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Bartlett’s formula for non linear processes

Christian Francq∗and Jean-Michel Zakoïan†

Abstract

A Bartlett-type formula is proposed for the asymptotic distribution of the sample autocorrelations of

nonlinear processes. The asymptotic covariances between sample autocorrelations are expressed as the

sum of two terms. The first term corresponds to the standard Bartlett’s formula for linear processes,

involving only the autocorrelation function of the observed process. The second term, which is specific

to nonlinear processes, involves the autocorrelation function of the observed process, the kurtosis of the

linear innovation process and the autocorrelation function of its square. This formula is obtained under a

symmetry assumption on the linear innovation process. An application to GARCH models is proposed.

Keywords : Bartlett formula, Empirical utocorrelations, GARCH model, Linear innovation, Non-

linear processes.

Résumé

Une formule de type Bartlett est proposée pour la loi asymptotique des autocorrélations empiriques

de processus non linéaires. Les covariances asymptotiques des autocorrélations empiriques sont

exprimées comme somme de deux termes. Le premier correspond à la formule de Bartlett standard

pour processus linéaires et ne dépend que de la fonction d’autocorrélation du processus observé.

Le second terme, spécifique aux processus non linéaires, dépend de la fonction d’autocorrélation

du processus observé, de celle de son carré et du coefficient de kurtosis de l’innovation linéaire du

carré. La formule est obtenue sous une hypothèse de symétrie du processus d’innovation linéaire.

Une application aux modèles GARCH est proposée.

Keywords : Autocorrélations empiriques, formule de Bartlett, innovation linéaire, modèle GARCH,

processus non linéaires.
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1 Introduction

In time series analysis, the estimation of the autocorrelation function plays a crucial role, in

particular for identification problems (see e.g. Brockwell et Davis (1991)). Bartlett (1946)

derived an explicit formula for the asymptotic covariance between sample autocorrelations.

This formula is given in most time series textbooks, and most time series software pack-

ages plot the sample autocorrelation function with significance limits obtained from this

formula1. Bartlett’s formula was obtained for linear processes and it is well known (see e.g.

Berlinet and Francq (1997), Diebold (1986), Romano and Thombs (1996)) that Bartlett’s

formula may be completely wrong for series exhibiting conditional heteroscedasticity or

any other form of nonlinearity. The aim of this paper is to generalize Bartlett’s formula to

a wide class of nonlinear processes.

In order to give a precise definition of a linear process, first recall that the Wold

decomposition (see Brockwell and Davis (1991), Section 5.7) states that any purely non

deterministic stationary process can be written in the form

Xt =
∞
∑

ℓ=−∞

φℓǫt−ℓ, (ǫt) ∼ WN(0, σ2) (1.1)

where
∑

ℓ φ2
ℓ < ∞. The process (ǫt) is called the linear innovation process of the process

X = (Xt), and the notation (ǫt) ∼ WN(0, σ2) signifies that (ǫt) is a weak white noise,

that is a stationary sequence of centered and uncorrelated random variables with common

variance σ2. An independent and identically distributed (iid) sequence of random variables

with mean 0 and common variance σ2 is sometimes called a strong white noise, and will be

denoted by IID(0, σ2). Obviously a strong white noise is also a weak white noise, because

independence entails uncorrelatedness, but the reverse is not true. The process X is said

to be linear when (ǫt) ∼ IID(0, σ2), and is said to be nonlinear in the opposite case.

The autoregressive moving average (ARMA) model with iid noise is the leading example

of linear process (see e.g. Brockwell and Davis, 1991). Examples of nonlinear models

include, among many others, the self-exciting threshold autoregressive (SETAR) model (see

Tong, 1990), the smooth transition autoregression (STAR) model (see Teräsvirta (2004)

and the references therein), the exponential autoregressive (EXPAR) model introduced

by Haggan and Ozaki (1981), the bilinear model (see Granger and Andersen, 1978) and

1See e.g. the function acf() of the statistical software R, with its argument ci.type = c("white",

"ma").
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the generalized autoregressive conditional heteroscedastic (GARCH) model introduced by

Engle (1982) and Bollerslev (1986). Because numerous real time-series, in particular stock

market returns, exhibit dynamics which can not be well mimicked by ARMA models with

iid noises, nonlinear models are becoming more and more employed (see Tong (1990) and

Fan and Yao (2003) for reference books on nonlinear time series analysis).

Before fitting any time series model to real data, it is common practice to draw the

empirical autocovariances and analyze their significance. Because the standard Bartlett’s

formula can be unreliable when the underlying series is non linear, it is important to

have an appropriate tool which could be used in very general settings. A question is

therefore whether the standard Bartlett formula can be extended. More precisely, our aim

in this paper is to derive a formula giving the asymptotic covariances between empirical

autocovariances, in function of characteristics of the underlying processes. As we will see,

the theoretical autocorrelations of the observed process will not suffice to characterize those

asymptotic covariances, as is the case in the linear framework. It will also be of interest

to know whether the standard Bartlett’s formula can provide good approximations of the

asymptotic autocovariances when the underlying process is non linear.

