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Abstract

This article is concerned by testing the nullity of coefficients in GARCH models. The problem is non

standard because the quasi-maximum likelihood estimator is subject to positivity constraints. The paper

establishes the asymptotic null and local alternative distributions of Wald, score, and quasi-likelihood ratio

tests. Efficiency comparisons under fixed alternatives are also considered. Two cases of special interest

are: (i) tests of the null hypothesis of one coefficient equal to zero and (ii) tests of the null hypothesis

of no conditional heteroscedasticity. The results are illustrated by means of simulation experiments. An

empirical application to the Standard & Poor 500 and the CAC40 indexes is proposed.

Keywords : Asymptotic efficiency of tests, Boundary, Chi-bar distribution, GARCH model, Quasi

Maximum Likelihood Estimation, Local alternatives.

Résumé

Cet article concerne les tests de nullité de coefficients dans les modèles GARCH models. Le problème

est non standard car l’estimateur du quasi-maximum de vraisemblance est obtenu sous contraintes de

positivité sur les coefficients. L’article établit les propriétés asymptotiques, sous l’hypothèse nulle et

sous des alternatives locales, des tests de Wald, du score et du rapport de quasi-vraisemblance. Des

comparaisons d’efficacité sous alternatives fixes sont également effectuées. Deux cas particuliers importants

sont : (i) les tests de nullité d’un seul coefficient et (ii) les tests de l’hypothèse d’absence d’hétéroscédasticité

conditionnelle. Les résultats sont illustrés par des expériences de simulations. Une application empirique

aux indices Standard & Poor 500 et CAC40 est proposée.
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1 Introduction

Despite the development of stochastic volatility models, the class of generalized au-

toregressive conditionally heteroscedastic (GARCH) models introduced by Engle (1982)

and generalized by Bollerslev (1986) remains very popular in finance. This is testified by

the body of work using this class for financial applications such as Value At Risk, Option

Pricing, and portfolio analysis. Contrary to a common opinion, a GARCH model is not a

simple structure and before proceeding to its estimation, it is sensible to make sure that

such a sophisticated model is justified. When a GARCH effect is present in the data, it is

of interest to test if the orders of the fitted models can be reduced, by testing the nullity of

the higher-lag ARCH or GARCH coefficient. In practice, testing the nullity of parameters

in the GARCH framework is achieved by applying standard tests, such as the Wald test,

the Rao-score (or Lagrange Multiplier) test and the Likelihood Ratio test. These standard

tests are provided by most standard time series packages currently available for GARCH

estimation (e.g. GAUSS, RATS, SAS, SPSS).

Unfortunately, as we will see, this common practice may be based on an invalid asymp-

totic theory. Tests in GARCH models have received much less attention than the theory of

estimation. Despite its apparent simplicity, the problem of testing that some coefficients

are equal to zero in a GARCH model is non trivial. The reason is that the coefficients and

the QMLE are positively constrained. It follows that the standard distributions for some

widely used tests are not asymptotically valid.

The primary objective of this paper is to derive asymptotically valid critical values for

the Wald, Student, Rao-score and Quasi-likelihood ratio statistics. The tests presented here

rest on the asymptotic properties of the Quasi Maximum-Likelihood Estimators (QMLE)

when some GARCH coefficients are on the boundary of the parameter space. Our second

goal is to compare the efficiencies of those tests under fixed and local alternatives. We will

use the approximate Bahadur slope criterion and the Pitman analysis for power compar-

isons. Investigation of the asymptotic local powers requires an extension of the asymptotic

properties of the QMLE to the case of local alternatives to a parameter at the boundary.

The most important cases for applications are: (i) tests of the null hypothesis of one

coefficient equal to zero and (ii) tests of the null hypothesis of no conditional heteroscedas-

ticity. In these two special cases, detailed asymptotic efficiency (local and non local)

comparisons can be done. A special attention will be given to testing conditional ho-

1



moscedasticity. Given the variety of possible tests we decided to limit ourselves to the

most widely used procedures, namely the Wald, Rao-score and the Quasi-Likelihood Ra-

tio (QLR) tests. For conditional homoscedasticity testing, we will also compare these

three tests with the Lee and King (1993) test, which exploits the one-sided nature of the

alternatives and enjoys optimality properties.

There exists a large amount of literature dealing with testing problems in which, under

the null hypothesis, the parameter is at the boundary of the maintained assumption. Such

problems have been considered e.g. by Chernoff (1954), Bartholomew (1959), Perlman

(1969), Gouriéroux, Holly and Monfort (1982), Andrews (2001). Several papers consider

one-sided alternatives. These include Wolak (1989), Rogers (1986), Silvapulle and Silva-

pulle (1995), King and Wu (1997); see the latter paper for further references. In par-

ticular, tests exploiting the one-sided nature of the ARCH alternative, against the null

of no ARCH effect, have been proposed by Lee and King (1993), Hong (1997), Demos

and Sentana (1998), Hong and Lee (2001), Andrews (2001), Dufour, Khalaf, Bernard and

Genest (2004) among others. Tests of ARCH(1)-type effects in autoregressive processes,

possibly with unit root, have been considered by Klüppelberg, Maller, van de Vyver and

Wee (2002).

The article is organized as follows. Section 2 presents the estimation results, in par-

ticular when the true parameter value is on the boundary, and the main test statistics.

Section 3 determines their asymptotic null distributions. Section 4 establishes the asymp-

totic distribution of the QMLE under sequences of local alternatives to the null parameter

value. Section 5 uses these results to compare the local powers of the tests. Efficiency

comparisons in the sense of Bahadur are also considered. Sections 6 and 7 apply these

results to the two main examples: testing the nullity of one coefficient and testing the

absence of ARCH effect. Some Monte Carlo results are reported. Section 8 is devoted to

an application to the Standard & Poor (S&P) 500 index and to the French CAC40 index.

Section 9 concludes. Proofs are relegated to an appendix.

If a matrix A is semi-positive definite, a semi-norm of a vector x of appropriate dimen-

sion is defined by ‖x‖A = (x′Ax)1/2. The notation a
c
= b will stand for a = b + c. For a

vector x, inequalities such as x > 0 or x ≥ 0 have to be understood componentwise.
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2 Model and test statistics

Assume that the observed time series ǫ1, . . . , ǫn is generated by the GARCH(p, q) model







ǫt =
√

htηt

ht = ω0 +
∑q

i=1 α0iǫ
2
t−i +

∑p
j=1 β0jht−j , ∀t ∈ Z

(2.1)

where θ0 := (ω0, α01, . . . , α0q, β01, . . . , β0p) is a parameter vector and the noise sequence

(ηt) is iid with mean 0 and variance 1. Under the positivity constraints

ω0 > 0, α0i ≥ 0 (i = 1, . . . , q), β0j ≥ 0 (j = 1, . . . , p),

Bougerol and Picard (1992) showed that a unique nonanticipative strictly stationary so-

lution (ǫt) exists if and only if γ(A0) < 0 where, for any norm ‖ · ‖ on the space of the

(p + q) × (p + q) matrices, γ(A0) = limt→∞
1
t log ‖AtAt−1 . . . A1‖ a.s. and

A0t =





















α01:q−1η
2
t α0qη

2
t β01:p−1η

2
t β0pη

2
t

Iq−1 0 0 0

α01:q−1 α0q β0p−1 β0p

0 Ip−1 0





















with α01:q−1 = (α01 . . . α0q−1), β01:q−1 = (β01 . . . β0p−1) and Ik being the k × k identity

matrix. A nonanticipative solution (ǫt) of Model (2.1) is such that ǫt is a measurable

function of the ηt−i, i ≥ 0. Note that Nelson and Cao (1992) derived necessary and sufficient

conditions for the positivity of the volatility process σ2
t . However these conditions are not

very explicit and thus seem difficult to use for statistical purposes.

The primary objective of this article is to develop a methodology for testing the nullity

of a sub-vector of θ0. More precisely, and without loss of generality we consider testing

the nullity of the last d2 coefficients of θ0, split into two components as θ0 = (θ
(1)
0 , θ

(2)
0 )′,

where θ
(i)
0 ∈ R

di , d1 + d2 = p + q + 1 = d. The null hypothesis is thus

H0 : θ
(2)
0 = 0d2×1 i.e. Kθ0 = 0d2×1 with K =

(

0d2×d1 , Id2

)

and let

H : θ
(1)
0 > 0 i.e. Kθ0 > 0 with K =

(

Id1 , 0d1×d2

)
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denote our maintained assumption. To proceed, we define the vector of parameters as

θ = (θ1, . . . , θp+q+1)
′, with θ1 = ω, and the parameter space Θ as any compact subset of

[0,∞)p+q+1 that bounds the first component away from zero. For technical reasons we also

assume that Θ contains some hypercube of the form [ω, ω] × [0, ε]p+q, for some ε > 0 and

ω > ω > 0.

To define the QMLE, the initial values are, for simplicity, taken equal to zero, i.e.

ǫ2
0 = . . . = ǫ2

1−q = σ̃2
0 = . . . = σ̃2

1−p = 0, and the variables σ̃2
t (θ) are recursively defined,

for t ≥ 1, by

σ̃2
t (θ) = ω +

q
∑

i=1

αiǫ
2
t−i +

p
∑

j=1

βj σ̃
2
t−j .

A QMLE of θ is defined as any measurable solution θ̂n of θ̂n = arg minθ∈Θ l̃n(θ), where

l̃n(θ) = n−1
∑n

t=1 ℓ̃t, and ℓ̃t = ℓ̃t(θ) = ℓ̃t(θ; ǫn, . . . , ǫ1) =
ǫ2t
σ̃2

t
+ log σ̃2

t . An ergodic and

stationary approximation (ℓt(θ)) of the sequence (ℓ̃t(θ)) is obtained as follows. Under the

condition A2 below, denote by
(

σ2
t

)

=
{

σ2
t (θ)

}

the strictly stationary, ergodic and nonan-

ticipative solution of σ2
t = ω +

∑q
i=1 αiǫ

2
t−i +

∑p
j=1 βjσ

2
t−j, for all t. Note that σ2

t (θ0) = ht.

Let ln(θ) = n−1
∑n

t=1 ℓt, and ℓt = ℓt(θ) =
ǫ2t
σ2

t
+ log σ2

t . Under appropriate conditions

(see e.g. Francq and Zakoian, 2004), the information matrix J = Eθ0

(

1
σ4

t (θ0)

∂σ2
t (θ0)
∂θ

∂σ2
t (θ0)
∂θ′

)

is well-defined and the QMLE is asymptotically normal:

√
n(θ̂n − θ0)

L→ N (0, (κη − 1)J−1), κη = Eη4
t . (2.2)

The usual forms of the Wald, Rao-score and QLR statistics follow, and are given by

Wn =
n

κ̂η − 1
θ̂(2)′

n

{

KĴ−1
n K ′

}−1
θ̂(2)
n ,

Rn =
n

κ̂η|2 − 1

∂ l̃n

(

θ̂n|2
)

∂θ′
Ĵ−1

n|2

∂ l̃n

(

θ̂n|2
)

∂θ
,

Ln = n
{

l̃n

(

θ̂n|2
)

− l̃n

(

θ̂n

)}

,

where θ̂n|2 denotes the restricted (by H0) estimator of θ0, κ̂η, κ̂η|2 denote consistent esti-

mators of κη , and Ĵn, Ĵn|2 denote consistent estimators of the information matrix J . In

general, Ĵn and κ̂η are derived using the unconstrained estimator θ̂n, whereas Ĵn|2 and κ̂η|2

are computed using θ̂n|2. For instance, one can take

Ĵn =
1

n

n
∑

t=1

1

σ̃4
t (θ̂n)

∂σ̃2
t (θ̂n)

∂θ

∂σ̃2
t (θ̂n)

∂θ′
, Ĵn|2 =

1

n

n
∑

t=1

1

σ̃4
t (θ̂n|2)

∂σ̃2
t (θ̂n|2)

∂θ

∂σ̃2
t (θ̂n|2)

∂θ′
,
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and

κ̂η =
1

n

n
∑

t=1

ǫ4
t

σ̃4
t (θ̂n)

, κ̂η|2 =
1

n

n
∑

t=1

ǫ4
t

σ̃4
t (θ̂n|2)

,

because
1

n

n
∑

t=1

ǫ2
t

σ̃2
t (θ̂n)

=
1

n

n
∑

t=1

ǫ2
t

σ̃2
t (θ̂n|2)

= 1, a.s. (2.3)

Note that the latter equalities imply that

Ln =
1

n

n
∑

t=1

log
σ̃2

t (θ̂n|2)

σ̃2
t (θ̂n)

, a.s.

One rejects the null hypothesis for large values of Wn,Rn,Ln. In the next section, we give

the asymptotic distributions of these statistics under the null hypothesis.

3 Non standard asymptotic null distributions

Among the regularity assumptions required for (2.2) to hold, a crucial one is that θ0 > 0,

componentwise. Indeed if, say, θ0i = 0, the variable
√

n(θ̂ni − θ0i) =
√

nθ̂ni is nonnegative

and thus cannot be asymptotically normal. Note that this problem cannot be solved by

blowing up the parameter space Θ outside the positive quadrant, since the variable σ̃2
t (θ)

must be positive for the loglikelihood to be well-defined.

We now give the precise assumptions required to obtain the asymptotic distribution of
√

n(θ̂n−θ0) under H0. Let Aθ(z) =
∑q

i=1 αiz
i and Bθ(z) = 1−∑p

j=1 βjz
j. By convention,

Aθ(z) = 0 if q = 0 and Bθ(z) = 1 if p = 0. Let θ0(ε) be the vector obtained by replacing

all zero coefficients of θ0 by a number ε.

A1: θ0(ε) ∈
◦
Θ for some ε > 0, where

◦
Θ denotes the interior of Θ.

A2: γ(A0) < 0 and
∑p

j=1 βj < 1, ∀θ ∈ Θ.

A3: η2
t has a non-degenerate distribution with Eη2

t = 1 and κη = Eη4
t < ∞.

A4: if p > 0, Aθ0(z) and Bθ0(z) have no common root, Aθ0(1) 6= 0, and α0q +β0p 6= 0.

Assumption A1 is intended to prevent θ0 from reaching the upper bound of Θ. In A2,

the strict stationarity condition is imposed only at the value θ0. For all other parameter

values, it is sufficient to make the given assumption on the βi coefficients. Assumptions

A3 and A4 are made for identifiability reasons. In some cases, no moment assumption on

5



the observed process (ǫt) will be required. In other cases a moment condition is necessary.

