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Résumé 

L’échantillonnage de type cut-off consiste à exclure délibérément de la sélection une partie des unités, 

par exemple si la contribution au total des unités exclues est faible et si l’inclusion de ces unités dans 

l’échantillon implique des coûts importants. Si les caractéristiques des unités exclues diffèrent de 

celles des unités dans l’ensemble de la population étudiée, l’utilisation d’estimateurs naïfs peut donner 

lieu à des estimations sévèrement biaisées. Dans cet article, nous discutons de l’utilisation 

d’information auxiliaire afin de réduire le biais de non-réponse par des techniques de calage ou 

d’échantillonnage équilibré. Nous montrons que l’utilisation d’information auxiliaire liée à la variable 

d’intérêt, et d’information auxiliaire liée à la probabilité de réponse, permet de réduire fortement le 

biais d’estimation. Une courte étude par simulations est également proposée.  

Mots-clés : Biais sous le plan ; Biais sous le modèle ; Calage ; Echantillonnage de type cut-off ; 

Echantillonnage équilibré ; Information Auxiliaire. 

 

Abstract 

Cut-off sampling consists of deliberately excluding a set of units from possible samples selection, for 

example if the contribution of the excluded units to the total is small and if the inclusion of these units 

in the sample selection involves high costs. If the characteristics of the excluded units differ from that 

of the population under study, the use of naïve estimators may result in strongly biased estimations. In 

this paper, we discuss the use of auxiliary information to reduce the non-response bias by means of 

calibration or balanced sampling techniques. It is demonstrated that the use of both the available 

auxiliary information related to the variable of interest and of the available auxiliary information 

related to the probability of response enables to strongly reduce the estimation bias. A short numerical 

study supports our findings.  

Keywords : Auxiliary information; Balanced sampling; Calibration; Cut-off sampling; Design 

bias; Model bias. 
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1. INTRODUCTION  

 

Cut-off sampling, which consists of deliberately excluding a set of units from possible sample 

selection, is frequently used in business surveys. The small businesses are often grouped into 

take-none strata and are thus excluded from possible sample selection. The contribution to the 

overall total of the excluded units is typically small.  Another example of cut-off sampling 

occurs in the context of tax data for unincorporated businesses at Statistics Canada.  The 

unincorporated Canadian businesses may declare their financial statement either on paper or 

electronically (e.g., using internet). The businesses that use a paper format are called the 

paper-filers or p-filers, whereas the ones that choose the electronic format are called the 

electronic-filers or e-filers. A little bit more than half of the businesses (52%) belongs the 

population of e-filers (see Fecteau and Jocelyn, 2005). The population under study, U of size 

N, can thus be partitioned into two strata: the strata of e-filers, ,EU  of size ,EN  and the strata 

of p-filers, ,PU  of size .PN  We have E PU U U= U  and .E PN N N= +   Fecteau and Jocelyn 

(2005) mention that the populations of e-filers and p-filers have different characteristics. 

Indeed, the businesses using a paper format are typically larger in size than the one using an 

electronic format and thus have a larger income (see Table 1).  

 

The goal is to produce estimates for totals in U (e.g., gross and net income) based on a sample 

of businesses. However, due to high costs of converting data collected on paper to an 

electronic format, the p-filers are deliberately excluded from a possible selection in the 

sample and the resulting estimates are based on a sample selected in the strata of e-filers only. 

Thus, this sampling procedure can be viewed as a special case of cut-off sampling. The main 

concern is that, since the two populations differ with respect to several characteristics of 

interest, the use of naïve estimators may potentially lead to misleading results.  
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Auxiliary information plays an important role in surveys because it allows the survey 

statistician to use more efficient sampling and estimation procedures and can be used to 

reduce nonsampling errors.  We distinguish between two sets of auxiliary variables: the first 

set is the set of design variables, we assume to be available for all the units in the population 

at the design stage. The design variables are typically used to stratify the population.  Also, 

we assume that, at the estimation stage, a set of auxiliary variables (often called calibration 

variables), is available for all the sampled units and that the population total for each variable 

is known.  Note that the two sets of auxiliary variables are not necessarily disjoint so a given 

auxiliary variable can be used at both stages (design and estimation).  

