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Estimating ARCH Models When the Coefficients are
Allowed to be Equal to Zero

Christian Francq, Jean-Michel Zakoı̈an
University Lille 3 and CREST

Abstract: In order to be consistent with volatility processes, the autore-
gressive conditional heteroskedastic (ARCH) models are constrained to have
non-negative coefficients. The estimators incorporating these constraints pos-
sess non standard asymptotic distributions when the true parameter has zero
coefficients. This situation, where the parameter is on the boundary of the
parameter space, must be considered to derive the critical values of tests that
one or several ARCH coefficients are equal to zero. In this paper we compare
the asymptotic theoretical properties, as well as the finite sample behavior, of
the main estimation methods in this framework.

Keywords: ARCH model, Boundary of the parameter space, Conditional
heteroskedasticity, Quasi Maximum Likelihood Estimation, Non-normal as-
ymptotic distribution.

Résumé : Afin de préserver les propriétés d’un processus de volatilité, les co-
efficients des modèles autorégressifs conditionnellement hétéroscédastiques
(ARCH) sont contraints à être positifs. Les estimateurs tenant compte de
ces contraintes ont des distributions asymptotiques non standard quand la
vraie valeur du paramètre a des coefficients nuls. Dans cette situation, où
la vraie valeur est sur la frontière de l’espace des paramètres, les valeurs cri-
tiques des tests de nullité d’un ou plusieurs coefficients ARCH sont également
différentes du cas standard. Nous comparons dans ce cadre les propriétés
asymptotiques théoriques, ainsi que le comportement en échantillon fini, des
principales méthodes d’estimation.

Mots clés: modèle ARCH, paramètre sur le bord, hétéroscédasticité condi-
tionnelle, estimateur du quasi maximum de vraisemblance, distribution asymp-
totique non normale.



1 Introduction
Least squares (LS) and quasi-maximum likelihood (QML) procedures are arguably the
most widely-used estimations methods for ARCH models, and were already considered
in the seminal paper by Engle (1982). The LS estimator (LSE) has the advantage of being
a closed-form estimator that can be easily implemented and does not require the use of
optimization procedures, but has the disadvantage of being generally much less efficient
than the QMLE. The quasi-generalized least squares estimator (QGLSE) improves the ef-
ficiency of the LSE but remains user-friendly. Deriving the asymptotic properties of these
estimators is not a trivial task. Berkes, Horváth, and Kokoszka (2003) is the first reference
in which the asymptotic properties of the QMLE of ARCH and the generalized ARCH
(GARCH) models were captured in a mathematically rigorous way under weak condi-
tions (see also Francq & Zakoı̈an, 2004 and Straumann, 2005 where several technical
assumptions made in Berkes et al., 2003 are relaxed).

For an estimator to be asymptotically normal (AN), a crucial assumption is that the
true parameter must belong to the interior of the parameter space. This requirement,
made by the above-mentioned papers, is not satisfied when the ARCH coefficients are
constrained to be positive by the estimation procedure and when some components of
the true ARCH parameter are equal to zero. Following Chernoff (1954) or Andrews
(1999) who studied in general frameworks the asymptotic distribution of estimators when
the parameter is on a boundary of the parameter space, Jordan (2003) and Francq and
Zakoı̈an (2007) studied the ARCH and GARCH QMLE when the parameter is allowed
to have zero components. This framework is particularly relevant for hypothesis testing
problems, which often put the parameter on the boundary of the parameter space under the
null. Tests of the significance of the coefficients and tests of conditional homoscedasticity
constitute typical situations where we have to study the estimators when the parameter is
at the boundary.

In this paper we compare the asymptotic behaviour of the LSE, QGLSE and QMLE
of ARCH models, when the true parameter may have zero coefficients. We also consider
constrained and truncated versions of the LSE and QGLSE. We limit ourselves to ARCH
models because the LSE and QGLSE lose their main practical advantage (namely the fact
that they do not need any numerical optimization procedure) in the GARCH framework.

2 Constrained and unconstrained estimators
Consider the standard ARCH(q) model given by the equations{

εt =
√

htηt

σ2
t = ω0 +

∑q
i=1 α0iε

2
t−i, ∀t ∈ Z (1)

where the noise sequence (ηt) is independent and identically distributed (iid) with mean
0 and variance 1, the distribution of η2

t is not degenerated1, and

θ0 := (ω0, α01, . . . , α0q)

1i.e. η2
t is not almost surely equal to 1 (this assumption entails the identifiability of the ARCH coeffi-

cients and the invertibility of the Fisher information matrix).
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is a parameter vector which satisfies the positivity constraints

ω0 > 0, α0i ≥ 0 (i = 1, . . . , q).

These constraints are sufficient (and are also necessary when ηt has a positive density) to
ensure the positivity of the volatility process σ2

t = σ2
t (θ0).