We therefore introduce two assumptions which will be made alternately.

A5: Eθ0ǫ
6
t < ∞.

A6: {j | β0,j > 0} 6= ∅ and

j0
∏

i=1

α0i > 0 for j0 = min{j | β0,j > 0}.

Note that A6 does not cover the ARCH case, where all the β0i coefficients are equal to

zero. Let Λ = R
d1 × [0,∞)d2 . The proof of the following result is given in Francq and

Zakoian (2007) (hereinafter FZ). We also display the asymptotic distribution of the score

vector.

Theorem 3.1 If H0, A1–A4 and either A5 or A6 hold,

√
n(θ̂n − θ0)

d→ λΛ := arg inf
λ∈Λ

{λ − Z}′ J {λ − Z} , Z ∼ N
(

0, (κη − 1)J−1
)

,

√
n

∂ln(θ0)

∂θ

d→ N {0, (κη − 1)J} ,

where in the definition of J , derivatives with respect to the last d2 components are replaced

by right derivatives.

The asymptotic distribution of the QMLE is thus non standard when the true parameter

has coefficients equal to zero, but it can be easily simulated. First note that λΛ can

be interpreted as the projection of Z, for the metric defined by J , onto the convex set

Λ = {λ ∈ R
d | Kλ ≥ 0}. The faces of Λ are sections of the subspaces {λ ∈ R

d | Kiλ = 0},
where the Ki are obtained by cancelling 0, 1 or several rows of K. Projecting Z onto those

subspaces yields the vectors λKi = PiZ, where Pi = Id − J−1K ′
i

(

KiJ
−1K ′

i

)−1
Ki. The

solution is thus obtained as

λΛ = Z1lΛ(Z) + 1lΛc(Z) × argminλ∈C‖λ − Z‖J = Z1lΛ(Z) +

2d2−1
∑

i=1

PiZ1lDi(Z), (3.1)

where C = {λKi : i = 1, . . . , 2d2 − 1 and KλKi ≥ 0} is the set of admissible projections

(those with nonnegative last d2 components) and the Di form a partition of R
d. For

instance, when all the coefficients α0i are equal to zero in an ARCH(q) model (d1 =

1, d2 = q, d = q + 1), it can be seen that (3.1) reduces to

λΛ =

(

Z1 + ω

d
∑

i=2

Z−
i , Z+

2 , · · · , Z+
d

)′

. (3.2)
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We are now in position to derive the asymptotic distributions of the three test sta-

tistics introduced in Section 2. Let Ω = K ′ {(κη − 1)KJ−1K ′}−1
K. Note that for any

z = (z(1), z(2))′ ∈ R
d we have z′Ωz = ‖z(2)‖{var(Z(2))}−1 where Z = (Z(1), Z(2))′ is as in

Theorem 3.1.

Theorem 3.2 Under H0 and the assumptions of Theorem 3.1 we have

Wn
d→ W = λΛ′

ΩλΛ, (3.3)

Rn
d→ χ2

d2
, (3.4)

Ln
d→ L = −1

2
(λΛ − Z)′J(λΛ − Z) +

1

2
Z ′K ′ {KJ−1K ′}−1

KZ

= −1

2

{

inf
Kλ≥0

‖Z − λ‖2
J − inf

Kλ=0
‖Z − λ‖2

J

}

. (3.5)

An interesting point is that, contrary to the standard situation, the asymptotic distribu-

tions of those statistics are not the same. Only the score statistic has the standard χ2
d2

distribution, which is a consequence of the gaussian asymptotic distribution of the score

vector under H0. This implies that the standard Rao score test remains valid whatever the

position of θ0, in the interior or on the boundary of Θ. On the contrary, valid tests based

on the Wald and LR statistics require correction of the usual critical values. This problem

is well known in situations where the parameter is constrained both under the null and the

alternatives (see Chernoff (1954) and the references in the introduction).

By Theorem 3.2, tests of asymptotic level α are defined by the critical regions

{Wn > w1−α}, {Rn > χ2
d2,1−α}, {Ln > l1−α}

where w1−α, χ2
d2,1−α and l1−α are the (1 − α)-quantiles of the distributions of W, χ2

d2
,L

respectively. In the sequel the first test is referred to as the modified Wald test. The

standard Wald test is defined by {Wn > χ2
d2,1−α} and its asymptotic level is not equal to

α. Similar remarks apply to the QLR test.

4 Non regularity of the QMLE under local alternatives

For local power comparisons, the asymptotic distribution of the QMLE under sequences

of local alternatives to the null parameter value θ0 is required. Let θn = θ0 + τ/
√

n, where

τ = (τ0, . . . , τp+q)
′ ∈ (0,+∞)p+q+1 is such that θn ∈ Θ, at least for sufficiently large n.
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We need to precisely define the data generating process.Write A0 = A(θ0) and as-

sume that A2 holds. For n large enough, γ {A(θ0 + τ/
√

n)} < 0 and we can define the

nonanticipative and strictly stationary solution (ǫt,n)t∈Z
of







ǫt,n =
√

ht,n ηt

ht,n = ω0 + τ0√
n

+
∑q

i=1

(

α0i + τi√
n

)

ǫ2
t−i,n +

∑p
j=1

(

β0j +
τq+j√

n

)

ht−j,n, ∀t ∈ Z

where (ηt) is iid (0, 1). Given the observations ǫ1,n, . . . , ǫn,n, the QMLE satisfies

θ̂n = arg min
θ∈Θ

1

n

n
∑

t=1

ℓ̃t,n, ℓ̃t,n = ℓ̃t,n(θ) = ℓ̃t(θ; ǫn,n, . . . , ǫ1,n) =
ǫ2
t,n

σ̃2
t,n

+ log σ̃2
t,n, (4.1)

where σ̃t,n = σ̃t,n(θ) is obtained by replacing ǫu by ǫu,n, 1 ≤ u < t, in σ̃t but, for simplicity,

with initial values independent of n. Similarly σ2
t,n(θ) is defined by replacing ǫu by ǫu,n,

u < t, in σ2
t (θ). Denote by Pn,τ the distribution of (ǫt,n).

Theorem 4.1 Let θ0 ∈ Θ and let τ ∈ (0,+∞)p+q+1. Let (θ̂n) be a sequence of QMLE

satisfying (4.1). Then, if A2-A4 hold, θ̂n → θ0, Pn,τ−a.s. as n → ∞. Moreover, if

the assumptions of Theorem 3.1 hold then
√

n(θ̂n − θn) is asymptotically distributed under

Pn,τ as λΛ(τ) − τ where

λΛ(τ) = arg inf
λ∈Λ

{λ − Z − τ}′ J {λ − Z − τ} , with Z ∼ N
(

0, (κη − 1)J−1
)

.

Given the limiting distribution of a statistic under P0 = Pn,0, a usual method for establish-

ing its limiting distribution under Pn,τ is to use Le Cam’s third lemma (see e.g. van der

Vaart p 90, 1998). Because the sequence {√n(θ̂n − θ0)
′, log Ln(θ0 + τ/

√
n) − log Ln(θ0)}

is not asymptotically Gaussian, Le Cam’s third lemma seems difficult to apply. The same

problem was encountered by Ling (2007). However the previous theorem can be established

directly. For brevity we do not provide the proof but it is available from the authors.

When the true value θ0 is not on the boundary, i.e. when H0 does not hold, λΛ(τ)−τ =

Z is independent of τ. However, it is seen that under H0, the QMLE does not converge

to its asymptotic distribution locally uniformly since λΛ(τ) − τ generally depends on τ .

Thus, the QMLE is regular in the interior of Θ but not on the whole parameter space (see

e.g. van der Vaart p 115, 1998).

5 Power comparisons

In this section, we consider two popular efficiency measures, in order to compare the

asymptotic power functions of the tests. We start by Bahadur’s (1960) approach in which
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the efficiency of a test is measured by the rate of convergence of its p-value under a fixed

alternative H1 : θ
(2)
0 > 0.

5.1 Bahadur slopes

Let

J(θ) = Eθ0

(

1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′

)

, D(θ) = Eθ0

[

1

σ2
t (θ)

∂σ2
t (θ)

∂θ(2)

(

1 − σ2
t (θ0)

σ2
t (θ)

)]

.

Let SW(t) = P(W > t), SR(t) = P(R > t) where R ∼ χ2
d2

, and SL(t) = P(L > t), be

the asymptotic survival functions of the Wald, score and QLR statistics under the null

hypothesis H0.

Proposition 5.1 Under the alternative H1 : θ
(2)
0 > 0 and under A1-A4, the approximate

Bahadur slope of the Wald test is

lim
n→∞

− 2

n
log SW(Wn) =

1

κη − 1
θ
(2)′

0

(

KJ−1K ′)−1
θ
(2)
0 , a.s. (5.1)

Moreover, under regularity conditions discussed in the appendix, the approximate Bahadur

slopes of the score and QLR tests are

lim
n→∞

− 2

n
log SR(Rn) =

1

κη|2 − 1
D′(θ0|2)KJ−1

0|2 K ′D(θ0|2), (5.2)

lim
n→∞

− 2

n
log SL(Ln) = Eθ0

(

log
σ2

t (θ0|2)

σ2
t (θ0)

)

, (5.3)

where θ0|2 is the a.s. limit of θ̂n|2, J0|2 = J(θ0|2) and κη|2 is the kurtosis coefficient of

σ−1
t (θ0|2)ǫt under H1. It follows that the Wald, score and QLR tests are consistent against

H1.

The term "approximate" Bahadur slopes serves to distinguish the limits in (5.1) and (5.2)

from other quantities, called "exact" Bahadur slopes, which are defined by substituting the

non-asymptotic survival functions for the asymptotic ones (e.g. P (Wn > t) for SW(t)) in

the above definitions. We are unable to pursue the exact versions because we do not have

large-deviation results for the statistics Wn and Rn. For a discussion of approximate and

exact slopes, see Bahadur (1967). In the Bahadur sense, a test is considered more efficient

than another one when its slope is greater. This approach is sometimes criticized (see e.g.

van der Vaart (1998)) and is not easy to use in our framework because the information

matrices J and J0|2 are not known in closed form. Numerical comparisons can be done

however as will be seen later.
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5.2 Pitman analysis

Whereas Bahadur’s approach considers non-local alternatives and compares the rates at

which the P -values of two tests converge to zero, the Pitman approach considers sequences

of local alternatives, and compares the local asymptotic powers of the tests. We denote by

χ2
k(c) the noncentral chi-square distribution with noncentrality parameter c and k degrees

of freedom. The asymptotic distributions of the 3 test statistics under the local alternatives

are given in the following theorem.

Theorem 5.1 Under the assumptions of Theorem 4.1, we have

Wn
d→ W(τ) = λΛ(τ)′ΩλΛ(τ), (5.4)

Rn
d→ χ2

d2

{

τ ′Ωτ
}

, (5.5)

Ln
d→ L(τ) = −1

2

{

λΛ
τ − Z − τ

}′
J
{

λΛ
τ − Z − τ

}

+
κη − 1

2
(Z + τ)′Ω(Z + τ)

= −1

2

{

inf
Kλ≥0

‖Z + τ − λ‖2
J − inf

Kλ=0
‖Z + τ − λ‖2

J

}

. (5.6)

It is seen that the asymptotic distribution of the Rao statistic is very different from that

of the two other statistics. The following proposition establishes that the asymptotic

distributions of the Wald and the rescaled Quasi-Likelihood Ratio statistics are actually

the same under the null or under the local alternatives.

Proposition 5.2 Under the assumptions of Theorems 3.1 or 4.1, Wn
oP (1)
= 2

κ̂η−1Ln.

Note that under non-local alternatives the Wald and rescaled Quasi-Likelihood Ratio tests

might have different powers.

6 Testing the nullity of one coefficient

In this section, we are interested in testing assumptions of the form

H0 : α0i = 0 (or H0 : β0j = 0) (6.1)

for some given i ∈ {1, . . . , q} (or j ∈ {1, . . . , p}). This is for instance the case when a

GARCH(p−1, q) (or a GARCH(p, q−1)) is tested against a GARCH(p, q). The maintained

assumption is that all other coefficients are positive, so that d2 = 1. Let Φ(·) denote the

N (0, 1) cumulative distribution function, τ∗ = τd/σd and σ2
d = VarZd. The critical regions

of asymptotic level α and the local asymptotic powers are as follows.
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Proposition 6.1 (a) Under (6.1) and the assumptions of Theorem 3.1, tests of asymptotic

level α (for α ≤ 1/2) are defined by the critical regions

{Wn > χ2
1,1−2α}, {Rn > χ2

1,1−α}, { 2

κ̂η − 1
Ln > χ2

1,1−2α}.

(b) Under the assumptions of Theorem 5.1, the local asymptotic power of the Wald and

QLR tests is

lim
n→∞

Pn,τ{Wn > χ2
1,1−2α} = lim

n→∞
Pn,τ{

2

κ̂η − 1
Ln > χ2

1,1−2α} = 1 − Φ(c1 − τ∗), (6.2)

and that of the score test is

lim
n→∞

Pn,τ{Rn > χ2
1,1−α} = 1 − Φ(c2 − τ∗) + Φ(−c2 − τ∗), (6.3)

where c1 = Φ−1(1 − α) and c2 = Φ−1(1 − α/2). (c) Moreover, for any τ > 0,

lim
n→∞

Pn,τ

{

Wn > χ2
1,1−2α

}

> lim
n→∞

Pn,τ

{

Rn > χ2
1,1−α

}

.

Proposition 6.1(c) shows that, for testing the nullity of one GARCH coefficient, the modi-

fied Wald test is locally asymptotically more powerful than the standard score test. This

is illustrated in Figure 6.

1 2 3 4

0.2

0.4

0.6

0.8

1

τ∗

Figure 1: Local asymptotic power of the Wald test (full line) and of the score test (dashed line)

for testing that one GARCH coefficient is equal to zero.