 

In order to reduce the bias due to the exclusion of the p-filers from the sample, we consider 

two well known techniques that both use some amount of auxiliary information: (i) balanced 

sampling and (ii) calibration. One advantage of calibration over balanced sampling is that 

calibration can use both types of auxiliary variables (design and calibration variables), 

whereas balanced sampling requires the auxiliary variables to be available for all the units in 

the population.   In practice, it might be wise to select a sample balanced on the design 

variables and to use calibration to satisfy control totals corresponding to the calibration 

variables and/or design variables. Although the results presented in this paper are derived in 

the context of the e-filers and p-filers, they can be applied to any type of cut-off sampling 

conducted under the same conditions. 

 

In this paper, we are interested in estimating the population total, ,i
i U

Y y
∈

=∑  of a given 

variable of interest y. Note that Y  may be expressed as ,E PY Y Y= +  where 
E

E i
i U

Y y
∈

= ∑  and 
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.
P

P i
i U

Y y
∈

= ∑  To that end, we select a random sample, ,Es  of size ,En  according to a given 

design ( ).Ep  from .EU  Let 1i id π=  be the design weight attached to unit i, where 

( )Ei siP ∈=π  is the first-order inclusion probability of unit i in the sample .Es  Note that 

0=iπ  for all .PUi ∈   As a result, it is well known that a design-unbiased estimator of Y  does 

not exist.  

 

A basic estimator of Y  is the so-called Hajek estimator given by 

                                                              ˆ ,HA EY Ny=                                                          (1.1) 

where 
ˆ

ˆ
E

E

E

Y
y

N
=  with ( ) ( )ˆ ˆ, ,1  .

E

E E i i
i s

Y N d y
∈

=∑  The design-bias of ̂HAY  in (1.1)  can be 

approximated by 

                                           ( ) ( ) ( )ˆ ˆB ,s HA s HA P E PY E Y Y N Y Y≡ − ≈ −                                       (1.2)                                 

where  and E P
E P

E P

Y Y
Y Y

N N
= =  denote the population mean of the y-values for the e-filers and 

p-filers, respectively, and ( ).sE  denotes the expectation with respect to sampling. The bias in 

(1.2) is equal to 0 if 0PN = , which occurs when PU = ∅  or when .E PY Y=  These two 

conditions are not satisfied in practice since the population of p-filers represent approximately 

48% of the population and since the two populations differ with respect to several 

characteristics such as Gross income (see Table 1).  Therefore, the Hajek estimator ĤAY  may 

be considerably biased when EY  is significantly different than .PY  Note that  E PY Y=  when 

the variable of interest y is not related to the variable to the efiler/pfiler indicator variable. In 

general however, alternative strategies are  needed and are presented in sections 2 and 3. 
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The paper is organized as follows: in Section 2, we present three classes of calibration 

estimators that use the auxiliary information available at the estimation stage. We study their 

properties in terms of bias. Balanced sampling as a mean to reduce the bias of the Hajek 

estimator is presented. We consider two versions of balanced sampling and discuss the 

properties of the resulting estimators. In Section 4, we conduct a limited simulation study to 

investigate on the performance of the proposed estimators in terms of bias and mean square 

error. Finally, we conclude in section 5. 

  
Table 1: Mean income of the businesses by type of format 

 
Business Gross mean income Net mean income 
Electronic 261 819 $ 11 712 $ 
Paper 694 587 $ 14 021 $ 

 

2. CALIBRATION ESTIMATORS  

 

In this section, we study the use of auxiliary information through calibration for reducing the 

bias. We consider three classes of calibration estimators, which are presented in sections 2.1-

2.3. 

