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Can one really estimate nonstationary GARCH models?

Christian Francq∗and Jean-Michel Zakoïan†

Abstract

Jensen and Rahbek (2004a) claim that consistency and asymptotic normality hold for the quasi-maximum

likelihood estimator (QMLE) of (ω0, α0) in nonstationary ARCH(1) models. In fact their result only

concerns a constrained QMLE, in which the intercept is fixed, and under a reinforced nonstationarity

condition. Under this condition, we prove that the standard QMLE of α0 is strongly consistent and

asymptotically normal. Numerical experiments reveal that QMLE of ω0 is likely to be inconsistent.

Keywords: ARCH, asymptotic normality, inconsistent estimator, nonstationarity, quasi-maximum likeli-

hood estimation, strong consistency.

Résumé

Jensen et Rahbek (2004a) affirment que l’estimateur du quasi-maximum de vraisemblance (QMV) de

(ω0, α0) est convergent et asymptotiquement normal, dans les modèles ARCH(1) non stationnaires. En

fait, leur résultat concerne seulement un estimateur du QMV contraint, dans lequel le ω0 est fixé, et sous

une hypothèse de non stationnarité renforcée. Sous cette condition, nous montrons que l’estimateur du

QMV standard de α0 est fortement convergent et asymptotiquement normal. Des expériences numériques

montrent que la convergence de l’estimateur du QMV de ω0 est douteuse.

Mots-clés : ARCH, normalité asymptotique, estimateur non convergent, non stationnarité, quasi-

maximum de vraisemblance, convergence forte.
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1 Introduction

In a recent paper, Jensen and Rahbek (henceforth JR) (2004a) claim that "consistency

and asymptotic normality of the quasi-maximum likelihood estimator in the linear ARCH

model" hold when the parameter is allowed "to be in the region where no stationary

version of the process exists." The only model considered in their paper is in fact the two-

parameters first-order ARCH. More importantly, the estimator studied in their paper is

not the usual quasi-maximum likelihood estimator (QMLE). It is a constrained estimator

of the ARCH parameters, where the first component is known. In a companion paper, JR

(2004b) obtain a similar result for an estimator of the sub-vector (α0, β0) of the parameter

vector, in the GARCH(1,1) framework. This estimator is also a constrained QMLE, in

which the true intercept coefficient, ω0, is replaced by an arbitrary fixed value ω. Precise

definitions are given in the next section.

Apart from a minor point concerning the nonstationarity condition, our remarks do not

concern the validity of the results established by JR, nor their proofs which are elegantly

conducted. However we think that the initial claim is untrue, and can lead to severe

misinterpretations of the role of stationarity in the implementation of GARCH models.

There is a tendency among practitioners, and also theoreticians, to believe that the QMLE

for GARCH is consistent and asymptotically normal without any stationarity constraint1.

The aim of this Note is to draw attention on three points:

i) the estimator defined in the above-mentionned papers IS NOT the QMLE, which is

the most widely used estimator of GARCH models,

ii) the asymptotic behavior of the QMLE of ω0 is unknown and thus,

iii) despite their theoretical interest, those results have little, if any, consequence for the

use of GARCH in practice.

This Note brings a complete answer to point i) in the ARCH(1) case, and gives highlights on

points ii) and iii). More precisely, we show in Section 3 that the QMLE of α0 is consistent

1See for instance Linton, Pan and Wang (2006): " Jensen and Rahbek (2004 a, 2004 b) were the

first to consider the asymptotic theory of the QMLE for non-stationary ARCH/GARCH models. They

showed that the likelihood-based estimator for the parameters in the first order ARCH/GARCH model is

consistent and asymptotically Gaussian in the entire parameter region regardless of whether the process is

strictly stationary or explosive." See also Caporale, Ntantamis, Pantelidis and Pittis (2005).
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and asymptotically normal when the squared process almost surely converges to infinity.

We start be introducing the notation and main issues.