Now we will see that the modified Wald test enjoys optimality properties. Assume

that ηt has a density f such that ιf =
∫

{1 + yf ′(y)/f(y)}2 f(y)dy < ∞. Note that ιf

is σ2 times the Fisher information on the scale parameter σ > 0 in the density family
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σ−1f(·/σ). From Drost and Klaassen (1997), Drost, Klaassen and Werker (1997) and Ling

and McAleer (2003) it is known that, under mild regularity conditions, GARCH processes

are locally asymptotically normal (LAN) with information matrix

If =
ιf
4

E
1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′
(θ0) =

ιf
4

J. (6.4)

In this framework the so-called local experiments {Ln(θ0 + τ/
√

n), τ ∈ Λ} converge to the

limiting gaussian experiment
{

N
(

τ, I−1
f

)

, τ ∈ Λ
}

(see van der Vaart (1998) for details

about LAN properties and the notion of experiments). Testing Kθ0 = 0 corresponds to

testing Kτ = 0 in the limiting experiment. Suppose that X is N
(

τ, I−1
f

)

distributed.

From the Neyman-Pearson lemma, the test rejecting for large values of KX is uniformly

most powerful against the alternatives Kτ > 0. This optimal test has the power

π(τ) = 1 − Φ



cα − Kτ
√

KI−1
f K ′



 , cα = Φ−1(1 − α). (6.5)

A test whose level and power jointly converge to α and to the bound in (6.5), respectively,

will be called asymptotically optimal.

Proposition 6.2 Assume that ηt has a density f such that ιf exists. For testing that one

GARCH coefficient is equal to zero, the modified Wald and QLR tests are asymptotically

optimal if and only if

f(y) =
aa

Γ(a)
exp(−ay2)|y|2a−1, a > 0, Γ(a) =

∫ ∞

0
ta−1 exp(−t)dt. (6.6)

The score test is never asymptotically optimal.

To conclude this section, it is important to note that the standard Wald test {Wn > χ2
1,1−α}

has asymptotic level α/2. It is therefore too conservative and may lead to select too simple

ARCH models. The standard QLR test {Ln > χ2
1,1−α} has the same asymptotic level α/2

when κ = 3. However, when the distribution of ηt is highly leptokurtic, which seems to

be the case for many financial time series, Table 1 reveals that the standard QLR test can

lead to overrejection of the null hypothesis.

7 Testing conditional homoscedaticity

In this section, we consider the case d1 = 1 with θ(1) = ω, p = 0 and d2 = q. This case cor-

responds to the problem of testing the null hypothesis of no conditional heteroscedasticity
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Table 1: Asymptotic levels of the standard Wald and QLR tests of nominal level 5%, for testing

the nullity of one coefficient.

κη 2 3 4 5 6 7 8 9 10

Standard Wald 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Standard QLR 0.3 2.5 5.5 8.3 10.8 12.9 14.7 16.4 17.8

versus an ARCH(q) alternative. We therefore consider the hypothesis

H0 : α01 = · · · = α0q = 0 (7.1)

in the ARCH(q) model







ǫt = σtηt, ηt iid (0, 1)

σ2
t = ω0 +

∑q
i=1 α0iǫ

2
t−i, ω > 0, α0i ≥ 0.

(7.2)

7.1 Some simple test statistics

In his paper introducing ARCH, Engle (1982) noted that the score test is very simple to

compute. Indeed, Rn = nR2, where R2 is the determination coefficient of the regression

of ǫ2
t on a constant and ǫ2

t−1, . . . , ǫ
2
t−q. An asymptotically equivalent version is

R
∗
n =

n

(κ̂η|2 − 1)2

q
∑

i=1

{

1

n

n
∑

t=1

(1 − ǫ2
t

σ̂2
ǫ

)
ǫ2
t−i

σ̂2
ǫ

}2

= n

q
∑

i=1

ρ̂2
ǫ2(i), (7.3)

where σ̂2
ǫ = n−1

∑n
t=1 ǫ2

t , κ̂η|2 = (nσ̂4
ǫ )

−1
∑n

t=1 ǫ4
t and ρ̂ǫ2(i) is a standard estimator of the

i-th autocorrelation of (ǫ2
t ). The score statistic thus has the interpretation of a portmanteau

statistic for checking that (ǫ2
t ) is a white noise.

Another very simple test is obtained as follows. As remarked by Demos and Sentana

(1998), at the point θ0 = (ω0, 0, . . . , 0), the information matrix J = J(θ0) takes a simple

form and we have

(κη − 1)J−1 =

















(κη + q − 1)ω2
0 −ω0 · · · −ω0

−ω0

...

−ω0

Iq

















. (7.4)
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Because (κη − 1)KJ−1K ′ = Iq, a simple version of the Wald statistic is

W
∗
n = n

q
∑

i=1

α̂2
i .

Note that W
∗
n is not the usual Wald statistic defined in (2.3), which uses the estimator

Ĵn based on the unconstrained estimator θ̂n. However, the asymptotic null and local

alternative distributions of Wald statistics are not affected by the choice of a consistent

estimator of J .

Lee and King (1993) proposed a test which exploits the one-sided nature of the ARCH

alternative. Their test rejects conditional homoscedasticity for large values of

LKn = −
√

n1′q∂ l̃n

(

θ̂n|2
)

/∂θ(2)

σ̂LK
=

1√
nσ̂LK

q
∑

i=1

n
∑

t=1

(
ǫ2
t

σ̂2
ǫ

− 1)
ǫ2
t−i

σ̂2
ǫ

,

where σ̂2
LK is an estimator of the variance of the numerator and 1q = (1, . . . , 1)′ ∈ R

q. In

view of (A.3), (A.5), (A.6), (A.7) and (7.4) one can take

σ̂2
LK = (κ̂η|2 − 1)1′q

{

KĴn|2K
′ − (KĴn|2K

′
)(KĴn|2K

′
)−1(KĴn|2K

′)
}

1q

= (κ̂η|2 − 1)1′q
{

KĴ−1
n|2K

′
}−1

1q = q(κ̂η|2 − 1)2,

with K = (0q×1, Iq) and K = (1, 01×q). It follows that

LKn =
1√
q

q
∑

i=1

√
nρ̂ǫ2(i).

This form is not exactly the expression given in Lee and King (hereafter LK), but is

asymptotically equivalent to it under the null (and under local alternatives). We will see

that the LK-test enjoys some optimality properties.

7.2 Asymptotic null distributions

Using the results of Theorem 3.1, we now state the asymptotic distributions of the previous

statistics under the null of independent observations. It was noted that in the ARCH case,

A6 could not be used and had to be replaced by the moment assumption A5. In the case

of conditional homoscedasticity we do not need this assumption.

Proposition 7.1 Under (7.1) and A3 we have

W
∗
n

d→ 1

2q
δ0 +

q
∑

i=1





q

i





1

2q
χ2

i , R
∗
n

d→ χ2
q, LKn

d→ N (0, 1). (7.5)
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Demos and Sentana (1998) obtained the same result for W
∗
n by means of heuristic argu-

ments and results established by Wolak (1989) in the iid case. They wrote on page 107 that

their "analysis is based on the presumption that standard results one inequality testing

can be extended" to the GARCH case. Our results allow to validate this presumption.

7.3 Power comparisons under fixed alternatives

The next result allows to compare the efficiencies in the Bahadur sense of the "simple"

tests for no conditional heteroscedasticity. Let ρǫ2 denote the autocorrelation function of

the process (ǫ2
t ), and let κǫ = Eθ0(ǫ

4
t )/{Eθ0(ǫ

2
t )}2. The following gives the asymptotic

relative efficiencies (ARE) of the simple conditional homoscedasticity tests in the presence

of ARCH.

Proposition 7.2 Let (ǫt) be a strictly stationary and nonanticipative solution of the ARCH(q)

model (7.2) with E(ǫ4
t ) < ∞ and

∑q
i=1 α0i > 0. Then,

ARE(R∗/LK) := lim
n→∞

− 2

n
log SR(R∗

n){ lim
n→∞

− 2

n
log{1 − Φ(LKn)}}−1

=
q
∑q

i=1 ρ2
ǫ2(i)

{∑q
i=1 ρǫ2(i)}2 ≥ 1,

ARE(R∗/W∗) := lim
n→∞

− 2

n
log SR(R∗

n){ lim
n→∞

− 2

n
log SW(W∗

n)}−1

=

∑q
i=1 ρ2

ǫ2(i)
∑q

i=1 α2
0i

≥ 1,

ARE(R/W∗) := lim
n→∞

− 2

n
log SR(Rn){ lim

n→∞
− 2

n
log SW(W∗

n)}−1

=
κǫ − κη

κη(κǫ − 1)
∑q

i=1 α2
0i

≥ 1,

with equalities when q = 1.

Because a test is consistent whenever its slope is positive, these conditional homoscedas-

ticity tests are consistent under much more general assumptions than the ARCH(q) alter-

native.

Proposition 7.3 Let (ǫt) be a strictly stationary and ergodic process. The tests based on

R
∗
n, and Rn, are consistent against alternatives of the form

Ha1 : Eǫ4
t < ∞ and

∑q
i=1 ρ2

ǫ2(i) > 0.

The test based on LKn, is consistent against alternatives of the form
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Ha2 : Eǫ4
t < ∞ and

∑q
i=1 ρǫ2(i) 6= 0.

The test based on Wn
∗, is consistent against alternatives of the form

Ha3 : ǫt =
√

ω0 +
∑q

i=1 α0iǫ
2
t−iηt, where ω0 > 0, α0i ≥ 0,

∑q
i=1 α0i > 0, (ηt) is a

sequence of (possibly non-iid) variables verifying A3 and E(η2
t | ǫt−1, . . . , ǫt−q) = 1, a.s.

Moreover E|ǫt|2s < ∞ for some s > 0.

It can be noted that the consistency of the test based on Wn
∗ is established under stronger

dependence assumptions on the process (ǫt) than for the other tets. On the other hand,

the fourth-order moment condition is avoided for the Wn
∗ test, which is interesting for

financial series applications. It is also worth noting that the LK test may fail to detect

particular forms of heteroscedasticity. For instance, let ǫt = at

√
Xt where (at) is an iid

process such that P (at = 1) = P (at = −1) = 0.5, and (Xt) is the positive process defined

by

Xt = 1 + 0.5Xt−1 − 0.5Xt−2 + ut, (ut) iid ∼ U [−c, c], (ut) ⊥ (at),

for some sufficiently small c. Than it is easily seen that ρǫ2(1) = −ρǫ2(2) = 1/3. Thus, for

q = 2, LKn has a non-degenerate limiting distribution and the LK test will often fail to

reject conditional homoscedaticity. The score tests are consistent for this alternative.

Versions of tests which are asymptotically equivalent under the null and local alterna-

tives may have different slopes. The asymptotic efficiencies derived in Proposition 5.1 do

not coincide with those just derived for the "simple" test statistics. However, they can be

evaluated by simulation. It can be seen that

θ0|2 =





Eθ0(ǫ
2
t )

0q×1



 , J = Eθ0(σ
−4
t ZtZ

′
t), J0|2 = {Eθ0(ǫ

2
t )}−2Eθ0(ZtZ

′
t),

with Zt = (1, ǫ2
t−1, . . . , ǫ

2
t−q)

′. The results displayed in Table 2 concern the ARCH(1), for

α1 ranging from 0 to 0.4, with gaussian conditional distributions. Note that when q = 1

the AREs computed in Proposition 7.2 are equal to 1. Moreover, the slope of the Rao

statistic given by (5.2) coincides with those of the other versions of the score, and is equal

to α2
1. It is seen from Table 2 that

W ≺ L ≺ R ∼ R
∗ ∼ W

∗ ∼ LK

where S ≺ T means that a test S is less efficient than T, and S ∼ T means that the two

tests have the same slope. Table 3 reports efficiency results for an ARCH(2) and shows,
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Table 2: Asymptotic efficiencies of the score and QLR tests relative to the Wald test for testing

conditional homoscedasticity in an ARCH(1). The number of replications of the ratio is N = 10,

the expectations are evaluated by empirical means of size 10,000,000.

α1 0.1 0.2 0.3 0.4 0.5

ARE(R∗/W) 1.7 2.3 2.9 3.4 4.0

ARE(L/W) 1.4 1.8 2.2 2.7 3.3

in particular, that the equivalence observed in the case q = 1 does not hold in general.

Colors, from blue to red, indicate the rankings of those tests. To summarize, the tests can

be ranked as follows

W ≺ L ≺ W
∗ ≺ R ≺ R

∗.

The LK cannot be ranked in general: it can have the lowest or the highest asymptotic

efficiency depending on the parameter values.

7.4 Power comparisons under local alternatives

Under mild regularity conditions, in the limiting experiment our testing problem cor-

responds to testing Kτ = 0 with one observation X = (X1, . . . ,Xq+1)
′ ∼ N (τ, I−1

f ).

Let
•
τ be a point of Λ whose last q components are equal to some c > 0, and let

◦
τ=

•
τ

−I−1
f K ′(KI−1

f K ′)−1K
•
τ , so that K

◦
τ= 0. By the Neyman-Pearson lemma, the most

powerful test for testing τ =
◦
τ against τ =

•
τ rejects for large values of

(X− •
τ)′If (X− •

τ) − (X− ◦
τ)′If (X− ◦

τ) = 2
•
τ
′
K ′(KI−1

f K ′)−1KX + constant.

Since by (6.4) and (7.4),

KI−1
f K ′ = 4ι−1

f (κη − 1)−1Iq, (7.6)

it is easy to see that this test rejects for large values of
∑q+1

i=2 Xi. This test is therefore

uniformly most powerful to test τ1 = · · · = τq = 0 versus τ1 = · · · = τq > 0. Similarly it

can be shown that the tests which are somewhere most powerful (SMP) in Λ\(0,∞)×{0}q

reject for large values of d
′X with d ∈ [0,∞)q+1 and Kd 6= 0. Such a test is uniformly

most powerful for testing τ1 = · · · = τq = 0 versus τ = cd, c > 0. Of course, an optimal

test in the "direction" d may have a very low power in other directions. The test rejecting
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Table 3: Asymptotic efficiencies of conditional homoscedasticity tests relative to the Wald test, for

an ARCH(2) alternative. The number of replications of the slopes is N = 10, the expectations are

evaluated by empirical means of size 10,000,000. Missing values correspond to the non existence

of the 4th-order moment or to α01 = α02 = 0.