 
2.1 Direct calibration 
 

Suppose that a vector of q auxiliary variables ( )′= qxx ,...,1x  is available for all the units in the 

sample Es   and that the vector of population totals, ,i
i U∈

=∑X x  is known. We assume that the 

relationship between the variable of interest y and the vector of auxiliary variables x  may be 

described according to the following model 

: ,i i im y ε′= +x β                                                      (2.1) 
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such that ( ) ( )0,  0,  if m i m i jE E i jε ε ε= = ≠  and ( ) 2 ,m i iV cε σ=  where β  is a q-vector of 

unknown parameters, 2σ  is an unknown parameter, ic is a known constant and ( ).mE  and 

( ).mV  denote the expectation and the variance with respect to the model (2.1). We assume that 

,i ic ′= α x  where α  is a q-vector of specified constants.  

 

A first set of estimators can be obtained via direct calibration which consists of finding a set 

of new weights, ),( 1
iiii cFdw xλ′= −   so that the calibration equation 

                                                              ∑
∈

=
Esi

iiw Xx                                                             (2.2) 

is satisfied, where λ  is a vector of Lagrange multipliers and(.)F  is the so-called calibration 

function. Several calibration functions (.)F  can be used ; see Deville (2002) and Le Guennec 

and Sautory (2002). Two such options for(.)F  are : (i) the linear function, ( ) 1 ,F u u= +  

which corresponds to the generalized chi-square distance and (ii) the exponential function, 

( ) ,uF u e=  which corresponds to the raking ratio distance. Except for the linear case for 

which we can obtain an explicit solution, the Newton-Raphson algorithm is needed for 

solving (2.2) for general (.)F .  The resulting calibration estimator of Y is given by 

                                                       1ˆ ( ) .
E

CAL i i i i
i s

Y d F c y−

∈

′=∑ λ x                                                 (2.3) 

A special case of (2.3) is obtained under the linear function ( ) 1 ,F u u= +  which leads to the 

generalized regression estimator 

                  ̂ ,
E

G i i
i s

Y w y
∈

=∑       (2.4) 

where 

       ( )1 1ˆ ˆ1i i i E E iw d c− − ′= + − 
 

X X T x                  (2.5) 
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with 1ˆ
E

E i i i i
i s

d c−

∈

′=∑T x x  and 1ˆ .
E

E i i i i
i s

d c y−

∈

=∑t x  Note that the Hajek estimator given by (1.1) is a 

special case of (2.4) with 1i =x  and 1.ic =   

 

The asymptotic design-bias of ĜY  in (2.4) is given by 

   ( ) ( ) ( )ˆ ˆ ,
P

s G s G i i E
i U

B Y E Y Y y
∈

′≡ − ≈ − −∑ x B                 (2.6) 

where 

1

1 1

E E

E i i i i i i
i U i U

c c y

−

− −

∈ ∈

 
′=  

 
∑ ∑B x x x  denotes the census coefficient of regression 

corresponding to the population of e-filers. The asymptotic design-bias of ̂GY  in (2.6) is small 

if the residuals ( )i i i EE y B′= − x  corresponding to the p-filers are small, which in turns 

suggests that the model (2.1) holds for the p-filers.  On the other hand, ĜY  is asymptotically 

sm-unbiased under the model (2.1).  That is, ( )ˆ 0.s m GE E Y Y− ≈  However, since no y-value is 

observed for the p-filers, validating the model may prove to be difficult. To illustrate the 

difficulty, we consider the following example. Suppose that the model that holds for the e-

filers is obtained from (2.1) by replacing β  by Eβ  whereas the model that holds for the p-

filers is obtained from (2.1) by replacing β  by .Pβ    In this case, the estimator ĜY  is 

asymptotically sm-biased and the asymptotic bias is given by 

( ) ( )ˆ ,sm G P E PB Y ′≈ −X β β                  (2.7) 

where .
P

P i
i U∈

= ∑X x   From (2.7), it is clear that the bias of ĜY  depends on the difference of Eβ  

and .Pβ   From the observed data, it is not possible to assess the magnitude of this difference 

since no y-values is available for the p-filers. This example illustrates the problematic of 

building an appropriate model.  As a result, reducing the bias may prove to be difficult.  In 
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fact, if Eβ  and Pβ  are considerably different, the bias of ĜY  may be even larger than the bias 

of ˆ .HAY  

  
2.2 Calibration after reweighting 
 
 
As discussed in section 2.1, the regression estimator (2.4) may present some risks when it is 

not possible to validate the model at hand.  In this section, we propose an alternative class of 

calibration estimators that may be more robust to bias.  Let ia  be a binary variable such that 

1ia =  if unit i is an e-filer and 0,ia =  otherwise.  We assume that ia  is available for all the 

units in the population.  Also, let ( )1i ip P a= =  be the probability that a unit is an e-filer. 

