INSTITUT NATIONAL DE LA STATISTIQUE ET DES ETUDES ECONOMIQUES
Série des Documents de Travail du CREST
(Centre de Recherche en Economie et Statistique)

n°® 2008-30

A Note on Sampling and
Estimation in the Presence
of Cut-Off Sampling

D. HAZIZA: - G. CHAUVET:
J-C. DEVILLE:

Les documents de travail ne refletent pas la position de I'INSEE et n'engagent que
leurs auteurs.

Working papers do not reflect the position of INSEE but only the views of the authors.

1 Université de Montréal, Département de Mathématiques et de Statistique, Montréal, Québec H3C 3J7, Canada.
david.haziza@umontreal.ca

2 CREST-ENSAI, Laboratoire de Statistique d’Enquéte, Campus de Ker Lann, 35170 Bruz, France.
chauvet@ensai.fr

3 CREST-ENSAI, Laboratoire de Statistique d’Enquéte, Campus de Ker Lann, 35170 Bruz, France.
deville@ensai.fr




A NOTE ON SAMPLING AND ESTIMATION IN THE PRESENCE OF
CUT-OFF SAMPLING

David Haziza, Guillaume Chauvet and Jean-ClaudellBév
12 décembre 2008

Résumé
L’échantillonnage de type cut-off consiste a exeldélibérément de la sélection une partie desgynité
par exemple si la contribution au total des unéédues est faible et si I'inclusion de ces unitéas
I'échantillon implique des colts importants. Si kractéristiques des unités exclues different de
celles des unités dans I'ensemble de la populétietiée, I'utilisation d’estimateurs naifs peut den
lieu & des estimations séverement biaisées. Dahsartiele, nous discutons de [I'utilisation
d’'information auxiliaire afin de réduire le biai® chon-réponse par des techniques de calage ou
d’échantillonnage équilibré. Nous montrons queillagtion d’information auxiliaire liée a la varik
d’'intérét, et d'information auxiliaire liée a lagiabilité de réponse, permet de réduire fortement |
biais d'estimation. Une courte étude par simulaiest également proposée.
Mots-clés: Biais sous le plan ; Biais sous le modéle ; @alaEchantillonnage de type cut-off ;

Echantillonnage équilibré ; Information Auxiliaire.

Abstract
Cut-off sampling consists of deliberately excludaget of units from possible samples selection, fo
example if the contribution of the excluded undgtte total is small and if the inclusion of thesgts
in the sample selection involves high costs. If¢haracteristics of the excluded units differ frorat
of the population under study, the use of naivienasors may result in strongly biased estimatidms.
this paper, we discuss the use of auxiliary infdromato reduce the non-response bias by means of
calibration or balanced sampling techniques. Itésnonstrated that the use of both the available
auxiliary information related to the variable oftdérest and of the available auxiliary information
related to the probability of response enablesrtmgly reduce the estimation bias. A short nunaric
study supports our findings.
Keywords : Auxiliary information; Balanced sampling; Calétion; Cut-off sampling; Design

bias; Model bias.
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1. INTRODUCTION

Cut-off sampling, which consists of deliberatelykxiing a set of units from possible sample
selection, is frequently used in business survélgs. small businesses are often grouped into
take-none strata and are thus excluded from pess#rhple selection. The contribution to the
overall total of the excluded units is typically &lin Another example of cut-off sampling
occurs in the context of tax data for unincorpatabeisinesses at Statistics Canada. The
unincorporated Canadian businesses may declarefithencial statement either on paper or
electronically (e.g., using internet). The busiessghat use a paper format are called the
paper-filers or p-filers, whereas the ones thatosbothe electronic format are called the
electronic-filers or e-filers. A little bit more &m half of the businesses (52%) belongs the
population ofe-filers (see Fecteau and Jocelyn, 2005). The ptipulander studyy of size

N, can thus be partitioned into two strata: thetatode-filers, U, of size N¢, and the strata
of p-filers, U, of size N,. We haveU =U_UU_, and N = N; + N,. Fecteau and Jocelyn

(2005) mention that the populations of e-filers gnfllers have different characteristics.
Indeed, the businesses using a paper format aieliyplarger in size than the one using an

electronic format and thus have a larger income {sble 1).