ARE(L/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 1.4 1.8 2.2 2.7 3.3

0.1 1.4 1.5 1.8 2.1 2.6 3.2

0.2 1.8 1.8 2.0 2.4 2.9 -

0.3 2.2 2.3 2.5 2.9 - -

0.4 2.7 2.8 3.1 - - -

0.5 3.3 3.5 - - - -

ARE(R∗/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 1.7 2.3 2.9 3.4 4.0

0.1 1.7 1.9 2.4 2.9 3.4 4.0

0.2 2.4 2.7 3.1 3.6 4.2 -

0.3 3.2 3.6 4.1 4.7 - -

0.4 4.0 4.7 5.3 - - -

0.5 5.0 5.9 - - - -

ARE(R/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 1.7 2.3 2.9 3.4 4.0

0.1 1.7 1.7 2.1 2.6 3.1 3.6

0.2 2.3 2.3 2.5 2.8 3.3 -

0.3 2.9 2.9 3.0 3.3 - -

0.4 3.4 3.5 3.6 - - -

0.5 4.0 4.1 - - - -

ARE(W∗/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 1.7 2.3 2.9 3.4 4.0

0.1 1.7 1.6 2.0 2.4 2.9 3.4

0.2 2.3 1.9 2.0 2.2 2.6 -

0.3 2.9 2.4 2.2 2.3 - -

0.4 3.4 2.9 2.6 - - -

0.5 4.0 3.4 - - - -

ARE(LK/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 0.8 1.1 1.4 1.7 2.0

0.1 1.0 1.9 2.2 2.5 2.9 3.3

0.2 1.7 2.6 3.1 3.6 4.1 -

0.3 2.4 3.4 4.1 4.7 - -

0.4 3.4 4.5 5.3 - - -

0.5 4.5 5.7 - - - -

for large values of
∑q+1

i=2 Xi is however most stringent somewhere most powerful (MSSMP)
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(the reader is referred to Shi (1987), Shi and Kudô (1987)1 and the references therein for

the concept of MSSMP and SMP test). In view of (7.6), this MSSMP test has the power

π(τ) = 1 − Φ



cα −
∑q

i=1 τi
√

4qι−1
f (κη − 1)−1



 , cα = Φ−1(1 − α). (7.7)

The following corollary gives the local asymptotic powers of the conditional homoscedas-

ticity tests considered in this section, and shows that the LK test is locally asymptotically

MSSMP (Lee and King (1993) exhibit another optimality property for their test). The

concept of locally asymptotically MSSMP test has been proposed by Akharif and Hallin

(2003) in order to cope with one-sidedness in hypothesis testing.

Proposition 7.4 Under the local alternatives Hn(τ), τ > 0, and the assumptions of The-

orem 4.1 with p = 0, d1 = 1 and d2 = q, we have

λΛ(τ) =

(

(Z1 + τ1) + ω

d
∑

i=2

(Zi + τi)
−, (Z2 + τ2)

+, · · · , (Zd + τd)
+

)′

, (7.8)

where Z ∼ N
(

0, (κη − 1)J−1
)

and (κη−1)J−1 is given in (7.4). Thus, the local asymptotic

power of the modified Wald, score and LK tests are given by

lim
n→∞

P {Wn > w1−α} = P

{

q
∑

i=1

(Ui + τi)
21l{Ui+τi>0} > w1−α

}

lim
n→∞

P
{

Rn > χ2
q,1−α

}

= P

{

χ2
q

(

q
∑

i=1

τ2
i

)

> χ2
q,1−α

}

lim
n→∞

P {LKn > cα} = 1 − Φ

(

cα −
∑q

i=1 τi√
q

)

, (7.9)

where U = (U1, . . . , Uq)
′ ∼ N (0, Iq).

Under the assumptions of Proposition 6.2, the LK test is asymptotically MSSMP (in

the sense that the right-hand side of (7.9) is equal to the upper bound π(τ) defined by (7.7))

if and only if the density f of ηt belongs to the class defined by (6.6).

It is well known that there exists no satisfactory notion of optimality for testing hy-

pothesis on multidimensional parameters. The LK test is asymptotically optimal in the

direction α1 = · · · = αq, but there is no objective reason to favour this direction. As shown

in Figure 7.4, the local asymptotic power of LK test may be lower than that of the Wald

test, and even lower than that of the two-sided score test.

1The authors greatly thank Professor Shi for sending them these two papers.
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Figure 2: Local asymptotic power of the Wald (full line), score (dashed line) and LK (dotted line)

for testing conditional homoscedasticity with an ARCH(2) model where α1 = α2 = τ/
√

n (left

figure) and α1 = τ/
√

n, α2 = 0 or α1 = 0, α2 = τ/
√

n (right figure).

7.5 Numerical experiments

In this section, we investigate the finite-sample properties of the tests for conditional

homoscedasticity studied in this paper. First we generate N = 5, 000 replications of

samples of iid variables of size n = 100, 500 and 5, 000, for different distributions. The tests

are designed for an ARCH(2) alternative. For n = 5, 000 the relative rejection frequencies,

presented in Table 4, are almost always within the 0.05 significant limits 4.38% and 5.62%.

For smaller sample sizes, and non-gaussian distributions, the type I error is not perfectly

well controlled by the Wald test. Deviations can also be noticed for the Rao and QLR tests

for the uniform and exponential distributions but, even for n = 100, the sizes are never

very far from the theoretical 5%.

We now turn to the power of those tests against local deviations from the null hypoth-

esis. The results are presented in Table 5 and, for ease of reading, the highest rejection

frequencies are written in bold for each experiment. In the upper part of the table, the

DGP is an ARCH(q) with q = 1, 2, 3 and α1 = · · · = αq > 0. The conclusion drawn from

the comparison of the local asymptotic powers remains valid for these simulation experi-

ments. The Rao test is clearly dominated by the three other ones, whatever the sample

size. For q = 1, the local asymptotic powers of the Wald, QLR and LK tests are equal (by

Propositions 6.2 and 7.4, these tests are locally asymptotically uniformly most powerful),

and are very close for n = 500 and n = 5, 000, with a slight advantage to the QLR test.

This advantage can also be noticed for q = 3. For q = 2 the asymptotic superiority of

the one-sided LK test is reflected in finite samples. However, when the alternative is not
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Table 4: Empirical size (in %) of the Wald, score, QLR and LK tests for conditional homoscedas-

ticity. The tests are based on an ARCH(2) model. The number of replications is N = 5000, the

critical values are adjusted to obtain 5% relative rejection frequency when the observations are iid

gaussian, the DGP is an independent sequence, distributed as the N (0, 1) (N ), the Student t with

ν = 8 degrees of freedom (St8), the uniform (U) on (−1/2, 1/2), or the exponential distribution(E)

of density f(x) = e−x−11{x>−1} .

n = 100 n = 500 n = 5000

Wn Rn Ln LKn Wn Rn Ln LKn Wn Rn Ln LKn

N 4.38 4.40 4.44 4.96 5.36 4.30 5.22 4.86 4.70 4.86 4.90 4.84

St8 6.46 4.56 5.46 4.76 5.98 4.92 4.76 4.86 5.96 4.76 4.70 4.98

U 4.20 6.84 6.10 4.88 4.22 5.62 5.22 3.94 4.54 5.10 5.20 4.66

E 6.30 4.94 4.98 4.68 6.66 6.22 3.98 5.32 6.74 4.92 4.42 5.48

symmetric in the ARCH coefficients, as it is the case in the lower part of Table 5, the

LK test can be much less powerful than its competitors, both asymptotically and in finite

samples. For this reason it cannot be recommended to practitioners.

8 Illustrative example

We now consider an application to the daily returns of the French CAC40 and the Standard

& Poor’s 500 indexes. The presence of GARCH in these series has been documented by

many empirical studies. Our aim in this section is to compare the abilities of the various

tests considered in this paper to detect the ARCH effect. As the sample size n increases,

the p-values of the tests are expected to decrease. Assuming that the series is indeed a

GARCH, the way those p values decrease to zero is an indication of the performances of

the tests in finite sample.

The CAC data range from January 2, 2004 to December 29, 2006. The total length of

the series is 771 but the sample size used for the tests ranges from n = 400 to n = 600.

In the first experiment, the tests considered are the score and LK tests for conditional

homoscedasticity, the ARCH order varying from q = 1 to q = 9. For each sample size

n, a set of 201 p-values are computed based on the observations Xj+1, . . . ,Xj+n, for j =
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Table 5: Empirical power (in %) of the Wald, score, QLR and LK tests for conditional ho-

moscedasticity. The number of replications is N = 5000, the critical values are adjusted to obtain

5% relative rejection frequency when the observations are iid gaussian, the DGP is an ARCH(q)

with gaussian innovations.

α1 = · · · = αq = 1.5n−1/2

q n = 500 n = 5000 n = ∞
Wn Rn Ln LKn Wn Rn Ln LKn Wn Rn Ln LKn

1 40.0 30.0 40.4 39.1 42.4 32.2 43.0 42.3 44.2 32.3 44.2 44.2

2 58.6 45.1 59.1 59.5 63.6 46.5 63.7 66.3 61.9 46.0 61.9 68.3

3 73.4 57.0 76.3 74.1 81.1 57.8 81.3 81.1 74.7 57.2 74.7 83.0

α1 = · · · = αq−1 = 0, αq = q1.5n−1/2

q n = 500 n = 5000 n = ∞
Wn Rn Ln LKn Wn Rn Ln LKn Wn Rn Ln LKn

2 79.4 62.7 73.1 55.2 85.9 73.0 81.3 64.8 85.1 77.1 85.1 68.3

3 93.7 85.0 89.5 65.9 97.4 94.4 95.2 78.5 99.0 97.7 99.0 83.0

0, . . . , 201. Figure 3 displays the averages of these p-values, for the score (left panel) and

LK tests (right panel). Clearly, the tests based on q = 1 are dominated by the tests based

on higher-order ARCH models. For n = 600 the average p-values are very small, except

in the case q = 1. For the score test, the values of q > 1 lead to similar results, but this

is less true for the LK test. Now for a given q, the LK test has better performances than

the score test, in the sense that it is able to detect the ARCH effect more rapidly as n

increases.

The S&P500 data range from January 2, 2003 to December 29, 2006. The total length of

the series is 1007. The sample size used for the tests ranges from n = 800 to n = 950.

Figure 4 plots the averages of the p-values of the Wald, score, QLR and LK conditional

homoscedasticity tests, in the ARCH(2) model, for the CAC40 (left panel) and S&P500
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Figure 3: Average p-values of the score (left panel) and LK tests (right panel) for conditional

homoscedasticity, in ARCH(q) models for q = 1, . . . , 9, in function of the sample size n, for the

CAC40 index.

(right panel). In both cases (i) the results for the QLR and Wald tests are similar, and (ii)

the score test requires larger sample sizes to detect conditional heteroscedasticity. Looking

at the results for the LK tests, the conclusions are opposite for the two series. For the

CAC, this test does a better job than the three others, but for the S&P500, it is much less

efficient than the Wald-QLR and is similar to the score.

9 Concluding remarks

The usual methodology for testing the nullity of coefficients in GARCH models is based

on the standard Wald, score and QLR statistics. This article has shown that caution is

needed in the use of such statistics, because the null hypothesis puts the parameter at

the boundary of the parameter space. From the derivation of the asymptotic null and

local alternative distributions of those statistics, four main conclusions can be drawn: i)

the asymptotic sizes of the standard Wald and QLR tests can be very different from the

nominal levels based on (invalid) χ2 distributions; ii) the modified tests of this paper tackle

the boundary problem; moreover, iii) the modified Wald and QLR tests remain equivalent

under the null and local alternatives; iv) the usual Rao test remains valid for testing a

value on the boundary, but looses its local optimality properties;
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Figure 4: Average p-values of the Wald, score, QLR and LK conditional homoscedasticity tests

for the CAC40 (left panel) and SP500 (right panel) .

For the two special cases considered in this paper, the approaches of Bahadur and Pit-

man allow efficiency comparisons, and shed light on the relative merits of the different tests.

For the nullity of one coefficient, the modified Wald and QLR tests are locally asymptoti-

cally optimal, when the conditional density belongs to a class which is not restricted to the

standard Gaussian. For the absence of conditional heteroscedasticity, several simple tests

can be used, which have different powers under fixed alternatives. Efficiency comparisons

for the ARCH(1) and ARCH(2) models suggest that the different versions of the score

test are preferable to the other competitors in the Bahadur ARE sense. However, inverse

conclusions are drawn when the local approach is adopted. Indeed, the score test appears

to be locally dominated by the equivalent Wald and QLR tests. The one-sided version of

the score test proposed by Lee and King enjoys optimality properties, but only for alter-

natives in certain directions. To conclude, a simple version of the Wald test, rejecting the

null when the sum of the squared coefficients is large, can be recommended for testing for

ARCH. From both local and non local points of view, our theoretical study and numerical

experiments suggest that the behavior of this test is always close to the optimum.
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Appendix: Proofs and technical results

A.1 Proof of Theorem 3.2

The convergence in distribution (3.3) is a direct application of the continuous mapping

theorem, because
√

nθ̂
(2)′
n = K

√
n(θ̂n − θ0)

L→ KλΛ under H0 by Theorem 3.1.

We now turn to the proof of (3.4). Since θ̂
(1)
n|2 is a consistent estimator of θ

(1)
0 > 0,

we have θ̂
(1)
n|2 > 0 for n large enough. Therefore ∂ l̃n

(

θ̂n|2
)

/∂θi = 0 for i = 1, . . . , d1, or

equivalently

∂ l̃n

(

θ̂n|2
)

∂θ
= K ′

∂ l̃n

(

θ̂n|2
)

∂θ(2)
. (A.1)

A Taylor expansion yields

√
n

∂ l̃n(θ̂n|2)

∂θ

oP (1)
=

√
n

∂ln(θ0)

∂θ
+ J

√
n
(

θ̂n|2 − θ0

)

. (A.2)

The last d2 components of this vector relation give

√
n

∂ l̃n(θ̂n|2)

∂θ(2)

oP (1)
=

√
n

∂ln(θ0)

∂θ(2)
+ KJ

√
n
(

θ̂n|2 − θ0

)

, (A.3)

and the first d1 components give

0
oP (1)
=

√
n

∂ln(θ0)

∂θ(1)
+ KJK

′√
n
(

θ̂
(1)
n|2 − θ

(1)
0

)

, (A.4)

using
(

θ̂n|2 − θ0

)

= K
′ (

θ̂
(1)
n|2 − θ

(1)
0

)

. (A.5)

In view of (A.4), we have

√
n
(

θ̂
(1)
n|2 − θ

(1)
0

)

oP (1)
= −

(

KĴn|2K
′)−1 √

n
∂ln(θ0)

∂θ(1)
. (A.6)

Using (A.1), (A.3), (A.5) and (A.6) we obtain

Rn =
n

κ̂η|2 − 1

∂ln(θ̂n|2)

∂θ(2)′
KĴ−1

n|2K
′∂ln(θ̂n|2)

∂θ(2)

oP (1)
=

n

κη − 1

∥

∥

∥

∥

∥

∂ln(θ̂n|2)

∂θ(2)

∥

∥

∥

∥

∥

2

KJ−1K ′

oP (1)
=

n

κη − 1

∥

∥

∥

∥

∂ln (θ0)

∂θ(2)
+ KJK

′ (
θ̂
(1)
n|2 − θ

(1)
0

)

∥

∥

∥

∥

2

KJ−1K ′

oP (1)
=

n

κη − 1

∥

∥

∥

∥

∂ln (θ0)

∂θ(2)
− KJK

′ (
KJK

′)−1 ∂ln(θ0)

∂θ(1)

∥

∥

∥

∥

2

KJ−1K ′

.