 

In addition to the vector of auxiliary variables ix  related to the variable of interestiy  by the 

model (2.1), we assume that there exists a l-vector of auxiliary variables iz  related to the 

probability .ip  We assume that the vector z is available for all the units in the population.  

Note that ,i i≠x z  in general.  The relationship between ip  and iz  may be described 

according to the following model: 

           ( ): , ,i ip fξ = z γ                   (2.8) 

where ( ).f  is a given function, and γ  is a vector of unknown parameters. A special case of 

(2.8) is the logistic regression model given by 

             .
1

i

ii

e
p

e

′

′=
+

z γ

z γ                   (2.9) 

Let ˆ ip  be the estimated probability for unit i given by 

              ( )ˆˆ , ,i ip f= z γ  

where ̂γ  is a consistent estimator of γ  (usually the maximum likelihood estimator of ).γ  
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A second set of estimators can be obtained by finding a new set of weights *iw  so that the 

calibration equation 

                                                           * ( ) ,
E

i i i
i s

d F
∈

′ =∑ x λ x X                                                  (2.10) 

where * ˆ .i i id d p=  The resulting calibration estimator of Y is given by 

                                                       * * 1ˆ ( ) .
E

CAL i i i i
i s

Y d F c y−

∈

′=∑ λ x                                              (2.11) 

Note that if the model ξ  given by (2.8) contains only the intercept (i.e., 1i =z ), then the 

alternative calibration estimator (2.11) reduces to the estimator (2.3).  In the special case of 

the linear function, ( ) 1 ,F u u= +  the estimator (2.11) reduces to 

                                                         * *ˆ ,
E

G i i
i s

Y w y
∈

=∑                                                    (2.12) 

where ( )* * 1 * * 1ˆ ˆ1i i i E E iw d c− − ′= + − 
 

X X T x  with * * 1ˆ
E

E i i i i
i s

d c−

∈

′=∑T x x  and ( ) ( )* * *ˆ ˆ, , .
E

E E i i i
i s

Y d y
∈

=∑X x  

    

If the assumed model (2.8) is valid (i.e., ˆ i ip p≈ ), then the alternative regression estimator *
ĜY  

(2.12) is asymptotically sξ -unbiased.  That is, ( )*ˆ .s GE E Y Yξ ≈   On the other hand, if the 

model (2.1) holds, then *
ĜY  is asymptotically sm-unbiased.  That is, ( )*ˆ 0.s m GE E Y Y− ≈   

Hence, *
ĜY  is doubly robust in the sense that it is valid if one model or the other holds.  Unlike 

in the case of model (2.1), the model (2.8) can easily be validated from the values of ia  and 

iz  for i U∈  since the indicator variable ia  is available for all the units in the population.  

Note that the estimator *ĜY  given by (2.12) uses all the appropriate auxiliary information (x  

and z ) available, unlike the estimator ̂GY  given by (2.4) that only uses the auxiliary 

information x .  As a result, it is expected that the use of *
ĜY  will achieve an effective bias 
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reduction if either the model m or the model ξ  holds. Another advantage of *ĜY  over ĜY  is 

that for surveys with multiple characteristics, the estimator *
ĜY  is asymptotically sξ -unbiased 

for any variable of interest y, as long as the probability ˆ ip  is correctly estimated. On the other 

hand, the estimator ̂GY  may be asymptotically sm-unbiased for the total of a given variable of 

interest but not necessarily asymptotically sm-unbiased for the total of another variable of 

interest, as the set of auxiliary variables that explain the two variables may not be identical. 

 

2.3 Generalized Calibration 
 
 
A second class of estimators that makes use of the vectors of auxiliary variables x  and ,z  is 

obtained by using the so-called generalized calibration (Deville, 1998; 2002 and Kott, 2006). 

