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1. Introduction. Our goal in this paper is to study frequency polygon as a density
estimator for random variables which show spatial interaction. We sense a practical need
for nonparametric spatial estimation for situations in which parametric families cannot be
adopted with confidence. The frequency polygon is constructed by connecting with straight
lines the mid-bin values of a histogram. So, the computational effort in constructing the
frequency polygon is about equivalent to the histogram.

Denote the integer lattice points in the N-dimensional Euclidean space by Z¥, N > 1.
Consider a strictly stationary random field {Xp} indexed by n in Z¥ and defined on some
probability space (2, F,P). A point n in ZV will be referred to as a site. For a site

)1/ ?. We will write n instead of n when

i= (i1, -,in), we denote ||i]] = (% +--- + 4%
N = 1. For two finite sets of sites S and S’, the Borel fields B(S) = B(Xn,n € S) and
B(S") = B(Xn,n € §’) are the o-fields generated by the random variables Xy with n
ranging over S and S’ respectively. Denote the Euclidean distance between S and S’ by

dist (S,5"). We will assume that Xy, satisfies the following mixing condition: there exists

a function ¢(t) | 0 as t — oo, such that whenever 5,58’ c ZV,
(1.1) a(B(S),B(S")) = sup{|P(AB) — P(A)P(B)|, A € B(S), B € B(5)}

< h(Card(S), Card(S"))y(dist (S, S")),

where Card(S) denotes the cardinality of S. Here h is a symmetric positive function

nondecreasing in each variable. Throughout the paper, assume that h satisfies either

(1.2) h(n,m) < min{m,n}
(1.3) h(n,m) < C(n+m + 1)F

for some k > 1 and some C > 0. If h = 1, then Xy, is called strongly mixing. Conditions

(1.2) and (1.3) are the same as the mixing conditions used by Neaderhouser (1980) and
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Takahata (1983) respectively and are weaker than the uniform mixing condition used by
Nahapetian (1980). They are satisfied by many spatial models. Examples can be found in
Neaderhouser (1980), Rosenblatt (1985) and Guyon (1987). For relevant works on random
fields, see e.g. Neaderhouser (1980), Bolthausen (1982), Guyon and Richardson (1984),
Guyon (1987), Nahapetian (1987), Tran (1990), Tran and Yakowitz (1993), Carbon, Hallin
and Tran (1996), Carbon, Tran and Wu (1997), Francq, C. and Tran, L.T.(2002), Carbon,
Francq and Tran (2007).

Denote by Zy, a rectangular region defined by
In={i:ieZV1<ip<np,k=1,...,N}L

Assume that we observe {Xp} on Zp.
Suppose Xn takes values in R and has a uniformly continuous density f with a bounded

derivative. We write n — oo if
(1.4) min{nig} — oo and |n;/ng| <C

for some 0 < C' < 00, 1 < j,k < N. All limits are taken as n — oo unless indicated
otherwise.

Definen =nq...ny.

For background material on frequency polygons, see Scott (1985 and 1992). For rates of
convergence of frequency polygons, see Carbon (2006).

Our paper is organized as follows: Section 2 provides some preliminaries and back-
ground material. In Section 3, we give the expression of the asymptotic variance of f,
and in section 4, we prove the asymptotic normality of f,,, with application to confidence
interval.

We use x to denote a fixed point of R. The integer part of a number a is denoted
by [a]. The letter C' will be used to denote constants whose values are unimportant. The

letter D denotes an arbitrary compact set in R.
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2. Preliminaries. Consider a partition of the real line into equal intervals I, = [(k —
1)b, kb) of length b = by, where by, is the bin width. Consider the two adjacent histogram
bins Iy, = [(ko — 1)b, kob) and I, = [kob, (ko +1)b) where k; = ko + 1. Denote the number
of observations falling in these intervals respectively by vy, and vg,. The values of the
histogram in these previous bins are given by fi, = vk, 0~ 107! and fi, = v, 016t The
frequency polygon fy(x) is given by

(2.1)

1 T 1 T 1 1
fn(x):(§+ko—g)fko+<§—ko+g>fkl, for (k0—§>b§a)< (k0+§)b_

We assume that b tends to zero as n — oco. Define

Yir =

)

1, if X; € I;
0, otherwise.

