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Abstract 

This paper is an attempt to assess the existence and magnitude of local research 
spillovers in France. We rely on the model of an extended production function (Cobb-Douglas 
and Translog) with both local and neighborhood R&D capital stocks. We estimate this model 
on 312 employment areas as of 1999, first for the whole economy, then separately for five 
large manufacturing industries. The estimated elasticities of productivity with respect to R&D 
capital are significant and plausible, both within own-area and across neighboring areas as 
well as within own-industry, but they are weaker across different industries. 
 
 

UNE EXPLORATION DES SPILLOVERS GEOGRAPHIQUES 
DE  R&D  EN  FRANCE 

 
 

Résumé 
 

Cet article est un essai d’évaluation de l’existence et de l’importance des 
« spillovers » géographiques de R&D en France. Nous considérons un modèle de fonction de 
production étendue (Cobb-Douglas et Translog) avec deux stocks de capital de R&D, mesurés 
respectivement au niveau local de chaque bassin d’emploi et à celui des bassins d’emploi 
voisins. Nous estimons ce modèle sur les bassins d’emploi de la France métropolitaine en 
1999 ; d’abord pour l’ensemble de l’économie marchande non agricole, ensuite pour cinq 
grandes branches industrielles. Les estimations des élasticités de la productivité au capital de 
R&D sont significatives et plausibles, à la fois intra-zone et entre zones voisines ainsi 
qu’intra-industrie, mais elles sont plus faibles entre industries différentes. 
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1 Introduction 
 

Assessing the local spillover impacts of firms’ R&D investments on the various 
dimensions of economic development: productivity, employment, innovation, …, both in the 
geographic area where they are located and in neighboring areas, is one the most difficult and 
important challenge of recent empirical investigations in the economics of research and 
innovation1. Since the seminal book of KRUGMAN [1991] and the renewal of economic 
geography, these issues and the related ones of understanding the determinants and 
consequences of the localization and agglomeration of firms’ activities have received 
increasing attention. Firms tend to locate where the factors of production are abundant and 
less expensive, or where the demand for their products is strongest. They have, however, to 
balance production costs and costs of transportation. Many authors recognize that various 
types of externalities play also a major role in the localization of firms, arising from particular 
historical and geographical contexts, from policies of regional planning, from the 
agglomeration of natural, human and other economic resources, and in particular from that of 
specific knowledge assets leading to local increasing returns. 

 
As emphasized by GRILICHES [1992], the search for knowledge spillovers is 

specially challenging. While other externalities can be assessed more or less directly, even if 
not easily, knowledge spillovers are not directly observed. Economists can only strive to 
measure the effects of knowledge flow and stock variables on outcome variables like numbers 
of innovations or patents, and labor or total factor productivity. A related and difficult issue is 
to assess the spatial extent of knowledge spillovers. Other major problems are encountered in 
trying to understand and analyze the underlying channels and “mechanisms” by which they 
operate, and the conditions allowing firms to benefit from them2. 

 
In this exploratory econometric analysis, we basically try to identify local 

knowledge spillovers by estimating the effects of firms’ R&D investments on productivity at 
the aggregate level of some 300 French employment areas for 1999. We do so by relying on 
the framework of an extended production with both local and neighborhood R&D capital 
stocks, in addition to the more traditional factors of production of labor and physical capital3. 
We specify this production function both as a simple Cobb-Douglas function and a more 
general Translog function, and we estimate it for the French economy as a whole as well as 
for five large manufacturing industries. On the basis of this framework and our data, we can 
distinguish between local R&D spillovers within the range of employment areas themselves 
and within the range of neighboring areas. We thus focus on estimating as our two main 
parameters of interest the elasticities of productivity with respect to R&D capital, both 
“within own-area” and “across neighboring areas”: first for the whole economy in Section 3, 
and then separately by manufacturing industry in Section 4. In this last Section, we also try to 
distinguish between local R&D spillovers “within own-industry” and “across other 
industries”. 

 

                                                 
1 See AUDRETSCH, FELDMAN [2004] for a survey, and AUTANT-BERNARD, MAIRESSE, MASSARD 
[2007] for a summary account of recent empirical studies published in a special issue of Papers in Regional 
Science on “Spatial Knowledge Diffusion through Collaborative Networks”. 
2 See for example COHEN, LEVINTHAL [1989], COCKBURN, HENDERSON [1998] or AGRAWAL [2002]. 
3 For a presentation of the extended production framework, and an in-depth discussion of its relevance and 
usefulness as well as many of the conceptual, measurement and econometric issues it raises, see the seminal 
article of GRILICHES [1979]. 
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Although our results remain exploratory, they are surprisingly encouraging, leading 
to estimates of R&D capital elasticities both within own-area and across neighboring areas 
which are statistically significant and seem economically plausible. Local spillovers thus 
extend largely beyond the average range of employment areas, but they also appear to be 
limited to neighboring employment areas that does not reach farther than an average of 100 
km. We also find evidence that local spillovers tend to be mostly industry specific, with 
significant estimates for R&D capital elasticities within own-industry in all five 
manufacturing industries, and significant ones for elasticities across other industries for two 
industries out of the five: consumption goods and equipment goods industries. 

 
Before turning in Sections 3 and 4 to the detailed presentation of our results, we 

have in Section 2 to explain briefly the construction of the data at the level of the French 
employment areas in 1999, and comment on some the descriptive statistics for our main 
variables, stressing in particular the extreme geographical concentration of R&D firms’ 
investments. 
 
 

2 Data and main descriptive statistics 
 
 
2.1 Construction of the necessary data at the level of French employment 
areas for 1999 
 

Many previous studies in order to assess the importance of geographical knowledge 
spillovers have been relying on regional or departmental data4. We investigate this issue here 
for France at more detailed geographical level which is a priori preferable, that of the 
“employment areas (“bassins d’emploi”). 

 
The data we use relate to the non-agricultural business sector excluding financial 

activities and interim employment, for “Metropolitan” France without Corsica5. They are 
constructed at the level of “employment areas” for the year 1999. Employment areas are 
economic zones where local firms are likely to hire their workers. They have been precisely 
defined by INSEE and the Ministry of Labor, first in 1983 and then revised in 1994, on the 
basis of statistics on residence-to-work displacements6. Employment areas are much smaller 
than regions and departments (which correspond respectively to the NUTS 2 and NUTS 3 
levels of the European Union classification). There are 341 of them in Metropolitan France 
(without Corsica), of which we retain only 312 in our analysis, after discarding 29 as 
unsuitable because they had no or very small R&D investments or very low employment 
levels (with an estimated R&D capital stock of less than 100 K€, or with less than 5 000 
workers)7.  