2.1 Quasi-maximum likelihood estimator

The QML estimation procedure requires the computation of the logarithm of σ2
t (θ) =

ω +
∑q

i=1 αiε
2
t−i at any point θ = (ω, α1, . . . , αq) of the parameter space Θ. If αi < 0

for some i, the volatility σ2
t (θ) is likely to take negative values2 and the QML procedure

fails. Assuming that the parameter space Θ is a compact subset of [0,∞)q+1 that bounds
the first component away from zero, one can compute the quasi-likelihood criterion

ln(θ) = n−1

n∑
t=q+1

`t(θ), `t(θ) =
ε2
t

σ2
t (θ)

+ log σ2
t (θ).

The QMLE is then defined as any measurable solution of

θ̂QML
n = arg min

θ∈Θ
ln(θ).

Assume θ0 ∈ Θ. We have strong consistency under the sole assumption that (εt) is a
strictly stationary solution to (1) such that εt is measurable with respect to {ηu, u ≤ t}
(this assumption3 is maintained throughout the paper). We have AN

√
n(θ̂QML

n − θ0)
d→ N

{
0, (Eη4

1 − 1)J−1
}

, J = E

{
1

σ4
q+1

σ2
q+1

∂θ

σ2
q+1

∂θ′
(θ0)

}
, (2)

under the additional assumption that

θ0 ∈
◦
Θ, (3)

where
◦
Θ denotes the interior of the parameter space Θ (see Berkes et al., 2003, Francq &

Zakoı̈an, 2004 and Straumann, 2005). When some of its components are equal to zero,
the parameter θ0, which is constrained to have nonnegative components, belongs to the
boundary of the parameter space and (3) is not satisfied.

The following elementary example shows that the asymptotic distribution of the QMLE
cannot be Gaussian when (3) is not satisfied.

2If αi < 0 and ηt has a positive density over R, one can show that, almost surely, σ2
t (θ) < 0 for infinitely

many t.
3Jensen and Rahbek (2004) showed that the coefficient α01 of an ARCH(1) model can be consistently

estimated without any stationarity condition, but the strict stationarity condition is required for the estima-
tion of ω0 (this point is often misunderstood in the recent literature).
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Example 2.1 Due to the positivity constraints, the QMLE of an ARCH(1) model satisfies
α̂n ≥ 0 almost surely, for all n. When the DGP is a white noise, then α01 = 0 and with
probability one √

n(α̂n − α01) =
√

nα̂n ≥ 0, ∀n.

In this case
√

n(α̂n − α01) cannot converge in law to any non-degenerate Gaussian dis-
tribution N (m, s2) with s2 > 0. Indeed

lim
n→∞

P
{√

n(α̂n − α01) < 0
}

= 0 whereas P
{
N (m, s2) < 0

}
> 0.

For the same reason, when the true value of a general GARCH parameter has zero com-
ponents, the asymptotic distribution cannot be Gaussian, for the QMLE or for any other
estimator which takes into account the positivity constraints.

2.2 Least squares estimators
The LSE is an alternative estimator based on the AR(q) representation for ε2

t

ε2
t = ω0 +

q∑
i=1

α0iε
2
t−i + ut, (4)

where ut = ε2
t − ht = (η2

t − 1)ht. When
∑q

i=1 α0i < 1 we have Eε2
1 < ∞. Denoting by

Ft−1 the σ-field generated by {ηu, u < t}, the sequence (ut,Ft−1)t is then a martingale
difference. Introducing the vector Z ′

t−1 =
(
1, ε2

t−1, . . . , ε
2
t−q

)
, we get from (4)

Y = Xθ0 + U

where

X =

Z ′
n−1
...

Z ′
q

 , Y =

 ε2
n
...

ε2
q+1

 , U =

 un
...

uq+1

 .

2.2.1 Unconstrained LSE

With probability one, it can be shown that the matrix X ′X is non-singular for large enough
n. The LSE of θ0 is thus given by

θ̂LS
n = (X ′X)−1X ′Y. (5)

If E(ε4
1) < +∞, the LSE can be shown to be strongly consistent (see Bose & Mukherjee,

2003). If, in addition E(ε8
1) < +∞ the estimator is AN (see also Bose & Mukherjee,

2003) and √
n(θ̂LS

n − θ0)
d→ N

{
0, (Eη4

1 − 1)A−1BA−1
}

, (6)

where
A = E(ZqZ

′
q), B = E(σ4

q+1ZqZ
′
q)

are non-singular matrices.
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2.2.2 Constrained LSE

Contrary to the QMLE, the computation of the LSE does not require positivity constraints.
Note that one or several components of the θ̂LS

n , as defined by (5), can be negative. This
is a serious practical problem because we know that ARCH models with negative coeffi-
cients are not viable and can produce negative predictions of the volatility. This is why it
is worth considering the constrained LSE (CLSE) defined by

θ̂cLS
n = arg min

θ∈[0,∞[q+1
‖Y −Xθ‖2.