Then,

Vio = E :K,ko and vy, = E :Yviykl'

iEIn ieIn
Let U = u(S) and V = v(5”"), where u and v are real-valued measurable functions.

Lemma 2.1. Suppose that |u| < C1 and |v| < Cy where Cy and Cy are constants. Then
|EUV — EUEV| < Ch(Card(S), Card(S"))(dist (S, S")).

Lemma 2.2. Suppose that |U||,. < oo and ||V, < oo where ||U||, = (E|U|r)1/r. Ifr, s

and T are positive numbers and r—! + s~ + 771 =1, then
|[EUV — EUEV| < C||U||, |V ,{h(Card(S), Card(S"))p(dist (S, S’))}l/T.

One or both of r and s can be taken to be oo for bounded random variables. For the
proof of the Davydov inequality in Lemma 2.2, see Davydov (1970), Deo (1973), Hall and
Heyde (1980) or Tran(1990).

Denote ni 1 = Yir — EYi k.

Corollary 2.1. For~ : 0 <y <1, for each integer k, there exists some & € I, such that
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(i) lcov(ni e, mj el < C(F(6:)D) (@Il =317,
(ii) |cov(rmik—1,m5,k] < C(f(&r)D)7 (([lE = 3ID)

-1

Proof. (i) Choosing r = s = 2971, 7 = (1 —4)7! | Lemma 2.2 leads to the following

result: if E|U|*7 < 400 and E|V|*7 < +o00, then
|EUV — EUEV| < C||U |y, IV [l {o(li = ilD}
Taking U = Y;;, and V = Y]}, and using the mean-value theorem we have
1Ul,,, = (BYi)"? = (P[Xy € L])""* = (f(&)b)""*, where & € I

The proof of (i) thus follows.
(ii) The proof can be handled in the same way. Note that & is independent of i and
J- O
Denote the conditional density of Xj given X;j by f;; for simplicity.

Assumption 1. For all i, j and some constant M,

sup  fji(ylz) < M.
(z,y)ERXR

Example. In the case N =1, let X; be a stationary autoregressive process of order 1, for
example, X; = 0X;_1 + e; where |#] < 1. Assume the e,’s are i.i.d. random variables and

each e; has a standard Cauchy density. Then
X, =0"X;+ Z,

where Z is a Cauchy r.v. independent of X; (see Example 2.1 in Tran (1989)) with

characteristic function
exp(—|ul (1 —677")/(1 - 0)).
The conditional density of X; given X; is equal to
fii(@jlz:)) = fz(z; — 07 "ay).
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A Cauchy density symmetric about zero takes on its maximum value at zero. Thus we can

take
1

Me=Ta ey

If e; is assumed to be N(0,0?) distributed, instead of Cauchy distributed, then one can

take
1

oV o

My, =
Lemma 2.3. If Assumption 1 is satisfied, then

(2.2) / /[ | fisle) = F@F W] dedy < MGV with G € D

Proof. Since f is uniformly continuous and integrable,

sup f(z) = || f]| < oc.
TER

By Assumption 1,

//1 I fii(2,y) = f(@)f(y)] dady
: //Ikxfk f@) | filyle) = fy)] dedy

<Mb [ f(x)dz,
Iy,

where M can be taken to be 2max{M;,||f||}. The lemma follows by the mean-value

theorem. 0

For convenience, we define

P = f(x) dx
Iy,
and
1
Iin = 2515 D COVkos i)
i#j



1
Gon = =75 Z COV (i ey s Mj ke )
i)

1
G3n = =573 Z COV (T ko Mk )-
i#]
Lemma 2.4. The variance of the frequency polygon fu(x) defined in (2.1) is given by

1 z\?r 1
(2.3) varfa(z) = (54-]4:0—3) [ﬁ—prko(l—pkO)—l—qln]
1 T 2 1 1 9  2zkg 72 Dk Pky
(g kot g ) [gamm @ -pe) b 2~ ket = - ) [SEEE