The goal is to produce estimates for totalsli(e.g., gross and net income) based on a sample
of businesses. However, due to high costs of ceoingedata collected on paper to an
electronic format, the p-filers are deliberatelycleded from a possible selection in the
sample and the resulting estimates are based amples selected in the strata of e-filers only.
Thus, this sampling procedure can be viewed azaapase of cut-off sampling. The main
concern is that, since the two populations diffethwespect to several characteristics of

interest, the use of naive estimators may poténtedd to misleading results.



Auxiliary information plays an important role in rseys because it allows the survey
statistician to use more efficient sampling andnestion procedures and can be used to
reduce nonsampling errors. We distinguish betwegnsets of auxiliary variables: the first
set is the set of design variables, we assume avékable for all the units in the population
at the design stage. The design variables areatypiased to stratify the population. Also,
we assume that, at the estimation stage, a seaixifaay variables (often called calibration
variables), is available for all the sampled uaitsl that the population total for each variable
is known. Note that the two sets of auxiliary abies are not necessarily disjoint so a given

auxiliary variable can be used at both stages ddemnd estimation).

In order to reduce the bias due to the exclusiothefp-filers from the sample, we consider
two well known techniques that both use some amotiatxiliary information: (i) balanced
sampling and (ii) calibration. One advantage ofbcation over balanced sampling is that
calibration can use both types of auxiliary vamabl(design and calibration variables),
whereas balanced sampling requires the auxiliangbigs to be available for all the units in
the population. In practice, it might be wisedelect a sample balanced on the design
variables and to use calibration to satisfy contaihls corresponding to the calibration
variables and/or design variables. Although theltegpresented in this paper are derived in
the context of the e-filers and p-filers, they danapplied to any type of cut-off sampling

conducted under the same conditions.

In this paper, we are interested in estimating gbpulation totaI,Y=Z y, of a given
iy

variable of interesy. Note thatY may be expressed &= Y. + Y,, where Y, = Z y and

iU



Y, = Z Y. To that end, we select a random samglg, of size n., according to a given
iU,

design pz(.) from U.. Let d =1/77 be the design weight attached to unitwhere
7 =P(i0s.) is the first-order inclusion probability of uriitin the samples.. Note that

7. =0 forall iOU,. As aresult, itis well known that a design-urisieid estimator oY does

not exist.

A basic estimator o¥ is the so-called Hajek estimator given by

Yin = N¥, (1.1)

<>

where y. =& with (\?E, NE):Z d(y.]) . The design-bias ofY,, in (1.1) can be

NE iOsg

approximated by

B, (YHA) = Es( YHA) - Y= NP( _ﬁ_ _¥)’ (1.2)
where Y, :;—E andY, :% denote the population mean of thgalues for the e-filers and
E P

p-filers, respectively, an(ﬂES(.) denotes the expectation with respect to samplihg.bias in

(1.2) is equal to 0 ifN, =0, which occurs wherlJ, =0 or when Y. =Y,. These two

conditions are not satisfied in practice sincegbpulation of p-filers represent approximately

48% of the population and since the two populatiahiffer with respect to several
characteristics such &ross incomgsee Table 1). Therefore, the Hajek estimaftgrmay
be considerably biased whefi is significantly different thary,. Note that Y. =Y, when

the variable of interestis not related to the variable to the efiler/pfiledicator variable. In

general however, alternative strategies are neadédre presented in sections 2 and 3.



The paper is organized as follows: in Section 2, present three classes of calibration
estimators that use the auxiliary information aafalié at the estimation stage. We study their
properties in terms of bias. Balanced sampling asean to reduce the bias of the Hajek
estimator is presented. We consider two versiondbaldnced sampling and discuss the
properties of the resulting estimators. In Seclonve conduct a limited simulation study to

investigate on the performance of the proposednastirs in terms of bias and mean square

error. Finally, we conclude in section 5.

Table 1 Mean income of the businesses by type of format

Business Gross mean income Net mean income
Electronic 261819 % 11712 %
Paper 694 587 $ 14021 $

2. CALIBRATION ESTIMATORS

In this section, we study the use of auxiliary mfi@tion through calibration for reducing the
bias. We consider three classes of calibrationmedtirs, which are presented in sections 2.1-

2.3.