 

                                                 
4 See for example CICCONE [2002], GAMBARDELLA, MARIANI, TORRISI [2002], or AUTANT-
BERNARD, LESAGE [2008]. 
5 Financial activities and interim employment are excluded for lack of good coverage in the administrative data 
we use. Corsica is left out because of geographical distance and its insular situation (and very little R&D 
investments).  
6 See INSEE [1994]. 
7 10 employment areas are excluded on the basis of these two criteria, 13 only on that of very small R&D 
investment, and 6 of very small employment.  
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Our R&D data come from the annual surveys conducted by the Ministry of Research, 
which give detailed information on firms’ internal and external R&D expenditures, numbers 
of R&D employees, financial sources, … These individual data are allocated to one of the 
36 000 French local municipalities on the basis of the postal code (ZIP code) of the firms’ 
main laboratories, and then aggregated at the level of the employment areas. Finally, using 
here only the internal R&D expenditures obtained for the six years 1993 – 1998, and applying 
the so called permanent inventory method with a 15% depreciation rate, we can construct an 
R&D capital stock K at the beginning of 1999 for all employment areas. (See Appendix A for 
more details.) In order to investigate the spatial range of local spillovers beyond the 
employment areas, besides measuring the local R&D capital stocks K, we have also computed 
so called “neighborhood R&D capital stocks” such as K100 or K200. For a given 
employment area, these are simply computed as the sums of the R&D capital stocks K of all 
their neighboring employment areas in a “circle” of 100 km or 200 km. (See also Appendix A 
for more details.) 

 
The employment data come from the firms’ declarations to the Social Security (i.e. 

the Déclarations Annuelles de Données Sociales or DADS). Being separately available for the 
different firms’ establishments, they can be merged into an INSEE database constructed at the 
establishment level which provides other economic key variables for 1999: total sales, value 
added, gross earning before interests and taxes, and the book value of fixed assets8. 
Establishments being localized at the municipality level, these variables are aggregated at the 
level of the employment areas as in the case of R&D. The General Census of Population of 
1999 is also a source of complementary information at the level of municipalities and 
employment areas.9 

 
 

2.2 Main descriptive statistics 
 
Table 1 gives the mean, standard deviation, minimum, median and maximum, as 

computed over the 312 employment areas, for the main variables in our investigation. It 
shows the very large dispersion and skewness (asymmetry) of most of these variables in 
absolute levels (that is before being normalized by size and being taken in logs). While the 
surface (S) of the largest employment area (Toulouse) is already 140 times that of the smallest 
one (Vitry-sur-Seine) and the mean surface (1600km2) is about 10% higher than the median 
surface (1430km2), the employment (L) of the largest employment area (Paris) is of about 190 
times that of the smallest one (Gannat), and the mean employment (40160) is about twice the 
median employment (20510). These two max-to-min and mean-to-median ratios are even 
larger for value-added (Y) and physical capital (C) than for employment, and even much more 
so for local R&D capital (K) and our preferred measure of neighborhood R&D capital 
(K100). As could be expected, however, when we normalize by employment size and 
consider labor productivity (Y/L), physical capital intensity (C/L), and local and 
neighborhood R&D capital intensities (K/L and K100/L), we see that their distributions 
across employment areas appear much less dispersed and skewed. Going one step further and 
taking logarithms which is what do when estimating the Cobb-Douglas and Translog 

                                                 
8 In fact this establishment database is constructed on the basis of firm level statistics. For mono-establishment 
firm, this evidently raises no difficulties, but for multi-establishments firms this has been achieved by using, 
various methods of imputation based on very detailed industry ratios by establishment size and localization.  
 
9 See JULIA [2003] for more detailed explanations on these aspects of the construction of our database. 
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production functions regressions, we can also see that their log-distributions become roughly 
symmetrical.  
 
 

Table 1 : Main Descriptive Statistics  (ABOUT HERE) 
 
 

The distributions of the local and neighborhood Log R&D capital stocks per 
employee [Log(K/L) and Log(K100/L)] remain nonetheless very dispersed across the 
employment areas, as compared to Log labor productivity [Log(Y/L)] and to Log physical 
capital stock per employee [Log(K/L)]. This corresponds to an extremely high concentration 
of firms R&D activities in a few zones. This geographical concentration of R&D activities is 
particularly striking since it much more pronounced than that of productive activities. This 
appears most clearly by looking at the Lorenz curves shown in Figure 1 respectively for the 
surface (S), total employment (L), value added (Y) and local and neighborhood R&D capital 
(K) and (K100), and by comparing the corresponding Gini coefficients10. We can see that the 
10% (i.e. the 31) largest employment areas in terms of surface, employment, value-added and 
physical capital correspond to 23 %, 47 %, 53 % and again 53 % of the total surface, total 
employment, total value-added and physical capital respectively, while the 10% largest 
employment areas in terms of local and neighborhood R&D capital account respectively for 
as much as 88 % of the total R&D capital stock and for as much as 71 % of the “total 
neighborhood R&D capital stock”11. 
 
 

Figure 1 : Concentration Curves and Gini Coefficients  (ABOUT HERE) 
 
 

Figure 2 shows the localization and importance of R&D activities in terms of 
employment in the 312 employment zones in France. These activities are mainly concentrated 
in the Paris region, and to a lesser extent in the Rhône-Alpes region with Lyon and Grenoble, 
and in the Toulouse region, and they are quite modest or negligible in most other parts of 
France. The huge concentration we already stressed in terms of R&D capital is of course also 
true for R&D employment. About 90% of the R&D employees (researchers and technicians) 
employed by firms are located in the 40 employment areas largest in terms of R&D 
employment, and 70% in the 10 first of them: 7 in Paris Region and 3 in the province (i.e. by 
decreasing order: Nanterre, Versailles, Boulogne-Billancourt, Paris, Toulouse, Lyon, Les 
Mureaux, Grenoble, Saint-Denis, Vitry-sur-Seine). 
 