Proof. From the expression of the frequency polygon (2.1),

2

var fn(z) = (% + ko — %) var fr, + <% — ko +

2

> var fi,

T

b

1 2cky  x2
+2(7 — ko’ + 2 = T Joov(figs Fi):
Clearly,
1
var f, = FeTEAGE Z Yi ko
iEIn
with
Var( Z Yi,%) = Z Var<ﬁ7k0> + ZCOV(Yi,kO,Yj,kO)
i€In i€eIn i#j
= Ak, (1= Pry) + D COV(i ko ko )-
i#j
Similarly,
Pry (1 = pry)
varfy, = oo var Z Yim | =@ ten
IEIn
We get also

1 1
coV(fres fr) = ﬁg—b200\’< > Yike Y. Yj,kl) = a2 > cov (Yikgs Yiki) + @3n-

i€In J€In i€en
But,
cov (lfi,ko’ Yi,kl) =K (Yvi,koyvhkl) —-F (}/},ko) E (lfi,kl) = —PkoDPk; -

Then (2.3) follows.



3. Asymptotic variance of f,.

Lemma 3.1. Assume Assumption 1 holds and X, satisfies (1.1) and (1.2) or (1.8) with

oo

ZiN_l(go(i))B < 400 for some 0 < B < 1/2. For z in Ji, = [kob—b/2,kob+b/2) , then

i=1

we have
ab (L 4k m2| |+ fb 1—/<:+m2| |
n 2 0 b din n 2 0 b d2on
(1 9 2zkg x2

(3.1) +2nb Z_l_ko + AT |g3n] — 0 as n — +o0.

Proof. By Corollary 2.1 and Lemma 2.3, we have

(3.2). OV (i 10, Mo )| < m0tin1 (C'(f (€0 )0)7 (21 = 1)) 75 MF (G )B?)

Let K, = b;(l_w)'/_l, where v = —N — e+ (1 —v)NB~! with v and € being small positive
numbers such that 5~ — (N 4+ ¢)(N(1 —~))~" > 1. This can be done since 0 < § < 1/2.
Note also that v > N(1 — 7).

Define . L.
Si={i,jeIn [ O0<|[i—jll < Kn},

So={i,j€In | [i-jll> Kn}

into two separate summations A; and A, over sites S7 and Ss.

Split Z ‘ COV(Ui,koan,ko)
i#j
Then

Z ‘ oV (i ko M ko )| < A1 + As.

iZj

Now, using (3.2), we have the following upper bound

A= 3 | covlmy, )| < MG )0?RKY

i7j651

N1 —9)

Thus, with § = 2= % (0 <0 < 1), we have

Ay < M f(Cro )02~ < M f (G BB
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Using (3.2), we have successively

Ay = Z ‘COV(")i,koanj,ko)
i,jeSe

<O(F(&))™ Y (o(lli=3)'
i,jeS>2

<O(f(&,)) 070 > (i)

[lil| > Kn

<CO(f(&r,))07REL" Y I (1)

lil| > Kn

oo

By assumption ZiN_l(gp(i))B < 4o00. Thus, iV (p(i))? = o(1/i) or p(i) = O(Z'—N/ﬁ)
i=1

as i — +00. Since ¢ is a nonincreasing function, we have p(x) = o(:)s_N/B) as r — +oo.

Therefore
.||V . 1— - L B .
i1 o) = il o (Jli =¥ =077
= o (i),
since v = —N — e+ (1 —y)NB~!. Thus

—+o0

(3.3) Z 511" (o (I1E[D) = < +oo.

h=1,---,N

Using the majorization of Ay and (3.3), and noting that bYK_ " = b, we obtain

Ap SC(f(&o))7 00 D Il (el

lil|>Kn

Finally

[qin| < M f(Gro)B™07 0+ C(f(6o)) 0 AT Y 7 ()

[lil| > Kn

and

ﬂb<1+ko—§) qral < MAGY +CFE)T S I G,

2 .
[[ill>Kn

1
which tends to 0 since 0 < <§ + ko — %) <1,b — 0and K, — 400. Using the same argu-

1 2 1 2xk 2
ments, it can be shown that ﬁb(§ — ko + %) |g2n| and 2ﬁb(1 — ko? + a; 0 _ :;:_2) |g3n|
tend to 0 as n — +oo0. O