The plan of the paper is as follows. In Section 2 we begin by recalling the standard

Bartlett’s formula. Section 3 states a generalized Bartlett’s formula which can be applied

to both linear and nonlinear processes. Section 4 illustrates the generalized Bartlett’s

formula with GARCH models. Proofs are relegated to Section 5.

2 Notation and Bartlett’s formula for linear processes

The autocorrelation function of a real-valued stationary process X = (Xt) is defined by

ρX(·) =
γX(·)
γX(0)

, γX(i) = Cov(Xt,Xt+i) for all integers t, i.

Assume that X is centered and that the observations are X1, . . . ,Xn. The autocorrelation

ρX(i) and autocovariance γX(i), for 0 ≤ i < n, are generally estimated by their sample

versions

ρ̂X(i) = ρ̂X(−i) =
γ̂X(i)

γ̂X(0)
, γ̂X(i) = γ̂X(−i) =

1

n

n−i
∑

t=1

XtXt+i.
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For fixed m ≥ 1, let us consider the following vectors of sample and theoretical autocovari-

ances and autocorrelations

γm = (γX(0), . . . , γX(m)), γ̂m = (γ̂X(0), . . . , γ̂X(m)),

ρm = (ρX(1), . . . , ρX(m)) and ρ̂m = (ρ̂X(1), . . . , ρ̂X(m)).

The following theorem is standard (see Brockwell and Davis (1991), Chapter 7) and

gives the asymptotic distribution of
√

n (γ̂m − γm) and
√

n (ρ̂m − ρm) in the case where X

is a linear process.

Theorem 2.1 Let X = (Xt) be a linear process, that is a process satisfying (1.1) with

(ǫt) ∼ IID(0, σ2), σ2 > 0. Assume also that E(ǫ4
t ) = κσ4 < ∞ and

∑∞
ℓ=−∞ |φℓ| < ∞.

The vectors
√

n (γ̂m − γm) and
√

n (ρ̂m − ρm) are asymptotically normally distributed with

mean zero and variance given by Bartlett’s formulas

lim
n→∞

nCov {γ̂X(i), γ̂X (j)} = vi,j, lim
n→∞

nCov{ρ̂X(i), ρ̂X (j)} = wi,j,

where for i, j > 0

vi,j = (κ − 3)γX(i)γX (j) +

∞
∑

ℓ=−∞

γX(ℓ) {γX(ℓ + j − i) + γX(ℓ − j − i)} , (2.1)

wi,j =

∞
∑

ℓ=−∞

ρX(ℓ) {2ρX(i)ρX(j)ρX (ℓ) − 2ρX(i)ρX (ℓ + j)

−2ρX(j)ρX (ℓ + i) + ρX(ℓ + j − i) + ρX(ℓ − j − i)} . (2.2)

It is important to note that the iid assumption on (ǫt) is very restrictive. Only linear

models, essentially the ARMA models with iid noises, are covered by Theorem 2.1. In

view of Wold’s decomposition, if one can replace the assumption (ǫt) ∼ IID(0, σ2) by the

assumption (ǫt) ∼ WN(0, σ2) , then one can cover almost all the stationary nonlinear

processes.

3 Bartlett’s formula for non linear processes

Standard Bartlett’s formula (2.2) only depends on the autocorrelation function of the

process X = (Xt), but is restricted to linear processes. The following theorem provides an

extension of Bartlett’s formula to nonlinear processes which, under a symmetry assumption,

involves in addition the Kurtosis of the linear innovations ǫt of X and the autocorrelation

function ρǫ2 of (ǫ2
t ).
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Theorem 3.1 We consider the framework and assumptions of Theorem 2.1, but we relax

the linearity assumption (ǫt) ∼ IID(0, σ2) and we make the following symmetry assumption

Eǫt1ǫt2ǫt3ǫt4 = 0 when t1 6= t2, t1 6= t3 and t1 6= t4. (3.1)

Then ρǫ2 =
∑+∞

h=−∞ ρǫ2(h) exists, and we have the generalized Bartlett’s formula for auto-

covariances

lim
n→∞

nCov {γ̂X(i), γ̂X(j)} = vi,j + v∗i,j , (3.2)

where vi,j is defined by (2.1) and

v∗i,j = (κ − 1)
{

(ρǫ2 − 3)γX(i)γX (j)

+

∞
∑

ℓ=−∞

γX(ℓ − i) {γX(ℓ − j) + γX(ℓ + j)} ρǫ2(ℓ)

}

. (3.3)

If
√

n (γ̂0,m − γ0,m)
L→ N

(

0,Σγ̂0,m

)

when n → ∞, (3.4)

where the elements of Σγ̂0,m
are given by (3.2), then

√
n (ρ̂m − ρm)