When X has rank q + 1, the constrained estimator θ̂cLS
n is the orthogonal projection of

θ̂LS
n on [0, +∞[q+1 with respect to the metric X ′X :

θ̂cLS
n = arg min

θ∈[0,+∞[q+1
(θ̂LS

n − θ)′X ′X(θ̂LS
n − θ). (7)

The following proposition states that, when θ0 belongs to the interior of the parameter
space, the asymptotic behaviors of the constrained and unconstrained LSE are the same.

Proposition 2.1 Under the assumption Eε4
1 < ∞ we have θ̂cLS

n → θ0 almost surely.
Under the additional assumption θ0 ∈ (0, +∞[q+1, with probability one we have θ̂cLS

n =
θ̂LS

n for n large enough, and thus when E(ε8
1) < +∞

√
n(θ̂cLS

n − θ0)
d→ N

{
0, (Eη4

1 − 1)A−1BA−1
}

. (8)

Example 2.1 shows that the AN (8) does not hold when some ARCH coefficients are equal
to zero.

2.2.3 Truncated LSE

Since all the ARCH coefficients must be positive, a naive approach could be to replace
any negative component of the LSE θ̂LS

n = (θ̂LS
n,1, . . . , θ̂

LS
n,q+1)

′ by zero. This leads to the
truncated LSE (TLSE) defined by

θ̂tLS
n =

(
θ̂tLS

n,1 , . . . , θ̂tLS
n,q+1

)′
, θ̂tLS

n,i = θ̂LS
n,i 1{θ̂LS

n,i≥0} i = 1, . . . , q + 1.

Defining the vector 1{θ̂LS
n ≥0} =

(
1{θ̂LS

n,1≥0}, . . . , 1{θ̂LS
n,q+1≥0}

)′
and using the Hadamard

product �, the truncated estimator can be written as θ̂tLS
n = θ̂LS

n � 1{θ̂LS
n ≥0}. This es-

timator is simpler to implement than the CLSE and the following proposition shows that
its asymptotic properties are the same as those of the constrained and unconstrained LSE
when θ0 is not on the boundary of the parameter space.

Proposition 2.2 Proposition 2.1 remains valid when θ̂cLS
n is replaced by θ̂tLS

n .
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2.2.4 Quasi-generalized least squares estimator

For linear regression models with heteroscedastic observations, it is well known that the
(ordinary) LSE is outperformed by the QGLSE (see e.g. Hamilton, 1994 Chapter 8). In
the ARCH framework the QGLSE is defined by

θ̂QG
n = (X ′Ω̂X)−1X ′Ω̂Y,

where X is supposed to have full rank q + 1, and Ω̂ is a non singular consistent estimator
of Ω = Diag(σ−4

n , . . . , σ−4
1+q). If a first-step estimator θ̂n = (ω̂, α̂1, . . . , α̂1)

′ is available,
the matrix Ω̂ can be obtained by replacing σ2

t by ω̂ +
∑q

i=1 α̂iε
2
t−i in Ω. In order to be sure

that Ω̂ is well defined and invertible, one can employ the truncated LSE θ̂n = θ̂tLS
n . Then

the two-stage least squares estimator θ̂QG
n is consistent and asymptotically normal

√
n(θ̂QG

n − θ0)
d→ N

{
0, (Eη4

1 − 1)J−1
}

, J = E(σ−4
q+1ZqZ

′
q), (9)

under the moment assumption Eε4
1 < ∞ when all the ARCH coefficients are strictly

positive, and under a slightly stronger moment assumption in the general case (see Bose
& Mukherjee, 2003 and Gouriéroux, 1997).

Obviously one can define constrained and truncated versions of the QGLSE by

θ̂cQG
n = arg min

θ∈[0,∞[q+1
(Y −Xθ)′Ω̂(Y −Xθ)

= arg min
θ∈[0,+∞[q+1

(θ̂QG
n − θ)′X ′Ω̂X(θ̂QG

n − θ)

and
θ̂tQG

n = θ̂QG
n � 1{θ̂QG

n ≥0}

Proposition 2.3 Under the assumptions Eε4
t < ∞ and θ0 ∈ (0, +∞[q+1, the three esti-

mators θ̂QG
n , θ̂cQG

n and θ̂tQG
n converge almost surely to θ0 and have the same asymptotic

distribution given by (9), as n →∞.

3 Conditions for AN of the estimators and comparison of
the asymptotic variances

In view of (2), (6) and (9), the following lemma shows the well known result that, under
assumptions ensuring AN, the LSE and its variants (the CLSE and TLSE) are less efficient
than the QMLE and the (unconstrained, constrained and truncated) QGLSE.

