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Abstract

This paper develops a new method for dealing with endogenous selection. When selec-
tion is directly driven by the dependent variable, the usual instrumental strategy based on
the independence between the outcome and the instruments is likely to fail. Instead, the
article suggests to rely on independence between the instruments and the selection variable,
conditional on the outcome. This may be particularly suitable for nonignorable nonresponse,
binary models with missing covariates or Roy models with unobserved sector. Nonpara-
metric identification of the joint distribution of variables is obtained under completeness, a
rank condition which has been used recently in several nonparametric instrumental prob-
lems. Even if the conditional independence between the instrument and the selection fails,
the approach provides sharp bounds on parameters of interest under weaker monotonicity
conditions. Apart from identification, nonparametric and parametric estimation is also con-
sidered. Eventually, the method is applied to estimate the effect of grade retention in French

primary schools.

Keywords: endogenous selection, instrumental variables, nonparametric identification,

completeness, inverse problems.

Résumé

Ce papier développe une nouvelle méthode pour traiter de la sélection endogéne. Quand
la sélection dépend directement de la variable d’intérét, il peut étre difficile d’exhiber un in-
strument influant la sélection mais pas directement la variable d’intérét. Une autre stratégie
instrumentale, basée sur l'indépendance entre les instruments et la sélection, est considérée
ici. Cette stratégie peut étre particuliérement utile pour résoudre les problémes de non-
réponse non-ignorable, de modéles binaires avec covariables inobservées ou les modéles de
Roy avec secteur inobservé. L’identification non-paramétrique est obtenue sous I’hypothése
que la variable dépendante est une statistique compléte pour I'instrument, une condition de
rang récemment utilisée dans plusieurs problémes non-paramétriques instrumentaux. Méme
si la relation d’exclusion est violée, I’approche développée ici permet d’obtenir des bornes opti-
males sur des paramétres d’intérét, sous des conditions plus faibles de monotonicité. Au-dela
des résultats d’identification, I'estimation paramétrique et non-paramétrique est également
considérée. Enfin, la méthode est appliquée a I’évaluation des effets du redoublement & 1’école

primaire en France.

Mots clés: sélection endogéne, variables instrumentales, identification non-paramétrique,

statistique compléte, problémes inverses.
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1 Introduction

Missing observations are very common in micro data, either because of selection, nonre-
sponse or simply because variables such as counterfactual cannot be observed. Ignoring
this issue by making inference on the observed population generally leads to inconsistent
estimators. Moreover, without additional assumptions, only bounds on the parameters of
interest can be identified (see e.g. Manski, 2003). Several approaches have been followed
to retrieve point identification. The first is to suppose independence between response and
variables of interest conditional on observed covariates. This is the so-called missing at
random hypothesis (see e.g. Little and Rubin, 1987), or the unconfoundedness assumption
in the treatment effect literature (see for instance Imbens, 2004). However, this assumption
is often considered too stringent because it rules out any correlation between the selection
and outcome variables. When such endogenous selection arises, the common practice is to
use instruments which determines selection but not outcomes (see e.g. Heckman, 1974, on
tobit models, Angrist et al., 1996, or Heckman and Vytlacil, 2005 on treatment effects).
However, this assumption does not point identify the distribution of the outcome in general
(see Manski, 2003). Moreover, it may be difficult to find such instruments. When selection
depends heavily on the dependent variable, in particular, the assumption of conditional
independence is difficult to maintain. A third approach relies on functional restrictions
rather than exclusion restrictions. For instance, Chamberlain (1986) obtains identification
at the infinity by imposing a linear structure.! Lastly, using an appealing composite strat-
egy, Lewbel (2007) obtained identification under the existence of a special regressor which
is strongly exogenous (i.e., conditionally independent of the errors of the selection model),

a large support condition and restrictions on the probability of selection.?

In this paper, another instrumental strategy for solving endogenous selection is considered.
Nonparametric identification is based on independence between the instruments and the
selection variable, conditional on the outcome and possible on other explanatory variables.
This assumption has been also used in the framework of nonignorable nonresponse by Chen
(2001), Tang et al. (2003), Hemvanich (2004) and Ramalho and Smith (2007).> Apart from

!The distribution of categorical data can also be recovered under nonignorable nonresponse, through
restrictions in a log-linear model between the dependent and explanatory variables (see e.g. Baker and
Laird, 1988 and Park and Brown, 1994). Similarly, endogenous attrition in panel data can be handled by

imposing semiparametric restrictions (see, among others, Scharfstein et al., 1999, or Hirano et al., 2001).
2This probability must tend to zero or one when the special regressor tends to infinity.
3The difference with these papers is that they focus mainly on parametric and semiparametric estimation

issues, whereas the emphasis is put on nonparametric identification here. Chen (2001) and Tang et al.



nonresponse, this assumption may be particularly suitable when selection is directly driven
by the dependent variable. Consider for instance a variable which is observed only if it
exceeds an unobserved truncation. Finding an instrument which only affects selection is
impossible if this truncation variable is purely random. Instead, any variable which af-
fects the dependent variable will satisfy the exclusion restriction considered here. Other
examples where this assumption can be useful include Roy models with unobserved sector,
one stratum response based samples or truncated count data models. As in usual instru-
mental regressions, a rank condition between instruments and outcomes is also required to
achieve identification. This condition is stated in terms of completeness, and was already
considered in several nonparametric instrumental problems (see, among others, Newey and
Powell, 2003, Florens et al., 2003 and Hu and Schennach, 2008). This hypothesis, together
with the conditional independence assumption, enables to recover the joint distribution of

the data nonparametrically.

If only some moments of the instrument are used, and not its full distribution, the distri-
bution of the data can still be recovered under a parametric restriction on the selection
model. This result may be useful when only aggregated information on the instruments
are available, or for the ease of estimation. The idea of using moments of instruments to
deal with nonresponse has also been applied in survey sampling (see Deville, 2002). It is
also related to the literature on auxiliary information, which has been developed either for
efficiency reasons (see Imbens and Lancaster, 1994, Hellerstein and Imbens, 1999) or, as
here, to provide identification (see Hellerstein and Imbens, 1999, and Nevo, 2002). Our

parametric framework extends Nevo’s result to the case of endogenous selection.

The fact that the identification strategy relies on an exclusion restriction may seem restric-
tive in some applications, and is not needed in Lewbel’s framework for instance.* However,
and contrary to the missing at random assumption for instance, this condition is testable.
Furthermore, the method appears to be fruitful even if the exclusion restriction fails. The
intuition behind is that this condition is the extreme opposite of unconfoundedness. In-
deed, selection depends only on the outcome in the first case and only on covariates in

the second one. In between, if selection depends monotonically on both the outcome and

(2003) propose sufficient conditions for identification in parametric models, and Hemvanich (2004) studies

identification when the support of the outcome is finite. We extend his result to a general situation here.
40n the other hand, the existence of a special regressor, which may be difficult to find in practice,

is not needed here. Indeed, the instrument may be continuous or discrete, the completeness condition
only implying that its support has the same number of or more elements than the one of the outcome.
Moreover, no restriction is imposed on the conditional probability of selection, except, as usual, that it

should be positive everywhere.



a given instrument, I show that the identifying equations underlying the two assumptions
provide sharp and finite bounds on parameters of the outcome. Thus, even if the dependent
variable is unbounded, one can obtain compact interval on parameters of interest. This
result is similar to the one of Manski and Pepper (2000) (see their proposition 2, corol-
lary 2) but within a slightly different framework and under other assumptions. Instead
of their monotone treatment response condition, which states that outcomes increase with
the treatment, the result relies on the existence of an instrument which affects selection in
a monotonic way. Such a condition is weak and is likely to be satisfied in many contexts,
including the use of data with nonignorable nonresponse and treatment effects estimation.
In this latter case in particular, the result should be of practical importance as it enables
to go beyond the standard routine of computing matching estimators as point estimates

of these effects.