Now recall that under H0

(

W1

W2

)

:=

√

n

κη − 1

(

∂ln(θ0)

∂θ(1)

∂ln(θ0)

∂θ(2)

)

d→ N
{

0, J =

(

J11 J12

J21 J22

)}

. (A.7)
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Using KJ−1K ′ =
(

J22 − J21J
−1
11 J12

)−1
it follows that the asymptotic distribution of Rn

under H0 is that of

(

W2 − J21J
−1
11 W1

)′ (
J22 − J21J

−1
11 J12

)−1 (
W2 − J21J

−1
11 W1

)

,

which follows the χ2
d2

distribution since W2 − J21J
−1
11 W1 ∼ N

(

0, J22 − J21J
−1
11 J12

)

.
Turning to the proof of (3.5) and using (A.5) and (A.6), several Taylor expansions give

nl̃n

(

θ̂n|2
)

oP (1)
= nln (θ0) + n

∂ln (θ0)

∂θ′

(

θ̂n|2 − θ0

)

+
n

2

(

θ̂n|2 − θ0

)′
J
(

θ̂n|2 − θ0

)

oP (1)
= nln (θ0) −

n

2

∂ln (θ0)

∂θ(1)′

(

KJK
′)−1 ∂ln(θ0)

∂θ(1)
(A.8)

and

nln

(

θ̂n

)

oP (1)
= nln (θ0) + n

∂ln (θ0)

∂θ′

(

θ̂n − θ0

)

+
n

2

(

θ̂n − θ0

)′
J
(

θ̂n − θ0

)

. (A.9)

By subtraction,

Ln
oP (1)
= −n

{

1

2

∂ln (θ0)

∂θ(1)′

(

KJK
′)−1 ∂ln(θ0)

∂θ(1)

+
∂ln (θ0)

∂θ′

(

θ̂n − θ0

)

+
1

2

(

θ̂n − θ0

)′
J
(

θ̂n − θ0

)

.

}

(A.10)

Under H0, by showing

√
n

(

∂ln(θ0)
∂θ

θ̂n − θ0

)

L→
(

−JZ
λΛ

)

it can be seen that the asymptotic distribution of Ln is the law of

L = −1

2
Z ′J ′K

′
J−1

11 KJZ + Z ′J ′λΛ − 1

2
λΛ′

JλΛ.

Now, because

J ′K
′
J−1

11 KJ = J − (κη − 1)Ω with (κη − 1)Ω =

(

0 0

0 J22 − J21J
−1
11 J12

)

we obtain

L = −1

2
Z ′JZ +

1

2
Z ′(κη − 1)ΩZ + Z ′J ′λΛ − 1

2
λΛ′

JλΛ

= −1

2
(λΛ − Z)′J(λΛ − Z) +

κη − 1

2
Z ′ΩZ (A.11)

and the conclusion easily follows.

A.2 Proof of Proposition 5.1.

Under H1 we have

lim
n→∞

Wn

n
=

1

κη − 1
θ
(2)′

0

(

KJ−1K ′)−1
θ
(2)
0 .
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Thus, (5.1) is obtained by showing that

log SW(x) ∼ log P (χ2
d2

> x) x → ∞, (A.12)

and by noting that Wn → ∞ and log P (χ2
d2

> x) ∼ −x/2 as x → ∞ (Bahadur, 1960).
The behaviour of the two other statistics is more intricate because the constrained

estimator θ̂n|2 does not converges to θ0 under H1. Under general conditions, see White

(1982), the QMLE θ̂n|2 in the misspecified (by H0) model converges to

θ0|2 = arg min
θ∈Θ: θ(2)=0

Eθ0{ℓt(θ)},

provided that this minimum exists and is unique. For the existence, moments of order 4
are required. For the uniqueness, a necessary condition is the local identifiability of θ0|2
(see White, 1982). This is achieved in our model because it can be shown that, for any
θ ∈ Θ

J(θ) = Eθ0

(

1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′

)

is a positive definite matrix. (A.13)

Let J∗
0|2 = J∗(θ0|2) where

J∗(θ) = Eθ0

(

∂2ℓt

∂θ∂θ′
(θ)

)

.

The existence of J∗(θ) is ensured when Eǫ6
t < ∞. Note that J∗(θ0) = J(θ0) but J∗(θ0|2) 6=

J(θ0|2). It follows from the a.s. convergence of θ̂n|2 to θ0|2 that, similar to (A.2)-(A.3),

0 =
√

n
∂ l̃n(θ̂n|2)

∂θ(1)

oP (1)
=

√
n

∂ln(θ0|2)

∂θ(1)
+ KJ∗

0|2K
′√

n
(

θ̂
(1)
n|2 − θ

(1)
0|2

)

,

and then, assuming that KJ∗
0|2K

′
is non-singular,

√
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(1)
0|2

)

oP (1)
= −(KJ∗

0|2K
′
)−1√n
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0|2K

′
)−1 1√

n

n
∑

t=1

1
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∂σ2
t (θ0|2)

∂θ(1)

(

1 − σ2
t (θ1)

σ2
t (θ0|2)

η2
t

)

.

Note that the summand is centered because θ0|2 minimizes the limit criterion Eθ0{ℓt(θ)}.
However it is not a martingale difference. To apply a central limit theorem, one can rely
on the strong mixing properties of GARCH processes. Such properties require additional
assumptions on the density of ηt (see e.g. Carrasco and Chen (2002), Francq and Zakoian
(2006)) and are beyond the scope of this paper. Applying this central limit theorem we
have under H1, √

n
(

θ̂n|2 − θ0|2
)

= OP (1). (A.14)

Therefore
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It follows that, using the convergence of Ĵn|2 to J0|2, and of κ̂η|2 to κη|2,

Rn
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,

from which (5.2) can be deduced by application of the ergodic theorem and arguments
already used to establish (5.1).

Now similar to (A.8) and (A.9) we have
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It follows, using (A.14), that

Ln

n

oP (1)
= ln

(

θ0|2
)

− ln (θ1)
oP (1)
= Eθ0{ℓt(θ0|2) − ℓt(θ1)},

from which (5.3) can be deduced, using

Eθ0

(

σ2
t (θ0)

σ2
t (θ0|2)

)

= 1. (A.15)

The consistency of the three test follows from the positivity of the Bahadur slopes. From
(5.1) it is seen that, in view of the positive definiteness of J , the Wald test is consistent.
In (5.2) the positivity of the right-hand side is ensured if D(θ0|2) is not equal to zero. The
consistency of the QLR test follows from

−Eθ0

(

log
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t (θ0)

σ2
t (θ0|2)

)

≥ − log Eθ0

(

σ2
t (θ0)

σ2
t (θ0|2)

)

= 0,

by (A.15) and Jensen’s inequality, with strict inequality when σ2
t (θ0|2) 6= σ2

t (θ0). The latter
is a consequence of the identifiability assumptions A3-A4.

A.3 Proof of Theorem 5.1

By arguments used in the proof of Theorem 4.1, it can be shown that with probability 1
under Pn,τ

Ĵn =
1

n

n
∑

t=1

1

σ̃4
t,n(θ̂n)

∂σ̃2
t,n(θ̂n)

∂θ

∂σ̃2
t,n(θ̂n)

∂θ′
→ J as n → ∞.

The convergence in distribution (5.4) is then obtained by the same arguments as in the
proof of (3.3), using Theorem 4.1. With the notation introduced in (A.7) a Taylor expansion
gives

√

κη − 1

(

W1

W2

)

oP (1)
=

√
n

(

∂ln(θn)

∂θ(1)

∂ln(θn)

∂θ(2)

)

+ J
√

n(θ0 − θn)
d→ N {−Jτ, (κη − 1)J} .
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For the convergence in distribution we use
√

n∂ln(θn)
∂θ

d→ N (0, (κη − 1)J) , which is es-
tablished in the proof of Theorem 4.1, and we note that

√
n(θ0 − θn) = −τ . We then

have

(W2 − J21J
−1
11 W1) ∼ N

{

−
(

J22 − J21J
−1
11 J12

) τ (2)

√

κη − 1
, J22 − J21J

−1
11 J12

}

,

and (5.5) follows by the arguments used to establish (3.4). Similarly, (5.6) follows from
the arguments used to prove (3.5) and from

√
n

(

∂ln(θ0)
∂θ

θ̂n − θ0

)

L→
(

−J(Z + τ)
λΛ(τ)

)

.

A.4 Proof of Proposition 5.2.

We start by introducing some notations. Let

Jn,τ =
∂2

ln(θn)

∂θ∂θ′
, Zn,τ = −J−1

n,τ

√
n

∂ln(θn)

∂θ
,

where, for ease of notation, ln is as in Section 2, but with variables indexed by {t, n}
instead of t. In the proof of Theorem 4.1 it is proved that

√
n(θ̂n − θ0)

oP (1)
= λΛ

n,τ := arg inf
λ∈Λ

‖Z̃n,τ − λ‖Jn,τ

oP (1)
= arg inf

λ∈Λ
‖Z̃n,τ − λ‖J ,

where Z̃n,τ = Zn,τ + τ. We then have

Wn =
n

κ̂η − 1
(θ̂(2)

n − θ
(2)
0 )′

{

KĴ−1K ′
}−1

(θ̂(2)
n − θ

(2)
0 )

oP (1)
=

n

κη − 1
(θ̂n − θ0)

′K ′ {KJ−1K ′}−1
K(θ̂n − θ0)

= ‖√n(θ̂n − θ0)‖2
Ω

oP (1)
= ‖λΛ

n,τ‖2
Ω.

Now, similarly to (3.1), we have

λΛ
n,τ

oP (1)
= Z̃n,τ1lΛ(Z̃n,τ ) +

2d2−1
∑

i=1

PiZ̃n,τ1lDi(Z̃n,τ ), (A.16)

where Pi = Id − J−1Mi and Mi = K ′
i

(

KiJ
−1K ′

i

)−1
Ki. It follows that

Wn
oP (1)
= ‖Z̃n,τ‖2

Ω1lΛ(Z̃n,τ ) +
2d2−1
∑

i=1

‖PiZ̃n,τ‖2
Ω1lDi(Z̃n,τ ).

Let Zn = −J−1
n

√
n∂ln(θ0)

∂θ . Turning to Ln, using (A.10) we obtain, similarly to (A.11)

Ln
oP (1)
= −1

2
Z ′

nJZn +
κη − 1

2
Z ′

nΩZn + Z ′
nJ ′λΛ

n,τ − 1

2
λΛ′

n,τJλΛ
n,τ

= −1

2
(λΛ

n,τ − Zn)′J(λΛ
n,τ − Zn) +

κη − 1

2
Z ′

nΩZn.
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A Taylor expansion shows that Zn
oP (1)
= Zn,τ + τ = Z̃n,τ , from which we deduce

Ln
oP (1)
= −1

2
‖λΛ

n,τ − Z̃n,τ‖2
J +

κη − 1

2
‖Z̃n,τ‖2

Ω.

By (A.16) we have

1

2
‖Z̃n,τ − λΛ

n,τ‖2
J =

1

2

2d2−1
∑

i=1

‖(Id − Pi)Z̃n,τ‖2
J1lDi(Z̃n,τ ) =

κη − 1

2

2d2−1
∑

i=1

‖Z̃n,τ‖2
Ωi

1lDi(Z̃n,τ ),

where Ωi = (κη − 1)−1(Id − Pi)
′J(Id − Pi) = K ′

i

(

(κη − 1)KiJ
−1K ′

i

)−1
Ki. Moreover

‖Z̃n,τ‖2
Ω = ‖Z̃n,τ‖2

Ω1lΛ(Z̃n,τ ) +

2d2−1
∑

i=1

‖Z̃n,τ‖2
Ω1lDi(Z̃n,τ ).

It follows that

2

κη − 1
Ln − Wn

oP (1)
=

2d2−1
∑

i=1

(

‖Z̃n,τ‖2
Ω − ‖Z̃n,τ‖2

Ωi
− ‖PiZ̃n,τ‖2

Ω

)

1lDi(Z̃n,τ )

=

2d2−1
∑

i=1

‖Z̃n,τ‖2
Ω−Ωi−P ′

iΩPi
1lDi(Z̃n,τ ) = 0

because Ω − Ωi − P ′
iΩ = 0. This equality is obtained by noting that Ki is of the form

Ki = BiK for some matrix Bi (recall that Ki is deduced from K by cancellation of rows).
Hence P ′

iΩPi = P ′
i (Ω − Mi) = P ′

iΩ and

(I − Pi)
′Ω = K ′

i

(

KiJ
−1K ′

i

)−1
KiJ

−1K ′ (KJ−1K ′)−1
K = K ′

i

(

KiJ
−1K ′

i

)−1
BiK = Ωi.

A.5 Proof of Proposition 6.1.

(a) We have Λ = R
d1 × [0,∞), K = (0, . . . , 0, 1), K = {K} , and λΛ = Z1lZd≥0 +

PZ1lZd<0 with Z = (Z1, . . . , Zd)
′, P = Id − J−1K ′ (KJ−1K ′)−1

K. It follows that

λΛ = Z − Z−
d c

where Z−
d = Zd1lZd<0, and c = E(ZdZ)/Var(Zd) is the last column of J−1 divided by

the (d, d)-element of this matrix. Note that the last component of λΛ = (λΛ
1 , . . . , λΛ

d )′ is
λΛ

d = Z+
d := Zd1lZd>0. It is also seen that λΛ

i = Zi if and only if Cov(Zi, Zd) = 0.
In view of Proposition 5.2, it follows that

W(0) =
2

κη − 1
L(0) =

{

λΛ
d

}2

VarZd
= U21lU≥0 ∼ 1

2
δ0 +

1

2
χ2

1

where U ∼ N (0, 1) and δ0 denotes the Dirac mass at 0. The distribution of W(0) is known
as a χ2 distribution (see Kudô, 1963).