Lemma 3.1 Under the assumption Eε8
t < ∞,

A−1BA−1 − J−1

is positive semi-definite.
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Note however that the conditions required to obtain AN are not the same for the different
estimators. In particular the computation of the QMLE requires positivity constraints4,
contrary to the LSE and QGLSE. On the other hand the LSE and its extensions require
moment conditions, whereas the QMLE requires only the strict stationarity condition.
For an ARCH(1) model the strict stationarity condition is α01 < exp {−E log η2

t } and the
second-order stationarity requires the much stronger condition α01 < 1, and the condition
Eε2m

t < ∞ is equivalent to αmEη2m
t < 1 for all m ∈ {1, 2, . . . , }. The absence of

moment conditions is an important advantage for the QMLE over the other estimators
because the ARCH models are often fitted to financial series showing evidence of fat
tails.

The following table summarizes the constraints on the different estimators in the sim-
ple ARCH(1) case, when ηt follows a standard Gaussian N (0, 1) or Student distributions
normalized in such a way that Eη2

1 = 1 (Stν stands for a normalized Student distribution
with ν degrees of freedom). Note that, as shown by a trivial extension of Example 2.1
to general constrained estimators, the value α01 = 0 is not allowed for the AN of the
QMLE, CLSE and CQGLSE. The next section gives the asymptotic distribution of these
estimators when θ0 belongs to the boundary of [0,∞[q+1.

Table 1: Conditions ensuring asymptotic normality for estimators of an ARCH(1) model
with coefficient (ω0, α01), when the iid noise ηt follows a standard Gaussian or normalized
Student distributions.

QMLE LSE and QGLSEa Constrained and trun-
cated LSE and QGLSE

Normal α01 ∈ (0, 3.562) α01 ∈ [0, 0.312) α01 ∈ (0, 0.312)
St3 α01 ∈ (0, 7.389) α01 ∈ ∅ α01 ∈ ∅
St5 α01 ∈ (0, 4.797) α01 ∈ ∅ α01 ∈ ∅
St9 α01 ∈ (0, 4.082) α01 ∈ [0, 0.143) α01 ∈ (0, 0.143)

aFor the proof of the AN of this estimator, a technical additional assumption (see Equation (8) in Bose &
Mukherjee, 2003) is required. This technical assumption is satisfied, in particular, when α01 > 0 or when
Eε6t < ∞.

4 Asymptotic distribution of the estimators when the pa-
rameter is on the boundary

The parameter θ0 is allowed to contains zero components, but we exclude the situation
where θ0 attains the upper boundary of the parameter space. Under this assumption the

4In a recent paper Iglesias and Linton (2007) propose to approximate the distribution of constrained
estimators using Edgeworth expansions of unrestricted estimators. This approach fails for the QMLE of
ARCH models because, the volatility being constrained to be positive to compute the QML, the unrestricted
QMLE does not exist.
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set
√

n(Θ− θ0) converges to the so-called local parameter space Λ defined by

Λ = Λ(θ0) = Λ1 × · · · × Λq+1,

where Λ1 = R, and, for i = 2, . . . , q + 1,

Λi = R if θ0i 6= 0 and Λi = [0,∞) if θ0i = 0.

In view of the positivity constraints, the random vector
√

n(θ̂QML
n − θ) belongs to Λ with

probability one. Following Chernoff (1954) or Andrews (1999) who studied boundary
problems in very general frameworks, Francq and Zakoian (2007) gave conditions under
which √

n(θ̂QML
n − θ0)

d→ λΛ := arg inf
λ∈Λ

{λ− Z}′ J {λ− Z} , (10)

with
Z ∼ N

{
0, (Eη4

1 − 1)J−1
}

, J = E
(
σ−4

q+1ZqZ
′
q

)
.

In the ARCH framework these conditions reduce to the moment condition Eε6
t < ∞.5

When (3) holds true, we have Λ = Rq+1 and we retrieve the standard result because λΛ =
Z ∼ N {0, (Eη4

1 − 1)J−1} . When θ0 is on the boundary, the asymptotic distribution of√
n(θ̂QML

n − θ0) is more complex than a Gaussian. This is the law of the projection of the
Gaussian vector Z on the convex cone Λ. The asymptotic distributions of the constrained
LSE and QGLSE are of the same type.

Proposition 4.1 When (6) holds (i.e. when Eε8
1 < ∞) we have

√
n(θ̂cLS

n − θ0)
d→ arg inf

λ∈Λ

{
λ− Z̃

}′
A
{

λ− Z̃
}

,

with Z̃ ∼ N {0, (Eη4
1 − 1)A−1BA−1} . When (9) holds (i.e. when Eε4

1 < ∞) we have
√

n(θ̂cQG
n − θ0)

d→ λΛ.

The asymptotic distributions of the truncated estimator is simply the truncation of asymp-
totic distribution of the unrestricted estimators.

Proposition 4.2 With the notation Z̃ introduced in Proposition 4.1, when (6) holds (i.e.
when Eε8

1 < ∞) we have
√

n(θ̂tLS
n − θ0)

d→ Z̃ � 1{Z̃≥0 or θ0>0}. When (9) holds (i.e.

when Eε4
1 < ∞) we have

√
n(θ̂tQG

n − θ0)
d→ Z � 1{Z≥0 or θ0>0}.