 

Figure 2 : Geographic Concentration of R&D Employment in France  (ABOUT HERE) 
 
 
                                                 
10 The Gini coefficients for physical capital (C) and value-added (Y) are nearly equal, and we cannot distinguish 
their Lorenz curves (3) and (4) in Figure 1. Note also that the Lorenz curve for the neighborhood R&D capital 
K100 appears less concentrated than that for local R&D capital K, because of the fact that the different 
neighborhood areas are by construction greatly overlapping, and the fact that local R&D capital stocks K are 
very small for most employment areas.  
11 Note that because of the high concentration of R&D capital K in few employment areas in Paris, Lyon, 
Toulouse, Grenoble and their neighborhood areas, and because of the important overlap of these neighborhood 
areas, the mean neighborhood R&D capital K100 appears much larger (by a factor of nearly 30!) than the mean 
R&D capital stock K. 
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Finally, Table 2 gives the Moran’s coefficients of spatial autocorrelation for our 
main variables (in logs) using four different contiguity matrices12. We can see that these 
spatial autocorrelation coefficients are statistically significant (at the 1% confidence interval) 
for all variables and for all four contiguity matrices. They also tend to be somewhat higher 
when more weight is given to close proximity, that is when they are computed with the first 
contiguity matrix (W1) based on the neighboring areas, or the fourth one (W4) based on the 
inverse of the squared distance. We note also that they are generally close enough for all the 
variables, in the range of 0.15 to 0.25, with few exceptions. This is a relatively modest order 
of magnitude, which is high enough, however, to warrant the use of spatial econometric 
techniques. 
 
 

Table 2 : Spatial Autocorrelation Coefficients and Tests  (ABOUT HERE) 
 
 

3 Local R&D Spillovers 
 
 

In order to assess the existence and magnitude of local and neighborhood R&D 
capital intensities on local productivity, we estimate the following extended simple Cobb-
Douglas production function (1):  
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1 1
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and the more general extended Translog production function (2): 
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where i denotes the employment area i (i = 1 to 312), and where our main parameters of 
interest are γ1 and η1 for the Cobb-Douglas specification, together with γ2 and η2 (and 

                                                 
12 See MORAN [1950] or CLIFF, ORD [1980]. 
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possibly γ3 and γ4) for the Translog specification13. Note that all capital stocks (C, K and 
K100) are measured at the beginning of the year 1999. Note also that all the squared and cross 
product Log terms in the Translog specification are taken in deviations from the 
corresponding means, which implies for example that the estimated γ1 and η1 in the Translog 
specification directly measure the local and neighborhood R&D capital elasticities at the 
mean values of the variables, and that they should be not too different from the constant 
elasticities γ1 and η1 as estimated in the Cobb Douglas specification14. Note finally that in 
order to take into account the different industry structure of the employment areas, we have 
included in the two Cobb-Douglas and Translog productivity equations eleven control 
variables measuring the vakue added shares of the different industries (at the NES16 
classification level) in the employment areas. 

 
As we have seen in the previous section, our main variables Log(Y), log(L), log(C), 

log(K) and Log(K100) are not only extremely dispersed but they also exhibit spatial 
autocorrelation patterns, and we can thus expect that the error terms ε in the productivity 
Cobb-Douglas and Translog equations (1) and (2) are also spatially autocorrelated. To take 
account of such a spatial autocorrelation, we rely on the spatial econometrics methods as 
developed in ANSELIN [1988], LESAGE [2000] or LE GALLO [2002]. After various 
experimentations, we have focused on the Spatial Autoregressive Regression (SAR) estimated 
by maximum likelihood. The SAR specification performs better than the usual regression as 
estimated by Ordinary Least Squares (OLS), that is when tested against the null hypothesis of 
no spatial autocorrelation (ρ = 0). It is also performs better when tested against the Spatial 
Error Model (SEM) in the framework the Spatial General Model (SGM) encompassing both 
the SAR and the SEM specifications. It also does well when tested with the Spatial Durbin 
Model (SDM). (See Appendix B for detailed explanations.) 

 
Tables 3 and 4 give the results of the estimation by maximum likelihood of the 

spatial autoregressive regression (SAR) for the Cobb-Douglas and Translog equations 
respectively. 

 
 

Table 3: Estimates of Cobb-Douglas production function with local R&D spillovers 
 (ABOUT HERE or BELOW in SECTION 3) 

 
 
 

Table 4: Estimates of Translog production function with local R&D spillovers 
 (ABOUT HERE or BELOW in SECTION 3) 

 
 
Making first a few general observations, we see that for all eight different 

regressions that we thought useful to document in these tables, the absence of spatial 
autocorrelation is rejected at 5% level, while the Spatial Autoregressive Regression (SAR) is 
                                                 
13 We have not included in the Translog specification the three cross-terms involving Log(K100/L), that is 
Log(L)* Log(K100/L), Log(C/L) * Log(K100/L) and Log(K/L) * Log(K100/L), since these three variables are 
strongly collinear.  
14 In the Translog specification, the elasticities are not constant, but are function of the variables. For example, 
the elasticity of physical capital stock is : 

( ) ( )( ) ( )( ) ( ) ( )( )
1 2 3 4

ˆ 2 log log log log( ) log log/ / / /C L C L L L K L K Lβ β β β γ= + − + − + −  
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accepted against the Spatial General Model (SGM). The spatial autocorrelation parameter (i.e. 
the coefficient of W*Log(Y/L)) is statistically significant of the order of 0.3 to 0.4 depending 
on the regressions. This can be interpreted as indirect evidence of local spillovers effects, 
other than the direct evidence provided by the estimates of the R&D capital stocks elasticities. 

 
We also observe that the general fit of the regressions are strongly improved when 

we move from the Cobb-Douglas to the Translog specifications. This is mainly accounted by 
the inclusion in the equations of the squared log-variables (and not by the cross-product 
terms), as indicated by the likelihood ratio tests. Following the interpretation of such a result 
proposed by CREPON-MAIRESSE [1993], we can view it as strong evidence of the 
heterogeneity of the production function across individual units: that is for us here across 
employment areas. The Translog equation takes explicitly into account such heterogeneity by 
including squares and cross-product of the log-variables, contrary to the more parsimonious 
Cobb-Douglas equation. Note, however, that, as could be expected, the estimates of average 
elasticities (i.e., when computed at the sample means of the variables for the Translog 
specification) are all practically the same for both type of equations. 

 
We find estimates of the average elasticity of physical capital stock Aβ̂ , which are 

both statistically very significant and of a reasonable order of magnitude of 0.25 in all eight 
regressions. The Translog estimates show, however, that the elasticity β is far from being 
constant across employment areas, increasing strongly with physical capital intensity: 

( ) ( )( )ˆ 0.23 0.28 log logC L C Lβ + − . We also find small but significant increasing returns to 
scale ν of about 3 to 5%, which appear to be practically constant across employment areas 
(contrary to β).  