Apart from identification issues, estimation of the model is also considered. Standard
GMM can be used in the parametric case or in the nonparametric one with a discrete
outcome. In a nonparametric setting with a continuous dependent variable, the parameter
is functional and must be estimated through an infinite number of moment conditions.
Estimation is based on a Tikhonov regularization method, as in Hall and Horowitz (2005)
or Carrasco et al. (2006). The estimator of the conditional probability of selection is
shown to be consistent. This estimator enables in turn to make valid inference on the
whole population, by an inverse probability weighting procedure, in a similar fashion to
Horvitz and Thompson (1952), Hellerstein and Imbens (1999), Nevo (2002) or Wooldridge
(2007).

Lastly, the method is used to estimate the effect in terms of test achievement of grade
retention in fifth grade in France. Besides the usual counterfactual problem, identification
of this effect is complicated by the fact that French students only take standardized tests at
the beginning of the third and sixth grades. Thus, the ability at the end of the fifth grade,
which is one of the main factor of grade retention, is observed for promoted students,
thanks to the sixth test, but not for retained students. Consequently, the problem fits
within our framework. Using the third grade test score as an instrument, sharp bounds
on the effects of grade retention are computed. Overall, the short term impact of grade
retention seems more likely to be positive. This result is in line with the one of Jacob and
Lefgren (2004) for third graders in Chicago.

The rest of the paper is structured as follows. Section two is devoted to identification issues.
The estimation is discussed in section three. Lastly, the application to grade retention is

presented in section four.



2 Identification

2.1 The setting and main result

Let Y denote the dependent variable and D denote the binary variable of selection. The
covariates are denoted by X, the instruments by Z. We also define Y = (X,Y) and
Z = (X, Z). The first assumptions set the selection problem.

Assumption 1 We observe D and (X,Y,Z) when D = 1. Y is not observed when D = 0.
Assumption 2 The distribution of Z is identified.

Assumptions 1 and 2 are satisfied when Y alone is missing, as in selection problems or item
nonresponse. It also covers unit nonresponse where (X, Y, Z) are missing when D = 0. In
this latter situation, auxiliary information on Z is needed to satisfy assumption 2. This
information typically stems from a refreshment sample, censuses or administrative data.
In these two latter cases, supposing the identifiability of the whole distribution of Z may be
overly strong, and we will see in subsection 2.3 that it can be weakened to the knowledge

of moments of Z, at the price of imposing parametric restrictions.

Assumptions 1 and 2 alone do not enable to point identify the distribution of (D, XY, 7).
More structure on the dependence between these variables is needed. If selection directly
depends on Y, the usual assumption of exogenous selection will fail, and it may be difficult
to find an instrument which affects selection but not the outcome. On the other hand, we
may find variables which are related to Y but not to D. More precisely, we will assume

here the following condition:
Assumption 3 D 1l Z|Y.

This assumption has also been made by Chen (2001), Tang et al. (2003), Hemvanich (2004)
and Ramalho and Smith (2007) in the framework of nonresponse. It is also a particular
case of assumption (41) of Manski (1994). The condition can be interpreted as follows.
The selection equation depends on Y, which is missing when D = 0, and thus cannot be
identified with the data alone. On the other hand, if an instrument which affects Y but not
directly D is available, one can identify this selection equation, in a similar fashion to usual
instrumental regressions. For instance, suppose that (D, X, Y, Z) follow the nonparametric

system
Y = g(X.Zpe)
(2.1)
D = h(X,Y,n).
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In this setting, the independence condition 3 holds if 7 is independent of (Z, ) (see lemma
5.2 in appendix A2 for a formal proof). By letting h denote the conditional quantile
function of D, we can suppose without loss of generality that n is independent of Y,
conditional on X.> The exclusion restriction amounts to reinforce this into a conditional
independence between 1 and (Y, Z). Note that in system (2.1), the usual instrumental

strategy cannot be applied, since there is no exclusion restriction in the selection equation.

As indicated previously, a dependence condition between Y and Z is required to achieve
identification of the model. I rely in the sequel on a completeness condition. Let B denotes
the set of real functions A such that h(Y) is bounded below almost surely and h € Li,,
where, for any random variable T" and any ¢ > 0, L% is the space of functions g satisfying
E(|g(T)|?) < +o0.

Assumption 4 Y is B-complete for Z, that is for all h € B,

(E(h(Y)|Z) =0 a.s.) — (h(Y) =0 a.s.). (2.2)

Assumption 4 is weaker than the usual completeness condition, for which condition (2.2)
must hold for any i € L}, but stronger than bounded completeness, for which condition
(2.2) must hold for bounded functions h only (see e.g. Mattner, 1993, for a discussion on
the difference between completeness and bounded completeness). The standard complete-
ness condition has been used in the study of nonparametric instrumental regression under
additive separability (see Newey and Powell, 2003, Darolles et al., 2007), local instrumental
variables (see Florens et al., 2003) and nonclassical measurement error problems (see Chen
and Hu, 2006 and Hu and Schennach, 2008).° while the bounded completeness condition
has been used for instance by Blundell et al. (2007).

Completeness can be easily characterized when Y and Z have finite supports. Indeed,
letting (v1,...,ys) and (21, ..., 2;) denote these supports, this assumption amounts to

P(rank(M (X)) = s) =1, (2.3)

where M (X) is the random matrix of typical element P(Y = y;|Z = z;, X) (see Newey and
Powell, 2003). Hence, the support of Z must be at least as rich as the one of Y (¢ > s) and

the dependence between the two variables must be strong enough for s distinct conditional

5In this case, h is not necessarily structural.
Indeed, assumption 2.4 of Chen and Hu (2006) and assumption 2 of Hu and Schennach (2008) are

equivalent, under technical conditions, to a completeness condition.



distributions P(Y = .|Z = z;,X) to exist. In this case, completeness is equivalent to
bounded completeness. Completeness or bounded completeness are much more difficult
to characterize when the support of Y or Z is infinite, and only sufficient conditions have
been obtained until now. Both hold when the density of Y conditional on Z belongs to an
exponential family (see Newey and Powell, 2003). These conditions can also be obtained if
Y and Z are related through a nonparametric model with an additive decomposition and a
large support assumption (see d’Haultfoeuille, 2008). In lemma 5.3 of appendix A2, this last
result is adapted to obtain sufficient conditions for B-completeness in the example of system
(2.1).7 Interestingly, the regularity conditions imposed to obtain B—completeness are
hardly stronger than the one used by d’Haultfeeuille (2008) to yield bounded completeness.

Hence, in this framework at least, the two conditions appear to be quite close.

Because identification is based on inverse probability weighted moment conditions, we
also suppose that the conditional probability P(Y) = P(D = 1|Y) is positive almost
surely. This assumption is similar to the common support condition in the treatment
effects literature. It does not hold if D is a deterministic function of Y, as in simple

truncation models for instance.
Assumption 5 P(Y) > 0 almost surely.

Theorem 2.1 Suppose that assumptions 1-5 hold. Then the distribution of (D, X,Y, Z)
is identified.

The proof of theorem 2.1 is deferred to appendix Al. Basically, the result stems from the

fact that under assumption 3 and 4, the equation in Q(.)

E (%‘z) =1 (2.4)

admits a unique solution, P(.). Identification of P(.) follows because the left term is
identified for any given )(.). Then it is easy to show that the knowledge of P(.) enables
to identify the distribution of (D, XY, Z). We now present several potential applications

of this framework.

Example 1: nonignorable nonresponse. In this case, Y is observed only if the individual
answers to the survey or to a given question in the questionnaire (D = 1). Nonresponse
depends directly on Y (and possibly on covariates X). For instance, accepting to answer

questions on sensitive topics such as drug use, religious or sexual preferences is likely to

7Of course, these conditions are only sufficient. The large support assumption, especially, is not neces-

sary when Y is discrete.



depend on the answer itself. The method can be applied if an instrument affects Y but not
directly D. For instance, local drug prices affect drug use but are unlikely to play directly

oI response on drug use.

Example 2: Roy model with an unobserved sector. Let for instance Y (resp. W,.) denote
the wage an individual can obtain in sector 1 (resp. in sector 0). The individual chooses the
sector that provides him with the better wage. Y is observed if sector 1 is chosen but W, is
never observed. For instance, Y may represent the potential wage of an individual, which
is observed only if the person enters the labor market, while W, denotes his reservation
wage. The usual exclusion restriction requires the existence a variable which affects W, but
not Y. On the other hand, the strategy above can be applied if there is an instrument 2
which affects the wage but not directly the reservation wage, so that W, is independent of
Z conditional on Y. A possible example of such an instrument is the local unemployment
rate (see Haurin and Sridhar, 2003, for evidence that the local unemployment rate does

not affect the reservation wage).