Define

(3.4) A~ 1+k0_§ pko pko
2 b
xz
2

2II{JO

xT p 1-— j%
— kO ) kl( kl)
_|_j3(_ — kO

1
2 b
) ( pkopkl )

4

Lemma 3.2. Let x be a point of the interval Jy, = [kob — b/2, kob+b/2), then

(3.5) lim (A - E + <2k0 - %)Q] f@:)) =0

Proof. Taylor expansion give

1

o = bF (@) + 5bl2(kb — 7) ~ bl (6,)

and
=bf(x) + [ (kb —x) +blf (€x,)

where fko S Jko and fkl € Ji,-
Thus
max{0; f(2)b — Cb*} < pi, < f(x)b+ Cb i=0,1.

So we have the following majorizations (for i = 0,1)

(3.6) max{0; /() — (C+ 2@+ 0} < POZP) <y (0 P+ 0,

(3.7)  max{0;bf%(z) — 202C f(z) + C*} < % < bf2(x) + 202 Cf(z) — O3 .
As b — 0, using (3.6) and (3.7), we easily obtain the result. O

Théoréme 3.1 Assume Assumption 1 holds and Xy, satisfies (1.1) and (1.2) or (1.3) with

ZZN L P < 400 for some 0 < < 1/2. For x in Jy, = [kob — b/2, kb +b/2) , we
have
(3.8) lim | abvarfy(z) — ! + <2k — f)2 f(xz)) =0
' n— oo " 2 O b N
Proof. Using (2.3), lemmas 3.1 and 3.2, we obtain (3.8) O
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4. Asymptotic normality of f,.
Théoréme 4.1 Assume Assumption 1 holds and Xy, satisfies (1.1) and (1.2) or (1.3) with
o(u) = O(u=% with & > 2N. For some 0 < v < (0 — N)0~', suppose the following
conditions hold :

(i) The bandwidth b, tends to zero in a manner such that ﬁbrll+2(1*7)N — 400 as
n — +00.

(ii) There exists a sequence of positive integers ¢ = qn — +00 with ¢ = 0(f1b%1+2(1_7)N)
such that by =gV =17 0 as n — +oo.

(iii) by tends to zero in such a manner that ﬁ1+’~“(ﬁbn)_1/2q_9 — 0 as n — +o0.
For a point x of the interval Jy, = [kob — b/2, kob+ b/2), let

() = B + <2k:0 - %)2} ).
Then, for x such that f(z) > 0, (fbn)Y/?[fu(z) — Efa(x)lo™ (z) has a standard normal
distribution as n — +00.
Proof. It will done in three steps.

Step 1. For z in Jy, = [kob — b/2, kob + 1/2), define

_ 1 x 1 x
Ty = b2 {(5 + ko — Z) Yik, + (5 — ko + Z) Yi,lﬂ]

and

Sn(.',I?) = ﬁ_1/2 Z Zi,kzo .

i€Zn

It’s easy to see that |Zj ,| < ba/? and Sn(z) = Al/zbrll/zfn(x).

+oo
For § > 2N, if NO~1 < 3 < % and ZiN_l(cp(i))B < 400, using theorem 3.1, we have
i=1

(4.1) lim Sp(z) = o2(z) = F n <2k0 - 5)2} f(z).

n—+o0 2 b
By (i) and (ii), there exists a sequence of positive integers (s,) tending to infinity in a

manner such that
(4.2) Sn{n = 0((ﬁb}1+2(177)N)1/2N) '

10



Choose pn = p = [(iby)/*Ns;1]. By (4.2), gqp~' < Cb'~7 which tends to zero asn — +oc.
Thus g < Cp.

Multiplying s, by a constant if necessary, it can be assumed without loss of generality that

q<p.
Assume for some integers r1,- - -, 7y, we have ny = r1(p+4q),---,ny = rn(p+¢q), and note
Lo ={j:0<ju<rp—1:Vk=1,---, N} with ry = {r1,--,rn}.