2.1 Direct calibration
Suppose that a vector gfauxiliary variablesx = (xlxq) is available for all the units in the

samples. and that the vector of population total6= in, Is known. We assume that the
iy

relationship between the variable of intengsind the vector of auxiliary variables may be
described according to the following model

m:y =xB+e, (2.1)



such thatE, (&) =0, E,(£¢,)=0, ifi# j and V,(&)=0%, where p is ag-vector of
unknown parametersy” is an unknown parameteg,is a known constant an&,,(.) and

Vm(.) denote the expectation and the variance with rédpebe model (2.1). We assume that

¢ =a'x,, wherea is ag-vector of specified constants.

A first set of estimators can be obtained via dicadibration which consists of finding a set

of new weightsw, =d,F(c,"A'x,), so that the calibration equation

W, X, =X (2.2)

iOsg

Is satisfied, wheré. is a vector of Lagrange multipliers aR¢) is the so-called calibration
function. Several calibration functiorfs(.) can be used ; see Deville (2002) and Le Guennec
and Sautory (2002). Two such options Fdr) are : (i) the linear functionf(u) =1+u,
which corresponds to the generalized chi-squareamtie and (ii) the exponential function,
F(u)=¢€', which corresponds to the raking ratio distancecepx for the linear case for

which we can obtain an explicit solution, the Newf®aphson algorithm is needed for

solving (2.2) for generak (.) . The resulting calibration estimatorbfs given by

Yo =D d F(G'A%) Y. 3.

isg
A special case of (2.3) is obtained under the lideaction F(u) =1+ u, which leads to the

generalized regression estimator

Yo=Y wy, (2.4)

where

W :q{1+ q‘l(X—)A(E)"I:E'ﬁ(i} (2.5)



with 'fE = Zdiq']xixi’ andt, = Zdic;']xi y. Note that the Hajek estimator given by (1.1) is a

iOsg iOsg

special case of (2.4) witk, =1 andc, =1.

The asymptotic design-bias ti?(fs in (2.4) is given by

Bs(?G)E Es( AYG)_ Y:_Z( y-xB E)' (2.6)

iUp
-1
where BE:{Zc“lxixi’} Zq*)gy denotes the census coefficient of regression
iU g iU g

corresponding to the population of e-filers. Thegnagtotic design-bias o‘?G in (2.6) is small

if the residuals E :(yi—xi'%) corresponding to the p-filers are small, whichtumns
suggests that the model (2.1) holds for the pdileDn the other hand?G is asymptotically
smunbiased under the model (2.1). ThatEr'@Em(\?G— Y) = 0. However, since ng-value is

observed for the p-filers, validating the model n@gve to be difficult. To illustrate the
difficulty, we consider the following example. Suge that the model that holds for the e-
filers is obtained from (2.1) by replacirgy by p. whereas the model that holds for the p-
filers is obtained from (2.1) by replacing by B.. In this case, the estimat(f)?G is

asymptoticallysmbiased and the asymptotic bias is given by
By (Vo) = X'o(B =B 1), (2.7)

where X, = in. From (2.7), it is clear that the biasfg depends on the difference pf

iUp
and p,. From the observed data, it is not possible tessthe magnitude of this difference

since noy-values is available for the p-filers. This examplastrates the problematic of

building an appropriate model. As a result, redgdhe bias may prove to be difficult. In



fact, if . andp, are considerably different, the bias\?gif may be even larger than the bias

N

of Y.

2.2 Calibration after reweighting

As discussed in section 2.1, the regression estin{at4) may present some risks when it is
not possible to validate the model at hand. Is Haction, we propose an alternative class of

calibration estimators that may be more robustias.bLeta be a binary variable such that
a =1 if uniti is an e-filer anda, =0, otherwise. We assume that is available for all the

units in the population. Also, lgh = P(a :1) be the probability that a unit is an e-filer.