2 Notation and discussion

JR (2004a) consider the ARCH(1) model, as given by







ǫt =
√

htηt, t = 1, 2, . . .

ht = ω0 + α0ǫ
2
t−1

(2.1)

under classical assumptions on the noise: the sequence (ηt) is assumed independent and

identically distributed (iid) with zero mean and unit variance, and such that κη = Eη4
1 <

∞. In JR (2004a) the parameter ω0 > 0 is assumed to be known (for instance ω0 = 1),

and only α0 has to be estimated. They consider a constrained QMLE of α0 defined by

α̂c
n(ω0) = arg min

α∈[0,∞)

1

n

n
∑

t=1

ℓt(α), ℓt(α) =
ǫ2
t

σ2
t (α)

+ log σ2
t (α), (2.2)

where σ2
t (α) = ω0 + αǫ2

t−1, and an initial value is introduced for ǫ2
0 (for instance ǫ2

0 = 0).

The necessary and sufficient condition for the existence of a strictly stationary solu-

tion to (2.1) is E log(α0η
2
1) < 0. When strict stationarity does not hold, i.e. under the

assumption

α0 ≥ exp
{

−E log η2
1

}

, (2.3)

JR (2004a) state that

α̂c
n(ω0) is consistent (2.4)

and asymptotically normal:

√
n (α̂c

n(ω0) − α0)
d→ N

{

0, (κη − 1)α2
0

}

, as n → ∞. (2.5)

JR (2004a) use a result by Nelson (1990) stating that ht → ∞ almost surely as t → ∞.

This result is correct under the assumption

α0 > exp
{

−E log η2
1

}

, (2.6)

but Klüppelberg, Lindner and Maller (2004) note that the arguments given by Nelson are

in failure when α0 = exp
{

−E log η2
1

}

. These authors show that ht → ∞ in probability

instead of almost surely. It follows that the results (2.4) and (2.5) are proven under
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the reinforced nonstationarity condition (2.6), but not under the general nonstationarity

condition (2.3). We also note that JR (2004a) do not give a precise meaning to (2.4).

JR (2004b) consider a similar estimator for the sub-vector (α0, β0) of the parameter

of a GARCH(1,1). The unknown parameter ω0 is replaced by a fixed value ω, which is

no longer assumed to be equal to ω0. Thus (2.3) and (2.4) remain valid when α̂c
n(ω0) is

replaced by α̂c
n(1), say. This point is important for practical purposes. From (2004b), it

seems that (2.4) has to be understood as a convergence which holds in probability and

locally, that is when α̂c
n(ω0) minimises

∑n
t=1 ℓt(α) in a small neighborhood of α0.

3 QMLE of a nonstationary ARCH(1) model

In this section we consider the QMLE of an ARCH(1), defined as a measurable solution of

(ω̂n, α̂n) = arg min
θ∈Θ

1

n

n
∑

t=1

ℓt(θ), ℓt(θ) =
ǫ2
t

σ2
t (θ)

+ log σ2
t (θ), (3.1)

where θ = (ω,α), Θ is a compact subset of (0,∞)2, and σ2
t (θ) = ω + αǫ2

t−1 for t = 1, . . . , n

(with an initial value for ǫ2
0). We will use the next result establishing the rate of the almost

sure convergence of ǫ2
t to infinity under the reinforced nonstationarity condition (2.6).

Lemma 3.1 Let the ARCH(1) defined by (2.1), with initial condition ǫ2
0 ≥ 0. Then, if

(2.6) holds,
1

hn
= o(ρn) and

1

ǫ2
n

= o(ρn)

almost surely as n → ∞ for any constant ρ such that

1 > ρ > exp
{

−E log η2
1

}

/α0. (3.2)

This lemma allows to obtain the strong consistency and asymptotic normality of the QMLE

of α0.

Theorem 3.1 Under the assumptions of Lemma 3.1, and if θ0 = (ω0, α0) ∈ Θ, the QMLE

defined in (3.1) satisfies

α̂n → α0 a.s. (3.3)

and, if θ0 belongs to the interior of Θ,

√
n (α̂n − α0)

d→ N
{

0, (κη − 1)α2
0

}

(3.4)

as n → ∞.

3



As already noted, this result as well as the results in JR papers do not give any insight

on the asymptotic behavior of the QMLE of ω0. However, a few remarks and numerical

illustrations are in order concerning this issue.

In the proof of Theorem 3.1 it is shown that the score vector satisfies

1√
n

n
∑

t=1

∂

∂θ
ℓt(θ0)

d→ N







0, J = (κη − 1)





0 0

0 α−1
0











.