Example 3: sample from one response stratum. Suppose that a researcher seeks to study
the effects of Y on a binary variable D but has only accessed to data from the subpopulation
for whom D =1 or, at least, no data on Y is available for the stratum D = 0. Examples
include the study of prevalence of a disease using hospital records, or the evaluation of a
welfare program using different sources for the participants and untreated individuals (see
Manski, 2003). Our instrumental strategy relies on the existence of an instrument Z which
affects Y but not D directly, and whose distribution is identified. Suppose for instance that
one wants to study the efficiency of vaccination in a developing country, but data on ill
people only are available, and the vaccination rate in the population is unknown. If there
has been an important vaccination campaign after a given date, one can use the dummy

of being born after this date as an instrument.®

Example 4: truncated count data models. We seek to modelize an integer valued variable
@ as a function of covariates Y but only observe (Q,Y) when @ > 0. An application is
the use of retail data to study the demand for a good.” Suppose indeed that we observe
the quantities sold and the sales, but not the prices. Then these prices can be deduced

only when the quantities sold are positive. The framework can be applied if there is an

8If age is a factor of the disease a well, one can use only individuals born just before and just after the

beginning of the campaign, as in the regression-discontinuity approach.
9As discussed by Grogger and Carson (1991), truncated counts arise more generally with data from

surveys which ask participants about their number of participations, or administrative records where

inclusion in the database is predicated on having engaged in the activity of interest.



instrument whose distribution is identified and which affects the prices but not directly the
demand. Production costs or prices of the inputs, for instance, may be good candidates
for that.

2.2 Testability and set identification without conditional independence

In some contexts, the conditional independence assumption 3 may seem overly strong. An
interesting feature of this assumption, yet, is that it is refutable, contrary to the usual
missing at random assumption. Firstly, equation (2.4) may have no solution. This is
especially clear when (X, Y, Z) has a finite support. If indeed Y and Z take respectively
my and my distinct values, with mg > my, (2.4) can be written as a system of my linear

equations with m; unknown parameters, so that the model is overidentified.

But even when m; = may, the model is testable since the solution Q(.) of equation (2.4)
must be a positive probability, i.e. Q(y) €]0,1] for all .1 As an illustration, consider a
simple case without covariates and such that (Y, Z) € {0,1}?. Let p(y,2) = P(D =1,Y =
y|Z = z), a« = 1/Q(0) and § = 1/Q(1). Then, as soon as p(0,0)p(1,1) # p(0,1)p(1,0)

(that is to say under the completeness condition), equation (2.4) is equivalent to

p(L 1) — p(17 0)

a =
Hence, when p(1,1) — p(1,0) and p(0,0) — p(0,1) have opposite signs, assumption 3 is

1
rejected.!! Basically, this happens when 2z — P(D = 1Y = y, Z = z) varies too much
compared to z — P(Y =y|Z = 2).

Now, when a solution Q(.) €]0, 1] of equation (2.4) does exist, one can expect that assump-
tion 3 cannot be rejected, since intuitively, this equation makes use of all the available

information. Theorem 2.2 formalizes this idea.

Theorem 2.2 Suppose that assumption 1, 2 and 5 hold. Then assumption 3 can be rejected
if and only there exists no solution Q(.) of equation (2.4) which belongs to ]0,1].

A second interesting feature of equation (2.4) is that it provides an informative bound

on parameters of interest under monotonicity conditions, which are far weaker than the

107f the completeness condition does not hold, Q(.) may not be unique. Then at least one of the solution

must belong to ]0, 1].
11 Of course, there are other cases where the assumption is violated.



conditional independence condition of assumption 3. In the sequel, we let Z’' = (X, Z')
denote covariates which may be different or not from Z = (X, Z) and whose distribution is
also identified. Besides, we restrict to the case where (Y, Z) € R%. We replace assumption

3 by the following ones.
Assumption 3’ Almost surely, z +— P(D = 1Y, Z = z) is increasing.
Assumption 6 Almost surely, y— P(D = 1|Y =y, Z) is increasing.

Assumption 3’ weakens the conditional independence between selection and instrument set
in assumption 3 into a monotone dependence. It is also a variant of the usual instrumental
condition which supposes that the instrument affects the probability of selection but is
independent of the outcome. Here, the effect on the probability of select is restricted to
be monotonic, but no independence condition between Y and Z is needed. Assumption
6 weakens the missing at random hypothesis of independence between selection and out-
come into a monotone dependence. This assumption is very similar to the mean missing
monotonicity assumption considered by Manski (2003, p. 28), and actually implies it, as

part a) of theorem 2.3 shows.

Theorem 2.3 below provides bounds on parameters of the form E(h(Y)) for h € Hy or
h € H, where we let

Hl = {h(z,.) € L} and h(x,.) is increasing, for P*-almost all 2}, (T =Y or Z)
Hy = {he€Ly/3¢eHy/h(Y)=E®W(Z)D=1Y)}

We suppose in the following that equation (2.4) admits a solution, and, as before, we let
Q(.) denote such a solution. More precisely, if the constant function P(D = 1) is a solution,
we let Q(Y) = P(D = 1) but otherwise Q(.) can be any of the solutions. We do not impose
it neither to lie in |0, 1] nor to be unique, so that cases where the completeness condition

4 fails can also be handled.

Theorem 2.3 Suppose that P(D = 1) > 0 and assumptions 1 and 2 hold for Z and Z .
Then:

a) Under assumption 6, E [h(Y)|X] < E[E(h(Y)|Z,D = 1)|X] for all h € Hy-. Moreover,
this upper bound is sharp ;

b) Under assumptions 3’, E[Dh(Y)/Q(Y)|X] < E[h(Y)|X] for all function h € HE.
Moreover, this lower bound is sharp provided that at least one solution Q(.) lies in ]0; 1].
c¢) For all function h € L%, these three expectations are equal when D . (Y, Z,Z') or
when Z=7 =Y.



Part a) of theorem 2.3 is not specific to the methodology developed here, and is rather
straightforward. Part b), on the other hand, shows that the moment condition used here
leads to a sharp lower bound on this parameter. This lower bound does not depend on the
choice of the solution @(.) of equation (2.4), so that no completeness condition is required.
The bound also holds even if no solution @(.) lies in ]0; 1]. In this case however, the bound
may not be sharp because one could exploit the fact that the conditional independence

assumption 3 is rejected by the data.

An important consequence of theorem 2.3 is that for all functions h € Hy N HZ, we can
obtain a compact interval on E(h(Y)|X). This is so even if h(Y) is unbounded. In this
sense, the result is similar to proposition 2, corollary 2 of Manski and Pepper (2000),
under a different set of assumptions. In particular, we do not rely on the monotone
treatment response condition, which is difficult to adapt to the context of selection models
or nonresponse. Moreover, the monotone treatment response assumption can be strong in
the context of treatment effects. In the Roy model with an unobserved sector developed
in example 2, it asserts that almost surely, Y; > Y (or Yy > Y7), so that only one sector
would be chosen at equilibrium, a rather unrealistic situation. Instead of this condition,
assumption 3’ supposes the existence of an instrument such that the probability of selection
increases with this instrument. This assumption is rather weak and should be satisfied in
many contexts, including treatment effects estimation or estimation of parameters with
nonignorable missing data. In example 2, one could use standard instruments such as

non-wage income or the number of children (actually, their opposite) for instance.

As part ¢) shows, the interval can be reduced to a point if D is fully missing at random.
Hence, the length of the interval can be interpreted as a measure of the severity of the
selection problem. Because the interval is also reduced to a point when Z = Z' = Y,
its length also reflects the quality of the chosen instruments. As the dependence between
(Z,7Z') and Y increases, the knowledge of the distribution of the instruments enables to
better predict parameters of the distribution of Y. Besides, the upper (resp. lower)
inequality turns into an equalities whenever Y 1L D|Z’ (resp. Z 1L D|Y). Hence, Z
and Z’' must be chosen according to different logics. Z’ intends to reduce selection on
inobservables correlated with the outcome, whereas Z should be as independent of the

selection (conditional on Y) as possible.