We use MSEQML = trace
{
E
(
λΛλΛ′)} as a scalar measure for the asymptotic accuracy

of the QMLE, and define similarly the MSE of the other estimators. Because we do not
have an explicit expression for the matrix J , it seems difficult to compute and compare
the MSE of all the estimators in the general setting. Comparison is however possible on
the following example.

5The moment assumption Eε4t < ∞ seems necessary (for the existence of J) and is maybe sufficient,
but a stronger moment assumption is required in the proof given by Francq and Zakoı̈an (2007).
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4.1 Comparing the accuracy of the estimators under conditional ho-
moscedasticity

Consider an ARCH(q) in which α01 = · · · = α0q = 0. This framework is encoun-
tered in conditional homoscedasticity tests. In this case the local parameter space is
Λ = R × (0,∞)q and the information matrix J has a simple expression. A straight-
forward computation, available from the authors under request, yields

MSEQML = MSECLS = MSECQGLS

= (Eη4
1 + q − 1)ω2

0 − qω2
0/2 + q(q − 1)ω2

0/2π + q/2, (11)
MSETLS = MSETQGLS = (Eη4

1 + q − 1)ω2
0 + q/2, (12)

MSELS = MSEQGLS = (Eη4
1 + q − 1)ω2

0 + q. (13)

It is interesting to note that

MSEQML < MSETLS < MSELS

when q ≤ 4,
MSETLS < MSEQML < MSELS

when 5 ≤ q < (π + 1) + π/ω2
0 , and

MSTLS < MSLSE < MSQML

when q > (π + 1) + π/ω2
0 . That the QMLE (which is actually the maximum likelihood

estimator (MLE) when ηt is gaussian) might be dominated by another estimator seems
quite surprising, at least at first sight. Our interpretation of this interesting phenomenon
is the following. According to Le Cam’s theory on convergence of local experiments (see
e.g. van der Vaart, 1998) our problem is closely related to the problem of estimating m ∈
Λ from one observation X ∼ N (m, 2J−1), assuming for simplicity that ηt ∼ N (0, 1).
The form of J−1 being very simple, it can be shown that the MLE of m is explicitly
given by m̂ML =

(
X1 + ω0

∑q+1
i=2 X−

i , X+
2 , . . . , X+

q+1

)′
. It is easy to see that this MLE

estimator is less efficient than m̂tLS =
(
X1, X

+
2 , . . . , X+

q+1

)′ when m = (m1, 0, . . . , 0)′

and q > 4.

4.2 Monte Carlo results
Table 2 summarizes the output of Monte Carlo experiments. The empirical MSE’s are
generally close to the asymptotic MSE’s obtained from (11)-(13) (given in the rows n =
∞). The smallest MSE’s are displayed in bold type. We note that the (Q)MLE can
be outperformed by simpler estimators, in finite samples and also asymptotically when
q = 6. The TLSE, although particularly simple to implement, performs remarkably well
in the framework of Table 2. Other simulation experiments, not reported here, reveal
that, as expected, the QMLE and (C/T)QGLSE are much more accurate than the other
estimators in the presence of conditionally heteroscedastic data.

From the asymptotic theory, as well as from Table 2 and other numerical experiments
not presented here, we draw the conclusion that i) the QMLE is generally superior to
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the other estimators in terms of accuracy when the data show evidence of conditional
heteroscedasticity and/or heavy tail distribution, ii) the (Q)MLE can be outperformed by
simpler estimators, such as the TLSE, when the true value of the parameters stay at the
boundary of the parameter space. Detailed proofs of the results given in this paper are
available from the authors.

Table 2: Empirical MSE and asymptotic MSE for estimators of an ARCH(q) model when
the data generated process is a N (0, 0.22) iid sequence. The number of replications is
N = 1, 000.

q n QMLE LSE QGLSE CLSE CQGLSE TLSE TQGLSE
1 100 0.74 1.07 1.11 0.58 0.61 0.60 0.64

1000 0.59 1.14 1.12 0.59 0.57 0.61 0.59
∞ 0.60 1.12 1.12 0.60 0.60 0.62 0.62

3 100 2.30 3.30 3.29 1.47 1.59 1.59 1.67
1000 1.76 3.26 3.18 1.73 1.66 1.77 1.70
∞ 1.68 3.20 3.20 1.68 1.68 1.70 1.70

6 100 5.27 6.94 6.70 3.13 3.27 3.31 3.38
1000 3.51 6.35 6.19 3.34 3.24 3.34 3.24
5000 3.42 6.71 6.68 3.37 3.35 3.35 3.33
∞ 3.39 6.32 6.32 3.39 3.39 3.32 3.32

Appendix

A Computing the Constrained LSE with linear projec-
tions

In view of (7), the vector Xθ̂cLS
n coincides with one of the 2q+1−1 projections of Y on the

linear subspaces generated by the column i1, . . . , ik of X , with k = 1, . . . , q + 1. We now
give a result which can be helpful to compute θ̂cLS

n without considering all the 2q+1 − 1
projections. It is clear that θ̂cLS

n = θ̂LS
n when θ̂LS

n ∈ [0, +∞[q+1. Suppose that one of the
components of θ̂LS

n is strictly negative, for instance the last one. Let

X = (X(1), X(2)), X(2) =
(
ε2
n−q . . . ε2

1

)′
,

and

θ̂LS
n = (X ′X)

−1
X ′Y =

(
θ̂

(1)
n

α̂q

)
, θ̃n =

(
θ̃

(1)
n

0

)
=

((
X(1)′X(1)

)−1
X(1)′Y

0

)
.