The form of the asymptotic covariance matrix J of the score vector shows that, for n

sufficiently large and almost surely, the variation of the log-likelihood n−1/2
∑n

t=1 log ℓt(θ)

is negligible when θ varies between (ω0, α0) and (ω0 + h, α0) for small h. This leads

to think that the QMLE of ω0 is certainly inconsistent without the strict stationarity

condition. Figure 3 presents some numerical evidence on the performance of the QMLE

in finite samples through a simulation study. In all experiments, we use the sample size

n = 200 and n = 4000 with 100 replications. The data of the top panel are generated from

the second-order stationary ARCH(1) model (2.1) with the true parameter θ0 = (1, 0.95).

The data of the middle panel are generated from the strict stationary ARCH(1) model

with θ0 = (1, 1.5) and infinite variance. In those two panels the results are very similar,

confirming that the second-order stationarity condition is not necessary for the use of the

QMLE. The bottom panel, obtained for the explosive ARCH(1) model with θ0 = (1, 4),

confirms the asymptotic results for the QMLE of α0. It also illustrates the impossibility

to estimate parameter ω0 with a reasonable accuracy under the nonstationarity condition

(2.6). The results even worsen when the sample size increases.

4 Conclusion

To summarize, the results obtained by JR are interesting from a theoretical point of view,

because they showed that strict stationarity is not compulsory for the estimation of ARCH

coefficients. However, the scope of such results is much more limited than announced. More

importantly, erroneous conclusions can be drawn from those results. To counterbalance

the latter point, in this Note we showed that

i) the estimator used in JR (2004a, 2004b) is not the usual QMLE,

ii) the QMLE of α0 is indeed strongly consistent and asymptotically normal but a

stronger non-stationarity condition is required,

4



ω − ω̂ α − α̂

−
0.

5
0.

5

estimation errors when ω=1, α=0.95

Second−order stationarity, n=200

ω − ω̂ α − α̂

−
0.

2
0.

1

estimation errors when ω=1, α=0.95

Second−order stationarity, n=4000

ω − ω̂ α − α̂

−
0.

5
0.

5

estimation errors when ω=1, α=1.5

Strict stationarity, n=200

ω − ω̂ α − α̂

−
0.

2
0.

1

estimation errors when ω=1, α=1.5

Strict stationarity, n=4000

ω − ω̂ α − α̂

−
0.

5
0.

5

estimation errors when ω=1, α=4

Non stationarity, n=200

ω − ω̂ α − α̂

−
0.

2
0.

1

estimation errors when ω=1, α=4

Non stationarity, n=4000

Figure 1: Boxplots of estimation errors for the QMLE of the parameters ω0 and α0 of an ARCH(1),

with ηt ∼ N (0, 1).
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iii) no asymptotic result holds for the parameter ω0. Numerical experiments lead to

think that it is inconsistent.

We conclude by recalling that a nonstationary GARCH generates explosive trajectories

which have little compatibility with real financial series. The study of the behavior of the

QMLE in this framework thus has little practical significance.

5 Proofs

Proof of Lemma 3.1. We have

ρnhn = ρnω0

{

1 +

n−1
∑

t=1

αt
0η

2
n−1 . . . η2

n−t

}

+ ρnαn
0η2

n−1 . . . η2
1ǫ

2
0

≥ ρnω0

n−1
∏

t=1

α0η
2
t . (5.1)

Thus

lim inf
n→∞

1

n
log ρnhn ≥ lim

n→∞
1

n

{

log ρω0 +
n−1
∑

t=1

log ρα0η
2
t

}

= E log ρα0η
2
1 > 0,

using (3.2) for the last inequality. It follows that log ρnhn, and hence ρnhn, tends to +∞
almost surely as n → ∞. For any real-valued function f , let f+(x) = max{f(x), 0} and

f−(x) = max{−f(x), 0}, so that f(x) = f+(x) − f−(x). Since E log+ η2
1 ≤ Eη2

1 = 1,

we have E| log η2
1| = ∞ if and only if E log η2

1 = −∞. Thus (2.6) implies E| log η2
1 | <

∞, which entails that log η2
n/n → 0 almost surely as n → ∞. Therefore, using (5.1),

lim infn→∞ n−1 log ρnη2
nhn ≥ E log ρα0η

2
1 > 0, and ρnǫ2

n = ρnη2
nhn → +∞ almost surely

by already given arguments.

2

Proof of (3.3). Note that (ω̂n, α̂n) = arg minθ∈Θ Qn(θ), where

Qn(θ) =
1

n

n
∑

t=1

{ℓt(θ) − ℓt(θ0)} .