(b) Arguing as in the case τ = 0, it can be shown that the last component of λΛ(τ) is
λΛ

d (τ) = (Zd + τd) 1lZd+τd>0. We deduce that under the assumptions of Theorem 5.1

W(τ) =
2

κη − 1
L(τ) =

{

λΛ
d (τ)

}2

VarZd
∼
(

U +
τd

σd

)2

1ln
U+

τd
σd

>0
o,
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where U ∼ N (0, 1). Equalities (6.2) and (6.3) follow.
(c) Note that (6.2) is the power of the test of critical region {X > c1} for testing the

null hypothesis H0 : EX = 0 versus the alternative H1 : EX = τ∗ > 0, when the unique
observation X follows a gaussian distribution with unknown mean EX and variance 1.
The power (6.3) is that of the two-sided test {|X| > c2}. The two tests {X > c1} and
{|X| > c2} have the same level, but it is well-known that the first test is uniformly most
powerful under one-sided alternatives of the form H1.

A.6 Proof of Proposition 6.2.

In view of (6.2) and (6.5), the Wald test is asymptotically optimal if and only if (κη −
1)KJ−1K ′ = KI−1

f K ′, which is equivalent to (κη − 1) = 4/ιf . We have

∫

(y2 − 1)

(

1 +
f ′(y)

f(y)
y

)

f(y)dy = Eη2
t − 1 +

∫

y3f ′(y)dy −
∫

yf ′(y)dy

= lim
a,b→∞

[y3f(y)]−b
a −

∫

3y2f(y)dy + 1 = −2.

Thus, the Cauchy-Schwarz inequality yields

4 ≤
∫

(y2 − 1)2f(y)dy

∫
(

1 +
f ′(y)

f(y)
y

)2

f(y)dy = (Eη4
t − 1)ιf

with equality iff there exists a 6= 0 such that 1 + ηtf
′(ηt)/f(ηt) = −2a

(

η2
t − 1

)

a.s. The
latter equality holds iff f ′(y)/f(y) = −2ay + (2a − 1)/y almost everywhere. The solution
of this differential equation, under the constraint f ≥ 0 and

∫

f(y)dy = 1, is given by
(6.6). Note that when f is defined by (6.6), we have κη =

∫

y4f(y)dy = a(a + 1)/a2 = 3
iff a = 1/2 which corresponds to the case ηt ∼ N (0, 1).

A.7 Proof of Proposition 7.1.

Under (7.1), thorough inspection of the proof (given in FZ) shows that Theorem 3.1 holds
without the moment assumption in A5 (and without A6 which does not make sense in
the ARCH case). In particular we have, for some constant C,

Eθ0 sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

∂2ℓt(θ)

∂θ∂θ′

∥

∥

∥

∥

= Eθ0 sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

{

2
ǫ2
t

σ2
t

− 1

}{

1

σ2
t

∂σ2
t

∂θ

}{

1

σ2
t

∂σ2
t

∂θ′

}∥

∥

∥

∥

≤ Eθ0

∥

∥C(1 + ǫ2
t )
∥

∥E sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

{

1

σ2
t

∂σ2
t

∂θ

}{

1

σ2
t

∂σ2
t

∂θ′

}∥

∥

∥

∥

< ∞,

where the first inequality follows from the independence between ǫt and σ2
t and its derivative

under (7.1), and the second inequality follows from E(ǫ4
t ) = ω2E(η4

t ) < ∞.

In view of (3.2), the asymptotic distribution of n
∑d

i=2 α̂2
i is therefore that of

∑d
i=2

(

Z+
i

)2
,

where the Zi are iid N (0, 1). The asymptotic null distribution of W
∗
n follows.

A.8 Proof of Proposition 7.2.

By arguments used in the proof of Proposition 5.1, log{1−Φ(LKn)} ∼ −LK
2
n/2. Moreover

LK
2
n

n
→ 1

q

(

q
∑

i=1

ρǫ2(i)

)2

, a.s. (A.17)
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Similarly, in view of (7.3)

R
∗
n

n
→

q
∑

i=1

ρ2
ǫ2(i), a.s. (A.18)

The expressions for the asymptotic efficiencies follow. Using (q−1
∑q

i=1 ai)
2 ≤ q−1

∑q
i=1 a2

i ,
for any real numbers ai, we then have ARE(R∗/LK) ≥ 1, with equality when q = 1. To
show that ARE(R∗/W∗) ≥ 1 note that, because (ǫ2

t ) has an AR(q) representation under
H1, and because ρǫ2(i) ≥ 0, for i = 1, . . . , q,

ρǫ2(i) = α1ρǫ2(i − 1) + · · · + αi−1ρǫ2(1) + αi + αi+1ρǫ2(1) + · · · + αqρǫ2(q − i) ≥ αi,

with equality when q = 1. The conclusion directly follows.
Finally, introducing the linear innovation νt = (η2

t −1)σ2
t (θ0) of ǫ2

t under the alternative,
we have

Rn

n
→ 1 − Var(νt)

Var(ǫ2
t )

=
κǫ − κη

κη(κǫ − 1)
, a.s. (A.19)

The desired inequality ARE(R/W∗) ≥ 1 is equivalent to κǫ(κ
−1
η −∑q

i=1 α2
i ) ≥ 1−∑q

i=1 α2
i .

On the other hand, straight computation of Eσ4
t yields, using again ρǫ2(i) ≥ 0,

κǫ(κ
−1
η −

q
∑

i=1

α2
i ) = 1 −

(

q
∑

i=1

αi

)2

+ 2
∑

i<j

αiαj

E(ǫ2
t−iǫ

2
t−j)

(Eǫ2
t )

2
≥ 1 −

q
∑

i=1

α2
i .

A.9 Proof of Proposition 7.3.

Under Ha1 (resp. Ha2) (A.18) (resp. (A.17)) follows from the ergodic theorem, which
proves that R

∗
n (resp. LKn)is consistent.

Similarly, the convergence in (A.19) holds, where νt = ǫ2
t − EL(ǫ2

t | ǫ2
t−i, i = 1, . . . , q).

Under Ha, Var(νt) < Var(ǫt), which proves that Rn is consistent.
To handle W

∗
n, we note that the proof of (i)-(iv) in Francq and Zakoian (2004), given

for the case of an iid noise sequence, remains valid under Ha3 with a slight adaptation con-
cerning the identifiability step. Suppose that σ2

t (θ0) = σ2
t (θ) with θ 6= θ0. By stationarity,

it follows that ǫ2
t is a function of the ǫ2

t−i, i = 1, . . . , q − 1. Thus

ǫ2
t − E(ǫ2

t | ǫ2
t−i, i = 1, . . . , q) = σ2

t (θ0)(η
2
t − 1) = 0.

It follows that η2
t = 1, a.s. which is in contradiction with Ha3. Thus θ = θ0 and the

identifiability step is proved. The consistency of the QMLE follows and therefore

W
∗
n

n
→

q
∑

i=1

α2
0i > 0, a.s.

which establish the consistency of the test. Note that Escanciano (2007) proves the con-
sistency and asymptotic normality of the QMLE of GARCH models with a martingale
difference noise sequence. For the consistency of the W

∗
n test we only need the weaker

assumption Ha3.
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Complementary results

A Proof of (2.3)

We only prove the second equality, the first one being obtained by the same arguments.
Recall that θ̂n|2 minimizes

l̃n(θ) = n−1
n
∑

t=1

ǫ2
t

σ̃2
t

+ log σ̃2
t

under the constraint θ(2) = 0. For any c > 0, there exists θ̂∗n|2 such that σ̃2
t (θ̂

∗
n|2) = cσ̃2

t (θ̂n|2)

for all t ≥ 0. Note that θ̂∗n|2 6= θ̂n|2 iff c 6= 1. For instance, for the GARCH(1,2) constrained

by θ(2) = β2 = 0, if θ̂n|2 = (ω̂, α̂1, β̂1, 0) then θ̂∗n|2 = (cω̂, cα̂1, β̂1, 0). Let f(c) = l̃n(θ̂∗n|2).
The minimum of f is obtained at only one point given by

c = n−1
n
∑

t=1

ǫ2
t

σ̃2
t (θ̂n|2)

.

Thus, for this value c, we have θ̂∗n|2 = θ̂n|2. Hence c = 1 with probability 1, which is the
announced result.

B Proof of (3.2)

To avoid unnecessary computations, we only prove this formula in the case q = 2. Let
θ0 = (ω0, 0, 0). We have d2 = 2, d1 = 1 and

Λ = R × (0,∞)2, K =

(

0 1 0
0 0 1

)

, K = {K1,K2,K3} ,

where K1 = K, K2 = (0, 1, 0) and K3 = (0, 0, 1). We have

Z =





Z1

Z2

Z3



 ∼ N







0,Σ = (κη − 1)J−1 =





(κη + 1)ω2
0 −ω0 −ω0

−ω0 1 0
−ω0 0 1











.

Thus, using KΣK ′ = I2 and KiΣK ′
i = 1 for i = 2, 3, we get

P1Z = (Z1 + ω0(Z2 + Z3), 0, 0)
′ ,

P2Z = (Z1 + ω0Z2, 0, Z3)
′ ,

P3Z = (Z1 + ω0Z3, Z2, 0)
′ .

Let also P0 = I3. We have

‖PiZ − Z‖2
J = (κη − 1)















0 for i = 0
Z2

2 + Z2
3 for i = 1

Z2
2 for i = 2

Z2
3 for i = 3

This shows that
λΛ =

(

Z1 + ω0Z
−
2 + ω0Z

−
3 , Z+

2 , Z+
3

)′
.
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C Proof of (A.12)

In view of (3.1),

log SW(x) = log P(‖λΛ‖2
Ω > x)

= log P(‖Z‖2
Ω1lΛ(Z) +

2d2−1
∑

i=1

‖PiZ‖2
Ω1lDi(Z) > x).

Because ‖PiZ‖2
Ω ≤ ‖Z‖2

Ω we have

log SW(x) ≤ log P(‖Z‖2
Ω > x) = log P(‖Z(2)‖2

{var(Z(2))}−1 > x) = log P(χ2
d2

> x).

Moreover, letting U = var−1/2(Z(2))Z(2), which follows the N (0, Id2) distribution, we have

log SW(x) ≥ log P(‖Z‖2
Ω1lΛ(Z) > x)

= log P(‖Z(2)‖2
{var(Z(2))}−11lZ(2)≥0 > x)

= log P(‖U‖21lU∈C > x)

= log{P(‖U‖2 > x)P(U ∈ C)}

for the cone C = {u ∈ R
d2 : var1/2(Z(2))u > 0}. (A.12) follows.

D Proof of (A.13)

In Francq and Zakoian (2004), it is shown that J(θ0) is positive definite. The same proof
can be conducted for θ 6= θ0.

E Proof of Theorem 4.1.

Throughout, all expectations are taken with respect to the distribution of (ηt). Let C and
ρ be generic constants, whose values will be modified along the proofs, such that C > 0
and 0 < ρ < 1.

Let ℓt,n(θ) =
ǫ2t,n

σ2
t,n(θ)

+ log σ2
t,n(θ), so that the theoretical and empirical objective func-

tions can still be denoted ln(θ) = n−1
∑n

t=1 ℓt,n(θ), and l̃n(θ) = n−1
∑n

t=1 ℓ̃t,n(θ).
Denote by A0t,n the matrix obtained by substituting θn for θ0 in the definition of A0t.

The following inequalities, which are straightforward consequences of τ > 0, will be used
throughout. For any n ≥ n0, we have A0t,n0 ≥ A0t,n ≥ A0t (componentwise), and thus,
under A2, for n ≥ n0 and n0 sufficiently large

ǫ2
t,n0

≥ ǫ2
t,n ≥ ǫ2

t , and σ2
t,n0

(θ) ≥ σ2
t,n(θ∗) ≥ σ2

t (θ̃) for any θ ≥ θ∗ ≥ θ̃. (E.1)
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E.1 Consistency of θ̂n.

Following the scheme of proof of Theorem 2.1 in FZ, we will establish the following inter-
mediate results.

i) lim
n→∞

sup
θ∈Θ

|ln(θ) − l̃n(θ)| = 0, a.s.

ii) lim
n→∞

ln(θn) = Eℓt(θ0), a.s.

iii) for any θ 6= θ0 there exists a neighborhood V (θ) such that

lim inf
n→∞

inf
θ∗∈V (θ)

l̃n(θ∗) > Eℓ1(θ0), a.s.

First we show i). Similar to (A.2) in FZ we have σ2
t,n(θ) =

∑∞
k=0 Bk(1, 1)ct−k,n, where

ct,n = ω +
∑q

i=1 αiǫ
2
t−i,n and

B =











β1 β2 · · · βp

1 0 · · · 0
...
0 · · · 1 0











.

Let c̃t,n be obtained by replacing ǫ2
0,n, . . . , ǫ21−q,n by their initial values in ct,n. We have

σ̃2
t,n =

t−(q+1)
∑

k=0

Bk(1, 1)ct−k,n +
t−1
∑

k=t−q

Bk(1, 1)c̃t−k,n + Bt(1, 1)σ̃2
0 .

Thus, almost surely,

sup
θ∈Θ

|σ2
t,n − σ̃2

t,n| = sup
θ∈Θ

∣

∣

∣

∣

∣

q
∑

k=1

Bt−k(1, 1) (ck,n − c̃k,n) + Bt(1, 1)
(

σ2
0,n − σ̃2

0

)

∣

∣

∣

∣

∣

≤ sup
θ∈Θ

{

q
∑

k=1

Bt−k(1, 1) (ck,n0 + c̃k,n0) + Bt(1, 1)
(

σ2
0,n0

+ σ̃2
0

)

}

≤ Cρt, ∀t. (E.2)

Proceeding as in FZ (2004), we obtain, almost surely, for n ≥ n0,

sup
θ∈Θ

|ln(θ) − l̃n,τ (θ)| ≤ Cn−1
n
∑

t=1

ρtǫ2
t,n + Cn−1

n
∑

t=1

ρt ≤ Cn−1
n
∑

t=1

ρtǫ2
t,n0

+ Cn−1.

The a.s. convergence of n−1
∑n

t=1 ρtǫ2
t,n0

to 0 follows by the arguments used in the afore-
mentioned paper, provided n0 is sufficiently large so that γ(A0n0) < 0. Hence i) is estab-
lished.

