (A.1)

hence R
Ps[Ds(B) < Ds(B)] =1, VB eR? (A.2)

and 3 maximizes thep-value. Conversely, iﬁ does not belong td/1, there is a non
negligible Borel set, sayi, such thatDs(/3) < Dg(3) on A for someg3. Then, asF(z), the
distribution function ofDg is an increasing function andl is non negligible, and sinck is
independent of (Assumption 4.1),

F(Ds(B)) < F(Ds(3)). (A3)

Finally, equation A.3 can be written in termsavalues
p(8) > p(B), (A.4)
which implies that3 does not belong td/2. O

Proof of Proposition 5.2 Consider@(y,X, u) the solution of problem (4.4) which is as-
sumed to be unique, lgt, be the true value of the paramete¢and suppose that ~ —u.
Equation (5.12) implies that

~ A

Blu, X,u) = —p(—u, X, u)
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where both problems are assumed to have a single solutiomcetieonditional onX, we

have u o~ —u = Bu, X,u) ~ —B(—u, X,u) = Med(B(u, X,u)) = 0. (A.5)
Moreover, equation (5.13) implies that
Bly, X,u) = Bly — X8y, X, u) + By
= B(u, X, u) + B, (A.6)
Finally, (A.5) and (A.6) entaiMed(3(y, X, u) — 3,) = 0. O

Proof of Theorem 6.1 We consider the stochastic procégs= {W; = (v, z}) : 2 —
RP™},_, 5 . defined on the probability spa¢e, F, P). We denote

(W, 8) = (Qtl(Wt, B, aqtp(Wta 5))/
= (S(yt — i), ., 8(yr — x;ﬂ)xtp)/, t=1,...,n.

The proof of consistency follows four classical steps. tFikS ", ¢:(W;, 3) — Elg: (W, 8)]

is shown to converge in probability to zero for alke © (pointwise convergencg Second,
that convergence is extended tawaak uniform convergence Third, we adapt to our setup
the consistency theorenof extremum estimators of Newey and McFadden (1994). Fourth
consistency is entailed by tloptimum uniquenessthat results from the identification con-
ditions.

Pointwise convergence The mixing property 6.1 ofl” is exported to{ g.x(W;, 5), k =
1,...,ph=12... HenceVp € O, Vk = 1,....p, {qu(Ws, 5)} is ana—mixing process
of sizer/(1 — r). Moreover, condition 6.2 entailg|q;,(W;, 3)|"*° < oo for somes > 0,
forallt € N, £k = 1,...,p. Hence, we can apply Corollary 3.48 of White (2001) to
{qu(Wy, B) Y10, It follows V3 € O,

1 n
E Zth(Wtaﬁ) - E[th(Whﬁ)] A 0 k= 17 By 2
t=1

Uniform Convergence We check conditions Al, A6, B1, B2 of Andrews (1987)’s generic
weak law of large numbers (GWLLN). A1 and B1 are our conditior &d 6.1. Then,
Andrews defines

qg(leﬁap) = . sup qzk(VVZaB>7
BEB(B,p)

qri(Wi, B,p) = inf  qu(Wi, 8),
BeB(B.p)

where B((3, p) is the open ball around of radius p. His condition B2 requires that
at (Wi, B, p), qra(We, B, p) and g, (W) are random variables? (., 3, p), qu(., 8, p) are
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measurable functions frorfY2, P, F) to (R, B), Vt, § € O, p, whereB is the Borelo-
algebra orR and finally, thatsup Eq;,(W;)¢ < oo with ¢ > r. Those points are derived
from the mixing condition 6.1tand condition 6.2 which insuireeasurability and provides
bounded arguments.
The last condition (A6) to check requires the following: Lebe ac-finite measure that
dominates each one of the marginal distributiondigf ¢t = 1,2.... Let p;,(w) be the
density of W, w.r.t. pu, qu(Wy, B)p:(W;) is continuous in3 at 5 = * uniformly in ¢ a.e.
w.rt. u, for eachg™ € 6, qu(W,, () is measurable w.r.t. the Borel measure for each
and each3 € O, and [ sup,~q gco |qu(W, B)|p(w)du(w) < co. As u, is continuously
distributed uniformly int [Assumption 6.4 (2)], we havé;[u; = z,5] = 0, ¥, uniformly
in t. Then,q. is continuous in3 everywhere except on &-negligeable set. Finally, since
qu 1S L1-bounded and uniformly integrable, condition A6 holds.

The generic law of large numbers (GWLLN) implies:

I : : .
@ - E E[¢:(Wy, )] is continuous or® uniformly overn > 1,
n
=0

1 n
(b)  sup |~
peo | Mz

asn — oo in probability underP.