Note that θ̃
(1)
n is the LSE of the ARCH(q − 1) model.
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Proposition A.1 Assume that X has rank q + 1 and α̂q < 0. Then

θ̃(1)
n ∈ [0, +∞[q if and only if θ̂cLS

n = θ̃n.

Proof of Proposition A.1. Let P (1) = X(1)
(
X(1)′X(1)

)−1
X(1)′ be the projection matrix

on the columns of X(1) and let M (1) = In − P (1). One can verify that(
θ̂LS′

n − θ̃′n

)
X ′X =

(
0, Y ′M (1)X(2)

)
.

Let eq+1 = (0, . . . , 0, 1)′ ∈ Rq+1. Since θ̂nθ̂
LS
n eq+1 < 0, we have (θ̂LS′

n − θ̃′n)eq+1 < 0,
which can be written as (

θ̂LS′

n − θ̃′n

)
X ′X (X ′X)

−1
eq+1 < 0,

or
Y ′M (1)X(2){(X ′X)

−1}q+1,q+1 < 0.

Thus Y ′M (1)X(2) < 0. It follows that for all θ = (θ(1)′ , θ(2))′ ∈ [0, +∞[q+1 we have〈
θ̂LS

n − θ̃n, θ̃n − θ
〉

X′X
=
(
θ̂LS

n − θ̃n

)′
X ′X

(
θ̃LS

n − θ
)

=
(
0, Y ′M (1)X(2)

)( θ̃
(1)
n − θ(1)

−θ(2)

)
= −θ(2)Y ′M (1)X(2) ≥ 0.

When θ̃n ∈ [0, +∞[q+1, this vector is thus the projection of θ̂LS
n on the convex set

[0, +∞[q+1 with respect to the metric X ′X .

B Proofs
Some of the proofs of this appendix are direct adaptations of well-known results on re-
gression models (see e.g. Gouriéroux & Monfort, 1989), and are thus given for the reader
convenience.

Proof of Proposition 2.1. Using the Minkowski inequality and (7), we have∥∥∥θ̂cLS
n − θ0

∥∥∥
X′X/n

≤
∥∥∥θ̂cLS

n − θ̂LS
n

∥∥∥
X′X/n

+
∥∥∥θ̂LS

n − θ0

∥∥∥
X′X/n

≤ 2
∥∥∥θ̂LS

n − θ0

∥∥∥
X′X/n

.

Note that X ′X/n converge to the positive definite matrix A. Thus the consistency of
θ̂cLS

n follows from that of θ̂LS
n . If θ̂LS

n → θ0 ∈ (0,∞)q+1 then, for n large enough,
θ̂LS

n ∈ (0,∞)q+1 and, in view (7), θ̂cLS
n = θ̂LS

n . Thus the two estimators have the same
asymptotic distribution.

Proof of Proposition 2.2. Because all the components of θ0 are positive, ‖θ̂tLS
n − θ0‖ ≤

‖θ̂LS
n − θ0‖, and the consistency of the LSE entails that of the truncated estimator. If

θ̂LS
n → θ0 ∈ (0,∞)q+1 then, for n large enough, all the components of θ̂LS

n are positive

10



and we thus have θ̂tLS
n = θ̂LS

n . In this case the two estimators have the same asymptotic
distribution.

Proof of Proposition 2.3. The proof follows from the arguments given in the proofs of
Propositions 2.1 and 2.2.

Proof of Lemma 3.1. Letting D = σ2
t A

−1Zt−1 − σ−2
t J−1Zt−1, we have

E(DD′) = A−1E(σ4
t Zt−1Z

′
t−1)A

−1 + J−1E(σ−4
t Zt−1Z

′
t−1)J

−1

−A−1E(Zt−1Z
′
t−1)J

−1 − J−1E(Zt−1Z
′
t−1)A

−1

= A−1BA−1 − J−1

and the result follows.

Proof of Proposition 4.1. In view of (7)

θ̂cLS
n = arg min

θ∈[0,+∞[q+1
‖
√

n(θ̂LS
n − θ)‖n−1X′X

= arg min
θ∈[0,+∞[q+1

‖
√

n(θ̂LS
n − θ0)−

√
n(θ − θ0)‖n−1X′X .