We have

Qn(θ) =
1

n

n
∑

t=1

η2
t

{

σ2
t (θ0)

σ2
t (θ)

− 1

}

+ log
σ2

t (θ)

σ2
t (θ0)

=
1

n

n
∑

t=1

η2
t

(ω0 − ω) + (α0 − α)ǫ2
t−1

ω + αǫ2
t−1

+ log
ω + αǫ2

t−1

ω0 + α0ǫ
2
t−1

.
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For any θ ∈ Θ, we have α 6= 0. Letting

On(α) =
1

n

n
∑

t=1

η2
t

(α0 − α)

α
+ log

α

α0

and

dt =
α(ω0 − ω) − ω(α0 − α)

α(ω + αǫ2
t−1)

,

we have

Qn(θ) − On(α) =
1

n

n
∑

t=1

η2
t dt−1 +

1

n

n
∑

t=1

log
(ω + αǫ2

t−1)α0

(ω0 + α0ǫ
2
t−1)α

→ 0 a.s.

since, by Lemma 3.1, ǫ2
t → ∞ almost surely as t → ∞. Moreover this convergence is

uniform on the compact set Θ:

lim
n→∞

sup
θ∈Θ

|Qn(θ) − On(α)| = 0 a.s. (5.2)

Let α−
0 and α+

0 denote two constants such that 0 < α−
0 < α0 < α+

0 . Introducing σ̂2
η =

n−1
∑n

t=1 η2
t , the solution of

α∗
n = arg min

α
On(α)

is α∗
n = α0σ̂

2
η . This solution belongs to the interval (α−

0 , α+
0 ) for sufficiently large n. Thus

α∗∗
n = arg min

α6∈(α−
0

,α+

0
)
On(α) ∈ {α−

0 , α+
0 }

and

lim
n→∞

On(α∗∗
n ) = min

{

lim
n→∞

On(α−
0 ), lim

n→∞
On(α+

0 )
}

> 0.

This result and (5.2) show that almost surely

lim
n→∞

min
θ∈Θ, α6∈(α−

0
,α+

0
)
Qn(θ) > 0.

Since minθ Qn(θ) ≤ Qn(θ0) = 0, it follows that

lim
n→∞

arg min
θ∈Θ

Qn(θ) ∈ (0,∞) × (α−
0 , α+

0 ).

Because the interval (α−
0 , α+

0 ) containing α0 can be chosen arbitrarily small, we get the

convergence in (3.3).

2

The following result will be used to establish the asymptotic normality of the QMLE of

α0.
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Lemma 5.1 Under the assumptions of Theorem 3.1, we have

∞
∑

t=1

sup
θ∈Θ

∣

∣

∣

∣

∂

∂ω
ℓt(θ)

∣

∣

∣

∣

< ∞ a.s., (5.3)

∞
∑

t=1

sup
θ∈Θ

∥

∥

∥

∥

∂2

∂ω∂θ
ℓt(θ)

∥

∥

∥

∥

< ∞ a.s., (5.4)

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

t=1

∂2

∂α2
ℓt(ω,α0) −

1

α2
0

∣

∣

∣

∣

∣

= o(1) a.s., (5.5)

1

n

n
∑

t=1

sup
θ∈Θ

∣

∣

∣

∣

∂3

∂α3
ℓt(θ)

∣

∣

∣

∣

= O(1) a.s., (5.6)

Proof. Using Lemma 3.1, there exist a real random variable K and a constant ρ ∈ (0, 1)

independent of θ and t such that

∣

∣

∣

∣

∂

∂ω
ℓt(θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

σ2
t (θ)

∂σ2
t (θ)

∂ω

(

1 − ǫ2
t

σ2
t (θ)

)∣

∣

∣

∣

=

∣

∣

∣

∣

−(ω0 + α0ǫ
2
t−1)η

2
t

(ω + αǫ2
t−1)

2
+

1

ω + αǫ2
t−1

∣

∣

∣

∣

≤ Kρt(η2
t + 1).