The class of parameters for which a lower bound is available depends on H# which, though
identifiable, is rather abstract. In an informal way however, HZ will generally increase as
the dependence between Y and Z becomes stronger. As a simple illustration, this set only

includes constant function when Y and Z are independent (conditional on D = 1) but is
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equal to Hy when Y = Z. More formally, HZ is a subset of the range of the conditional
expectation operator f — (y — E(f(Z)|D = 1,Y = y)), which itself is linked to the
null space of this operator. Indeed, when (Y, Z) has finite support, the dimension of the
range will increase as the dimension of the null space decreases. Thus, at least in finite
dimension, HZ will be maximal if the conditional expectation operator is injective, that is
to say under a completeness condition on Y and Z.'? Hence, the quality of the instrument

also matters for the range of applicability of the lower bound.

It is difficult to define precisely the set Hy N Hy of functions h such that an interval can
be built on E [h(Y)|X] without further restrictions. An interesting one is the following

random coefficients linear model:
B(ZIY,D = 1) = a(X) + B(X)Y, B() > 0.

In this case indeed, Hy- N HZ contains at least all functions h(z,y) = A(x)y with A(.) > 0,
so that E[Y'|X] can be bounded below and above. Besides, if Y and Z exhibit a positive

dependence, this set will be equal to HZ.

Lemma 2.1 Suppose that for all (x,z), y — Fyx—yy—yp=1(2) is decreasing. Then Hy C

2.3 Parametric identification

Nonparametric identification stems from the uniqueness of a functional equation. However,
one may be reluctant to use nonparametric estimators in practice, because of the curse
of dimensionality for instance. Furthermore, assumption 2 may be too strong in some
circumstances. Suppose for instance that instruments are observed only when D = 1 (as
with unit nonresponse or attrition in a panel), but auxiliary information is available on
these instruments. This auxiliary information may however not be sufficient to identify
the full distribution of Z. If Z is multivariate and its different components are observed
through different sources which cannot be matched, only the marginal distributions will
be identified. If the instruments are measured with a zero mean error in these auxiliary

data, only F(Z) can be recovered.

In such situations, assumption 2 fails but intuitively, information on Z can provide identi-

fication, at least in a parametric setting. Theorem 2.3 gives a rigorous treatment to this

121f (Y, Z) has infinite support and the conditional expectation operator is injective, one can show that

the dimension of H% is infinite.
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idea. It generalizes the framework of Nevo (2002) to the case where Y # Z. It is also
very similar to the theory of generalized calibration developed by Deville (2002) in a survey
sampling framework to handle nonignorable nonresponse with instruments. Deville (2002),

however, does not consider the issue of identification of P(.).

Let us suppose here that Y € R? and Z € RY. The identification result is based on the

following assumptions.

Assumption 2’ E(Z) is known. Moreover, P(Y) = F(Y'[3y) where F is a known, differ-
entiable and strictly increasing function from R to |0,1[, and Y is almost surely linearly

idependent conditional on D = 1.
Assumption 4’ rank(E(DZY' F'(Y' 3y)/F*(Y'f3y))) = p.
Assumption 4” E(Z|Y,D =1) =11 X + I'2Y where I'y is full rank.

Assumption 2’ weakens 2 on data availability, at the price of imposing a parametric re-
striction on P(.). Like assumption 4 in the nonparametric setting, assumption 4’ is the
rank condition. As usually, this condition implies that ¢ > p. Lastly, assumption 4” is a
particular case of assumption 4”, which restricts the nonparametric regression of Z on Y

to a linear form.

Theorem 2.4 Suppose that assumptions 1, 27 and 3 are satisfied. then
a) Bo is locally identified if and only if assumption 4’ holds.
b) if assumption 47 holds, By is globally identified.

Local identification is obtained under a condition which is very similar to the rank condition
in linear regressions with instruments. Theorem 2.4 also provides a sufficient and testable

condition which ensures the global identification of f.

3 Estimation

We now turn to the parametric and nonparametric estimation of P(.). The first assumption

describes the sampling process. In the sequel, we let Y* = DY
Assumption 7 We observe a sample ((Dy, X1,Y", Z1), ..., (D, X0, Y5, Z,))) of indepen-
dent copies of (D, X,Y*, 7).

Assuming that the data are i.i.d. is standard in estimation, although this condition can be
weakened without affecting consistency or rate of convergence. We also suppose, for the

sake of simplicity, that Z is always observed in the data.
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3.1 Parametric estimation

When Y has a finite support {yi, ..., yx }, the equation

(g ) -
> et Py) {Y = i}

provides identification of the parameters (P(yx))1<k<x if assumptions 3, 4 and 5 hold, by

theorem 2.1. Hence, consistent and asymptotically normal estimators can be obtained by

GMM in this case. Similarly, if P(.) satisfies the restrictions of assumption 2’, then

2| (pevs — 1) 2| = (3.1)

Moreover, the proof of theorem 2.4 (see equation (5.6)) ensures that under assumption 4”,

By is identified globally by these conditions. Thus GMM can also be used in this framework.

3.2 Nonparametric estimation

When Y has continuous components and one is reluctant to rely on parametric restrictions
on P(.), the situation is more involved because a function, and not only parameters, must
be estimated. This issue is similar to the one of nonparametric instrumental regression
(see e.g. Newey and Powell, 2003, Darolles et al., 2002, Hall and Horowitz, Horowitz and
Lee, 2007). For the sake of simplicity, we assume here that X = () and (Y, Z2) € [0,1]>.
Moreover, since the paper is mainly focused on identification, we only prove consistency
here. The analysis of the rate of convergence could be lead by adapting the arguments of
Hall and Horowitz (2005).

Let us denote f = 1/P and T be defined as
T(h)(z) = E(Dh(Y")|Z = z).

Then (2.4) may be written as
() =1
Under assumptions 3 and 4 (with A = L), T is injective.!®> However, its inverse is not

continuous, so that we are faced to an ill-posed problem.!* To achieve consistency, we

13Indeed, by conditional independence, T'(h;) = T(hz) implies E(P(Y)(h1(Y) — hao(Y))|Z) = 0. By
completeness and positivity of P(.), this implies hy = has.

140One may argue that the constant function one is known, so that regularization is not needed here.
Actually it is, because T is unknown and can be estimated only by a finite range estimator. This situation

is similar to the one of Gagliardini and Scaillet (2006) in the framework of functional minimum distance.
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adopt a Tikhonov regularization as Darolles et al. (2002), Hall and Horowitz (2005) and
Horowitz and Lee (2007).

First, we consider a kernel estimator of T :

T(6)(2) = Zgj% )(ljhf(;)_ )

For any 1 < M < oo, let us define D, as the subset of real measurable functions ¢ defined

on [0, 1] and such that M > ¢(Y') > 1 almost surely. For any square integrable function ¢
defined on [0, 1], let also ||g|]* = fol g(u)?du. Our estimator of f satisfies

F e arg min [|7(6) ~ 1] + o]

Under the assumptions below, such a solution will always exist but may not be unique (see
Bissantz et al., 2004). If not, ]/‘\is any of the solutions. The consistency result relies on the

following assumptions. In the sequel, 6, = h2 + 1/nh,,.

Assumption 8 (a) f € Dys. (b) The distribution of (Y, Z) is continuous with respect to
the Lebesgue measure and the marginal densities fy and fz satisfy supyeo fr(y) < 40

and inf.cpo 1) fz(2) > 0.

Assumption 9 Forallh > 0 andu €, Ky(u) = K1(u/h) where K is positive, [ K(u)du =
1 and [ uK;(u)du = 0.

Assumption 10 «,, — 0, §,, — 0 and 6,/a,, — 0.

Assumption 8-(a) strengthens assumption 5. Assumption 9 is weak and standard in non-
parametric estimation. Assumption 10, which is identical to assumption 3 of Horowitz and
Lee (2007), is also standard. It implies that the bandwidth h, tends to zero at a slower
rate than 1/n, and that the regularization parameter «,, tends to zero at a slower rate than
n2.