It assumes that the vector x  and z  are of the same dimension. One advantage of generalized 

calibration over the calibration methods presented in section 2.1 and 2.2 is that it can be used 

if the values of the z variables are only known for the e-filers. In fact, the vector z  may 

include the variable of interest y as one component, which may help in reducing the bias to a 

greater extent. This is illustrated in the simulation study presented in section 4. We seek for a 

new set of weights iw%  so that the calibration equation 

                                                     1( )
E

i i i i
i s

d F c−

∈

′ =∑ x λ z X                                                      (2.13) 

is satisfied. The resulting calibration estimator of Y is given by 

                                                   ∑
∈

− ′=
Esi

iiiiCAL ycFdY .)(
~̂ 1 zλ                                                 (2.14) 

In the special case of the linear function, ( ) 1 ,F u u= +  the estimator (2.14) reduces to  

                                                                 ˆ ,
E

G i i
i s

Y w y
∈

=∑% %                                                       (2.15) 
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where ( )1 1ˆˆ1i i i E E iw d c− − ′= + − 
 

X X T z%%  with 1ˆ .
E

E i i i i
i s

d c−

∈

′=∑T x z%  Note that the estimator (2.15) 

can be expressed as  

 ( )ˆ ˆˆ ˆ ,G E E EY Y
′= + −X X B% %               (2.16) 

where 1ˆ ˆ ˆ
E E E

−=B T t% % %  with 1ˆ .
E

E i i i i
i s

d c y−

∈

=∑t z%  Thus, the estimated regression coefficient ˆ
EB%  can 

be viewed as the estimated regression coefficient obtained by fitting an instrumental 

regression analysis with the vector z  as the instruments. If the vector z explains well the fact 

of being an e-filer, then the estimator (2.16) is expected to have a small bias. The vectors 

x and z have to be strongly correlated. Otherwise, the matrix ∑
∈

− ′=
EUi

iiiE c zxT 1~
may be close 

to singularity, which may result in a highly variable calibrated estimator .
~̂

CALY  Note that when 

,i i=z x the estimator (2.14) reduces to the direct calibration estimator given by (2.3).  

 

3. BALANCED SAMPLING  

 
A balanced sampling design ensures that Horvitz-Thompson estimators of the auxiliary 

variables, called balancing variables, exactly match the known totals. The Horvitz-Thompson 

estimator is still design-unbiased, while its variance is only given by a residual variable 

associated to a regression of the variable of interest on balancing variables, and is thus 

strongly reduced if these balancing variables are well correlated with the variable of interest. 

Deville and Tillé (2004) proposed a general algorithm for balanced sampling with any set of  

unequal probabilities and a non-restricted number of balancing variables 

 

The use of auxiliary information through balanced sampling for reducing the bias is discussed 

in the following sections. In section 3.1, a method for directly selecting a balanced sample is 
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given. In sections 3.2 and section 3.3, alternative balanced sampling strategies to reduce the 

estimation bias are proposed. 

 
3.1 The traditional balanced sampling 
 
 
In this paragraph, a brief introduction to the Cube method (see Deville and Tillé, 2004) is 

given. We shall first assume that the stratum pU  is empty, that is, that the sample is directly 

selected in population U  with non zero inclusion probability iπ  for unit i , and we simply 

note ssE = . Assume that the vectors of values ( )1, ,i i iqx x
′

=x L  taken by q  auxiliary 

variables are known for all the units of the population. Recall that ̂ i i
i s

π
∈

=∑X x is an unbiased 

estimator of ;i
i U∈

=∑X x  that is,  

                                                              ( ) .ˆ XX =sE                                                                (3.1) 

A sampling design is said to be balanced on the variables x  if the balancing equations  

                                                                  XX =ˆ                                                              (3.2) 

are satisfied. Note that (3.2) holds exactly unlike (3.1) that holds on average. In the special 

case of ,i iπ=x  X̂  and X  represent the actual sample size and the expected sample size 

respectively, and condition (3.2) is equivalent to impose a fixed sample size. In the special 

case of 1,i =x  X̂  and X  represent the estimated and exact population size respectively and 

(3.2) is equivalent to give an exact estimation of the population size.  