Since
∑∞

t=1 Kρt(η2
t + 1) has a finite expectation, it is almost surely finite. Thus (5.3) is

proved, and (5.4) can be obtained by the same arguments. We have

∂2ℓt(ω,α0)

∂α2
− 1

α2
0

=

{

2
(ω0 + α0ǫ

2
t−1)η

2
t

ω + α0ǫ2
t−1

− 1

}

ǫ4
t−1

(ω + α0ǫ2
t−1)

2
− 1

α2
0

=
(

2η2
t − 1

) ǫ4
t−1

(ω + α0ǫ2
t−1)

2
− 1

α2
0

+ r1,t

= 2
(

η2
t − 1

) 1

α2
0

+ r1,t + r2,t

where

sup
θ∈Θ

|r1,t| = sup
θ∈Θ

∣

∣

∣

∣

2(ω0 − ω)η2
t

(ω + α0ǫ
2
t−1)

ǫ4
t−1

(ω + α0ǫ
2
t−1)

2

∣

∣

∣

∣

= o(1) a.s.

and

sup
θ∈Θ

|r2,t| = sup
θ∈Θ

∣

∣

∣

∣

(2η2
t − 1)

{

ǫ4
t−1

(ω + α0ǫ
2
t−1)

2
− 1

α2
0

}∣

∣

∣

∣

= sup
θ∈Θ

∣

∣

∣

∣

(2η2
t − 1)

{

ω2 + 2α0ǫ
2
t−1

α2
0(ω + α0ǫ

2
t−1)

2

}∣

∣

∣

∣

= o(1) a.s.

as t → ∞. Therefore (5.5) is established. To prove (5.6), it suffices to remark that

∣

∣

∣

∣

∂3

∂α3
ℓt(θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{

2 − 6
(ω0 + α0ǫ

2
t−1)η

2
t

ω + αǫ2
t−1

}(

ǫ2
t−1

ω + αǫ2
t−1

)3
∣

∣

∣

∣

∣

≤
{

2 + 6
(ω0

ω
+

α0

α

)

η2
t

} 1

α3
.
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2

Proof of (3.4). Notice that we cannot use that fact that the derivative of the criterion

cancels at θ̂n = (ω̂n, α̂n) since we only have the convergence of α̂n to α0. Thus the minimum

could lie on the boundary of Θ, even asymptotically. However, the partial derivative with

respect to α is asymptotically equal to zero at the minimum since α̂n → α0 and (ω0, α0) ∈
◦
Θ.

Hence, an expansion of the criterion derivative gives




1√
n

∑n
t=1

∂
∂ω ℓt(θ̂n)

0



 =
1√
n

n
∑

t=1

∂

∂θ
ℓt(θ0) + Jn

√
n(θ̂n − θ0) (5.7)

where Jn is a 2 × 2 matrix whose elements have the form

Jn(i, j) =
1

n

n
∑

t=1

∂2

∂θj∂θj
ℓt(θ

∗
i,j)

where θ∗i,j = (ω∗
i,j, α

∗
i,j) is between θ̂n and θ0. By Lemma 3.1 and from the Lindeberg

central limit theorem for martingale differences we have

1√
n

n
∑

t=1

∂

∂α
ℓt(θ0) =

1√
n

n
∑

t=1

(1 − η2
t )

ǫ2
t−1

ω0 + α0ǫ
2
t−1

=
1√
n

n
∑

t=1

(1 − η2
t )

1

α0
+ oP (1)

d→ N
(

0,
κη − 1

α2
0

)

. (5.8)

By (5.4), in Lemma 5.1, and the compactness of Θ we have

Jn(2, 1)
√

n(ω̂n − ω0) ≤
∞
∑

t=1

sup
θ∈Θ

∥

∥

∥

∥

∂2

∂ω∂θ
ℓt(θ)

∥

∥

∥

∥

1√
n

(ω̂n − ω0) → 0 a.s. (5.9)

An expansion of the function

α 7→ 1

n

n
∑

t=1

∂2

∂α2
ℓt(ω

∗
2,2, α)

gives

Jn(2, 2) =
1

n

n
∑

t=1

∂2

∂α2
ℓt(ω

∗
2,2, α0) +

1

n

n
∑

t=1

∂3

∂α3
ℓt(ω

∗
2,2, α

∗)(α∗
2,2 − α0)

where α∗ is between α∗
2,2 and α0. Using (5.5), (5.6) and (3.3) we get

Jn(2, 2) → 1

α2
0

a.s. (5.10)

The conclusion follows, by considering the second component in (5.7) and from (5.8), (5.9)

and (5.10).
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