Theorem 3.1 Under assumptions 3-4 and 7-10,

i £ (17 11F) =

Theorem 3.1 implies that ||f— f ||2 converges in probability to zero. With ]/”\ in hand,

inverse probability weighting procedures can be used to estimate parameters on the whole
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population. Let f_i denotes the estimator of f obtained with the sample (D;, Y/, Z;)jti-
For any g € LY., and § = E(g(Y, Z)), define

n

Y DT (Y)9(Y], Z):

=1

é\:

S|

Corollary 3.2 ensures that 0 is consistent.
Corollary 3.2 Suppose that assumptions 3, 4 and 7-10 hold. Then

lim B (15—9|) —0

n—oo

4 Application
4.1 Introduction

In this section, the strategy developed above is exploited to estimate bounds on the short
term effects of grade retention among fifth grade students in France. Whereas most coun-
tries have almost completely given up grade retention as an educational policy,!® the level
of grade retention in France is still high. In 2002, for instance, a quarter of the students
have repeated at least once in primary school (see Troncin, 2004). Yet, and despite the con-
troversy on its effects in other countries,'® there has been no serious attempts to measure

its impact in the French educational system.!”

There are two challenges in estimating the effects of grade retention on test score achieve-
ment in France. The first is the usual counterfactual problem. Indeed, unobservable char-

acteristics such as motivation, maturity or parental involvement are likely to play both on

15 A notable exception is United States. Indeed, several states have reintroduced this policy by tying

promotion on a state or district assessment (see Jacob and Lefgren, 2004).
6positive effects include the possibility for disadvantaged children to catch up (see e.g. Jacob and

Lefgren, 2004) and the incentive for every student to increase their school efforts (see Jacob, 2005). On
the other hand, most educational and sociological studies underline its harmful effects on the motivation
of children (see e.g. Crahaye, 1996), drop outs (see Jimerson et al., 2002) and even academic performances
(see e.g. the meta-analyses of Holmes, 1989, or Jimerson, 2001).However, usually, these studies rely on
very few controls (see e.g. Lorence, 2006, for a discussion on the studies considered in the meta-analyses

of Holmes and Jimerson), so that they probably underestimate the true effects of grade retention.
1" Troncin (2005) measures the the effects of grade retention in the first grade of primary school using

a propensity score matching approach, but he relies on data from one school only. Cosnefroy and Rocher

(2004) study the effects in third grade on the same data as here, using a linear regression approach.
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test score achievement and grade retention. Moreover, grade retention is not tied to any
exogenous rule in France, contrary to Chicago or Chile schools (see respectively Jacob and
Lefgren, 2004, and Manacorda, 2007).'® To overcome this problem, credible bounds on the
progression students would have made had they not repeat their grade are assumed. A
second difficulty is that this progression depends on the ability at the end of the fifth grade,
which is unobserved for repeating students. Standardized tests in France are taken indeed
at the beginning of the third and sixth grades only, so that the ability of retained students
at the end of their first year in fifth grade is unobserved.'® Hence, we are faced to a severe
missing data problem, since the main factor of grade retention is unobserved for retained
students. The following subsection shows how the identification strategy developed above

can be used to solve this issue.

The study is based on a panel of the French “Ministére de 1’éducation Nationale” which
follows 9641 children who enter the first grade of primary school in 1997. Among others,
the panel reports the trajectories of children and their results in standardized tests at the
beginning of the third and sixth grade.?’ Because the sixth grade test scores are reported
in the database only for pupils who reached this grade in 2002 or in 2003, the initial sample
comprises 7175 students who were in fifth grade in 2001 and in sixth grade either in 2002
or in 2003.2!. 23.8 percent of this sample was excluded because of missing data either on
the standardized test scores in third and sixth grade. The final sample consists in 5467
children. Table 1 displays the average scores on this sample. It especially underlines the
important differences between retained and promoted pupils in terms of test achievement.
The table also displays the progression of students retained in 6th grade during their first
year in this grade. This progression is available because these students take the test twice,
at the beginning of their first and second year in sixth grade. This feature of the sample

will be useful in the following.

18 An Education Bill of the Minister of the Education in 2005 asserts that grade retention should be
taken by teachers after discussion with parents, according to the ability of the student and his progression

during the year.
190n the other hand, the ability of promoted students at the end of the fifth grade is observed by their

sixth grade test.
20Tests corresponding to a given grade differ partly from year to year. The scores considered here are

built using common items only. The three scores are also standardized on the final sample.
210ther situations correspond to missing data on the trajectories, grade-advanced pupils, pupils retained

before the fifth grade and students in special classrooms.
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Retained Retained Promoted
in 5th grade in 6th grade in both grades

3rd grade score -1.48 (0.91)  -1.02 (0.90) 0.11 (0.94)
2002 6th grade score - -1.32 (0.81) 0.12 (0.93)
2003 6th grade score  -0.90 (0.87) -0.64 (0.79) -

Number of observations 120 365 4982

Table 1: Summary statistics.

4.2 Empirical strategy

We aim at identifying the average effects of retention in fifth grade on ability one year
after. Let Dy denote the dummy of promotion in sixth grade and let Y;(1) (resp. Y;(0))
denote the achievement of a student who is promoted in sixth grade (resp. retained in fifth
grade) in the sixth grade standardized test, at the end of the sixth grade (resp. at the end

of his second fifth grade). The parameter of interest writes as
AT = E(Y1(0) — Y1(1)| Dy = 0) (4.1)

As usually, Y7(0) is observed when Dy = 0 but Y;(1) is not (see figure 1). Because there is
no exogenous rule acting on grade retention decisions in France, it seems difficult to rely on
an instrumental strategy to overcome this counterfactual issue. Rather, I suppose that the
progressions of retained students had they been promoted in sixth grade can be bounded

in the following way:
0<EYi(1)=Y|Dy=0,Y) < E(Y(1)=Y|Dy=1,D; =0,Y). (4.2)

The lower bound simply asserts that on average, retained students would not have regressed
during one year, had they been promoted. The upper bound states that on average,
their progression would have been smaller than the one of students with same initial test
score and who are promoted in sixth grade and retained the year after. The idea behind
this bound is that, on average, teachers do not make mistakes by retaining pupils who
would have benefited more from the sixth grade than some of the promoted students. The
two bounds somewhat represent two extreme situations. The lower bound corresponds to
perfect decisions of retention, in that retained students would not have taken any advantage
of being promoted. The upper bound corresponds to a fully randomized choice among

students who would have equally benefited from being promoted.
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Beginning of the

rd

3" grade
Test score Z

End of the 1*
year in 5" grade
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D 0 == ].

Retention
D 0 = 0
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year in 6" grade

year in 5" grade
Test score Y

No test score

End of the 1% year
in 6" grade

End of the 2™ year
in 5" grade
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promotion D;=0

Beginning of the 1% Beginning of the 2™

year in 6" grade
Test score Y(1)

year in 6" grade
Test score Y(0)

No test score

Figure 1: Promotion, retention and available test scores.

Under condition (4.2), we get
E(Y1(0)|Dy = 0) = E[h(Y)|Do = 0] < A™ < E(Y1(0)| Dy = 0) = E(Y|Do = 0), (4.3)

where h(Y) = E(Y1(1)|Dy = 1,D; = 0,Y). Students retained in sixth grade take the
standardized test twice. Thus, we observe both Y and Y;(1) for them, and A(.) is iden-
tified. On the other hand, Y is unobserved for students retained in fifth grade, so that
E[h(Y)|Dy = 0] and E(Y|Dy = 0) are not identified without further restrictions. We

now rely on the results of section two to obtain bounds on A’? using the third grade
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standardized test score Z as an instrument.