The r.v.’s (Zi k, — EZ; 1,) are now set into large blocks and small blocks. Let

Jr(p+a)+p
U(l, naxuj) = ﬁ_1/2 Z (Zi,ko - EZi,k?o)

ir=Jr(p+q)+1
k=1, N

Jk(p+q)+p (n+1)(p+9)

U(2,n,xz,j) =042 Z Z (Ziky — EZi k)

ir=jr(p+q)+1 in=jn(p+q)+p+1
k=1,--,N—1

Jr(p+q)+p (Gn-1+1)(p+q) Jin(p+q)+p

U(37 n, .fE,j) = ﬁ_l/z Z Z Z (Zi’ko N EZi’kO)

ik=Jr(p+q)+1 in_—1=jn-1(p+q)+p+1 in=jn(p+q)+1
k=1, N-2

Jk(p+q)+p (Gnv-1+1)(p+q) (Un+1)(p+aq)

U4,n,z,j) =n"1/? Z Z Z (Ziko — EZiky)

ik=Jr(p+q)+1 in_1=jn_1(p+q)+p+1 in=jn(p+q)+p+1

k=1,--,N—2

and so on. Note that

(Jr+1)(p+9) Jn(p+aq)+p

U@V n,z,j)=na"""? > > (Zik—EZin,).
in=Jr(p+q)+p+1 in=jn(p+q)+1

k=1, ,N—1

Finally
(Je+1)(p+q)

U(2N7 n, xvj) = ﬁ_1/2 Z (Zi,ko - EZi,ko) .
ix=Jk(p+q)+p+1

k=1, N
For each integer 1 < i < 2N define
rE—1
T(n,z,i) = Z U(i,n,z,j) .
Jx=0
k=1, N
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Clearly

(4.3) Su(z) — E(Sp(z)) = ZT(n, 7).

Note that T'(n,z, 1) is the sum of the random variables (Z; x, — EZ; 1,) in large blocks.
The T'(n,z,i), 2 <i < 2N are sums of random variables in small blocks.
If it is not the case that ny = r1(p+q),---,ny = rn(p + q) for some integers r1,---,rn,
then a term, say, T'(n, z, 2" +1), containing all the (Z; y, — EZi 1, ) at the ends not included
in big or small blocks can be added. This term will not change the proof.

In this step, we have decomposed Sy, () — E(Sn(x)) in two terms
2N

Su(z) — E(Sy(2)) = T(n,z,1) + Z T(n,z,i)
= A, + By -

Step 2. We will prove here that lim Bfl = 0.

n—-+oo

N

It(s sufficient to prove that, for i = 2,--- 2% we have

lim E(T?(n,z,i)) =0

n—-+oo

For simplicity, we take i = 2. For each j € L,_, define

I2mn,z,j)={ic€Zy: jxlp+q) +1<ir <jrlp+q +p, 1 <k<N-1,

inNe+@) +p+1<iy<(n+1(P+q}.

Distinct sets of sites Z(2,n, z,j) for j # j' are far apart by a distance of at least g.

We have
E(T?(n,z,2)) = Y varlU2,n,z,j)]+ > cov(U(2mn,z,j),U(2n,z]))
jELrn j,j/ELrn
i
=A;+ Ay,

The r.v.’s U(2,n,x,]j) for j € L, have the same law and

U(27 n, il?,j) = ﬁ_l/z Z (Zi,ko - EZi,ko) :
ie7(2,n,z,0)
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Thus

varl(2,m,z,j) = 0~ 'pN " tqvar(Zig,) + 07 >, cov(Zi, ko> Zit ko) -
i,i’€Z(2,n,z,0)
i’

It’s easy to see that

_ 1 x 2 _ 1 T 2
B(Z%,)="b 1(§+k0—5) Py + b 1<§—ko+g> Dy -

Using Taylor expansion as in Lemma 3.2, we have

T

B(Z4,) < (@) +00) (5 +h— T ) + (@) +C) (3 -k + )

<C,
because b, —¢ as n — 400, and f is bounded.

Similarly, we have for § > 0

E|Zi|**° < Cb™9/2,

Let Sy = {(i,i) € Z(2,n,z,0)? : |[i— i >1}.

Then, using Lemma 2.2 with s =r=2+9

Z |COU(Zi,koﬂzi'7ko)| < Z |COU(Zi7koﬂzi',ko)|
i,i’€Z(2,n,z,0) i,i/e8;
i£1
< CpN )| Ziko 345

< CpN—lq b—5/(5+2)
S CpN—lq b—(1+’y) ’

avec § = 2(1 — )y~ L.