 
Turning now to our parameters of main interest: the elasticities of local and 

neighborhood R&D capital, we see first that in all eight regressions the average elasticity of 
local R&D capital γ̂

A
 is as statistically significant as the average elasticity of physical capital 

Aβ̂ , and about equal to 0.03. Such an order of magnitude, which may seem small, is in fact on 
the high side of what could be expected. The similar cross-sectional estimates of R&D capital 
elasticity performed at the firm level for samples of R&D doing firms in manufacturing 
industries are in the range of 0.05 to 0.1015. Considering that only a minority of firms do 
R&D, a simplistic guess would be that at the aggregate level of employment areas, the 
estimated elasticity of local R&D capital would be a great deal smaller. Finding that it is 
actually of about 0.03 is clear evidence for the existence of sizeable R&D spillovers within 
employment areas. The Translog estimates show that the elasticity γ, like β, is not constant 
across employment areas but is strongly increasing with the intensity of local R&D capital: 

( ) ( )( )ˆ 0.03 0.02 log logK L K Lγ + − .  
 
Looking next at the estimates of the average elasticity η̂

A
 of neighborhood R&D 

capital in regressions (2), (4), (7) and (8) where we used our preferred measure K100, we see 

                                                 
15 See for example CREPON-MAIRESSE [1993] for such cross-sectional estimates for French manufacturing 
industries. See also MAIRESSE-SASSENOU [1991] for a survey of both cross-sectional and time series types of 
estimates for other countries, which remains representative of the results that can be found in recent studies.  
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that they are statistically significant and of nearly 0.015, half of the average elasticity γ̂
A

 16. 
The Translog estimates show again that the elasticity η is not constant across employment 
areas but appears to increase moderately with the intensity of the neighborhood R&D capital. 
In regressions (3) and (4), we present two among the different regressions we did in order to 
assess approximately the spatial range of R&D spillovers beyond employment areas, using 
different measures of neighborhood R&D capital stocks K80, K150, K200 and K250 
constructed as the R&D capital stocks of all employment areas in circles of increasing radius 
(respectively equal to 80km, 150km, 200km and 250km). We see in regression (3) that the 
average elasticity η̂

A
becomes not statistically different from zero if we use the broader 

definition of neighborhood R&D capital K200 instead of our preferred one K100. 
Equivalently, if in addition to Log(K100/L) we include in regression (4) the variable 
Log(K200-K100)/L measuring the intensity of R&D capital stocks in the neighboring 
employment areas centered in the 100km to 200km ring, we see that this variable is also not 
statistically different from zero. 
 
 

4 Industry R&D Spillovers 
 
 

In this section, we attempt both to confirm and be more specific about our findings 
on local R&D spillovers by pursuing our analysis at the level of five large manufacturing 
industries and by differentiating between own-industry and other-industry R&D spillovers. 
We have been able to partition our employment area database according to the French one-
digit industry classification NES 16, and we can focus on five large manufacturing industries, 
leaving aside trade, transport, services, and other industries which typically invest very little 
in R&D. These five broad manufacturing industries are the following: (B) Food and beverage 
industries; (C) Consumption good industries; (D) Motor vehicles industries; (E) Equipment 
good industries; and (F) Intermediate good industries.  

 
We are thus now considering a much larger sample of 1538 “industry-employment 

area” observations for which we computed, as we did previously for the whole economy, both 
an “own-industry” local R&D capital stock (K) and an “own-industry” neighborhood R&D 
stock (K100)17. To test whether we could find evidence of R&D spillovers across different 
industries, we also defined an “other-industry” local R&D capital stock (Kdif), simply 
computed for all industry-employment area observations as the sum of the own-industry local 
R&D capital for the four other industries18. 

 
Table 5 reports the estimates of the R&D capital stocks elasticities of interest for 

three regressions of the Translog productivity equation. All three regressions include fixed 
                                                 
16 Taking for K and K100 their median values (in Table 1) that only differ by 20%, this implies that the 
corresponding gross rate of return of neighborhood R&D capital would be about 60% of that of local R&D 
capital, which is quite high, still plausible enough. 
17 We deleted 22 observations (out of 5x312=1560) because of zero own industry local and neighborhood R&D 
capital stocks K and K100. 
18 We also computed an “other-industry” neighborhood R&D capital stock (Kdif100); however the regression 
estimates of the corresponding elasticities were very small and non significant, and not worthwhile to be reported 
here. The same observation applies for the estimates we obtained when we tried to include in the regressions 
separately the logs of the “own-industry” local R&D capital stocks for the other industries, as four additional 
separate variables instead of the log of their sum Log(Kdif).  
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industry effects, and the results shown are the usual within-industry OLS estimates, since we 
do not find anymore significant evidence in favor of the (SAR) specification in our larger 
sample, once we control for industry effects. Regression (9) assumes that all parameters are 
equal across industry (except for the industry fixed effects), while regression (10) only 
restricts the R&D capital elasticities to be equal across industry, and regression (11) also 
allows the R&D capital elasticities to be industry specific. The within-industry OLS estimates 
of regression (11) are thus the same as the OLS ones, when estimating it separately for each 
five industries. The complete estimates for regression (11), including the elasticities for 
physical capital, are recorded in Table C1 in Appendix C. 
 
 

Table 5: Estimates of Translog production function with local and industry R&D spillovers 
 (ABOUT HERE) 

 
 

Looking first at the χ2 tests of equality of the R&D capital stocks elasticities in 
regression (11), as well as the likelihood ratio tests of the fully pooled and semi-pooled 
regressions (9) and (10) against the more general regression(11), the evidence goes in favor of 
the latter specification. However, it also appears that the specification of regression (10) is 
mainly rejected because of very significant industry differences in the estimated elasticities of 
the local R&D capital Log(K/L). Actually, the estimates of the five other R&D capital 
elasticities in the Translog equation, that is for Log(Kdif/L), Log(K100/L), Log(K/L)2, 
Log(Kdif/L)2 and Log(K100/L)2 are not statistically different across industry at the 5% (or 
more) confidence level. 