First strategy: conditional independence

First, let us suppose that grade retention in fifth grade is independent of the third grade

test score conditional on Y, i.e. a model of the form:

Y = g(Z¢)
D = h(Y,n)

where n 1L (Z,¢). The completeness condition is also supposed to hold. Informally, both
will be satisfied if the third grade score affects the ability at the end of the fifth grade,
measured by the sixth grade test score, but not directly grade retention. Under these

assumptions, theorem 2.1 applies and we can identify E(h(Y)|Dy = 0) by
1-QY
p[aw
QYY)
where p = P(Dy = 0) and Q(Y') is the solution of E(D/Q(Y) —1|Z) = 0. E(Y|Dy = 0)
can be identified similarly. Then, using (4.2), we obtain the following lower and upper

bounds on ATT:

I—p

B h(Y)|Dy = 0] = WY | Dy = 1]

AT = BWO)IDy =0~ = Lp F gfy(;f ) n(¥)|Dy = 1} (4.4
AT~ E[Vi(0)[Do = 0] — ;pE [1 _Q(QY(;/)YWO _ 1] | (4.5)

Second strategy: monotonicity

Basically, the conditional independence condition holds if the test score at the beginning of
the sixth grade is a perfect measure of ability at the end of fifth grade and if teachers only
take into account the current ability when deciding whether to retain a student or not. If the
second statement is rather plausible given that teachers usually do not observe children’s
ability before they enter their grade, the first statement seems too restrictive. Past scores
probably bring additional information on the current ability and thus explain part of grade
retention. On the other hand, it seems very plausible in this case that the dependence in
both variable is monotonic, i.e., assumption 3’ and 6 hold. To provide empirical evidence
on this assumption, a logit model on D; among students who were promoted in sixth grade
was estimated. For these students indeed, both Y and Z are known. The results, which
are displayed table 2, confirm the monotonicity in both variables. As expected, we also

observe a far smaller effects of the third grade test score.

19



Variable Estimate (std dev)

6th grade score 1.31 (0.08)
3rd grade score 0.23 (0.07)

Table 2: Logit estimation on the probability of retention in sixth grade.

Under assumptions 3’ and 6, and provided that & is in Hy- N HZ, we can apply theorem
2.3 to obtain the following bounds on E(h(Y')|Dy = 0):

1—p [1-QY)
p QYY)

The same holds for E(Y'|Dy = 0), provided that the identify function is in HZ. Under these

assumptions, we get the same upper bound on A’” as under conditional independence,

h(Y)|Do = 1| < E[h(Y)|Dy = 0] < E[E(h(Y)|Z, Dy = 0)| Dy = 1]

but another lower bound, which writes as
AT = E[Y1(0)|Dy = 0] — E[E(h(Y)|Z, Dy = 1)|Dy = 0] (4.6)

Moreover, égT and A" are sharp by theorem 2.3.

4.3 Results

To compute the upper bound of A7 the following flexible parametric form on y +— Q(y)

was used:

Qy; B) = 1k :
1 +exp <—ﬁo - Zi:l yl{y > Oéz'} 51)

In the sequel, k = 4, oy = —00 and (@ )a2<i<k correspond to the estimated quantiles of order
8, 16 and 24 of V.22, The parameter 3 = (3, ..., () is estimated through GMM, using as

instrumental variables 1 and (Z1{Z > v;})1<i<k, where 71 = —o0 and the (7;)a<i<k are the

(4.7)

estimated quantiles of order 8, 16 and 24 of Z. The estimated probability of promotion is
displayed figure 2.23

The estimator of A is the empirical analog of (4.5):

228everal specifications have been tried. Final results are unsensitive to the choice of k and (a;)a<;<k-
23This plot corresponds to By = 3.07, By = 0.75, By = 4.13,533 = 34.3, B4 = 0.42.
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Figure 2: Probability of promotion according to the ability at the end of
the fifth grade.

where ng denotes the number of pupils who repeat their fifth grade.

To compute the lower bounds of AT h(.) was first estimated using a kernel estimator.?*

The estimator of AT” is the empirical analog of (4.4):

N (Vi >
-] 3 o~ 3 2
0| Dimo i/t 1 — QY B)
The second lower bound is estimated by using a kernel estimator on g(z) = E(h(Y)|Z =
z, Dy = 1) and reporting it in the empirical analog of (4.6):

é/z\TT:niO Z Yu(o)_ Z ﬁ(ZZ) )

i/ D=0 i/ Di=1
where g(.) is the nonparametric estimator of g(.).

The results are displayed in table 3. Under the assumption of a fully valid instrument,
the interval only ranges positive values, so that grade retention leads to positive short
terms effect even in the least favorable case.?” The pattern is less clear if one weakens
the instrumental exclusion restriction into a monotonicity condition. Under the extreme

case where grade retention only depends on the third grade test score, this policy would be

24 A gaussian kernel was chosen, and the bandwidth was estimated by cross validation.
25Indeed, the null hypothesis that the lower bound is negative is rejected at 5%.
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Estimator Value 95% Confidence interval

1T

A 1.17 (0.24) [0.75,1.67]
AT 0.29 (0.16) [0.02,0.65]
AT -0.43 (0.06) [-0.53,-0.30]

Standard errors were obtained through bootstrap with 1,000 replications.
Effects are measured in standard deviations terms.

Table 3: Bounds on AT under different assumptions.

harmful in terms of test achievement. This assumption does not seem very credible, though.
As emphasized previously, the effects of Y on Dy is probably much more important than

—

the one of Z. Thus, even in the worst case, the true effect is more likely to be close to AT”,
that is to say around zero. In conclusion, and even if uncertainty is rather important,
the conclusion on short term effects of grade retention is rather positive. This result is in
line with the results of Jacob and Lefgren (2004) for third graders in Chicago, but more
optimistic than theirs on the sixth graders. This difference could reflect the opposition
on grade retention decision rules in the two cases. Letting teachers and parents decide on
the basis of their observation of the students during the whole year, and not on two tests
only as in Chicago, may reduce measurement errors on the ability of children. On the
other hand, such a discretionary process is likely to favour or penalize systematically some

subpopulations of students, no matter of their ability, and thus decrease the efficiency of

grade retention. The results suggest that the former effects overcome the latter.

5 Conclusion

This paper considers the issue of endogenous selection with instruments. The key assump-
tion for identification, which contrasts with the usual ones in selection problems, is the
independence between instruments and selection, conditional on the dependent variables.
A general nonparametric identification result is obtained under a completeness condition.
This framework can be applied to a broad class of selection models, including Roy models

with an unobserved sector, nonignorable nonresponse or binary models with data taken

26This uncertainty is rather due to the endogenous selection on grade retention than on the true effect
of the instrument on fifth grade retention. The former effect, which prevents us from recovering the

counterfactual progression of retained students, accounts indeed for 55% of the width of the set.
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from one response stratum. Set identification is also considered when the conditional in-
dependence condition fails. Under weaker conditions of monotonicity indeed, I show that
there exists sharp and finite bounds on parameters of interest. This result is used to

estimate bounds on the effects of grade retention in France.

The paper raises two challenging issues. First, we may wonder whether the ideas developed
here could be adapted to generalized Roy model. In these models, selection depends on
prediction on the dependent variable rather than on the dependent variable itself. Thus,
the conditional independence condition breaks down but the structure of the model may
provide information for point or at least set identification. Second, the sharp upper bounds
are obtained on a set of parameters which is rather abstract. Further characterizations of

this set appear desirable, for both theoretic and practical reasons.

Appendix
Al. Proofs

Theorem 2.1

By assumption 3 and the definition of P(.),

P(D = 1|Z)E {%\D:Lz} _ E(%‘Z)
Sy
)

D
E(W—l‘z) =0 (5.1)
By assumption 2, P(D = 1|Z) can be identified from the data. Thus, for any R(.),
E[D/R(Y) — 1|/Z] can be computed from the data. Hence, any candidate for P(.) must
satisfy equality (5.1). Now let @) be such a candidate and let g = P/Q — 1. g is bounded
below by —1. Moreover, Q(.) must satisfy E[D/Q(Y)] = 1, which can also be written as
E[P(Y)/Q(Y)] = 1. This implies that

Y

Hence,

Ellg(Y| < E [P—
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Hence, g € B. Moreover,

0 = E(§%§1P>
= jggéi;4z> (5.2)
= E(g

This together with assumption 4 imply that ¢g(Y) = 0 a.s., so that Q(Y) = P(Y) as.
Thus, P(.) is identified.

To finish the proof, let fpy z(.,.,.) denote the density of (D,Y,Z) with respect to an
appropriate measure. fpy z(1,y,2) is identified by fy zp=1(y,2)P(D = 1). Moreover, by

assumption 3,

Ply) = P(D=1Y=y,Z=2)

fD,Y,Z(LYa Z)
fY,Z(Ya 2)
Similarly,
Ip YZ(O7 Yy, Z)
1-Ply) = —"——"-=
( ) fY,Z(Ya Z)
Thus,
1-P(y)

fpx.z(0,y,2) = [ } foyz(1y, 2).