So
varU(2,m,z,j) < Ca~pN g4+ CpN g b~ (=)
< CatpNlgb 0T
N . .
b 1/2N
Noting that r = H rp = LN and p = L , we have
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Ay < CipN g0
< Cplqb= 77
< C'spq(ab) /2N p=1=7)
< Can(ﬁbl—l—Q(l—'y)N)l/ZN )

From (4.2), we immediatly have lirf A =0.

Now, let S; = {(i,i") € Z2 : |li— 1| > q}.
Notice that d(Z(2,n,x,j),Z(2,n,x,j')) > q for j #j'.

Using Lemma 2.2, with r = s =6 +2, 7= (1 — )1, we have

A2 < ﬁ_l Z ( Z Z ’COU(ZimeZi’,ko”)

j,j/ELTn ieI(2,1’1,13,j) i’I(2,n,x,j’)
Ay

Cfl_l Z |COU(Zi,/€07Zi’,k?0>|

i,i’€l,,
li-i'll>q

-1 Z | cov(Zi kg, Zit k)|
(i,i") €S,
<O\ Zik By ¢

IA

IN
=

< Cb—5/(5+2) qN—B(l—'y)

— Cpl N0

Thus (ii) implies that liIE Ay =0.
A, T,z 1

Step 3. We will prove that A,, = T'(n,z, 1) is such that = (0,2, 1) has a standard
o(z) o(x)

normal distribution as n — +o00.

For each j € L, , define
I(ln,z,j)={i€ln : jxp+q) +1<ip <jrp+q) +p, k=1,---,N}.
Then, for j € L,_, card(Z(1,n,x,j)) = p" and, if j # j'

d(Z(1,n,z,j),Z(1,n,z,j") > q.

14



Enumerate the r.v.’s U(1,n,z,j) in an arbitrary manner and refer to them as Vy,---,Vj,.

N
Note that M = [[rr =t =h(p+q) <np~ V.
k=1
Now sup|Z; x| < Cby'/? implies that sup |V;] < Cha~1/2pN p /2,
i€z, 1<i<f

Using Lemma 1.3 in Carbon and al (97), there exists Vi,--+, Ve, independent random

variables, independent of Vi, ---, V3 with the same law verifying

Y BV —Vi| <Ca 2 pN o 2a((E - )N, pN)e(g) .

i=1
Now we have o
var(An) = tvar(Vi) + )y cov(Vi, Vi) liizg -
i=1 j=1

Using similar arguments as in step 2, we have

>N cov(Vi, Vi) iz

i=1 j=1

S Z |COU(U(1,n,xaj)aU(17n7x7j/))|
j’jleLTn
JAy

1 Z Z Z | cov(Zi kg Zir ey

j7j/eL7‘n ieI(l,n,dj,j) i/I(l’n7x’jl)

IN
=>

J#i

<Cn! Z | cov(Zi ko> Zit o) |
i,i'eTn
li—i'll>q

<Cn ! Z | cov(Zi ko s Zir ko)
(i,i") €S,

< Cp= =7 qN—é’(l—'v) )

From (ii), thus we have

nli&loo Z Z cov(Vi, Vj)1gizsy| = 0.
=1 j=1
Then
11111 (varAy, — tvar(Vh)) =0.
So
0> = lim wvarSy, = lim wvar(An+ By) = lim wvarB, = lim #var(Vy),
n—-+oo n—-+oo n—-+4oo n—-+4oo
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which implies
r
lim wvar ) V;= lim E varV; = lim rwvar(Vy)
n—-+oo - n——+00 4 T n—-+oo
~ = :

= lim twar(y) = o?
n—-+oo

We establish now that the r.v.’s V; satisfy the Lindeberg-Feller condition, that is, for each

e>0,
. ~2 5 _
Jim D EVEL5 sy = 0
i=1
For each i =1,---,1, we have
Vil < CatpM ot/
So ) )
D VR0 sy SCOTIPN O PPN Y P(Vi] > e0)
i=1 i=1
<Cs?N PV > o),
i=1
ab 1/2N
because p = [&] .
Sn
We also have, for each ¢ =1,---,1

0_—1|‘7;_| < Cﬁ_1/2 b;l/2pN < CS;N )

Then P(|V;] > e ) = 0 for min n; sufficiently large, that is possible because lim s, =
1<;<N n—-+-o00

+00.