L→ N (0,Σρ̂m
) , (3.5)

where the elements of Σρ̂m
, for i, j > 0, are given by the generalized Bartlett’s formula for

autocorrelations

lim
n→∞

nCov {ρ̂X(i), ρ̂X (j)} = wi,j + w∗
i,j, (3.6)

where wi,j is defined by (2.2) and

w∗
i,j = (κ − 1)

∞
∑

ℓ=−∞

ρǫ2(ℓ)
[

2ρX(i)ρX(j)ρ2
X (ℓ) − 2ρX(j)ρX(ℓ)ρX(ℓ + i)

−2ρX(i)ρX(ℓ)ρX(ℓ + j) + ρX(ℓ + i) {ρX(ℓ + j) + ρX(ℓ − j)}] . (3.7)

We now give a series of remarks.

Remark 3.1 Following Remark 1 of Theorem 7.2.2 in Brockwell and Davis (1991), wi,j

can also be written as

wi,j =
∞

∑

ℓ=1

wi(ℓ)wj(ℓ), where wi(ℓ) = {2ρX(i)ρX(ℓ) − ρX(ℓ + i) − ρX(ℓ − i)} .
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Similarly we have

w∗
i,j = (κ − 1)

∞
∑

ℓ=1

ρǫ2(ℓ)wi(ℓ)wj(ℓ),

which shows that, whenever ρX(·), κ and ρǫ2(·) are available, the standard and generalized

Bartlett’s formulas are computed very similarly.

Remark 3.2 Even for non linear processes, standard Bartlett’s coefficients vi,j and wi,j

provide good approximations of
√

nCov(γ̂X(i), γ̂X (j)) and
√

nCov(ρ̂X(i), ρ̂X (j)) when i or

j is very large, because

v∗i,j → 0 and w∗
i,j → 0 when i → ∞ or j → ∞.

Note however that, for fixed (i, j), it is easy to find examples of nonlinear processes such

that v∗i,j/vi,j and w∗
i,j/wi,j are arbitrarily large.

The following remark concerns the technical assumptions of the theorem.

Remark 3.3 The proof of the theorem reveals that the symmetry assumption (3.1) is

only needed to obtain a tractable form for the asymptotic covariances, but is not re-

quired for their existence. Note also that (3.4) is not entailed by the assumptions made

in Theorem 3.1, but general assumptions, such as mixing assumptions, are available in

the literature in order to obtain a central limit theorem implying (3.4) and (3.5) (see e.g.

Berlinet and Francq (1997) or Romano and Thombs (1996)).

The following remark shows that the validity of the standard Bartlett’s formulas is actually

not limited to the case where ǫt is a strong noise.

Remark 3.4 When the ǫ2
t ’s are uncorrelated the standard Bartlett formulas apply because

v∗i,j = −2(κ − 1)γX(i)γX(j) + (κ − 1)γX(i) {γX(j) + γX(−j)} = 0

and w∗
i,j = 0.

We now consider the particular case where X is a weak white noise.

Corollary 3.1 (Weak white noise) If X = (ǫt), where (ǫt) satisfies the assumptions of

Theorem 3.1, then for i, j ≥ 0, the generalized Bartlett’s formula for autocovariances (3.2)

holds with


















vi,j = v∗i,j = 0 if i 6= j

vi,i = γ2
ǫ (0) and v∗i,i = ρǫ2(i)γǫ2(0) if i > 0

v0,0 = γǫ2(0) and v∗0,0 = (ρǫ2 − 1)γǫ2(0).
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Under the additional assumption (3.4), then for i, j > 0, the generalized Bartlett’s formula

for autocorrelations (3.6) holds with






wi,j = w∗
i,j = 0 if i 6= j

wi,i = 1 and w∗
i,i =

γ
ǫ2

(i)

γ2
ǫ (0)

if i > 0.

It should be noted that the additional term w∗
i,i can be arbitrarily large. Bartlett’s formula

is also particularly simple for the autocorrelations of MA(q) at lags i > q.

Corollary 3.2 (Moving average with non independent linear innovations) If

Xt = ǫt + θ1ǫt−1 + · · · + θqǫt−q, where (ǫt) satisfies the assumptions of Theorem 3.1, then

the asymptotic covariances wi,j + w∗
i,j defined in Theorem 3.1 are such that

wi,i =

q
∑

ℓ=−q

ρ2
X(ℓ) and w∗

i,i =
1

γ2
ǫ (0)

q
∑

ℓ=−q

γǫ2(i − ℓ)ρ2
X(ℓ)

for all i > q.

4 Application to GARCH models

The following lemma shows that the symmetry assumption (3.1) is satisfied for GARCH

models with a symmetric innovation process.