 

The Cube method proposed by Deville and Tillé (2004) provides a general algorithm for 

selecting balanced samples with predetermined inclusion probabilities. As an exact balanced 

sampling design generally does not exist, that is, there may exist no sample such that equation 

(3.2) holds, the objective is generally to select a sample such that the balancing equations 
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(3.2) holds approximately. The Cube algorithm is thus divided into two steps. In the first step, 

units are sampled or definitely rejected so that both the inclusion probabilities and the 

balancing equation are exactly respected. This step stops when the balancing conditions may 

no more be exactly respected. The last step consists in ending the sampling so that the 

inclusion probabilities remain exactly respected and the balancing conditions remain 

approximately respected. In the context of balanced sampling, note that the balancing 

variables ix  for all the population units prior to sampling, whereas only the X  totals and the 

ix  values for the sampled units are needed in the context of calibration. 

 

3.2 The corrected balanced sampling 
 

We now turn back to the general setting of non empty stratum PU . We assume that a vector 

of qauxiliary variables ( )′= qxx ,,1 Kx  is available for all the units in the population U  (e-

filers and p-filers), and that the relationship between the variable of interest y  and the vector 

of auxiliary variables x  may be described according to the model (2.1). Assume that the 

sample Es  is selected in EU  by balanced sampling with inclusion probability iπ  for unit 

EUi ∈ and balancing variables x , so that the equation 

                 ∑∑
∈∈

=
EE Uisi i

i
ix

x

π
               (3.3) 

holds. The Hajek estimator EHA yNY =ˆ  given by (1.1) may then be used for estimating the 

total ,Y  but this estimator remains design-biased.  Alternative balanced sampling strategies 

are thus needed. 
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One such alternative consists in selecting a sample Es  by means of the Cube method, with 

adequate inclusion probabilities and balancing variables, so that the somewhat different 

balancing equations  

                 Xx =∑
∈ Esi

in

1
                                       (3.4) 

are satisfied, where 
N

X
X =  denotes the overall population mean of the x - vector. Condition 

(3.4) may be obtained in the following way. First, determine a set of weights iw for units i  of 

EU  such that 

                                                        .

   0

E

E

i i
i U

i
i U

i

w

w N

i w

∈

∈

 =

 =

 ∀ >

∑

∑

x X

 

These weights may be obtained by means of calibration with the raking ratio method that 

ensures that all calibration weights are strictly non-negative (e.g., Deville, Särndal and 

Sautory, 1993). Then, let n  be an integer such that  

                                                   E
i Ui

N

w
n ∈< any  for    1  .                            (3.5) 

If the sample Es  is selected with inclusion probability Nnwii =π  for unit i , then   

.
/ ∑∑∑

∈∈∈
==

EEE si
i

si i

ii

si i

ii

n

N

Nnw

ww
x

xx

π
 

If the sample is balanced on variables iiw x , the balancing equations (3.3) give  

Xx
x

∑∑
∈∈

==
EE Ui

ii
si i

ii w
w

 
π

 

so that condition (3.4) is fulfilled. The equation (3.5) ensures that no inclusion probability 

exceeds 1. Selecting the higher integer n  such that (3.5) holds ensures that the sample size is 

maximized. An estimator of Y is then given by 



14 

                                                               Esm yNY
~ˆ =                                       (3.6) 

where ∑
∈

=
Esi

iE y
n

y
1~

is the sample mean of y .  The estimator smŶ  in (3.6) is called the 

corrected balanced estimator, and is asymptotically m-unbiased under the model (2.1). Note 

that this estimator makes no use of the design weights. 

 

3.3 Balanced sampling after reweighting 

In this section, we propose an estimator obtained by a modified balanced sampling design, 

and that may be more robust to bias. Our set-up is that of section 2.2 .   