 
Focusing now on the magnitude of the estimates, we see that the average elasticity 

γ̂
A

 of the local R&D capital, as estimated for all five industries in regressions (9) an (10), is 
again statistically very significant (as when estimated for the overall French business non 
agricultural economy in the previous section), but that it is of a much higher order of 
magnitude of about 0.09 (as against 0.03 before). This important difference in size is largely 
explained by the fact that we are now considering manufacturing industries only19. We also 
see that the elasticity γ is not constant across industry and employment areas and that it is 
increasing as before, but even more strongly, with the intensity of local R&D capital: 

( ) ( )( )γ̂ 0.09 0.05 log logK L K L= + − . We find, however, when considering regression (11), 

that the estimated average elasticity γ̂
A

 can be quite different across industries. It is 
significantly higher, of about 0.21, in the Motor vehicles industries, but falls in the range of 
0.05 to 0.10 in the other industries. It is noteworthy that the average elasticity γ̂

A
 remains 

statistically different from zero at the 1% confidence level, except in the Food industries 
where it only significant at the 10% confidence level. It is also interesting to observe that the 
elasticity γ tends to be significantly increasing with local R&D capital intensity Log(K/L) 
even within industry.  

 

                                                 
19 It is also explained by the related fact that γ̂A  is now measured at a different sample average value 

( )log K L  of the local R&D capital intensity, which is much higher for manufacturing industries than for the 
overall business economy. 



 11

The estimates of the average elasticity η̂
A

 of the neighborhood R&D capital in 
regressions (9) and (10) remain statistically significant as before, but with the same order of 
magnitude of 0.015 (or perhaps just slightly higher), contrary to the average elasticity 
estimate γ̂

A
. We also find a moderate tendency for the elasticity η to increase with the 

intensity of neighborhood R&D capital. We observe in regression (11) that the industry 
estimates of η do not statistically differ and are roughly constant across industries, again 
contrary to the corresponding estimates γ for local R&D capital. 

 
Finally, we only find weak evidence that local spillovers are not only industry 

specific, but are also significant and sizeable across different industries. The estimated 
elasticities of other-industry local R&D capital (Kdif) in regressions (9) and (10) are just 
significant at the 5% level of confidence and of about 0.01, that is much smaller by a factor of 
nearly 10 than the estimated elasticities of own-industry local R&D capital (K). In regression 
(11) we see that the elasticities of other-industry local R&D capital are significant and of 
about 0.02 for two industries out of the five: consumption goods and equipment goods 
industries20. 
 
 

5 Conclusion 
 
 

This note is a contribution to the existing literature on the effects of local R&D 
spillovers on productivity in their geographic and industrial dimensions. Our estimations of 
Cobb-Douglas and Translog extended production functions with local and neighborhood 
R&D capital are performed at the level of some 300 employment areas for the French non 
agricultural business economy as a whole in 1999. They are also generalized for five broad 
manufacturing industries, using a larger sample of some 1500 observations crossing industry 
and employment area data. Even though R&D investments are very highly concentrated in a 
few employment areas around Paris and other large French cities, we find statistically 
significant and large but plausible spillover effects of local R&D capital on productivity. In 
addition to these effects, we also find statistically significant but smaller effects for 
neighborhood R&D capital in the neighboring employment areas extending on average as far 
as 100km but not beyond. We also observe that these effects are not constant across 
employment areas, but increase very significantly with R&D capital intensity. These findings 
are strongly confirmed at the industry-employment area level, which show that local R&D 
spillovers tend to be mostly industry specific, while the evidence for R&D spillovers across 
different industries is much weaker. 

 
Although surprisingly good and robust, our results should still be considered as 

exploratory in view of many shortcomings related mainly to the data, and in particular its 
cross-sectional nature, and the consequences in terms of econometric modeling and 
estimation. Data on comparable cross-sectional employment areas data for a few number of 
years, and least one more recent year than 1999 would be very useful, but the data 
construction is complex and costly. An analysis at a more detail industry classification level 
might also be possible, though difficult. Investigating localized data at the establishment 
                                                 
20 Using data at the level of the 94 French departments for 11 manufacturing industries from 1992 to 2000, 
AUTANT-BERNARD, LESAGE [2008] find evidence of stronger cross-industry effects of private R&D 
activity on patenting than we do here for productivity. 
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level, and preferably panel data, is a priori the preferable way to go; however, it also has its 
own important problems.21 
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Table 1: Main Descriptive Statistics 

 
  
 
 

  Mean Std. Dev. Min Median Max 

Surface in km² 1 601 1 015 45 1 432 6 264
Employment (L) workers 40 158 76 202 5 034 20 512 992 637
Value Added (Y) in K€ 2 045 815 4 861 684 187 652 915 745 61 077 052
Fixed Capital (C ) in K€ 3 092 345 8 300 117 224 538 1 314 853 116 760 038
R&D Capital (K) in K€ 42 151 216 005 115 2 956 2 598 767
Neighborhood R&D Capital 
(K100) in K€ 1 208 750 145 507 115 2 444 8 815 790

R&D Workers (LRD) workers 220 1 096 0 20 14 086
Y / L in K€ 44.842 9.101 33.015 42.391 115.461
C / L in K€ 69.546 31.040 35.974 63.558 269.548
K / L in K€ 0.467 1.394 0.006 0.148 14.819
K100 / L in K€ 56.699 8.717 0.038 10.027 1 051.815
Log(Y / L)   3.7874 0.0095 3.4970 3.7469 4.7489
Log(C / L)   4.1737 0.0196 3.5828 4.1520 5.5967
Log(K / L)   -1.8693 0.0747 -5.1442 -1.9074 2.6959
Log(K100 / L)   2.3685 0.0992 -3.2749 2.3053 6.9583
K / Y   0.85% 2.15% 0.02% 0.35% 29.34%
K / C   0.7% 2.1% 0.0% 0.2% 27.5%
LRD / L    0.2% 0.6% 0.0% 0.1% 5.7%
Study sample of 312 Employment Areas. 
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Figure 1 : Concentration Curves and Gini Coefficients 
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Figure 2 : Geographic Concentration of R&D Employment in France 
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Table 2: Spatial Autocorrelation Coefficients and Tests  
 

Contiguity matrix 
 W1 W2 W3 W4 

0.228 0.086 0.141 0.189 Log(Y) 
(6.78) (4.24) (6.36) (6.87) 

0.198 0.056 0.108 0.156 Log(L) 
(5.88) (2.83) (4.91) (5.68) 

0.187 0.068 0.115 0.159 Log(C) 
(5.57) (3.37) (5.22) (5.80) 

0.211 0.125 0.172 0.211 Log(K) 
(6.27) (6.07) (7.70) (7.64) 