Lemma 4.1 Let (ǫt) be a GARCH(p, q) process defined by






ǫt =
√

htηt

ht = ω +
∑q

i=1 αiǫ
2
t−i +

∑p
j=1 βjht−j ,

(4.1)

where ω > 0, αi ≥ 0 (i = 1, . . . , q), βj ≥ 0 (j = 1, . . . , p), and where (ηt) ∼ IID(0, 1),

Eη4
t < ∞, with ηt independent of {ǫu, u < t}. Assume also that Eǫ4

t < ∞. If the

distribution of η1 is symmetric then (3.1) holds true.

From Ling and McAleer (2002), there exists a solution to (4.1) such that Eǫ4
t < ∞ if

ρ(A(2)) < 1, where ρ(A(2)) denotes the spectral radius of A(2) = EAt ⊗ At, the symbol ⊗
standing for the Kronecker product, and

At =

















η2
t α

′
1:q−1 η2

t αq η2
t β

′
1:p−1 η2

t βp

Iq−1 0q−1 0(q−1)×(p−1) 0q−1

α′
1:q−1 αq β′

1:p−1 βp

0(p−1)×(q−1) 0p−1 Ip−1 0p−1

















,
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with α1:q−1 = (α1, . . . , αq−1)
′ , and β1:p−1 = (β1, . . . , βp−1)

′. Note that At is written for

p ≥ 2 and q ≥ 2, but can be straightforwardly modified when p < 2 or q < 2. It is well

known that the square of a GARCH process admits an ARMA representation of the form

ǫ2
t −

p∧q
∑

i=1

(αi + βi)ǫ
2
t−i = ω + νt −

p
∑

i=1

βiνt−i,

where νt = ǫ2
t − ht = (η2

t − 1)ht is a weak white noise. From this ARMA equation, the

autocorrelation function ρǫ2(·) can be easily computed (see e.g. Section 3.3 in Brockwell

and Davis, 1991). It can be shown that ρǫ2(h) ≥ 0 for all h. Thus, in view of the form of

w∗
i,j given in Remark 3.1, the presence of GARCH effects makes the autocorrelations more

difficult to estimate. More precisely, we have the following result.

Remark 4.1 Consider the general framework of Theorem 3.1. If the linear innovation

process (ǫt) is a GARCH process satisfying the assumptions of Lemma 4.1 then

w∗
i,i ≥ 0 for all i > 0.

To compute the generalized Bartlett’s formula, we also need κ − 1 = γǫ2(0)/γ
2
ǫ (0), where

γǫ(0) = ω
{

1 − ∑p∧q
i=1 (αi + βi)

}−1
and γǫ2(0) = Eǫ4

t − γ2
ǫ (0). It can be shown that

Eǫ4
t = e1

(

I(p+q)2 − A(2)
)−1 {

b(2) + γǫ(0) (EAt ⊗ bt + Ebt ⊗ At)1p+q

}

(4.2)

where e1 = (1, 0′p+q−1)
′, bt = (ωηt, 0

′
q−1, ω, 0′p−1)

′, b(2) = Ebt ⊗ bt and 1p+q = (1, . . . , 1)′ ∈
R

p+q.

It is then easy to compute Bartlett’s coefficients vi,j + v∗i,j and wi,j + w∗
i,j . For instance

in the case of an observed ARCH(1), X = (ǫt), letting µ4 = Eη4
t we get, when µ4α

2
1 < 1,

lim
n→∞

nVar {γ̂X(i)} =

(

ω

1 − α1

)2 (

1 +
(µ4 − 1)αi

1

1 − µ4α2
1

)

.

It is seen that in the presence of an ARCH(1) effect, the asymptotic variances of the

γ̂X(i) can be arbitrarily large (when µ4α
2
1 is close to 1), increase with α1 (and thus are

always larger than for the iid noise, obtained for α1 = 0), and decrease to the squared

unconditional variance of Xt when i increases.

An approximation of the standard deviation of ρ̂X(i) is then given by σρ̂X(i) =
√

(wi,i + w∗
i,i)/n. Using the delta method (see e.g. Proposition 6.4.3 in Brockwell and

Davis, 1991), one can also obtain asymptotic standard deviations for the sample partial

autocorrelations r̂X(i), or for any other statistic depending on a finite number of sample
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autocovariances/autocorrelations. Statistical issues are not considered in the present pa-

per, but it is clear that σρ̂X(i) and all the other theoretical moments must be replaced by

estimates in statistical applications.

As an illustration, consider the following ARMA(2,1)-GARCH(1,1) model


















Xt − 0.8Xt−1 + 0.8Xt−2 = ǫt − 0.8ǫt−1

ǫt = σtηt, ηt iid N (0, 1)

σ2
t = 1 + 0.2ǫ2

t−1 + 0.6σ2
t−1.