P(y)
Hence, the joint distribution of the data is identified o

Theorem 2.2

Part “if” of the theorem is trivial. To prove the “only if” implication, let us consider a
solution ((.) which belongs to 0, 1]. Define also a function gpy z by

1—qu1d

gpy,z(d,y, z) = {W fy.zip=1(y,2)P(D = 1).

gpy,z is a density (with respect to a convenient measure \), as it is nonnegative and

integrates to one. Indeed,

/ l9pv.2z(0,y,2) + gpv.z(1,y,2)] d\(y, 2)

/fY,Z|D:1<Y7 z)P(D =1)
Q(y)

- o{s[a )

d\(y, z)

= 1.
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Moreover,
9py.2(1,y,2) = fy.zip=1(y, 2) P(D = 1) (5.3)

and

Y,

9z(z) =

/fYZ|D 1y, f)Z)(]:(
D|Y Z }

- Jala)E | PO

= fz(2z).
This last equality, together with (5.3), ensures that gp z(d,z) = fpz(d,z). Thus, gp v z is
coherent with the observed data. Lastly, because gy(y) = fyjp=1P(D = 1)/Q(y), we get

after straightforward manipulations:

gD,Z\Y<172,}’) = Q(Y)fZ|Y,D:1<Z7Y),
(1= QW) fzv.p=1(z,y).

gD,Z\Y(Ov 2, Y)

In other words, the corresponding distribution of (D, Y, Z) satisfies the independence con-
dition of assumption 3. To conclude, if there exists a solution Q(.) to equation (2.4) which
lies in ]0, 1], one can rationalize the observed data by a distribution which satisfies the

independence condition g

Theorem 2.3

The result uses the following standard result, which is proved for the sake of completeness.

Lemma 5.1 Let T denote a real random variable and (hy, hy) € (L%)? be increasing func-

tions. Then cov(hy(T),ho(T)) > 0.

Proof: let (7}, T,) denote two independent copies of T'. Then, because both h; and hy

are increasing,

(h1(T1) — ha(T2)) x (ho(T1) — h2(T3)) = 0.
Thus, taking expectation and using the fact that (77,75) are i.i.d, we get
2{E[M(T)ho(T)] = E[h(T)] E [ho(T)]} = 0.
The result follows o

a) By lemma 5.1 and assumption 6,
cov(h(Y),P(D =1|Y,Z")|Z') > 0
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Thus,
Eh(Y)|ZP(D =1|Z") < E(h(Y)D|Z').

This implies that
E(h(Y)|Z') < E(h(Y)|D = 1,Z).

Hence, by integration,
E[R(Y)|X] < E[E(M(Y)|D =1,Z') | X].

Moreover, this upper bound is sharp because the two terms are identical under the untestable
assumption that D 1 Y|Z'.

b) Let h € HZ and ¢» € H}, be such that h(Y) = E[t(Z)|D = 1,Y]. We get

E {%}zg)m] —E[h(Y)|X] = E :DEWZ)('%: 1’Y)|X] — E[h(Y)|X]
L [DY(E) ]
- E o) |X] E[h(Y)|X]
- & |v@E (gr2) 1X] - BB

= E(Z)X] - E[R(Y)[X]
= E[E@(2)Y)-E@WZ)D=1Y)|X].

Now, because (X, .) and z — P(D = 1|Y, Z = z) are increasing with probability one, we

have, similarly to a),

E((Z)|D = 1,Y) = EW(Z)[Y). (5.4)
Thus, )
Dh(Y

E { oY) |X} < Eh(Y)|X]. (5.5)

Moreover, by the previous theorem, if there exists a solution Q)(.) to equation (2.4) which
lies in ]0, 1], one cannot reject that (5.4) and (5.5) are actually equalities. This implies
that E[Dh(Y)/Q(Y)|X] is a sharp lower bound of E[h(Y)|X].

c) If D 1L (Y,Z’), by independence,
E[E(h(Y)|D = 1,Z)|X] = B [E(h(Y)|Z)|X] = E [h(Y)|X].

Moreover, because P(D = 1) is a solution to (2.4), Q(Y) = P(D = 1), so that

Dh(Y) ]
E { o) |X} — BE(h(Y)|X).
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Now, if Y = Z/,
E[E(WY)|D =1,Z")|X] = E[h(Y)|X].

Moreover, because Y = Z, equation (2.4) is equivalent to Q(Y) = P(D = 1|Y). Hence,

Dh(Y) ] [EMDNY)(Y) ]
PG ] =7 | P X = o o

Lemma 2.1

We have
E((Z)|D = 1,Y) = / B(2)dFgy pr (7).

Because 9(z, .) is increasing for all z, there exists a positive measure p, such that for all

z <z,
(e, 21) — (@, ) = / dpia ().

Thus, for all y = (z,y) and all M € R,

B(Z)D = 1,Y = y) / / At (0)dFgy—y. o (2) — /_ ]: / Y (W) dEary—y b (2)

+2¢(x, M).

Hence, by Fubini’s theorem on nonnegative functions,

EW(Z)|D =1Y =y) = / (1_FZ|Yy,D1(u))d,ux(u)_/ Fzpy—y,p=1(u)dps (w)+2¢(z, M).

M —00

o0

Consequently, we get, for all x and y <y,

EWZ)D =1,X =0, Y =uy1) - E((2)[D =1, X = z0,Y = y)

= / [Fzp=1,x=00.y=y (1) = Fz|D=1 X=a0,y =y, (W) |dp (1)-
By assumption, the right hand side is nonnegative. The result follows.
Theorem 2.
a) (o satisfies

E <%> _E (ﬁmmz,w) _E (ﬁEWIY)) — B(Z),

where the second equality stems from assumption 3. Local identification only requires that
the differential of g : 8 — E(DZ/F(Y'3)) is full rank at 3 = ;. This differential is
—E(DZY'F'(Y'B3y)/F*(Y'f3y)), so the result follows from assumption 4’.
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b) Suppose that there exists 3 such that

2 (( vy ~ 7o) 200 ‘5)‘19 =1) =0

2 (v~ Fowmy) YD = 166 - m‘D =1) =0

Now, by assumption 4”,

I, 0 X
E(Z|Y,D =1) = =TY,
I, Ty Y

where I, is the identity matrix of size r. Moreover, because I's is full rank, I' is also full

1 1
E — Y/ — Y/ _D = = ().
(v ~ 7o) (- v =1) =0
Because F' is strictly increasing, for any = # y, (v —y)(1/F(z) — 1/F(y)) < 0, so that

Then

Thus

rank. Hence

Y3, =Y PP7!as.
Because Y is linearly independent almost surely, 5 = [y g

Theorem 5.1.

As Horowitz and Lee (2007), we adapt the proof of theorem 2 of Bissantz et al. (2004). By
definition of J/C\,

~

mas (|75 = 1P, ol 7IP) < 1T =1+ aallFI* < 170) = 1 + el 7P 57
Because E(Hf(f) - 1||2) = O(6,,) (see e.g. Gyorfi et al., 2002) and 6,,/a,, — 0, we get
timsup E(| F][*) < 1 £]]

Inequalities (5.7) and 6, /o, — 0 also implies that E(Hf(f) - 1H2) — 0. Besides, Dy
is weakly closed as a closed and convex set (see Bissantz et al., 2004). Moreover, for all

¢ € Dy, by Jensen’s inequality,

T(¢)* < E(¢(Y)*]2).
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Hence,

1T’

IN

/ [/ ¢(?J)2fY|Z(?J|Z)dy} dz
[owr [ / fZIYng\?i{y@) dz} )

SUPye(o,1] fv (¥) / 5
: o(y)°d

lnfze[o,l] fZ(Z)

IN

where the second inequality follows from Fubini’s theorem and Bayes theorem. Hence, by

assumption 8-(b), there exists A < 400 such that
IT@)* < Alle]*

This inequality and the linearity of T" proves that it is continuous. Hence, T is weakly
continuous. This and the fact that D, is weakly closed ensures that T is weakly sequen-
tially closed (see Bissantz et al., 2004). Consequently, we can apply the end of the proof
of theorem 2 of Bissantz et al. (2004), and the result follows 4

Corollary 3.2

By the triangular inequality,
~ 1 — .
0—0| <— Di|g(Y:, Z)I () — f(Y7) Dig(Y, Z) f(Y")—0 5.8
0% 33 DIsOT, Z)IFO7) 0TI + | Z o 2017~ (58)

By assumption 8, |D;f(Y;*)| < M. Hence, E[|D;g(Y:*, Z;) f(Y;*)]?] < oo and by the weak

law of large numbers,

(2

- Z Dig(Y*, Z)F(YF) 5 B(Dg(Y*, 2)F(Y*)).