0.764 0.695 0.728 0.759 Log(K100) 
(22.48) (33.22) (32.16) (27.20) 

0.278 0.211 0.249 0.282 Log(Y/L) 
(8.23) (10.18) (11.11) (10.17) 

0.097 0.107 0.118 0.134 Log(C/L) 
(2.95) (5.22) (5.32) (4.91) 

0.168 0.137 0.168 0.195 Log(K/L) 
(5.01) (6.67) (7.51) (7.07) 

0.474 0.393 0.417 0.448 Log(K100/L) 
(13.99) (18.86) (18.48) (16.11) 

Moran's coefficients of spatial autocorrelation and the z-tests of no spatial 
autocorrelation are respectively shown in normal characters and in italic characters 
(in parentheses). Both are distributed as the standard normal variable under the 
null hypothesis of no spatial autocorrelation. Under this hypothesis the expected 
value of Moran's coefficients of spatial autocorrelation is equal to (-1/N) where N is 
the number of observations (i.e. = -1/312 =-0.003), and their standard errors 
depend on the contiguity matrix. They are respectively 0.034 , 0.021 , 0.023 and 
0.028  for W1, W2, W3 and W4.  
W1 = Contiguity Matrix based on Immediately Neighboring Employment Areas 
W2 = Contiguity Matrix based on  Neighboring Employment Areas  in a Circle of 
100 km  
W3 = Contiguity Matrix based on the Inverse of Geographical Distance 
W4 = Contiguity Matrix based on the Inverse of the Square of Geographical 
Distance 
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Table 3: Estimates of Cobb-Douglas production function with local R&D spillovers 

 
Regression 
 (1) (2) (3) (4) 

Estimated Parameters   (Standard Errors) 
                  
Constant 1.758** (0.238) 2.107** (0.254) 1.776** (0.239) 2.161** (0.258)
                  
Log(L) 0.030** (0.007) 0.045** (0.008) 0.035** (0.009) 0.039** (0.010)
                  
Log(C/L) 0.268** (0.024) 0.256** (0.024) 0.266** (0.024) 0.257** (0.024)
                  
                  
Log(K/L) 0.031** (0.005) 0.030** (0.005) 0.031** (0.005) 0.030** (0.005)
                  
Log(K100/L)     0.014** (0.004)     0.013** (0.004)
                  
Log(K200/L)         0.004 (0.004)     
                  
Log((K200-K100)/L)             -0.005 (0.004)
                  
                  
W * Log(Y/L) 0.314* (0.139) 0.269* (0.137) 0.298* (0.140) 0.289* (0.137)
                  
                  
S 0.0814 0.0801 0.0814 0.0798 
R²-adjusted 0.7628 0.7700 0.7624 0.7706 
Log. Likelihood 338.09 344.63 338.55 345.55 
LM Test OLS vs. SAR 27.95 [0.000] 5.13 [0.029] 20.60 [0.000] 5.35 [0.021]
LM Test SAR vs. SGM 2.02 [0.156] 0.98 [0.323] 1.56 [0.212] 1.57 [0.211]
                  
Maximum Likelihood Estimation. 312 Observations. * : significant at 5% level; ** : significant at 1% level. 
All regressions include 11 industry shares (NES 16 level).         
LM Test OLS vs. SAR : Lagrange multiplier test of Autoregressive model vs. no spatial model (distributed as  
χ2 (1) under the null) with p-values under brackets. 
LM Test SAR vs. SGM : Lagrange multiplier test of spatial generalized model vs. spatial autoregressive 
model (distributed as  as  χ2 (1) under the null)  with p-values under brackets. 
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Table 4: Estimates of Translog production function with local R&D spillovers 
 

Regression 
 (5) (6) (7) (8) 

Estimated Parameters   (Standard Errors) 

Constant 1.787** (0.223) 1.926** (0.228) 2.171** (0.236) 2.321** (0.240)
                  
Log(L) 0.035** (0.007) 0.030** (0.007) 0.051** (0.008) 0.045** (0.008)
                  
Log(L)² -0.002 (0.004) -0.008 (0.005) -0.002 (0.004) -0.010* (0.005)
                  
Log(C/L) 0.244** (0.022) 0.236** (0.023) 0.232 (0.022) 0.226** (0.022)
                  
Log(C/L)² 0.137** (0.026) 0.139** (0.026) 0.139** (0.025) 0.141** (0.025)
                  
Log(K/L) 0.030** (0.005) 0.031** (0.005) 0.029** (0.004) 0.030** (0.004)
                  
Log(K/L)² 0.010** (0.002) 0.008** (0.002) 0.010** (0.002) 0.008** (0.002)
                  
Log(K100/L)         0.013** (0.003) 0.013** (0.003)
                  
Log(K100/L)²         0.002* (0.001) 0.002* (0.001)
                  
Log(L) * Log(C/L)     -0.009 (0.017)     -0.003 (0.017)
                  
Log(L) * Log(K/L)     0.009 (0.005)     0.011* (0.005)
                  
Log(C/L) * Log(K/L)     0.016 (0.011)     0.017 (0.011)
                  
W * Log(Y/L) 0.459** (0.128) 0.431** (0.128) 0.417** (0.125) 0.389** (0.124)
                  
                  
S 0.0739 0.0733 0.0719 0.071 
R² - adj. 0.8024 0.8038 0.812 0.8149 
Log. Likelihood 368.69 371.41 378.41 382.44 
LM Test SAR vs. OLS 22.54 [0.000] 19.89 [0.000] 2.43 [0.119] 1.68 [0.195]
LM Test SGM vs. SAR 1.14 [0.285] 0.82 [0.365] 0.58 [0.447] 0.67 [0.416]
LR Squared Variables 61.04  (3) [0.000]     67.54  (4) [0.000]     
LR Cross-Product Variables     5.61  (3) [0.132]     8.06  (3) [0.045]
LR Translog Variables     66.65  (6) [0.000]     75.61  (7) [0.000]
LR Neighborood Variables        19.59  (2) [0.000] 22.05 (2) [0.000]

See footnote to Table 3 
LR Tests: Likelihood ratio tests of squared, cross product and all translog variables, with degrees of freedom in 
parenthesis and p-values in squared brackets. 
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Table 5: Estimates of Translog production function with local and industry R&D 
spillovers 

 
Regression 

 (9) (10) (11) 

Estimated Parameters   (Standard Errors) 