(4.3)

Figure 1 displays the autocorrelation and partial autocorrelation functions, as well as

bands in which the sample autocorrelations and sample partial autocorrelations should be

included with a probability approximately equal to 95%, when n = 1, 000.

i i
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Figure 1: The left panel displays the autocorrelations ρX(i) of Model (4.3) and the band

ρX(i)± 1.96σρ̂X (i) in dotted lines, for n = 1, 000. The right panel is similar for the partial

autocorrelations rX(i).

5 Proofs

This section is devoted to the proof of Theorem 3.1, which is the main result of this paper.

The proof of the other results, in particular Lemma 4.1 and Corollary 3.1, are not given

here but are available from the authors on request.

Using (3.1) and setting φℓ1,ℓ2,ℓ3,ℓ4 = φℓ1φℓ2φℓ3φℓ4 , we obtain

EXtXt+iXt+hXt+j+h =
∑

ℓ1,ℓ2,ℓ3,ℓ4

φℓ1,ℓ2,ℓ3,ℓ4Eǫt−ℓ1ǫt+i−ℓ2ǫt+h−ℓ3ǫt+j+h−ℓ4

=
∑

ℓ1,ℓ3

φℓ1,ℓ1+i,ℓ3,ℓ3+jEǫ2
t−ℓ1

ǫ2
t+h−ℓ3

+
∑

ℓ1,ℓ2

φℓ1,ℓ1+h,ℓ2,ℓ2+h+j−iEǫ2
t−ℓ1

ǫ2
t+i−ℓ2

+
∑

ℓ1,ℓ2

φℓ1,ℓ1+h+j,ℓ2,ℓ2+h−iEǫ2
t−ℓ1

ǫ2
t+i−ℓ2

− 2Eǫ4
t

∑

ℓ1

φℓ1,ℓ1+i,ℓ1+h,ℓ1+h+j. (5.1)
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The last equality is obtained by summing over ℓ1, ℓ2, ℓ3, ℓ4 such that the indices of

{ǫt−ℓ1, ǫt+i−ℓ2 , ǫt+h−ℓ3, ǫt+j+h−ℓ4} are equal two-by-two, which corresponds to the first three

sums, and then removing two times the sum in which the four indices are equal. We have

also

γX(i) =
∑

ℓ1,ℓ2

φℓ1φℓ2Eǫt−ℓ1ǫt+i−ℓ2 = γǫ(0)
∑

ℓ1

φℓ1φℓ1+i. (5.2)

By stationarity,

lim
n→∞

nCov {γ̂X(i), γ̂X (j)} =

∞
∑

h=−∞

Cov {XtXt+i,Xt+hXt+j+h} .

In view of (5.1) and (5.2), the existence of the last sum is guaranteed by the conditions
∑ |φℓ1 | < ∞ and

∑ |ρǫ2(h)| < ∞, and this sum is equal to

∑

ℓ1,ℓ3

φℓ1,ℓ1+i,ℓ3,ℓ3+j

∑

h

{

Eǫ2
t−ℓ1

ǫ2
t+h−ℓ3

− γ2
ǫ (0)

}

+
∑

h,ℓ1,ℓ2

φℓ1,ℓ1+h,ℓ2,ℓ2+h+j−iEǫ2
t−ℓ1

ǫ2
t+i−ℓ2

+
∑

h,ℓ1,ℓ2

φℓ1,ℓ1+h+j,ℓ2,ℓ2+h−iEǫ2
t−ℓ1

ǫ2
t+i−ℓ2

− 2Eǫ4
t

∑

h,ℓ1

φℓ1,ℓ1+i,ℓ1+h,ℓ1+h+j

= γǫ2(0)ρǫ2

∑

ℓ1

φℓ1φℓ1+i

∑

ℓ3

φℓ3φℓ3+j +
∑

ℓ1,ℓ2

φℓ1φℓ2Eǫ2
t−ℓ1

ǫ2
t+i−ℓ2

∑

h

φℓ1+hφℓ2+h+j−i

+
∑

ℓ1,ℓ2

φℓ1φℓ2Eǫ2
t−ℓ1

ǫ2
t+i−ℓ2

∑

h

φℓ1+h+jφℓ2+h−i − 2Eǫ4
t

∑

ℓ1

φℓ1φℓ1+i

∑

h

φℓ1+hφℓ1+h+j,

using Fubini’s theorem for the permutation of summation symbols. Using again (5.2) and

γǫ2(0) = (κ − 1)γ2
ǫ (0) we obtain

lim
n→∞

nCov {γ̂X(i), γ̂X (j)}

= γǫ2(0)ρǫ2γ
−2
ǫ (0)γX (i)γX(j) +

∑

ℓ1,ℓ2

φℓ1φℓ2Eǫ2
t−ℓ1

ǫ2
t+i−ℓ2

γ−1
ǫ (0)γX (ℓ2 + j − i − ℓ1)

+
∑

ℓ1,ℓ2

φℓ1φℓ2Eǫ2
t−ℓ1

ǫ2
t+i−ℓ2

γ−1
ǫ (0)γX (ℓ2 − j − i − ℓ1) − 2Eǫ4

t γ
−2
ǫ (0)γX (i)γX(j)

= {(κ − 1)ρǫ2 − 2κ} γX(i)γX (j)

+γ−1
ǫ (0)

∑

ℓ1,ℓ2

φℓ1φℓ2 {γX(ℓ2 + j − i − ℓ1) + γX(ℓ2 − j − i − ℓ1)}
{

γǫ2(i − ℓ2 + ℓ1) + γ2
ǫ (0)

}

.