In addition to the vector of auxiliary variables related to the variable of intergstby the
model (2.1), we assume that there existsvactor of auxiliary variables, related to the
probability p. We assume that the vectais available for all the units in the population.
Note that x;, #z, in general. The relationship betwegm and z; may be described
according to the following model:

&p=1(z,7), (2.8)
where f () is a given function, ang is a vector of unknown parameters. A special cdse

(2.8) is the logistic regression model given by

e
1+e

= (2.9)

Let p be the estimated probability for unigiven by

A

f-)l = f(zi77)a

where¥y is a consistent estimator ¢f (usually the maximum likelihood estimator p.



A second set of estimators can be obtained byrfqdi new set of weighta/ so that the
calibration equation

> dx Fx) =X, .12)

iOsg
whered, =d /{. The resulting calibration estimator6fs given by

Yo = 2 & F(G'2X,) Y. (2.11)

iOsg
Note that if the modek given by (2.8) contains only the intercept (i.e.=1), then the

alternative calibration estimator (2.11) reduceshi estimator (2.3). In the special case of

the linear functionfF (u) =1+ u, the estimator (2.11) reduces to

Vo= Wy, (2.12)

iOsg
wherew = d (1+ ¢t (X -X, )"IC*Eixij with T¢ = > d; g*xx; and()ACE,\?;) =>"d (%, y).

i0sg ilsg

If the assumed model (2.8) is valid (i.¢4,= p ), then the alternative regression estimari_:or

(2.12) is asymptoticallys¢ -unbiased. That isESEg(\A(g)z Y. On the other hand, if the

0

model (2.1) holds, theﬁ?G* is asymptoticallysmunbiased. That is,ESEm(\A((;—Y) 0.

Hence,\?g is doubly robust in the sense that it is validne model or the other holds. Unlike
in the case of model (2.1), the model (2.8) carlyehs validated from the values & and

z, for iU since the indicator variable, is available for all the units in the population.
Note that the estimato‘?g given by (2.12) uses all the appropriate auxilisfgprmation (x
and z) available, unlike the estimatoYAG given by (2.4) that only uses the auxiliary

information x. As a result, it is expected that the use\?;ofwill achieve an effective bias



reduction if either the modeh or the modelé holds. Another advantage 07[; over \?G is

that for surveys with multiple characteristics, tifEtimator\?G* is asymptoticallysé -unbiased

for any variable of interest as long as the probability is correctly estimated. On the other

hand, the estimato‘?G may be asymptoticallgmunbiased for the total of a given variable of

interest but not necessarily asymptoticalyunbiased for the total of another variable of

interest, as the set of auxiliary variables thatl@x the two variables may not be identical.

2.3 Generalized Calibration

A second class of estimators that makes use ofgbrs of auxiliary variables and z, is

obtained by using the so-called generalized cdldomgDeville, 1998; 2002 and Kott, 2006).

It assumes that the vectarand z are of the same dimension. One advantage of Jeresta
calibration over the calibration methods preseimteskection 2.1 and 2.2 is that it can be used
if the values of thez variables are only known for the e-filers. In fattte vectorz may
include the variable of interegtas one component, which may help in reducing ths to a
greater extent. This is illustrated in the simwlatstudy presented in section 4. We seek for a

new set of weightsy so that the calibration equation

2, dx F(G"z) =X (2.13)

iOse

Is satisfied. The resulting calibration estimatbiyes given by

A

Yea = 2 diF(c 22y, 12)

iOsg

In the special case of the linear functigi(u) =1+ u, the estimator (2.14) reduces to

Yo=Y wy, (2.15)

iOsg



wherew =d (1+ q‘l(x -X. ) 1§E"zi] with 'f'E =>d,gx,z. Note that the estimator (2.15)

iOsg

can be expressed as
Yo=Y +(X-X,) B, (2.16)

where B :'I:' t Zd G'z y. Thus, the estimated regression coefficié&t can

iOsg

be viewed as the estimated regression coefficidstaimed by fitting an instrumental
regression analysis with the vectoras the instruments. If the vectoexplains well the fact

of being an e-filer, then the estimator (2.16) xpexrted to have a small bias. The vectors

xand z have to be strongly correlated. Otherwise, the imd[l = Zci “x,z, may be close
iU

to singularity, which may result in a highly varalealibrated estimato‘?CAL. Note that when

z, = X, the estimator (2.14) reduces to the direct calibna¢stimator given by (2.3).