Noting that θ ∈ [0, +∞[q+1 if and only if
√

n(θ − θ0) ∈ Λ, we obtain
√

n(θ̂cLS
n − θ0) = arg min

λ∈Λ
‖Z̃n − λ‖n−1X′X ,

with Z̃n =
√

n(θ̂LS
n −θ0). Since (Z̃n, n

−1X ′X)
d→ (Z̃, A), we conclude by the continuous

mapping theorem.

Proof of Proposition 4.2. Because θ̂tLS
n → θ0 with probability one, we have

θ̂tLS
n � 1{θ0>0} = θ̂LS

n � 1{θ0>0}

for n large enough. We also have θ̂tLS
n � 1{θ0=0} = θ̂LS

n � 1{θLS
n >0} � 1{θ0=0}. Thus

√
n
(
θ̂tLS

n − θ0

)
=
√

n
(
θ̂LS

n − θ0

)
� 1{θ0>0} +

√
n
(
θ̂LS

n − θ0

)
� 1{θ0=0} � 1{θLS

n >0}

for n large enough. Since

√
n(θ̂LS

n − θ0)
d→ Z̃ and 1{θ0=0} � 1{θLS

n >0} = 1{θ0=0} � 1{θLS
n −θ0>0},

the continuous mapping theorem entails
√

n(θ̂tLS
n −θ0)

d→ Z̃�1{Z̃≥0 or θ0>0}. The second
convergence of the proposition is obtained by the same arguments.

Proof of (11)-(13). For an ARCH(q) model with α01 = · · · = α0q = 0 we have

(Eη4
1 − 1)J−1 =


(Eη4

1 + q − 1)ω2
0 −ω0 . . . −ω0

−ω0
...

−ω0

Iq

 .
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The local parameter space is Λ = R × (0,∞)q and the vector λΛ can be interpreted as
the orthogonal projection of Z onto Λ for the scalar product < x, y >J= x′Jy. Since Λ
is convex, λΛ is uniquely defined. It is clear that λΛ = Z when Z ∈ Λ. When Z 6∈ Λ
the solution λΛ coincides with the <,>J -orthogonal projection of Z on a linear subspace
defined by Kiλ = 0, where Ki is one of the 2q − 1 matrix obtained by cancelling 0 or up
to q−1 rows of the matrix K = (0q, Iq) (see Francq & Zakoı̈an, 2007). These projections
are defined by

λKi
= PiZ, where Pi = Id1+d2 − J−1K ′

i

(
KiJ

−1K ′
i

)−1
Ki.

The form of J−1 implies that KiJ
−1K ′

i = (Eη4
1 − 1)−1Ini

and J−1K ′
iKi = (Eη4

1 −
1)−1K ′

iKi where ni is the number of rows of Ki. The solution λΛ is finally given by the
projection which belongs to Λ and is the closest to Z according to the metric J . Thus it
can be shown that

λΛ =


Z1 + ω0

∑q+1
i=2 Z−

i

Z+
2
...

Z+
q+1

 , Z ∼ N

0,


(Eη4

1 + q − 1)ω2
0 −ω0 · · · −ω0

−ω0
...

−ω0

Iq


 ,

where z+ = z1{z>0} and z− = z1{z<0}. By a symmetry argument we have EZ1Z
−
i =

EZ1Z
+
i = EZ1Zi/2 = −ω0/2 for i ≥ 2. We also have EZ+

i = −EZ−
i = 1/

√
2π and

E
(
Z+

i

)2
= E

(
Z−

i

)2
= 1/2 for i ≥ 2. Using also the independence of Z2, . . . , Zq+1, we

obtain

MSEQML = E

(
Z1 + ω0

q+1∑
i=2

Z−
i

)2

+ qE
(
Z+

2

)2
= EZ2

1 + qω2
0E
(
Z−

2

)2
+ 2qω0EZ1Z

−
2 + q(q − 1)ω2

0

(
EZ−

2

)2
+ qE

(
Z+

2

)2
= (Eη4

1 + q − 1)ω2
0 − qω2

0/2 + q(q − 1)ω2
0/2π + q/2.

We now compute the MSE of the LSE. First note that A = ω2
0J and B = ω2

0A. Thus the
asymptotic distribution of the LSE is that of Z, and

MSELS = (Eη4
1 + q − 1)ω2

0 + q.

Let us consider the constrained LSE. Because A = ω2
0J , we have

Pi = Id1+d2 − J−1K ′
i

(
KiJ

−1K ′
i

)−1
Ki = Id1+d2 − A−1K ′

i

(
KiA

−1K ′
i

)−1
Ki,

which entails that

MSECLS = MSEQML.