Setting ℓ = ℓ2 − ℓ1, we finally obtain

lim
n→∞

nCov {γ̂X(i), γ̂X(j)} = {(κ − 1)ρǫ2 − 2κ} γX(i)γX(j)

+γ−2
ǫ (0)

∞
∑

ℓ=−∞

γX(ℓ) {γX(ℓ + j − i) + γX(ℓ − j − i)}
{

γǫ2(i − ℓ) + γ2
ǫ (0)

}

, (5.3)
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which, after simple algebra, can be written as vi,j + v∗i,j, where vi,j and v∗i,j are given by

(2.1) and (3.3).

The vector (ρ̂X(i), ρ̂X (j)) is a function of (γ̂X(0), γ̂X (i), γ̂X (j)). The Jacobian of this

transformation is

J =





− γX(i)
γ2

X
(0)

1
γX(0) 0

− γX(j)
γ2

X
(0)

0 1
γX(0)



 .

Let Σ be the variance matrix of (γ̂X(0), γ̂X (i), γ̂X (j)). By the delta method, we obtain

lim
n→∞

nCov {ρ̂(i), ρ̂(j)} = JΣJ ′(1, 2)

=
γX(i)γX(j)

γ4
X(0)

Σ(1, 1) − γX(i)

γ3
X(0)

Σ(1, 3) − γX(j)

γ3
X(0)

Σ(2, 1) +
1

γ2
X(0)

Σ(2, 3).

Using (5.3) to determine the elements of Σ, this asymptotic covariance is

{(κ − 1)ρǫ2 − 2κ}
{

γX(i)γX(j)

γ4
X(0)

γ2
X(0) − γX(i)

γ3
X(0)

γX(0)γX (j)

−γX(j)

γ3
X(0)

γX(i)γX(0) +
1

γ2
X(0)

γX(i)γX (j)

}

+γ−2
ǫ (0)

∞
∑

ℓ=−∞

[

γX(i)γX (j)

γ4
X(0)

2γ2
X(ℓ)

{

γǫ2(−ℓ) + γ2
ǫ (0)

}

− γX(i)

γ3
X(0)

γX(ℓ) {γX(ℓ + j) + γX(ℓ − j)}
{

γǫ2(−ℓ) + γ2
ǫ (0)

}

−γX(j)

γ3
X(0)

γX(ℓ) {γX(ℓ − i) + γX(ℓ − i)}
{

γǫ2(i − ℓ) + γ2
ǫ (0)

}

+
1

γ2
X(0)

γX(ℓ) {γX(ℓ + j − i) + γX(ℓ − j − i)}
{

γǫ2(i − ℓ) + γ2
ǫ (0)

}

]

.

As function of the autocorrelations, the previous quantity is written as

∞
∑

ℓ=−∞

[

2ρX(i)ρX(j)ρ2
X (ℓ) − ρX(i)ρX(ℓ) {ρX(ℓ + j) + ρX(ℓ − j)}

−ρX(j)ρX(ℓ) {ρX(ℓ − i) + ρX(ℓ − i)} + ρX(ℓ) {ρX(ℓ + j − i) + ρX(ℓ − j − i)}]

+(κ − 1)
∞
∑

ℓ=−∞

ρǫ2(ℓ)
[

2ρX(i)ρX (j)ρ2
X(ℓ) − ρX(i)ρX (ℓ) {ρX(ℓ + j) + ρX(ℓ − j)}

−ρX(j)ρX(ℓ − i) {ρX(ℓ) + ρX(ℓ)} +ρX(i − ℓ) {ρX(−ℓ + j) + ρX(−ℓ − j)}] .

Noting that

∑

ℓ

ρX(ℓ)ρX(ℓ + j) =
∑

ℓ

ρX(ℓ)ρX(ℓ − j),

we obtain

lim
n→∞

nCov {ρ̂(i), ρ̂(j)} = wi,j + w∗
i,j,
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where wi,j is given by (2.2) and w∗
i,j is given by (3.7)

2

Appendix

A Proof of technical results

Proof of Lemma 4.1. It is shown in Francq and Zakoïan (2004) that, if the distribution

of ηt is symmetric then

∀j, E
{

g(ǫ2
t , ǫ

2
t−1, . . . )ǫt−jf(ǫt−j−1, ǫt−j−2, . . . )

}

= 0, (A.1)

for any functions f and g such that the expectation exists. Let four indices ti, i = 1, . . . , 4,

such that t1 ≤ t2 ≤ t3 ≤ t4. We have to show that Eǫt1ǫt2ǫt3ǫt4 = 0 when one of the

indices is different from the three others.