Moreover,
E(Dg(Y", 2)f(Y")) = EDg(Y,2)f(Y))
— EB(E(DY, 2)g(Y, 2){(V))
= 0.
Thus the second term of the r.h.s. of (5.8) tends to zero in quadratic mean.

Now, because the (]7'“\_1(3/1*))Z are identically distributed, the first term 77 of the r.h.s. of
(5.8) satisfies

E(T)) = E(Dilg(vi, 201 F 1 (07) = F07))
VB ot 20 B (1F107) - 507

IN
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by the Cauchy-Schwartz inequality. Now, by independence between Y;* and f_l,

B(F107) - FO7)P) < swp frw)E (1= 11P)

ye(0,1]
Thus, the left hand side tends to zero by theorem 3.1. As a consequence, F(|T3|) also tends

to zero. This yields the announced result o

A2. Discussion on identification in system (2.1)

In this appendix, we provide sufficient conditions for assumptions 3 and 4 to hold in system
(2.1). Lemma 5.2 shows that the conditional independence condition holds whenever 7
is independent of (Z,¢). Lemma 5.3 presents sufficient conditions for the completeness

condition.
Lemma 5.2 Suppose that n 1L (Z,¢)|X. Then assumption 3 holds.

Proof: let H, , = {u/h(z,y,u) =1} and G(z,y,2) = {u € R/g(x, z,u) = y}. We get, for
all (z,y,2),

PD=1X=2Y=yZ=2) = PheH, JX=0Y=y2Z=z2)
= PneH,y|X =x,e € G(x,y,2),Z = z)
= P(ne H,ylX =x)
= Pne H,y|X =2,Y =y)

(D

= PMD=1X=uzY =y).

Thus, assumption 3 holds o

Lemma 5.3 Suppose that
1. (additive decomposition) g(x,z,e) = u(v(z,2) +¢) and Z 1L ]| X.

2. (large support) For PX-almost all x, the measure of v(x, Z) is continuous with respect
to the Lebesque measure and the support of v(x, Z) conditional on X = x is R almost

surely.

3. (regularity conditions) The distribution of € conditional on X admits almost surely a
continuous density fex with respect to the Lebesgue measure. Moreover, fox(0) >0
and there exists o > 2 such that t — t*f,x(t) is bounded. Lastly, the conditional
characteristic function of € does not vanish and is infinitely often differentiable in
R\ A for some finite set A.
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Then Y is B—complete for Z.

The additive decomposition and the large support condition are identical to the assump-
tions A1 and A2 made by d’Haultfceuille (2008) to study completeness.?” In this framework,
the regularity conditions imposed here are not sufficient in general to achieve completeness
(see d’'Haultfeeuille, 2008, proposition 2.2). Actually, they are hardly stronger than the one
needed to achieve bounded completeness, namely, the zero freeness of the conditional char-
acteristic function of e (see d’Haultfoeuille, 2008, theorem 2.1). Hence, in this framework

at least, B-completeness appears to be almost equivalent to bounded completeness.

Proof: in the following, the dependence in X is omitted for the sake of simplicity. Hence,

all statements must be understood conditional on this variable. We proceed in three steps.

1. First, we prove that there exists positive ¢1,c3 and 0 < o/ < a — 2 such that
e1 < (foxg)@) x (L |e)™ ™ < e, (5.9)

where g denote the density of an o/-stable distribution of characteristic function exp(—|[¢|*")

and * denotes the convolution product.

To prove (5.9), note that g satisfies, for well chosen ¢ < C' (see e.g. Mattner 1992, p. 146),
c<glz)x 1+ [z <C (5.10)

Let I = [a, b] C [—1, 1] denote an interval such that inf,c; fo(x) = m > 0 (such an interval

exists by the regularity conditions). For all z and ¢ € I,

1+ ]z —t < 1+max(|lz—al,|r—0b|)
< 1+ [z[ + max(]al, [b])
< 2(1+ |z)).

2"Note that the additive decomposition considered here still encompasses many nonlinear models, beyond
the nonparametric additive models for which p(z) = z. Usual ordered choice models correspond to
wlx) = Zszl Elja, 10 (z) (where 14(x) = 1 if € A, 0 otherwise) for some given thresholds ag =
—00 < a1 < ... < ag = +0o. Count data models can also be handled by taking pu(xz) = [exp(x)] (where
[a] denotes the integer part of a). Simple tobit models correspond to p(z) = max(0,x). Lastly, duration
models like the accelerated failure time model or the proportional hazard model also fit in this framework.
The first corresponds to p(z) = exp(z), while in the second, p is an unknown increasing function and —e

is distributed according to a Gompertz distribution.
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Thus,

(forg)@) > / f-(t)g(x — t)dt

/ dt
> ——
P (14 |z —¢])

me(b — a)
20/+1 (1 4 )T

This shows the first inequality of (5.9). To prove the second one, remark that by the

regularity conditions, there exists M such that
(L + ) fe(t) < M (5.11)

Moreover, for all x > 0 and ¢ < /2, we get 1 + |x — t| > (1 + x)/2. Thus, using both
(5.10) and (5.11), we get

IN

24N (P2t

(1 +z)~+! /oo (1 +[t)>

_ 20+ NI /0 dt

= (L4a)HT ) (1—t)
202 V[

(a = 1)(1+[z[)>+t

/2
/ f-(t) gl — t)dt

(5.12)

Moreover, because g(z —t) < C and o —1 > o/ + 1,

T tgte -t < me [
(t)glx —t)dt <
/2 g x/2 (1+t>o¢

9= I C
(1+z)o!
201 M C
This, together with (5.12), shows that for all x > 0, there exists a constant C” such that
(f- % g)(z) x (1 + |z])¥** < C’. The same reasoning can be applied to any = < 0, and the
second inequality of (5.9) follows.

2. Now let us show that for any h € B such that E[h(Y)|Z] = 0 a.s., we get, almost

everywhere (a.e. for short),

(hou)x¢ =0, (5.13)

where ¢ = f_. % g.
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By definition of B, there exists K such that A(Y) > K almost surely. Let i(u) = h(u(u)) —
K. Using the additive decomposition, we get

En(Y) — K|Z] = E[hv(Z)+¢)|Z]
_ / WA Z) + u) fo(w)du
_ / W) f((Z) — u)dt
This implies, by the large support assumption, that

E[h(Y)|Z] = 0 as. < / h(u)fe(t —u)dt = —K for a.c. t. (5.14)

In other words, hx foe = —K. Let o and g be defined as previously. We get, a.e.,
(?L*f_g) wg=—K.

Because ﬁ, f-- and ¢ are nonnegative functions, we can apply Fubini’s theorem, so that
hx (f_e*g) = —K a.e. Equation (5.13) follows.

3. Finally, let us prove that the location family generated by ¢ is complete. This proves
the result because then, hop = 0 a.e. and thus h(Y) = 0 almost surely. For this purpose,
we check the conditions of theorem 1.1 of Mattner (1992). First, ¢ satisfies condition (i)
of this theorem by (5.9) and proposition 1.2 of Mattner (1992). Second, the characteristic

function W, corresponding to the density ¢ writes as
Wy(t) = Wo(—t) x exp(—[t|*) (5.15)

where W, denotes the characteristic function of €. Thus, by the regularity conditions, ¥,
is infinitely differentiable on R\(A U {0}) and condition (ii) of Mattner’s theorem holds.
Lastly, by (5.15) and the regularity conditions once more, ¥, does not vanish anywhere.
Thus theorem 1.1 in Mattner (1992) can be applied, and the proof is finished
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