 

Once again, we assume that there exists a vector of auxiliary variables iz  related to the 

probability ( )1 .i ip P a= =  Assume that ip may be described according to the model  

                                                            1 (  )i ip H− ′= z γ                                                           (3.7) 

for some  function (.).H  We seek for estimated probabilities ip̂  that satisfy the system of 

estimating equations 

                    ,
ˆ ∑∑

∈∈
=

Ui
i

Ui i

i

E
p

x
x

               

or equivalently  

                                                        ˆ(  ) .
E

i i i
i U i U

H
∈ ∈

′ =∑ ∑z γ x x                                        (3.8) 

A solution for (3.8) is obtained by using the generalized calibration technique described in 

section 2.3.  If the sampleEs  is selected in EU by means of balanced sampling with inclusion 

probability iπ  for unit i  and balancing variables p̂x , an estimator of Y is given by  

                                                           ∑
∈

=
Esi

iiE ydY  ˆ **                                                              (3.9) 
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 with iii pdd ˆ* = .  The estimator *ˆ
EY  in (3.9) is called the corrected after reweighting balanced 

estimator. It is asymptotically ξs -unbiased if the model (2.9) is valid, and also asymptotically 

sm-unbiased if the model (2.1) is valid. Note that if Es  is selected in EU  with probabilities 

iπ  proportional to ip/1 ,  the design weights are not needed.  

 

4. SIMULATION STUDY 

 

We conducted a limited simulation study to test the performance of the procedures described 

in sections 2 and 3. We first generated a finite population of size 000 10=N  containing 4 

variables: two variables of interest 1y  and 2y  and two auxiliary variables 1x  and 2x . First, 

the variables 1x  and 2x  were generated independently from a Gamma distribution with 

parameters 2 and 5. Given the 1x -values and the 2x -values, the 1y -values were generated 

according to the linear regression model 

                                                       .221101 iiii xxy ηβββ +++=                                        (4.1)                                                                     

The 'iη s were generated according to a normal distribution with mean 0 and variance 2.σ  The 

model parameters0 1,β β  and 2β  were all set to 1 and the variance 2σ  was chosen to give a 

model 2R  (coefficient of determination) approximately equal to 0.7. Finally, the 2y -values 

were generated independently from a Gamma distribution with parameters 2 and 5.   

 

The population was partitioned into the strata of e-filers and the strata of p-filers as follows: 

first, probabilities were assigned to each population unit according to two mechanisms: 
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Mechanism 1: The population U  was divided into four groups 41 ,, UU L , according to the 

quartiles of the 1y -values. Then, we attach a probability ip1  to unit i such that 1 0.5ip =  if 

1,i U∈  1 0.6ip =  if 2,i U∈  1 0.7ip =  if 3i U∈  and 1 0.8ip =  if 4.i U∈  The average of the 1ip ’s 

was equal to 65%.       

 

Mechanism 2: The probability 2ip  was generated for unit i according to the model 

                                                       2 0 1 1exp( ),i ip y Yγ= −                                                      (4.2)           

where 1Y  denotes the population mean of variable 1y . The parameter 0γ  was set to 0.5.  Then, 

the 2ip ’s were truncated to be included between 5.0  and 8.0 . The average of the 2ip ’s was 

equal to %5.63 .       

 

Note that for both mechanisms 1 and 2, the probability of being an e-filer depends on the 

variable of interest 1y  but is independent of 2.y  Finally, the e-filers indicators variables 1ia  

and 2ia  were generated independently from Bernoulli distributions with probability 1ip  and 

2 ,ip  respectively leading to two different partitions of the original populations. The objective 

is to estimate the population totals of the variables of interest 1y  and 2,y  denoted by 1Y  and 

2,Y  respectively. 

 

We selected 1000B =  samples of size 500=n  according to three procedures: (i) simple 

random sampling from the stratum of e-filers. Under this procedure, we computed the Hajek 

estimator (HAJ) given by (1.1), the direct calibrated estimator (DCAL) given by (2.4) with 

( )′= 21,,1 xxx  and the generalized calibrated estimator (GCAL) given by (2.16) with 

( )′= 21,,1 xxx  and ( )′= 11,,1 yxz .  (ii) Balanced sampling as described in section 3.2. We 
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computed corrected balanced estimator (CBAL) given by (3.6) with ( )′= 21,,1 xxx . (iii) 

Balanced sampling as described in section 3.3. We computed the corrected after reweighting 

balanced estimator (CARBAL) given by (3.9) with ( )′= 21,,1 xxx  and ( )′= 21,,1 xxz .  