Now we will prove ii). We have

ln(θn) =
1

n

n
∑

t=1

ǫ2
t,n

σ2
t,n

+ log σ2
t,n =

1

n

n
∑

t=1

η2
t +

1

n

n
∑

t=1

log σ2
t,n.

In the right-hand side of the last equality, the first sample mean converges to 1, a.s., and
the second one is between 1

n

∑n
t=1 log σ2

t and 1
n

∑n
t=1 log σ2

t,n0
. By the ergodic theorem,
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these sample means a.s. converge to E log σ2
t and E log σ2

t,n0
respectively, when n → ∞

(the existence of such expectations was shown in FZ (2004), Proof of Theorem 2.1, under
the strict stationarity condition). The latter expectation decreases to the former one when
n0 tends to infinity, which establishes ii).

It remains to show iii). For any θ ∈ Θ and any positive integer k, let Vk(θ) be the open
ball with center θ and radius 1/k. Proceeding as in FZ (2004), and in view of (E.1), we
find that

lim inf
n→∞

inf
θ∗∈Vk(θ)∩Θ

l̃n(θ∗) ≥ lim inf
n→∞

n−1
n
∑

t=1

inf
θ∗∈Vk(θ)∩Θ

ℓt,n(θ∗)

= lim inf
n→∞

n−1
n
∑

t=1

inf
θ∗∈Vk(θ)∩Θ

(

log σ2
t,n +

ǫ2
t,n

σ2
t,n

)

(θ∗)

≥ lim inf
n→∞

n−1
n
∑

t=1

inf
θ∗∈Vk(θ)∩Θ

(

log σ2
t +

ǫ2
t

σ2
t,n0

)

(θ∗)

= E inf
θ∗∈Vk(θ)∩Θ

(

log σ2
t +

ǫ2
t

σ2
t,n0

)

(θ∗).

The last equality follows from the ergodic theorem for stationary and ergodic processes
(Xt) such that E(Xt) exists in R ∪ {+∞} (see Billingsley (1995)2 p. 284 and 495).
In the last equality, the infimum is larger than infθ∗∈Θ(log ω∗) which ensures the exis-
tence of its expectation. By the Beppo-Levi theorem, when k and n0 increase to ∞,

E infθ∗∈Vk(θ)∩Θ

(

log σ2
t +

ǫ2t
σ2

t,n0

)

(θ∗) increases to Eℓ1(θ). In view of Eℓ1(θ) > Eℓ1(θ0),

which was shown in FZ (2004), iii) is proved.

E.2 Asymptotic normality of the score at θn.

For the sake of brevity we will only establish the asymptotic distribution of θ̂n under the
assumptions A2–A6 and A8. The proof can be straightforwardly adapted when A7,
instead of A8, holds. We will show that, when n tends to infinity

n−1/2
n
∑

t=1

∂

∂θ
ℓ̃t,n(θn)

d→ N (0, (κη − 1)J) , (E.3)

and

n−1
n
∑

t=1

∂2

∂θi∂θj
ℓ̃t,n(θ∗ij)

P→ J(i, j), (E.4)

2Probability and Measure. John Wiley, New York.
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for any θ∗ij between θn and θ̂n. Let n0 be a sufficiently large integer so that γ(A0n0) < 0

and θn0 ∈
◦
Θ. We will show that

a) E

∥

∥

∥

∥

∂ℓt,n0(θn0)

∂θ

∂ℓt,n0(θn0)

∂θ′

∥

∥

∥

∥

< ∞, E

∥

∥

∥

∥

∂2ℓt,n0(θn0)

∂θ∂θ′

∥

∥

∥

∥

< ∞,

b) n−1/2
n
∑

t=1

∂

∂θ
ℓt,n(θn)

d→ N (0, (κη − 1)J) , (E.5)

c) E sup
n≥n0

sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

∂2ℓt,n(θ)

∂θ∂θ′

∥

∥

∥

∥

< ∞,

d)

∥

∥

∥

∥

∥

n−1/2
n
∑

t=1

{

∂ℓt,n(θn)

∂θ
− ∂ℓ̃t,n(θn)

∂θ

}∥

∥

∥

∥

∥

→ 0 and (E.6)

sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

∥

n−1
n
∑

t=1

{

∂2ℓt,n(θ)

∂θ∂θ′
− ∂2ℓ̃t,n(θ)

∂θ∂θ′

}∥

∥

∥

∥

∥

P→ 0, (E.7)

e) n−1
n
∑

t=1

∂2

∂θi∂θj
ℓt,n(θn) → J(i, j) a.s, (E.8)

f) for all i, j, k ∈ {1, . . . , p + q + 1}, E sup
n≥n0

sup
θ∈V(θ0)∩Θ

∣

∣

∣

∣

∂3ℓt,n(θ)

∂θi∂θj∂θk

∣

∣

∣

∣

< ∞,

for some neighborhood V(θ0) of θ0. We begin to show that (E.3) and (E.4) follow from
a)-f).

Proof of (E.3) and (E.4). The convergence (E.3) is a straightforward consequence of
b) and the first part of d). To show (E.4) we start by using the second part of d) and the
strong consistency, to prove that ℓ̃t,n(θ∗ij) can be replaced by ℓt,n(θ∗ij). Then we make the
Taylor expansion

n−1
n
∑

t=1

∂2

∂θi∂θj
ℓt,n(θ∗ij) = n−1

n
∑

t=1

∂2

∂θi∂θj
ℓt,n(θn) + (θ∗ij − θn)′n−1

n
∑

t=1

∂3

∂θ∂θi∂θj
ℓt,n(θ∗∗ij ),

where θ∗∗ij is between θ∗ij and θn. To conclude, we use e), f) and again the strong consistency.

Proof of a)-f). Since θn0 belongs to the interior of Θ, a) is a consequence of the properties
established in FZ (2004) (proof of Theorem 2.2). Turning to b), in view of

n−1/2
n
∑

t=1

∂

∂θ
ℓt,n(θn) = n−1/2

n
∑

t=1

(1 − η2
t )

1

σ2
t,n

∂σ2
t,n

∂θ
:= n−1/2

n
∑

t=1

Xt,n,

we will use the Lindeberg central limit theorem for triangular arrays of martingale differ-
ences. Indeed, recall that σ2

t,n and its derivatives are measurable with respect to the σ−field
Ft−1 generated by the variables ηt−i, i > 0. It follows that for any n ≥ 1, {Xt,n,Ft−1}t is
a strictly stationary martingale difference. Under the assumptions of the theorem, (Xt,n)
is clearly square integrable for n large enough, because θn belongs to the interior of Θ (see
FZ (2004)). Let λ ∈ R

p+q+1, let xt,n = λ′Xt,n and let

s2
t,n = E(x2

t,n | Ft−1) = (κη − 1)λ′ 1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
λ.
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Using the Wold-Cramer device it will be sufficient to show that

1

n

n
∑

t=1

s2
t,n

P→ (κη − 1)λ′Jλ, and (E.9)

1

n

n
∑

t=1

E(x2
t,n1l|xt,n|≥n1/2ε) → 0, when n → ∞, (E.10)

for any ε > 0. First consider the derivative of σ2
t,n with respect to βj . In view of (A.3)-(A.5)

in FZ, we have

σ2
t,n =

∞
∑

k=0

Bk
n(1, 1)

(

ωn +

q
∑

i=1

αi,nǫ2
t−k−i,n

)

,
∂σ2

t,n

∂βj
=

∞
∑

k=1

Bk,j;n(1, 1)

(

ωn +

q
∑

i=1

αi,nǫ2
t−k−i,n

)

,

where Bn (resp. Bk,j;n) is the matrix obtained from B (resp. Bk,j) by replacing the
coefficients βi by βi,n. Denote by jσ

2
t,n (resp. jσ2

t,n) the variable obtained by replacing
ǫ2
t−j,n by ǫ2

t−j,n0
(resp. ǫ2

t−j) in the expansion of σ2
t,n. Denote by jσ

2
t (resp. jσ2

t ) the

variable obtained by replacing the variables ǫ2
t−i,n by ǫ2

t−i (resp. by ǫ2
t−i,n0

, and ǫ2
t−j,n0

by

ǫ2
t−j) in jσ

2
t,n, and the coefficients of θn by those of θ0 (resp. θn0). To make it clear, let

us consider the example of a GARCH(1,1): we have σ2
t,n = ωn

1−βn
+ αn

∑

i≥1 βi−1
n ǫ2

t−i,n,

jσ
2
t,n = ωn

1−βn
+ αnβj−1

n ǫ2
t−j,n0

+ αn
∑

i≥1,i6=j βi−1
n ǫ2

t−i,n and jσ2
t,n = ωn

1−βn
+ αnβj−1

n ǫ2
t−j +

αn
∑

i≥1,i6=j βi−1
n ǫ2

t−i,n, whereas jσ
2
t = ω0

1−β0
+ α0β

j−1
0 ǫ2

t−j,n0
+ α0

∑

i≥1,i6=j βi−1
0 ǫ2

t−i and
jσ2

t =
ωn0

1−βn0
+ αn0β

j−1
n0 ǫ2

t−j + αn0

∑

i≥1,i6=j βi−1
n0

ǫ2
t−i,n0

. Notice that for any constants a > 0

and b > 0, the function x → x/(a + bx) is increasing over the positive line. Considering
σ2

t,n as a function of ǫ2
t−j, for j > 0, it follows that, using (E.1),

ǫ2
t−j

jσ2
t,n

≤
ǫ2
t−j,n

σ2
t,n

≤
ǫ2
t−j,n0

jσ2
t,n

.

We also have, from (A.5) in FZ,

Bk,j;n =

k
∑

m=1

Bm−1
n B(j)Bk−m

n ≤
k
∑

m=1

Bm−1
n0

B(j)Bk−m
n0

= Bk,j;n0.

In view of the last inequalities, and (E.1), we have for j = 1, . . . , p,

1

σ2
t,n

∂σ2
t,n

∂βj
≤

∞
∑

k=1

Bk,j;n(1, 1)

(

ωn +

q
∑

i=1

αi,n

ǫ2
t−k−i,n0

k+iσ
2
t,n

)

≤
∞
∑

k=1

Bk,j;n0(1, 1)

(

ωn0 +

q
∑

i=1

αi,n0

ǫ2
t−k−i,n0

k+iσ
2
t

)

. (E.11)

The last inequality uses the fact that the components of θn are decreasing functions of n,
and that all the quantities involved, in particular Bk,j;n(1, 1), are nonnegative. Similarly
we have,

1

σ2
t,n

∂σ2
t,n

∂βj
≥

∞
∑

k=1

Bk,j(1, 1)

(

ω0 +

q
∑

i=1

α0i

ǫ2
t−k−i

k+iσ2
t

)

.
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Similar lower and upper bounds hold for σ−2
t,n

∂σ2
t,n

∂αi
, i = 1, . . . , q and σ−2

t,n
∂σ2

t,n

∂ω . It follows
that

Y
(1)
t (n0) ≤

1

σ2
t,n

∂σ2
t,n

∂θ
≤ Y

(2)
t (n0) (E.12)

for some (R+)p+q+1-valued, strictly stationary, processes (Y
(1)
t (n0)) and (Y

(2)
t (n0)). Be-

cause the vectors involved in the last inequality have positive components, it follows that

Y
(1)
t (n0)Y

(1)
t (n0)

′ ≤ 1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
≤ Y

(2)
t (n0)Y

(2)
t (n0)

′, (E.13)

componentwise. Note that the lower and upper bounds obtained for the matrix inside
the inequalities are independent of n, whenever n ≥ n0. The ergodic theorem applies

to n−1
∑n

t=1 Y
(i)
t (n0)Y

(i)
t (n0)

′ (i = 1, 2) provided the expectation of Y
(2)
t (n0)Y

(2)
t (n0)

′ is
finite. This can be shown by exactly the same techniques as those employed to establish
Lemma 8 in FZ. More precisely, if A8 holds true, proceeding as in the calculations leading
to (A.16) in FZ, we obtain an upper bound for the right-hand side of (E.11) as

Y
(2)
q+1+j,t(n0) ≤ ωn0

∞
∑

k=j

kBk−j
n0

(1, 1) +

∞
∑

k=j+1

k−j
∑

ℓ=1

αn0ℓkBk−ℓ−j
n0

(1, 1)
ǫ2
t−k,n0

kσ
2
t

≤ Cn0 +

∞
∑

k=j+1

k−j
∑

ℓ=1

αn0ℓk
Bk−ℓ−j

n0 (1, 1)ǫ2s
t−k,n0

ωs
0α

1−s{Bk−ik
0 (1, 1)}1−s

,

where Y
(2)
t (n0) = (Y

(2)
it (n0))1≤i≤p+q+1, for some positive constant α and for any s ∈

(0, 1). It turns out that Y
(2)
q+1+j,t(n0) admit moments at any order. The same conclusion

holds for the other components of Y
(2)
t (n0). It follows that n−1

∑n
t=1 Y

(2)
t (n0)Y

(2)
t (n0)

′
P→ EY

(2)
t (n0)Y

(2)
t (n0)

′. By the Lebesgue theorem, this expectation converges to J when

n0 → ∞. Similarly n−1
∑n

t=1 Y
(1)
t (n0)Y

(1)
t (n0)

′ P→ J when n and n0 tend to infinity. In
view of (E.13) we can conclude that

n−1
n
∑

t=1

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
→ J in probability when n tends to infinity,

from which (E.9) straightforwardly follows. To prove (E.10) we first remark that the
expectations in the right-hand side are independent of t, by strict stationarity of (xt,n). In
addition, the previous arguments show that xt,n admits moments at any order, which are
bounded when n increases. By the Schwarz and Markov inequalities the convergence in
(E.10) follows and the proof of b) is complete.