The law of Z̃ introduced in Proposition 4.1 being equal to that of Z, we have

MSETLS = EZ2
1 +

q+1∑
i=2

E
(
Z+

i

)2
= (Eη4

1 + q − 1)ω2
0 + q/2.
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B.1 Additional Monte Carlo experiments
The process simulated in Table 3 is an ARCH(1) with α01 6= 1. When the fitted model
is an ARCH(q) with q = 1 then the parameter belongs to the interior of the parameter
space. When α01 = 0.2 the moment condition Eε8

t < ∞ is satisfied, and the AN given
in Propositions 2.1, 2.2 and 2.3 thus hold. As expected from Lemma 3.1, when n is
large the LSE, CLSE and TLSE are less efficient than the QMLE, QGLSE, CQGLSE and
TQGLSE. In agreement with Proposition 2.3-type results, for n large, the unconstrained,
constrained and truncated versions of the LSE are the same, and the same is true for
the QGLSE. Note however that for n small and α small, the QMLE can be dominated
by other estimators. When α01 = 0.4 the moment condition Eε4

t < ∞ is satisfied,
so the (C/T)LSE remain consistent and the (C/T)QGLSE remain consistent and AN. As
expected, the behavior of the QMLE and QGLSE are very similar. When α01 = 0.6 or
α01 = 0.8, only the QMLE works well. The behavior of the QGLSE is particularly bad
when α01 = 0.8, but this estimator works nicely when α01 = 0.6 and n = 1, 000, which
is a little bit surprising because the consistency condition α01 <

√
1/3 = 0.577 is not

satisfied.
When the fitted model is an ARCH(q) with q > 1 then the parameter is at the boundary

of the parameter space. We are now in a situation where the theoretical comparison of the
asymptotic MSE of the different estimators is not available. The QMLE is always the
best, except when n and α01 are both small, in which case the QMLE can be beaten by
truncated or constrained estimators.

The last set of Monte Carlo experiments is aimed to verify that the following inequal-
ities hold for large sample sizes, and see if they hold for smaller sample sizes:

MSECLS < MSETLS < MSELS

when q ≤ 4,
MSETLS < MSECLS < MSELS

when 5 ≤ q < (π + 1) + π/ω2
0 , and

MSETLS < MSELS < MSECLS

when q > (π +1)+π/ω2
0 . We known that, asymptotically, MSECLS = MSEQML, but we

have not computed the empirical MSEQML because we performed simulation experiments
involving ARCH(q) models with large q and large sample sizes n, and the QMLE is
time consuming in this case, compared to the LSE. From Table 4 it is seen that the LSE
is always dominated, either by the CLSE or the TLSE. That the TLSE (which can be
considered as a naive estimator, without much theoretical support) can sometimes be more
accurate than the CLSE (which is asymptotically equivalent to the MLE in the framework
of Tables 2 and 4) is a surprising result of the present paper.
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Table 3: Empirical MSE and asymptotic MSE for estimators of an ARCH(q) model when
the data generated process is an ARCH(1) model with ηt ∼ N (0, 1), ω0 = 0.2 and
α01 = 0.2, 0.4, 0.6, 0.8. The number of replications is N = 1, 000.

q n α01 QMLE LSE QGLSE CLSE CQGLSE TLSE TQGLSE
1 100 0.2 2.21 2.28 2.35 1.95 2.02 1.96 2.03

1000 2.53 4.17 2.53 4.17 2.53 4.17 2.53
100 0.4 3.76 4.51 3.99 4.39 3.87 4.39 3.88
1000 3.62 10.47 3.79 10.47 3.79 10.47 3.79
100 0.6 5.09 14.68 26.72 14.53 26.67 14.62 26.68
1000 4.66 37.54 5.43 37.54 5.43 37.54 5.43
100 0.8 6.32 1126.8 31.20 1.1 103 31.00 1.1 103 31.04
1000 5.74 532.1 3.6 106 531.9 3.6 106 531.9 3.6 106

2 100 0.2 2.87 3.79 3.42 2.31 2.43 2.65 2.55
1000 3.05 5.66 3.52 4.78 3.04 5.00 3.09
100 0.4 4.45 6.83 6.45 4.93 4.31 5.48 4.39
1000 4.10 16.27 4.68 12.10 4.33 14.00 4.37
100 0.6 5.81 15.39 8.37 12.90 6.63 13.40 6.70
1000 5.05 52.16 9.06 44.11 8.81 46.08 8.85
100 0.8 7.07 363.7 86.59 357.0 4.5 105 360.2 83.85
1000 6.03 412.0 14.48 383.4 13.84 401.5 14.17
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Table 4: Empirical MSE and asymptotic MSE for estimators of an ARCH(q) model when
the data generated process is a N (0, 9) iid sequence. The number of replications is N =
1, 000.

q n LSE CLSE TLSE
3 100 51.68 32.95 49.98

1 000 50.04 40.21 48.55
10 000 46.23 38.94 44.58
∞ 48.00 41.59 46.50

5 100 82.01 52.80 79.06
1000 70.33 65.30 67.84
10 000 65.84 65.55 63.10
∞ 68.00 71.65 65.50

7 100 117.74 85.94 113.56
1000 95.24 104.02 91.80
10 000 87.48 106.21 83.71
∞ 88.00 113.16 84.50
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