3. BALANCED SAMPLING

A balanced sampling design ensures that Horvitzaison estimators of the auxiliary
variables, called balancing variables, exactly mae known totals. The Horvitz-Thompson
estimator is still design-unbiased, while its vada is only given by a residual variable
associated to a regression of the variable of esteon balancing variables, and is thus
strongly reduced if these balancing variables ag# @orrelated with the variable of interest.
Deville and Tillé (2004) proposed a general aldgnitfor balanced sampling with any set of

unequal probabilities and a non-restricted numibéatancing variables

The use of auxiliary information through balancachpling for reducing the bias is discussed

in the following sections. In section 3.1, a mettioddirectly selecting a balanced sample is

10



given. In sections 3.2 and section 3.3, alternabi@@anced sampling strategies to reduce the

estimation bias are proposed.
3.1 The traditional balanced sampling

In this paragraph, a brief introduction to the Cubethod (see Deville and Tillé, 2004) is

given. We shall first assume that the stratum is empty, that is, that the sample is directly

selected in populatiok) with non zero inclusion probabilityz for unit i, and we simply

I

note s =s. Assume that the vectors of value::ﬁ:()ql,--,)gq) taken by q auxiliary

variables are known for all the units of the pofiola Recall thatX = in/ﬂi' is an unbiased
i0s

estimator ofX = > x;; that is,

i

E.(X)=x. (3.1)
A sampling design is said to be balanced on thiabkas x if the balancing equations

X =X (3.2)

are satisfied. Note that (3.2) holds exactly uniiRel) that holds on average. In the special
case ofx, =1, X and X represent the actual sample size and the expsetegple size
respectively, and condition (3.2) is equivalentitgpose a fixed sample size. In the special
case ofx, =1, X and X represent the estimated and exact populationrsgeectively and

(3.2) is equivalent to give an exact estimatiothef population size.

The Cube method proposed by Deville and Tillé (300¢bvides a general algorithm for
selecting balanced samples with predetermined sraruprobabilities. As an exact balanced
sampling design generally does not exist, thahexre may exist no sample such that equation

(3.2) holds, the objective is generally to seledample such that the balancing equations

11



(3.2) holds approximately. The Cube algorithm isstivided into two steps. In the first step,
units are sampled or definitely rejected so thathbihe inclusion probabilities and the
balancing equation are exactly respected. This €ttgps when the balancing conditions may
no more be exactly respected. The last step csensisending the sampling so that the
inclusion probabilities remain exactly respectedd ame balancing conditions remain
approximately respected. In the context of balansathpling, note that the balancing

variablesx, for all the population units prior to sampling, avbas only theX totals and the

X, values for the sampled units are needed in theegbof calibration.

3.2 The corrected balanced sampling

We now turn back to the general setting of non gnspatumuU . We assume that a vector

of gauxiliary variablesx = (xl,...,xq ) is available for all the units in the populatith (e-

filers and p-filers), and that the relationshipvibetn the variable of interest and the vector
of auxiliary variablesx may be described according to the model (2.1)uAssthat the

sample s; is selected inJ. by balanced sampling with inclusion probability for unit

i DU and balancing variables, so that the equation

5= Yy, (3.3)

i 76 100
holds. The Hajek estimatc}f’HA = Ny, given by (1.1) may then be used for estimating the

total Y, but this estimator remains design-biased. Altieracbalanced sampling strategies

are thus needed.