2V
i=1
o(x)
We just now have to prove that

We obtain that has a standard normal distribution as n — +oo.

r

lim P P(|V; - V; =0.
im (Z (|V; V|>50)> 0

1=1

16



Using Markov inequality, we have

P(ZP(“@—VH > e0 )) SCZE|V2‘—‘N/¢|

Pt =1
<Cea 2N 2 h((E - 1)pN, pN)e(q)

<Cf,1+kn 1/2 N(1+k)b 1/2 79

< CAlt ( )N(H’k) —1/2 b—1/2 —0
( ) 1/2 79
and using (iii) the last term tends to zero. So
> Vi > Vi
i=1 i=1
= 1
O'(.CC) OP( )+ O'(.CC) >

where op(1) is a r.v. going to zero in probability. Finally, we obtain that

has a standard normal distribution as n — +o0, and

Sn(z) — ESh(z)
Vi

has a normal distribution A(0,0%(x)) as n — 400 .

= (003)""? (fu(2) — Efu(2))

O

Corollary 4.1 Assume the conditions of the theorem 4.1 are satisfied. Suppose that f has

bounded seconde derivative. If ab2 — 0, then, for x such that f(x) > 0,

(8b) " * [ fu(2) — f(2)lo ™" ()

has a standard normal distribution as n — -+0o.

Proof. Using a Taylor expansion, there exists £, € J, such that

kob
o= [ F)y = b)) + 586

ko—1)b 6

17



and there exists £; € Jj, such that

(ko+1)b 1 1
b= [y = b G0b) + (o)~ S (6.

For x € Jy,, we also have

£(2) = flkob) + 2 (kob) + 52 7(&) with & € Ji,

Then, using the two preceding equations, the bias is

Efalz) - f(z) = (%wo—g) o | (%—m b) Phy _ f(a)

2 6 6 2

So we have

|Efa(z) = f(x)] < Cbg,

and

| (i) 2[E fu(z) — f(2)]| < C (803)Y/2.

We conclude using the theorem 4.1.

= (3+00-2) 5@+ (3-k0+ 7) Eren - C 1P ey,

O

Remark 4.1. The condition nb> — 0 is approximately the optimal bin width we

have found for the mean quadratic convergence (see Carbon (2006) for example).

With the theorem 4.1 or the corollary 4.1, we can’t directly obtain confidence interval for

the density f(z), because o(z) is depending on f(z). Obviously, we can estimate o2(x) by

52(z) = B + (%0 - %)1 ).

Let € be an arbitrary small positive number and denote g(n) = Hf\il (logn;)(loglogn;)1Te.

Clearly, > B S 00, where the summation is over all n in ZV.
ng(n)

Define
X p—|—3N « SN -—p
V" p—5N’ 27 p—5N
p+3N . N —p

—@k+3)N ' p—(2k+3)N’
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Théoréme 4.2 Assume the conditions of the theorem 4.1 are satisfied. Suppose that f has
bounded seconde derivative.

(i) If (1.2) is satisfied, p > 3N and

(44) i’ (log )" (g(n)) =7 — oo,
(11) or if (1.3) is satisfied and

(45) A (log 1) (g(m) >N/ OTEEIN o

If ab> — 0, then, for x such that f(x) >0,

(8bn) "2 [fa (@) — f(2)]6" (2)

has a standard normal distribution as n — +0o.
Proof.

Using theorem 4.1, it is sufficient to prove that for all z € R,
2

6% (x) — o?(x) a.s. ,

that is
fo(z) — f(x) a.s. ,

which is a direct consequence of theorem 6.1 of Carbon and al. (2008).

Thus, we obtain a confidence interval at a (1 — «) rate for all x € R :
[(@) € [fal@) = 6()(8bn) " 2Usa; fa(@) + 6(2)(Bba) 2V

where U, /s is the (1 — a/2) quantile of the standard normal distribution.
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