Qt(Wta ﬂ) - EQt(Wta 5) — 0
0

The Consistency Theoremconsists in an extension of Theorem 2.1 of Newey and Mc-
Fadden (1994) on extremum estimators. The steps of the preadhe same but the limit
problem slightly differs. For simplicity, the true valueteken to be 0. First, the generic law
of large numbers entails that

1 . .
lim —> " E[s(u; — x,8)x] is continuous om®, k = 1,...,p. (A7)
n—oo N
t
Let us define i 1]
Qn(ﬁ):_ Zxkts(ut_-r;ﬁ) s kzla--'ap>
1” =1

QM (B) =~ 3 Blows(u — mf)]| k=1,....p.
t=1
We consider{,},>1 a sequence of minimizers of the objective function of the-non

weighted sign-based estimator

5 (Z sy — x;m) =D QAP

k
Then foralle > 0, > 0 andn > N,, we have:

P> QEBIP <D QL0 +¢/3| =156 (A.8)
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Uniform weak convergence @f* to Q% at 3, implies:

[QEF(B))? < [Q%(8,)]*+¢/3p, k =1,...,p, with probability approaching one as— oo,

(A.9)
hence,
D QB < D [Q(B,))* + ¢/3, with probability approaching one as— oo.
k k
(A.10)

With the same argument, &t= 0

D [QE0)? < ) [QFF(0))* + €/3, with probability approaching one as— oo. (A.11)
k k
Using (A. 10) (A 8) and (A. 11) in turn, this entails

> QB < Z [QE*(0)] + ¢, with probability approaching one as— co. (A.12)
k
This holds for anye, with probability approaching one. L& be any open subset &f

containing 0. A9 N N°¢ is compact andim,, Zk[Q*’“(ﬁ)P is continuous (A.7),
36" € ©N N°such that sup hmz [QE*(3)]? = lim Z[Qf’“(ﬁ ))?
k

BeONNe T

Provided thab is the unique minimizer, we have.
lim » "[QFF(3%)]* > lim > "[Q#*(0)]?, with probability one.
k k

Hence, setting 1 i Bk a%\12

k
it follows that, with probability close to one,

hmz [QEF(B,))? < = [hmz [QEF(39)]* + liTan Z[ka(())P] < sup hmz (QEx(3
k

BEONNe T
Hence,3, € N. As this holds for any open subS§tof © we conclude on the convergence
of 3, to 0.

Foridentification, the uniqueness of the minimizer of the sign-objective fiomcis insured
by the set of identification conditions 2.1, 6.5, 6.4, 6.6e3é conditions and consequently
the proof, are close to those of Weiss (1991) and Fitzenb€f@97) for the LAD and
guantile estimators. We wish to show that the limit problesasinot admit another solution.
When(2,(3) defines a norm for each (condition 6.6), this assertion is equivalent to

lim F
n—oo P

lZS(U—xté) ]_0;»5_0 5 € RP, (A.13)
n
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—0=6=0, § € R". (A.14)
n
t

Let A(0) = E[= ", s(ug — 2}0)x¢|x1, . .., x,). Then,

1 1
- % s(uy — x40z | = F {E - % s(ug — 2y0) 3|2y, - . . ,xn] } :
Note that

) 1 x}6 x}6
E[S(ut_‘rt(5>’$17"'7xn] =2 [5 _/ ft(U|I’1,...,J}n>dU] = _2/ ft(u‘xlu"wxn)du]
—00 0

and 1
lim |F |— Z s(uy — x;0) ;o

E[A()] = E

HenceA (o) can be developed far > 0 as

/
16

2 , '
A(9) = Ezﬂﬂﬁ{fﬂm;am} [f{z;5>o}/ —fe(ulzy, ..., 20)du
0

0
+I{$;5§0} ft(u|x1, e ,an)du]

!
30

/

10
+1{jays1<7) [f{z;5>o}/ —filulzy, ... z,)du
0
0
+I{m;5§0} / ft(u\xl, Ce ,mn)du .
)

) x40
E[A(0)] = E{szﬁ [I{|x;5|>7} (I{x;5>o}/ —filulzy, ..o zn)du
0
0
+1(25<0) / fe(ulzy, ... 2n)du
x;0

;0
+I{|m;5|§7}<1{125>0} / —ft(U|CU1, s 7$n)du
0

0
+ ]{xg(ggo}/ fe(ulzy, ... ,xn)du)] } )
x}6

Remark that each term in this sum is negative. Her€B[A(d)]) < 0 and|E[A(d)]| =
—E[A(0)], and

[EA)] = E

2 x4}
E Z ngdl{\zéébr} <[{z§(5>0} / ft('Lb|.Z'1, e 7xn)du
0

0
—[{x;(ggo} / ft(U|SC1, e ,xn)du)]
x}6

+EB

!/
i

2
" Z 95;5]{\93;557} <I{x;5>o} fe(ulzy, ... 2n)du
0
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0
—]{xQESO} / ft(u|x1, c. ,[L’n)dU)]
x}6

2 z}8
> b EZ[{\Z@DT} <$25[{z;5>0} ; felulzy, .. xn)du
0
— 2301 (41 5<0) / felu|zy, ... x,)du (A.15)
x}6
9 x}6
> F EZI{IWDT} $Q5I{z;5>o}/0 Je(ulzy, ... 2n)du
0
- 95;5]{332550}/ felulzy, o xp)du [fi(O]zy, ... 20) > filpr ¢ (A16)
z}8
2
> mE {ﬁ ZI{|z;5\>T}Tde|ft(0|$1, oy Ty) > fL} , (A.17)
2
> TpldeEZPH(L’;ﬂ > 7| f(0)2, ... xn) > fL)]. (A.18)