Now we prove c). The second derivative of ℓt,n(θ) is given by

∂2ℓt,n

∂θ∂θ′
=

{

1 −
ǫ2
t,n

σ2
t,n

}

1

σ2
t,n

∂2σ2
t,n

∂θ∂θ′
+

{

2
ǫ2
t,n

σ2
t,n

− 1

}

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
. (E.14)

First we will show that a formula similar to (E.12) holds in some neighborhood V(θ0) of
θ0. Let n0 be large enough so that θn0 ∈ V(θ0). Let jσ

2
t be obtained by replacing in jσ

2
t ,

componentwise, θ0 by the infimum of θ over V(θ0) ∩ Θ. Then, in view of (E.11)

sup
θ∈V(θ0)∩Θ

1

σ2
t,n

∂σ2
t,n

∂βj
(θ) ≤

∞
∑

k=1

sup
θ∈V(θ0)∩Θ

Bk,j(1, 1)

(

ω +

q
∑

i=1

αi

ǫ2
t−k−i,n0

k+iσ
2
t

)

.
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Note that, under A8, for V(θ0) sufficiently small, ǫ2
t−k−i,n0

appears in the expansion of

k+iσ
2
t , by continuity arguments. Note also that the derivatives are nonnegative. Therefore,

exactly the same arguments as those used to show b) apply, to establish that,

0 ≤ sup
n≥n0

sup
θ∈V(θ0)∩Θ

1

σ2
t,n

∂σ2
t,n

∂θ
(θ) ≤ Y

(3)
t (n0), (E.15)

for some vector Y
(3)
t (n0) admitting moments at any order. Similar arguments show that

for i, j = 1, . . . , p,

0 ≤ sup
n≥n0

sup
θ∈V(θ0)∩Θ

1

σ2
t,n

∂2σ2
t,n

∂θi∂θj
(θ) ≤ Y

(4)
i,j,t(n0), (E.16)

for some variables Y
(4)
i,j,t(n0) admitting moments at any order.

To handle terms of (E.14) involving

ǫ2
t,n

σ2
t,n(θ)

= η2
t

σ2
t,n(θn)

σ2
t,n(θ)

,

we will use the expansion σ2
t,n(θ) = c +

∑∞
j=1 bjǫ

2
t−j,n where bj =

∑j
ℓ=1 αjB

j−ℓ(1, 1). Note
that bj > 0 over V(θ0)∩Θ. Let δ > 0. Using again the elementary inequality ax/(b+ cx) ≤
axs/(bsc1−s) for all a, b, c, x ≥ 0 and any s ∈ (0, 1), we obtain, for V(θ0) sufficiently small

σ2
t,n(θn)

σ2
t,n(θ)

≤ C + C
∞
∑

j=1

bj,n0

bj
bs
jǫ

s
t−j,n0

≤ C + C
∞
∑

j=1

(1 + δ)jρjsǫs
t−j,n0

, (E.17)

uniformly in θ ∈ V(θ0) ∩ Θ, for some ρ < 1. The last inequality uses the fact that for n0

sufficiently large, there exists a neighborhood V(θ0) of θ0 such that Bn0 ≤ (1 + δ)B for all
θ ∈ V(θ0) ∩ Θ. Choosing s such that Eǫ2s

t,n0
< ∞ and, for instance, δ = (1 − ρs)/(2ρs) we

obtain

E sup
n≥n0

sup
θ∈V(θ0)∩Θ

ǫ2
t,n

σ2
t,n(θ)

= E sup
n≥n0

sup
θ∈V(θ0)∩Θ

σ2
t,n(θn)

σ2
t,n(θ)

< ∞.

For the same choice of δ, with s such that Eǫ4s
t < ∞, and using (E.17), we find

∥

∥

∥

∥

∥

sup
n≥n0

sup
θ∈V(θ0)∩Θ

ǫ2
t,n

σ2
t,n(θ)

∥

∥

∥

∥

∥

2

= κ1/2
η

∥

∥

∥

∥

∥

sup
n≥n0

sup
θ∈V(θ0)∩Θ

σ2
t,n(θn)

σ2
t,n(θ)

∥

∥

∥

∥

∥

2

≤ C + C

∞
∑

j=1

(1 + δ)jρjs
∥

∥ǫ2s
t,n

∥

∥

2
< ∞.

Using (E.14), (E.15), (E.16), (E.18) and the Schwarz inequality, it is straightforward to
conclude that c) holds.

To prove d) first note that, analogue to (E.2), we have almost surely

sup
θ∈Θ

∣

∣

∣

∣

∣

∂σ2
t,n

∂θ
−

∂σ̃2
t,n

∂θ

∣

∣

∣

∣

∣

≤ Cρt, sup
θ∈Θ

∣

∣

∣

∣

∣

∂2σ2
t,n

∂θ∂θ′
−

∂2σ̃2
t,n

∂θ∂θ′

∣

∣

∣

∣

∣

≤ Cρt, ∀t
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where C does not depend on n. It follows that
∣

∣

∣

∣

∣

n−1/2
n
∑

t=1

{

∂ℓt,n(θn)

∂θi
− ∂ℓ̃t,n(θn)

∂θi

}∣

∣

∣

∣

∣

≤ C∗n−1/2
n
∑

t=1

ρt(1 + η2
t )

{

1 +
1

σ2
t,n

∂σ2
t,n

∂θi

}

,

≤ C∗n−1/2
n
∑

t=1

ρt(1 + η2
t )
{

1 + Y
(2)
it (n0)

}

,

where Y
(2)
it (n0) is the i-th component of Y

(2)
t (n0) introduced in (E.12). The Markov in-

equality and the independence between ηt and Y
(2)
t (n0) allow to show the first convergence

in d). By similarity with the proof of Theorem 3.1, we find that the supremum in d) is
bounded by Cn−1

∑n
t=1 ρtΥt,n, where

Υt,n = sup
θ∈V(θ0)∩Θ

{

1 +
ǫ2
t,n

σ2
t,n

}{

1 +
1

σ2
t,n

∂2σ2
t,n

∂θi∂θj
+

1

σ2
t,n

∂σ2
t,n

∂θi

1

σ2
t,n

∂σ2
t,n

∂θj

}

.

We have

sup
θ∈V(θ0)∩Θ

{

1 +
ǫ2
t,n

σ2
t,n

}

≤ C(1 + ǫ2
t,n) ≤ C(1 + ǫ2

t,n0
),

where the right-hand side admits a moment of order 3s. In view of the results established
in the proof of c), it follows that EΥs

t,n < C. The rest of the proof is identical to that of
d) in the proof Theorem 3.1.

Now we show e). First consider the second group of terms in the second derivative of
ℓt,n, displayed in (E.14), at the value θn. In view of (E.13), we have

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
≤ n−1

n
∑

t=1

(2η2
t − 1)1l2η2

t ≥1Y
(2)
t (n0)Y

(2)
t (n0)

′

+n−1
n
∑

t=1

(2η2
t − 1)1l2η2

t <1Y
(1)
t (n0)Y

(1)
t (n0)

′.

The ergodic theorem applies to the sums of the right hand side and yields, a.s.

lim sup
n→∞

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
≤ E{(2η2

t − 1)1l2η2
t ≥1}E{Y (2)

t (n0)Y
(2)
t (n0)

′}

+E{(2η2
t − 1)1l2η2

t <1}E{Y (1)
t (n0)Y

(1)
t (n0)

′}

from the independence between ηt and the variables Y
(i)
t (n0). We have already seen that

E{Y (i)
t (n0)Y

(i)
t (n0)

′} → J , for i = 1, 2, as n0 → ∞. It follows that

lim sup
n→∞

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
≤ E{(2η2

t − 1)(1l2η2
t ≥1 + 1l2η2

t <1)}J = J.

Similarly we have

lim inf
n→∞

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
≥ E{(2η2

t − 1)1l2η2
t ≥1}E{Y (1)

t (n0)Y
(1)
t (n0)

′}

+E{(2η2
t − 1)1l2η2

t <1}E{Y (2)
t (n0)Y

(2)
t (n0)

′},
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which converges to J as n0 → ∞. Thus we have proved that, a.s.

lim
n→∞

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′
= J.

The first group of terms in the right-hand side of (E.14) can be treated analogously, using

lower and upper bounds for σ−2
t,n

∂2σ2
t,n

∂θ∂θ′ . Therefore we have a.s.

lim
n→∞

n−1
n
∑

t=1

(1 − η2
t )

1

σ2
t,n

∂σ2
t,n

∂θ∂θ′
= 0.

The convergence in e) follows.
Finally, f) is proved in the same manner as c). Indeed, it can be seen from FZ that the

third derivative of ℓt,n involves products of terms already encountered, plus a term involving
the third derivative of σ2

t,n divided by σ2
t,n. This term can be bounded independently of n,

as in (E.15) and (E.16), which allows to conclude.

E.3 Asymptotic distribution of θ̂n.

We start by introducing some notations. Let, for n sufficiently large

Jn,τ =
∂2

ln(θn)

∂θ∂θ′
, Zn,τ = −J−1

n,τ

√
n

∂ln(θn)

∂θ
,

where the non singularity of Jn,τ follows from (E.4), and let

θJn,τ (Zn,τ ) = arg inf
θ∈Θ

‖Zn,τ −√
n(θ − θn)‖Jn,τ , λΛ

n,τ = arg inf
λ∈Λ

‖Zn,τ + τ − λ‖Jn,τ .

Similarly to (A.33) in FZ, we have the following quadratic expansion of the quasi-likelihood
function around θn

l̃n(θ) = l̃n(θn) +
1

2n
‖Zn,τ −√

n(θ − θn)‖2
Jn,τ

− 1

2n
Z ′

n,τJn,τZn,τ + Rn(θ), (E.18)

where Rn(θ) is a remainder term. We will prove

(i)
√

n(θJn,τ (Zn,τ ) − θn) = OP (1),

(ii)
√

n(θ̂n − θn) = OP (1),

(iii) for any sequence (θ∗n) such that
√

n(θ∗n − θ0) = OP (1), Rn(θ∗n) = oP (n−1),

(iv) ‖Zn,τ −√
n(θ̂n − θn)‖2

Jn,τ

oP (1)
= ‖Zn,τ + τ − λΛ

n,τ‖2
Jn,τ

,

(v)
√

n(θ̂n − θ0)
oP (1)
= λΛ

n,τ ,

(vi) λΛ
n,τ

d→ λΛ(τ).

It suffices to adapt the arguments given in the proof of Theorem 3.1. For brevity we will
only mention the points that need to be adapted.

In the proof of (i) the same arguments apply, noting that ‖Zn,τ‖Jn,τ = OP (1) because

Jn,τ
P→ J by (E.8), and

√
n∂ln(θn)

∂θ = OP (1) by (E.5).
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The remainder term in (E.18) satisfies

Rn(θ) =

{

n1/2

(

∂ l̃n(θn)

∂θ
− ∂ln(θn)

∂θ

)}

n−1/2(θ − θn) +

+
1

2
(θ − θn)′

{

∂2
l̃n(θn)

∂θ∂θ′
− Jn,τ +

[

∂2
l̃n(θ∗ij)

∂θ∂θ′

]

− ∂2
l̃n(θn)

∂θ∂θ′

}

(θ − θn),

for some θ∗ij between θ and θn. By (E.4) and the second part of (E.6), the last two terms
into accolades tends to zero in probability as n tends to infinity. The first term into
accolades converges to zero in probability by the first part of (E.6). To establish (ii), it
is then straightforward to adjust the arguments given in the proof of Theorem 3.1. The
same remark applies to the proof of (iii), and, noting that

√
n(θJn,τ (Zn,τ )− θn) = λΛ

n,τ for
n sufficiently large, to that of (iv).

The vector λΛ
n,τ being the projection of Zn,τ + τ on the convex set Λ for the scalar

product < x, y >Jn,τ , we have
〈

Zn,τ + τ − λΛ
n,τ , λ

Λ
n,τ − λ

〉

Jn,τ
≥ 0, ∀λ ∈ Λ. Thus, since

√
n(θ̂n − θ0) ∈ Λ,

∥

∥

∥

√
n(θ̂n − θn) − Zn,τ

∥

∥

∥

2

Jn,τ

=
∥

∥

∥

√
n(θ̂n − θ0) − (Zn,τ + τ)

∥

∥

∥

2

Jn,τ

≥
∥

∥

∥

√
n(θ̂n − θ0) − λΛ

n

∥

∥

∥

2

Jn

+
∥

∥λΛ
n − (Zn,τ + τ)

∥

∥

2

Jn,τ
.

Hence, (v) follows from (iv) and

∥

∥

∥

√
n(θ̂n − θ0) − λΛ

n

∥

∥

∥

2

Jn,τ

≤ ‖Zn,τ −√
n(θ̂n − θn)‖2

Jn,τ
− ‖Zn,τ + τ − λΛ

n‖2
Jn,τ

= oP (1).

Finally, (vi) is proved by arguments already given.

F Proof of (A.15)

The proof is similar to that of (2.3). Note that θ0|2 minimizes

Eθ0

(

ǫ2
t

σ2
t (θ)

+ log σ2
t (θ)

)

= Eθ0

(

σ2
t (θ0)

σ2
t (θ)

+ log σ2
t (θ)

)

under the constraint θ(2) = 0. For any c > 0, there exists θ∗0|2 such that σ2
t (θ

∗
0|2) = cσ2

t (θ0|2)
for all t ≥ 0. Note that θ∗0|2 6= θ0|2 iff c 6= 1. Let

f(c) = Eθ0

(

σ2
t (θ0)

cσ2
t (θ0|2)

+ log cσ2
t (θ0|2)

)

.

The minimum of f is obtained at a unique point, given by

c = Eθ0

(

σ2
t (θ0)

σ2
t (θ0|2)

)

.

Thus, for this value c, we have θ∗0|2 = θ0|2. Hence c = 1, which is the announced result.
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G Proof that ρǫ2(h) > 0 (used in the proof of Proposition 7.2)

It suffices to show that we have a MA(∞) of the form

ǫ2
t = c + νt +

∞
∑

ℓ=1

φℓνt−ℓ, with φℓ ≥ 0 ∀ℓ.

Indeed, νt := ǫ2
t − σ2

t = (η2
t − 1)σ2

t being a white noise, we have

γǫ2(h) = Eν2
1

∞
∑

ℓ=0

φℓφℓ+|h|, with the notation φ0 = 1.

Denoting by B the backshift operator, and introducing the notation α(z) =
∑q

i=1 αiz
i,

β(z) =
∑p

j=1 βjz
j and φ(z) =

∑∞
ℓ=1 φℓz

ℓ, we obtain

ǫ2
t = {1 − (α + β)(1)}−1ω + {1 − (α + β)(B)}−1(1 − β(B))νt = c + φ(B)νt.

Since 1−β(B) = 1−(α+β)(B)+α(B), we obtain φℓ as the coefficient of zℓ in the division
of α(z) by 1− (α + β)(z) according to the increasing powers of z. By recurrence on ℓ, it is
easy to see that these coefficients are positive because the polynomials α(z) and (α+β)(z)
have positive coefficients.
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