12



One such alternative consists in selecting a sarapley means of the Cube method, with

adequate inclusion probabilities and balancing aldeis, so that the somewhat different

balancing equations

—Zx = (3.4)

| iOsg

- — X . .
are satisfied, wher& :N denotes the overall population mean of ihevector. Condition

(3.4) may be obtained in the following way. Fideétermine a set of weightg for unitsi of

U. such that

itUg
2 W=N
iU g
O w>0

These weights may be obtained by means of caldmratiith the raking ratio method that
ensures that all calibration weights are strictipnmegative (e.g., Deville, Sarndal and

Sautory, 1993). Then, let be an integer such that
W, .
nﬁ'<1 forany iU . (3.5)

If the samples; is selected with inclusion probabilitg. = nw /N for uniti, then

S =T TN T

iOsg ” iOsg nW / N n i0sg

If the sample is balanced on variables, , the balancing equations (3.3) give

> M5 =, =x

i0sg 7T| iUg
so that condition (3.4) is fulfilled. The equati¢8.5) ensures that no inclusion probability
exceeds 1. Selecting the higher integesuch that (3.5) holds ensures that the sampleisize

maximized. An estimator of is then given by

13



Ysm = NyE (3 ' 6)

where §E :12 y, is the sample mean of. The estimator\?sm in (3.6) is called the
iOsg

corrected balanced estimator, and is asymptoticaliynbiased under the model (2.1). Note

that this estimator makes no use of the designiveig

3.3 Balanced sampling after reweighting
In this section, we propose an estimator obtaing@ Imnodified balanced sampling design,

and that may be more robust to bias. Our set-thmtsof section 2.2 .

Once again, we assume that there exists a vectauxfiary variablesz, related to the
probability p, = P( a :1). Assume thatp, may be described according to the model

Pl =H(Z 7) (3.7
for some functionH(.). We seek for estimated probabilitigs that satisfy the system of

estimating equations

PR

ioug P Do
or equivalently
D HE X =% (3.8)
iUg iU

A solution for (3.8) is obtained by using the getiged calibration technique described in

section 2.3. If the sampde is selected irJ . by means of balanced sampling with inclusion

probability 7z for uniti and balancing variableg p, an estimator oY is given by

Ye=>dy, (3.9)

iOsg

14



with d; =d,/p,. The estimatoh?,; in (3.9) is called the corrected after reweightiraganced
estimator. It is asymptoticallgé -unbiased if the model (2.9) is valid, and alsonagstptically
sir-unbiased if the model (2.1) is valid. Note thasjf is selected iJ . with probabilities

7t proportional tol/ p,, the design weights are not needed.

4. SIMULATION STUDY

We conducted a limited simulation study to testplkeormance of the procedures described
in sections 2 and 3. We first generated a finitpybation of sizeN =10000 containing 4

variables: two variables of interest and y, and two auxiliary variables;, and x,. First,
the variablesx, and x, were generated independently from a Gamma distoibuwith
parameters 2 and 5. Given the-values and thex,-values, they,-values were generated
according to the linear regression model

Vi = Bo t Bixa + BaXai +17; - (4.1)
The 7, 's were generated according to a normal distributith mean 0 and varianag®. The
model parameteis,, 5, and B, were all set to 1 and the variancé was chosen to give a

model R* (coefficient of determination) approximately equal0.7. Finally, they,-values

were generated independently from a Gamma distoibuwtith parameters 2 and 5.

The population was partitioned into the strata-fifegs and the strata of p-filers as follows:

first, probabilities were assigned to each popaitatinit according to two mechanisms:

15



Mechanisml: The populatiol was divided into four groupb4,---,U4, according to the
quartiles of they;-values. Then, we attach a probabilipy; to uniti such thatp, =0.5 if
igu,, p,=0.6ifi0U,, p,=0.7if iOU, and p, =0.8 if i0U,. The average of th@, s

was equal to 65%.

Mechanisn®2: The probabilityp,, was generated for uriccording to the model
Py = eXp(_yo yl/vl)' (4-2)
whereY, denotes the population mean of variaple The parametey, was set to 0.5. Then,

thep, 's were truncated to be included betwe@b and 08. The average of the, 's was

equal to63.5%.

Note that for both mechanisms 1 and 2, the proibalif being an e-filer depends on the

variable of interesty, but is independent of,. Finally, the e-filers indicators variables
and a,, were generated independently from Bernoulli distions with probabilityp, and
p,;, respectively leading to two different partitiorfstiee original populations. The objective
is to estimate the population totals of the vagalbf interesty, and y,, denoted byy, and

Y,, respectively.