To obtain inequation (A.15), just remark that each term stp@. For the inequation (A.16)
we use condition 6.4. For inequation (A.17) we minorat@| by = and each integrals by
frdy whered; = min(7,d/2). Condition 6.5 enables us to conclude, by taking the limit,

lim |E[A(d)]| > 27p1 fr.d x liminf P[] > 7|f;(0]x1, ..., 2,) > fr] >0, Vo >(®.19)

hence, we conclude on the uniqueness of the minimum, whichtk&last step to insure

consistency of the sign-based estimators. O

Proof of Theorem 6.2 We prove Theoreng.2 on asymptotic normality. We consider the
sign-based estimat@(((}n) wheref?,, stands for any x p positive definite matrix. We apply
Theorem 7.2 of Newey and McFadden (1994), which allows td déh noncontinuous
and nondifferentiable objective functions for fintte Thus, we stand out from usual proofs
of asymptotic normality for the LAD or the quantile estimatofor which the objective
function is at least continuous. In our case, only the linbjeative function is continuous
(see the consistency proof). The proof is separated in twis.pRirst, we show thak(3)

as defined in equation (6.17) is the derivativeliaf, .. £ >, E[s(u; — /(8 — 3,))x:].
Then, we check the conditions for applying Theorem 7.2 of &eMcFadden.
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The consistency proof (generic law of large numbers) insptheit

% > E[s(u — 24(8 - By)) ] (A.20)
t=0
is continuous or® uniformly overn. Moreover condition 6.2 specifies that is L2+
bounded. As theg;(\|zy,...,z,) are bounded byf; uniformly overn and A (condition
6.8), dominated convergence allows us to write that
%E[xts(ut — (8= Bo))] = Elae,fy (205 Bo)lers s 2a)]. (A21)
And, these conditions imply that

La(0) = S Blrat (0 — o)l -, 0)] (A.22)

converges uniformly inf to L(;3). Uniform convergence entails thiat,, = >7" | E[s(u;, —
2, (B — By))x,] is differentiable with derivative.(53).

We now apply Theorem 7.2 of Newey and McFadden (1994) whiekgnmts asymptotic
normality of a minimum distance consistent estimator witimgmooth objective function
and weight matrix2,, = 2 symmetric positive definite. Thus, under conditions forsien
tency (2.1, 6.1-6.6), we have to check that the followingditons hold:

(i) zerois attained at the limit by,;

(i) the limiting objective function is differentiable &t, with derivative L(3,) such that
L(8,)2L(8,)" is nonsingular;

(i) B, is an interior point 0P,
(V) vnQn(By) — N(0,J)
(v) foranyé, — 0, supjs_g, | vol|@n(8) = Qu(Bo) = EQ(A)||/ (1 +/nl|8 = Boll) = 0

Condition (i) is fulfilled by the moment condition 2.1. Condtti (i) is fulfilled by the first
part of our proof and condition 6.10. Then, Condition (iii)imsplied by 6.3. Using the
mixing specification 6.9 ofu,, X;}.—1 2. and conditions 2.1, 6.2, 6.7 and 6.11, we apply
a White-Domowitz central limit theorem [see White (2001), dtem 5.20]. This fulfills
condition (iv) of Theorem 7.2 in Newey and McFadden (1994):

Vi d 2 Qu(B) — N(0,1,) (A.23)
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where J,, = var \%Z?s(ui)xi]. Finally, condition (v) can be viewed as a stochastic
equicontinuity condition and is easily derived from thefann convergence [see McFadden
remarks on condition (v)]. Hencé(fzn) is asymptotically normal

VS (B(824) = Bo) — N0, L),
The asymptotic covariance matrikis given by the limit of

Sy = [Ln(ﬁo)gn(ﬁo)Ln(ﬂo)]_an(ﬁo)Qn(ﬁo)JnQn(50)Ln(50) [Ln(ﬁo)gn(ﬁo)[/n(ﬁo)]_l-

When choosing?, = jn‘l a consistent estimator of; !, S,, can be simplified:

VS (B0 = By) = N0, 1)

with .- .
When the mediangale Assumption (2.2) holds, we find usualtsesno sign-based estima-

tors. 3(I,) and3[(X’X)~!] are asymptotically normal with asymptotic covariance imatr
1

lim S, = lim 2 [, B (2,2, f,(01X)] ™" E(za}) [, B (x2) f,(01X)] 7

n—oo n—oo

A.1l. Detailed empirical results: concentrated statistic and projeted
p-value graphics

This appendix contains graphics of concentrated signebstsgistics and projectedvalues
for the 3 parameter in the Barro and Sala-i-Martin application.
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Figure 5. Concentrated statistiZ% and projegtedlues (1880-1930)
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