If t3 < t4, then

Eǫt1ǫt2ǫt3ǫt4 = E [E (ǫt1ǫt2ǫt3ǫt4 | {ǫu, u < t4})]

= E [ǫt1ǫt2ǫt3ht4E (ηt4 | {ǫu, u < t4})] = 0,

because ht4 is measurable with respect to the σ-field generated by {ǫu, u < t4} and because

ηt4 is centered and independent of {ǫu, u < t4}. The result can also be obtained from (A.1)

with g = 1, t − j = t4 and f(ǫt4−1, ǫt4−2, . . . ) = ǫt1ǫt2ǫt3 .

Assume therefore that t1 < t2 ≤ t3 = t4. Applying (A.1) with g(x) = f(x) = x, we

have

Eǫt1ǫt2ǫt3ǫt4 = E
{

g(ǫ2
t3

)ǫt2f(ǫt1)
}

= 0

and the conclusion follows.

2
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Proof of Corollary 3.1. When X = (ǫt),

vi,j = (κ − 3)γǫ(i)γǫ(j) + γǫ(0) {γǫ(j − i) + γǫ(−j − i)}

=



















0 if i 6= j

γ2
ǫ (0) if i = j > 0

(κ − 1)γ2
ǫ (0) if i = j = 0,

wi,j = −2ρǫ(j)ρǫ(i) + ρǫ(j − i) + ρǫ(−j − i)

=







0 if i 6= j

1 if i = j > 0,

v∗i,j = (ρǫ2 − 3)(κ − 1)γǫ(i)γǫ(j) + (κ − 1)γǫ(0) {γǫ(i − j) + γǫ(i + j)} ρǫ2(i)

=



















0 if i 6= j

(κ − 1)γ2
ǫ (0)ρǫ2(i) if i = j > 0

(ρǫ2 − 1)(κ − 1)γ2
ǫ (0) if i = j = 0,

w∗
i,j = (κ − 1) [−2ρǫ(i)ρǫ(j) + ρǫ2(i) {ρǫ(i + j) + ρǫ(i − j)}]

=







0 if i 6= j

(κ − 1)ρǫ2(i) if i = j > 0.

The conclusion then follows from (κ − 1) = γǫ2(0)/γ
2
ǫ (0).

2

Proof of Corollary 3.2. Because ρX(ℓ) = 0 for |ℓ| > q, we have

wi,j =

q
∑

ℓ=−q

ρX(ℓ) [2ρX(i)ρX(j)ρX (ℓ) − 2ρX(i)ρX(ℓ + j)

−2ρX(j)ρX(ℓ + i) + ρX(ℓ + j − i) + ρX(ℓ − j − i)]

and for i, j > q

wi,j =

q
∑

ℓ=−q

ρX(ℓ)ρX(ℓ + j − i).

The expression of wi,i follows. Similarly, for i > q

w∗
i,i = (κ − 1)

∞
∑

ℓ=−∞

ρǫ2(ℓ)ρX(ℓ + i) {ρX(ℓ + i) + ρX(ℓ − i)}

= (κ − 1)

q
∑

ℓ=−q

ρǫ2(i − ℓ)ρ2
X(ℓ).

2
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Proof of (4.2). Model (4.1) can be written in vector form as

zt = bt + Atzt−1,

where zt =
(

ǫ2
t , . . . , ǫ

2
t−q+1, σ

2
t , . . . , σ

2
t−p+1

)′
. Using the independence between zt and

(bt, At), together with elementary properties of the Kronecker product, we obtain

Ez⊗2
t = E(bt + Atzt−1) ⊗ (bt + Atzt−1)

= Ebt ⊗ bt + EAtzt−1 ⊗ bt + Ebt ⊗ Atzt−1 + EAtzt−1 ⊗ Atzt−1

= Eb⊗2
t + EAt ⊗ btEzt−1 + Ebt ⊗ AtEzt−1 + EA⊗2

t Ez⊗2
t−1.

Thus

Ez⊗2
t =

(

I(p+q)2 − A(2)
)−1 {

b(2) + (EAt ⊗ bt + Ebt ⊗ At)Ezt

}

and (4.2) follows. To compute A(2), one can use that At = η2
t B + C, where B and C are

deterministic matrices. Thus we have

A(2) = E(η2
t B + C) ⊗ (η2

t B + C) = B ⊗ BEη4
t + B ⊗ C + C ⊗ B + C ⊗ C.

Similarly we obtain EAt ⊗ bt and Ebt ⊗ At.