  Common Common B C D E F 

Log(K/L) 0.089** 0.093** 0.040 0.091** 0.210** 0.075** 0.055**
  (0.013) (0.011) (0.021) (0.012) (0.035) (0.011) (0.011)
                
Log(Kdif/L) 0.009* 0.009* 0.008 0.018* -0.001 0.020** 0.003 
  (0.004) (0.004) (0.006) (0.007) (0.013) (0.007) (0.006)
                
Log(K100/L) 0.015** 0.019** 0.023** 0.019** 0,020 0.015* 0.014*
  (0.004) (0.004) (0.006) (0.007) (0.013) (0.006) (0.006)

Log(K/L)² 0.025** 0.025** 0.011 0.020** 0.045** 0.020** 0.016**
  (0.004) (0.004) (0.007) (0.004) (0.010) (0.005) (0.005)
                
Log(Kdif/L)² 0.000 0.001 0.001 0.005* -0.005 0.006* 0.002 
  (0.002) (0.002) (0.003) (0.002) (0.005) (0.003) (0.002)
                
Log(K100/L)² 0.003* 0.003* 0.002 -0.000 0.004 0.003 0.005*
  (0.001) (0.001) (0.002) (0.002) (0.004) (0.002) (0.002)
                
S 0.2297 0.2204 0.2141 
R² adj. 0.6288 0.6584 0.6777 
Log. Likelihood 91.81 182.74 240.20 
                
χ2 (5) for:    
Log(K/L)     22.734  [0.000] 
Log(Kdif/L)     5.577  {0.233] 
Log(K100/L)     1.439  [0.837] 
Log(K/L)²     0.534  [0.970] 
Log(Kdif/L)²     5.190  [0.268] 
Log(K100/L)²     8.378  [0.079] 
                
OLS Estimation with heteroskedastic-consistent standard-errors. 1 538 Observations. 
* : significant at 5% level; ** : significant at 1% level.         
Regression (9) is a pooled regression with industry specific effects.       
Regression (10) allows all non-R&D capital parameters to vary across industries. 
Regression (11) allows all parameters to vary across industries.       
B=Food industries; C=Consumption good industries; D=Motor vehicles industries;  
 E=Equipment good industries; F=Intermediate good industries.  
 χ2 (5) with p-values in brackets for the Wald test of equality of coefficients across five industries.  
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APPENDIX A: 

 
Measurement of local and neighborhood R&D capital variables 

 
The R&D data we use to measure the R&D capital stocks at the employment area 

level are provided by the annual surveys on firms’ R&D expenditures conducted by the 
statistical office of The French Ministry of Research since the seventies. In these surveys, 
since 1993, firms which have several laboratories or research centers are asked to report the 
geographical decomposition of their total internal R&D expenditures and total number of 
R&D workers by French “departments” (NUTS 3 level). We use this decomposition together 
with the postal addresses of firms’ establishments to determine the localization of their R&D 
expenditures and number of workers at the very detailed level of the some 36 000 French 
“communes” or municipalities. These estimates are then summed up to the level of the 341 
employment areas which are aggregates of municipalities. 

 
The local R&D capital stocks (K) at the beginning of year 1999 are estimated by the 

permanent inventory method applied on the basis of the past internal R&D expenditures (R) 
so obtained for the six years 1993 – 1998, after deflation by an overall R&D price index and 
after depreciation assuming a constant depreciation rate δ of 15 %, that is using the following 
formula:  

 

 ( )∑
=τ τ

ττ−δ−=
1998

1993

1998
1999 1 RDP

R
K  (A-1) 

 
Note that we did not try to make any adjustment for the unknown initial stock of 

R&D capital in 1993, since this should not affect noticeably our cross-sectional estimates of 
the R&D capital elasticities of interest here. With a rate of depreciation δ of 15 %, it is also 
the case that about 38 % of the R&D capital stock at the beginning of 1992 is not depreciated 
at the beginning of 1999, which will represent about 28 % of the R&D capital stock at the 
beginning of year 1999, when assuming that R&D investments have been growing at an 
average annual growth rate of 5 %. 

 
The neighborhood R&D capital stock (K100) for any given employment area is 

simply computed by summing up the R&D capital stocks (K) in the employment areas which 
are in a circle of 100 km around this given area. In this procedure, we assume that all the 
R&D capital of an employment area is localized at its geographical center. Precisely, we have 
constructed a matrix A100 which indicates if the distance between two employment areas i and 
j is less then 100 km: 

 

 [ ] ( )
⎩
⎨
⎧ ≤<

==
otherwise0

100,  0 if1
 such that      ,,100

kmjidist
aaA jiji  (A-2) 

 
Denoting by K  the vector of local capital stock for all employment areas and by 

100K  the corresponding vector of neighborhood capital stock, we can compute simply the 
latter as:  
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 KAK 100100 =  (A-3) 

 
Note that by construction the matrix A100 is symmetric and the coefficients of its 

main diagonal are zeros. Note also that this matrix is not row-standardized as a classical 
spatial weight matrix since K100 is defined as the sum (not the average) of the local R&D 
capital stocks K for the neighboring areas.  

 
To assess approximately the spatial range of R&D spillovers we have also considered 
different measures of neighborhood R&D capital stocks, based on alternative choices of 
distance between the geographical centers of an employment area and its neighboring areas. 
Besides using K100, we have thus experimented with K80, K150, K200 and K250, costructed 
as the R&D capital stocks of all employment areas in circles of increasing radius (respectively 
equal to 80km, 150km, 200km and 250km). See Table 3 where we report different estimates 
of the Cobb-Douglas productivity equation using respectively K100 and K200 alone, and both 
K100 and (K200 – K100).  
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APPENDIX B:  

 
Brief overview of spatial econometric methods 

 
We use the classical spatial econometrics method developed by ANSELIN [1988], 

LESAGE [2000] or LE GALLO [2002]. We can treat the error terms as a first-order spatial 
autocorrelation process to give the Spatial Error Model (SEM), but we prefer to add the spatial 
lag of the dependent variable as an additional explanatory variable and consider the Spatial 
Autoregressive Regression (SAR), or spatial lag model. If we write y the vector of 
observations on the dependent variable, X the matrix of the regressors, and W the contiguity 
matrix, the (SAR) model can be written as:  
 
 ε+β+ρ= XWyy  (B-1) 
 
This model cannot be consistently estimated by least-squares because it includes the spatially 
lagged dependent variable as a regressor. We have instead to rely on the maximum likelihood 
method. Assuming normality of the error term: 
 

( ) ( )INXyWI 2,0 σ≈ε=β−ρ−  
 
the log likelihood function is the following: 
 

( ) ( ) ( )
( )( ) ( )( ) ⎥⎦

⎤
⎢⎣
⎡ β−ρ−′β−ρ−

σ
−

ρ−−σ−π−=σβρ

 
2

1

loglog
2

2log
2

,,log

2
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XyWIXyWI

WINNL
 

 
Using the transformation proposed by ORD [1975], the log of the determinant |I – ρW| can be 
computed as: 
 

( )∑
=

ρω−=ρ−
N

i
iWI

1
1loglog  

 
where ωi are the eigenvalues of the contiguity matrix W, which can be computed themselves 
once for all in the iterative maximization procedure. The global solution for maximization of 
log likelihood function is quite fast using a Matlab estimation program software adapted from 
the routines provided by James LESAGE on the web site: http://www.spatial-
econometrics.com/. 