We selectedB =1000 samples of sizen =500 according to three procedures: (i) simple
random sampling from the stratum of e-filers. Unties procedure, we computed the Hajek

estimator (HAJ) given by (1.1), the direct calilectestimator (DCAL) given by (2.4) with

x:(lxl,xz)' and the generalized calibrated estimator (GCALJegi by (2.16) with

I I

x=(Lx, %) andz=(1x,y;). (ii) Balanced sampling as described in sectich 8Ve

16



computed corrected balanced estimator (CBAL) given(3.6) with x:(L xl,xz)'. (i)

Balanced sampling as described in section 3.3. Wepated the corrected after reweighting

!

balanced estimator (CARBAL) given by (3.9) witre (L x;,%,) andz = (1%}, %) .

As a measure of bias of a point estimafoof parameterd, we used the monte carlo percent

relative bias (RB) given by

B'li(% _H)

RB, (6) =100*—= 5 ,

where 6A’(b) gives the value of the estimator for #iésample. As a measure of variance of an

estimatord, we used the monte carlo percent relative rootnsegaare error (RRMSE)

given by

RRMSE, (6) :100*\/ =

The monte carlo percent RB and RRMSE are showrabieb 2 and 3, respectively. We first
discuss the results corresponding to the varighle=or both mechanisms 1 and 2, the HAJ
estimator shows an appreciable RB (approximateB®o8for mechanism 1 and — 9% for
mechanism 2). This result is not surprising sifeeHAJ estimator does not make use of any
auxiliary information that is either related tg or to p, (for mechanism 1) and, (for
mechanism 2). As a result, the HAJ shows a larg¢MBR. For the DCAL and CBAL
estimators that use the auxiliary information tisarelated toy,, we note that the RB is

smaller than the one obtained for the HAJ estimédpproximately 2.8% for mechanism 1

and — 2.9% for mechanism 2 for the DCAL estimatdhe RB values are very similar for
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both estimators. Turning to the GCAL and CARBAL imsitors that use auxiliary
information as well asy, as an instrumental variable, we note that the hias virtually

eliminated (approximately 0.2% for mechanism 1 an@l2% for mechanism 2). This result
shows the importance of using all the availableilauy information as well as the variables
of interest. In terms of RRMSE, the GCAL and CARBAistimators show the lowest

RRMSE. This can be explained that in both casesbits was virtually eliminated.

For the variabley, (that is not related to any variable), all fiveti@stors are virtually

unbiased, as expected. In terms of RRMSE, the teeswe similar for the five estimators

although we note a slight loss of efficiency foe ACAL, GCAL and CARBAL estimators.

Table 2 Monte carlo percent RB for five estimators

HAJ DCAL GCAL CBAL CARBAL

Variable of interest Mechanism 1
Y1 8.62 2.80 0.27 2.82 2.85
Y> -0.34 -0.31 -0.22 -0.32 -0.17

Mechanism 2

2 -8.97 -2.78 -0.12 -2.87 -2.93

Y, 0.25 0.23 0.15 0.07 0.23
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Table 3 Monte carlo percent RRMSE for five estimators

HAJ DCAL GCAL CBAL CARBAL

Variable of interest Response probabilityy
Y1 8.94 3.10 1.86 3.12 3.16
Y, 3.21 3.24 3.25 3.09 3.06

Response probabilityp,

A 9.28 3.08 1.86 3.16 3.22

Y, 3.04 3.10 3.11 3.01 3.12

5. SUMMARY AND DISCUSSION

In this paper, we studied the problem of samplindg astimation in the context of cut-of
sampling. We showed that naive point estimatorddcdne severely biased if the units
excluded from the sample are significantly diffarétom the rest of the population. This
situation is not uncommon in practice. In ordergéduce the bias, we considered two well
known techniques, namely balanced sampling andbredilon. Form a bias point of view,
generalized calibration is particularly interestibgcause it allows for the use of all the
auxiliary information (the one related to the vhl@aof interest and the one explaining the
probability of being excluded from the sample) adlas the variables of interest themselves
that can be included in the auxiliary vector astrimeental variables. Moreover, unlike
balanced sampling, generalized calibration is peréal at the estimation stage so the
auxiliary information available at this stage ipitally richer than the one available at the

sampling stage.
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