2

Proof of Remark 4.1. Because

w∗
i,i = (κ − 1)

∞
∑

ℓ=1

ρǫ2(ℓ)w
2
i (ℓ),

the result comes from Proposition 1 below.

2

Proposition 1 If (ǫt) is a GARCH process and Eǫ4
t < ∞ then

γǫ2(h) = Cov(ǫ2
t , ǫ

2
t−h) > 0 ∀h.

Proof. It suffices to show that we have a MA(∞) of the form

ǫ2
t = c + νt +

∞
∑

ℓ=1

φℓνt−ℓ, with φℓ ≥ 0 ∀ℓ.

Indeed, νt := ǫ2
t − ht = (η2

t − 1)ht being a weak white noise, we have

γǫ2(h) = Eν2
1

∞
∑

ℓ=0

φℓφℓ+|h|, with the notation φ0 = 1.
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Denoting by B the backshift operator, and introducing the notation α(z) =
∑q

i=1 αiz
i,

β(z) =
∑p

j=1 βjz
j and φ(z) =

∑∞
ℓ=1 φℓz

ℓ, we obtain

ǫ2
t = {1 − (α + β)(1)}−1ω + {1 − (α + β)(B)}−1(1 − β(B))νt = c + φ(B)νt.

Since 1−β(B) = 1−(α+β)(B)+α(B), we obtain φℓ as the coefficient of zℓ in the division

of α(z) by 1− (α + β)(z) according to the increasing powers of z. By recurrence on ℓ, it is

easy to see that these coefficients are positive because the polynomials α(z) and (α+β)(z)

have positive coefficients.

2

Proof that (5.3) can be written as (3.2) Because γǫ2(0) = (κ − 1)γ2
ǫ (0), (5.3) can be

written as

lim
n→∞

nCov {γ̂X(i), γ̂X (j)} = {(κ − 1)ρǫ2 − 2κ} γX(i)γX (j)

+γ−2
ǫ (0)

∞
∑

ℓ=−∞

γX(ℓ) {γX(ℓ + j − i) + γX(ℓ − j − i)}
{

γǫ2(i − ℓ) + γ2
ǫ (0)

}

= (ρǫ2 − 3)(κ − 1)γX(i)γX (j) + (κ − 3)γX(i)γX (j)

+
∞
∑

ℓ=−∞

γX(ℓ) {γX(ℓ + j − i) + γX(ℓ − j − i)}

+(κ − 1)
∞

∑

ℓ=−∞

γX(ℓ) {γX(ℓ + j − i) + γX(ℓ − j − i)} ρǫ2(i − ℓ).

Setting h = i − ℓ and using the parity of the autocorrelation functions, we obtain

∞
∑

ℓ=−∞

γX(ℓ) {γX(ℓ + j − i) + γX(ℓ − j − i)} ρǫ2(i − ℓ)

=

∞
∑

h=−∞

γX(−h + i) {γX(−h + j) + γX(−h − j)} ρǫ2(h),

which gives (3.2), where vi,j and v∗i,j are given by (2.1) and (3.3).

2

B Additional examples

Romano and Thombs (1996) considered weak white noises of the form ǫt = ηtηt−1 · · · ηt−k+1

where (ηt) ∼ IID(0, σ2), with σ2 > 0, Eη4
1 = µ4 < ∞ and k ≥ 1. It is clear that (3.1)
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is satisfied for such noises. It is obvious to check that ǫt is a weak white noise, such that

γǫ(0) = σ2k and we have

γǫ2(i) =







σ4i(µ4 − σ4)k−i for i = 0, . . . , k − 1

0 for i ≥ k

which shows that the ǫt’s are not independent when k > 1 and η2
t is not almost surely

constant. Note that Corollary 3.1 holds with

w∗
i,i =

γǫ2(i)

γ2
ǫ (0)

=
(µ4

σ4
− 1

)k−i

≥ 0

when k > i, and that w∗
i,i can be made arbitrarily large.

Romano and Thombs (1996) also considered weak white noises of the form ǫt = ηt/ηt−1

where (ηt) ∼ IID(0, σ2) andEη−4
1 < ∞. It is interesting to note that (3.1) may not hold

because

Eǫ2
t ǫt−1ǫt−2 = E

η2
t

η2
t−1

ηt−1

ηt−2

ηt−2

ηt−3
=

{

E

(

1

η1

)}2

.

When the marginal distribution of η1 is symmetric (3.1) is however satisfied. In this case

we have

γǫ2(i) =



















µ4E
(

1
η4

1

)

−
{

σ2E
(

1
η2

1

)}2
for i = 0

σ2E
(

1
η2

1

)

−
{

σ2E
(

1
η2

1

)}2
for i = 1

0 for i ≥ 2

which shows that the ǫt’s are not independent. Note that Corollary 3.1 holds with

w∗
1,1 =

1

σ2E
(

1
η2

1

) − 1 < 0,

by Jensen’s inequality.
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