 
Following ANSELIN [1988] or ANSELIN-BERA-FLORAX-YOON [1996] and 

using Lagrange multiplier tests, we perform various specification tests of the SAR 
specification against other specifications. First of all, we can test the (SAR) regression for the 
null of no spatial autocorrelation (ρ = 0), that is against the usual regression as estimated by 
Ordinary Least Squares (OLS). We can also test the (SAR) model against a more general 
model called the Spatial Generalized Model (SGM), which allows spatial autocorrelation in 
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the error term, and thus encompass the SEM specification as well as the SAR specification. 
The SGM model can be written as: 
 
 ε+λ=+β+ρ= WuuuXWyy ith           w  (B-2) 
 
or also as the following second order spatial autoregressive model: 
 
 ( )ρ+λ ρλ β λβ   y W y W W y X W X ε= + + − +  (B-3) 
 
with one cofactor restriction on the parameters of the spatial lagged regressors. When there is 
no lagged dependent variables (ρ = 0), the spatial error model (SEM) is again obtained as: 
 
 ε+λβ−β+λ= WXXWyy  (B-4) 
 

Finally without the cofactor restriction, we obtain a model proposed by Durbin, 
called the Spatial Durbin Model (SDM), which can be tested against the previous SEM:  
 
 ε+γ+β+λ= WXXWyy  (B-5) 
 

Figure B1 summarizes the relations between the usual (non spatial) regression (OLS) 
and the four spatial regression models: SEM, SAR, SGM and SDM. We have tested that the 
SAR specification was preferable to the OLS and SEM specifications and was an acceptable 
restriction to the SGM and SDM specifications. 
 

Figure B1: Relations between Spatial Regression Models 
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APPENDIX C:  
 

Table C1: Translog production function with local and industry 
R&D spillovers: Complete estimates of regression (11) 

 
 
 

Industry 
 Regression (11) 

 
B C D E F 

            
Industry Dummy 1.278** 2.085** 2.665** 2.813** 2.514**
  (0.165) (0.131) (0.171) (0.182) (0.133) 
            
            
Log(L) 0.099** 0.074** 0.042 0.072** 0.027* 
  (0.017) (0.015) (0.024) (0.015) (0.014) 
Log(C/L) 0.403** 0.296** 0.215** 0.119* 0.261**
  (0.021) (0.024) (0.029) (0.049) (0.023) 
            
            
Log(K/L) 0.040 0.091** 0.210** 0.075** 0.055**
  (0.021) (0.012) (0.035) (0.011) (0.011) 
Log(Kdif/L) 0.008 0.018* -0.001 0.020** 0,003 
  (0.006) (0.007) (0.013) (0.007) (0.006) 
Log(K100/L) 0.023** 0.019** 0.020 0.015* 0.014* 
  (0.006) (0.007) (0.013) (0.006) (0.006) 
            
            
Log(L)² -0.276 0.005 0.005 0.001 0.004 
  (0.011) (0.006) (0.009) (0.008) (0.009) 
Log(C/L)² 0.069* 0.136** 0.050** 0.022 0.121* 
  (0.031) (0.043) (0.016) (0.086) (0.050) 
            
            
Log(K/L)² 0.011 0.020** 0.045** 0.021** 0.016**
  (0.007) (0.004) (0.010) (0.005) (0.005) 
Log(Kdif/L)² 0.001 0.005* -0.005 0.006* 0.002 
  (0.003) (0.002) (0.005) (0.003) (0.002) 
Log(K100/L)² 0.002 0.000 0.004 0.003 0.005* 
  (0.002) (0.002) (0.004) (0.002) (0.002) 
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Industry 
 Regression (11)- -continued 

 
B C D E F 

      
Log(L) * Log(C/L) 0.055* -0.049 -0.030 0.025 -0.044 
  (0.023) (0.031) (0.018) (0.053) (0.026) 
Log(L) * Log(K/L) 0.006 -0.012 -0.355 -0.505 -0.483 
  (0.012) (0.007) (0.022) (0.011) (0.011) 
Log(L) * Log(Kdif/L) 0.006 0.022* -0.506 -0.553 0.019* 
  (0.007) (0.009) (0.010) (0.007) (0.009) 
Log(C/L) * Log(K/L) 0.018 0.020 -0.054* 0.030 -0.847 
  (0.017) (0.019) (0.023) (0.024) (0.021) 
Log(C/L) * Log(Kdif/L) -0.036** -0.030 -0.015 0.043* -0.037 
  (0.013) (0.022) (0.014) (0.018) (0.023) 
Log(K/L) * Log(Kdif/L) -0.550 0.002 0.016 -0.831 -0.177 
  (0.004) (0.006) (0.014) (0.005) (0.005) 
            
            
Sum of Squared residuals 65.8918 
Standard error of residuals 0.2141 
R² adjusted 0.6777 
            
LM Test Heteroskedasticity 15.60   [p-value : 0.000] 
            
LR Test Pooled Model (9) 296.76   (df = 72)  [p-value : 0.000] 
LR Test Semi-Pooled Model (10) 114.91   (df = 24)  [p-value : 0.000] 
            
OLS Estimation with heteroskedastic-consistent standard-error. 1538 observations.  
The regression includes three binary indicators for the few observations with respectively  
missing or zero values of C/L, K/L and Kdif/L. 
* : significant at 5% level; ** : significant at 1% level.       
B=Food industries; C=Consumption good industries; D=Motor vehicles industries;  
E=Equipment good  industries; F=Intermediate good industries.  

 
 
 
 