 

As a measure of bias of a point estimator θ̂  of parameter ,θ  we used the monte carlo percent 

relative bias (RB) given by  

( )
( )1

( )
1

ˆ
ˆ 100* ,

B

b
b

MC

B
RB

θ θ
θ

θ

−

=

−
=

∑
 

where ( )
ˆ

bθ  gives the value of the estimator for the bth sample. As a measure of variance of an 

estimator ̂ ,θ   we used the monte carlo percent relative root mean square error (RRMSE) 

given by 

( )
( )2

1
( )

1

ˆ

ˆ 100* .

B

b
b

MC

B

RRMSE

θ θ
θ

θ

−

=

−
=

∑
 

 

The monte carlo percent RB and RRMSE are shown in Tables 2 and 3, respectively. We first 

discuss the results corresponding to the variable 1.y  For both mechanisms 1 and 2, the HAJ 

estimator shows an appreciable RB (approximately 8.8% for mechanism 1 and – 9% for 

mechanism 2). This result is not surprising since the HAJ estimator does not make use of any 

auxiliary information that is either related to 1y  or to 1p  (for mechanism 1) and 2p  (for 

mechanism 2). As a result, the HAJ shows a large RRMSE. For the DCAL and CBAL 

estimators that use the auxiliary information that is related to 1,y  we note that the RB is 

smaller than the one obtained for the HAJ estimator (approximately 2.8% for mechanism 1 

and – 2.9% for mechanism 2 for the DCAL estimator). The RB values are very similar for 
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both estimators. Turning to the GCAL and CARBAL estimators that use auxiliary 

information as well as 1y  as an instrumental variable, we note that the bias was virtually 

eliminated (approximately 0.2% for mechanism 1 and – 0.2% for mechanism 2). This result 

shows the importance of using all the available auxiliary information as well as the variables 

of interest. In terms of RRMSE, the GCAL and CARBAL estimators show the lowest 

RRMSE. This can be explained that in both cases, the bias was virtually eliminated. 

 

 For the variable 2y  (that is not related to any variable), all five estimators are virtually 

unbiased, as expected. In terms of RRMSE, the results are similar for the five estimators 

although we note a slight loss of efficiency for the DCAL, GCAL and CARBAL estimators.  

 

Table 2: Monte carlo percent RB for five estimators 

 HAJ DCAL GCAL CBAL CARBAL 

Variable of interest Mechanism 1 

1y  8.62 2.80 0.27 2.82 2.85 

2y  -0.34 -0.31 -0.22 -0.32 -0.17 

 Mechanism 2 

1y  -8.97 -2.78 -0.12 -2.87 -2.93 

2y  0.25 0.23 0.15 0.07 0.23 
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Table 3: Monte carlo percent RRMSE for five estimators 

 HAJ DCAL GCAL CBAL CARBAL 

Variable of interest Response probability 1p  

1y  8.94 3.10 1.86 3.12 3.16 

2y  3.21 3.24 3.25 3.09 3.06 

 Response probability 2p  

1y  9.28 3.08 1.86 3.16 3.22 

2y  3.04 3.10 3.11 3.01 3.12 

 
 

5. SUMMARY AND DISCUSSION 

 

In this paper, we studied the problem of sampling and estimation in the context of cut-of 

sampling. We showed that naïve point estimators could be severely biased if the units 

excluded from the sample are significantly different from the rest of the population. This 

situation is not uncommon in practice. In order to reduce the bias, we considered two well 

known techniques, namely balanced sampling and calibration. Form a bias point of view, 

generalized calibration is particularly interesting because it allows for the use of all the 

auxiliary information (the one related to the variable of interest and the one explaining the 

probability of being excluded from the sample) as well as the variables of interest themselves 

that can be included in the auxiliary vector as instrumental variables. Moreover, unlike 

balanced sampling, generalized calibration is performed at the estimation stage so the 

auxiliary information available at this stage is typically richer than the one available at the 

sampling stage. 
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