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1 Introduction

In comparison with other volatility models (e.g. the standard stochastic volatility model)

GARCH models are simple to estimate, which has greatly contributed to their popularity.

The volatility being a function of the past observations, the likelihood function has an

explicit form which makes it easy to handle. A variety of alternative estimation methods

can also be considered.

Least squares and quasi-maximum likelihood estimations in ARCH models were consid-

ered in the seminal paper by Engle [13]. The asymptotic properties of the quasi-maximum

likelihood estimator (QMLE) received broad interest in the last 20 years. Pioneering work

established consistency and asymptotic normality under strong assumptions on the para-

meter space and the true parameter value. The problem of finding weak assumptions for

the consistency and asymptotic normality of the QMLE in GARCH models has attracted

a lot of attention in the statistics literature. The first papers limited their scope to ARCH

(see [49]) or GARCH(1,1) models (see [31, 40]). See [2, 3, 4, 17, 25], for recent references on

the QMLE of general GARCH(p, q) models. See [46] for a recent comprehensive monograph

on the estimation of GARCH models.

Numerous GARCH-type models have been introduced and it is simply not possible to

consider the estimation of all of them. In this article we limit ourselves to the standard

GARCH(p, q) model given by the equations





ǫt =
√
htηt

ht = ω0 +
∑q

i=1 α0iǫ
2
t−i +

∑p
j=1 β0jht−j , t ∈ Z = {0,±1, . . . }

(1.1)

where

ω0 > 0, α0i ≥ 0 (i = 1, . . . , q), β0j ≥ 0 (j = 1, . . . , p),

{ηt, t ∈ Z} are iid random variables such that Eη2
1 = 1.

We assume that ǫ1, . . . , ǫn are observations from the process (ǫt, t ∈ Z), assumed to be

a strictly stationary, ergodic and nonanticipative solution of Model (1.1). Conditions for

stationarity are obtained (see [32]) from the vector representation

zt = bt +A0t−1zt−1, (1.2)
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where, for p ≥ 2 and q ≥ 2,

zt = (ht, . . . , ht−p+1, ǫ
2
t−1, . . . , ǫ

2
t−q+1)

′ ∈ R
p+q−1,

bt = (ω, 0, . . . , 0)′ ∈ R
p+q−1,

A0t =




τ ′t β0p α′
02:q−1 α0q

Ip−1 0 0 0

ξ′t 0 0 0

0 0 Iq−2 0



,

with

τt = (β01 + α01η
2
t , β02, . . . , β0p−1)

′ ∈ R
p−1,

ξt = (η2
t , 0, . . . , 0)

′ ∈ R
p−1,

α02:q−1 = (α02, . . . , α0q−1)
′ ∈ R

q−2.

A nonanticipative solution (ǫt) of model (1.1) is such that ǫt is a measurable function of

the (ηt−i, i ≥ 0). Bougerol and Picard [7] showed that the model has a (unique) strictly

stationary non anticipative solution if and only if

γ(A0) < 0,

where γ(A0) is the top Lyapunov exponent of the sequence (A0t), that is

γ(A0) = lim
t→∞

1

t
log ‖A0tA0t−1 . . . A01‖ a.s.

where ‖·‖ denotes any norm on the space of the (p+q−1)×(p+q−1) matrices. In addition,

the strictly stationary solution is ergodic as a measurable function of the (ηt−i, i ≥ 0). Let

us mention two important consequences of γ(A0) < 0: (i)
∑p

j=1 β0j < 1, and (ii) for some

s > 0, E|ǫ1|2s < ∞ (see Lemma 2.3 in [4] for the proof). The latter property is crucial

to avoid unnecessary moment conditions in the proof of the asymptotic properties of the

QMLE.

Throughout the orders p and q are assumed to be known. The vector of parameters is

denoted by

θ = (θ1, . . . , θp+q+1)
′ = (ω,α1, . . . , αq, β1, . . . , βp)

′

and it belongs to a parameter space Θ ⊂]0,+∞[×[0,∞[p+q. The true parameter value

θ0 = (ω0, α01, . . . , α0q, β01, . . . , β0p)
′ is unknown.
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We review the main estimation methods, with special attention to the quasi-maximum

likelihood method. The focus will be on asymptotic results rather than on small-sample and

numerical issues. We start, in Section 2, by considering the Least-Squares estimator (LSE)

for ARCH(q) models, which is simple to compute but requires high moment assumptions.

Then we turn to QMLE in Section 3. Section 4 is devoted to efficiency issues. In Section

5 we consider alternative estimators. Finally we discuss in Section 6 the case where some

GARCH coefficients are equal to zero, putting the true parameter value on the boundary

of the parameter space.

2 Least-Squares estimation of ARCH models

In this section we assume p = 0. The LSE is obtained from the AR(q) representation for

ǫ2t :

ǫ2t = ω0 +

q∑

i=1

α0iǫ
2
t−i + ut, (2.1)

where ut = ǫ2t − ht = (η2
t − 1)ht. The sequence (ut,Ft−1)t is thus a martingale differ-

ence when Eǫ21 = Eh1 < ∞ and Ft−1 denotes the σ-field generated by {ηu, u < t}. Let

ǫ0, . . . , ǫ1−q denote arbitrary initial values. Introducing the vector Z ′
t−1 =

(
1, ǫ2t−1, . . . , ǫ

2
t−q

)
,

we get from (2.1)

Y = Xθ0 + U

where

X =




Z ′
n−1

...

Z ′
0


 , Y =




ǫ2n
...

ǫ21


 , U =




un

...

u1


 .

When X ′X is non-singular (which can be shown to hold, a.s. for large enough n, under

Assumption A3 given below) the LSE of θ0 is thus given by:

θ̂LS
n = (ω̂, α̂1, . . . , α̂q)

′ = (X ′X)−1X ′Y.

The LSE of s20 = Var(u1) is

ŝ2n =
1

n− q − 1
‖Y −Xθ̂LS

n ‖2 =
1

n− q − 1

n∑

t=1

{
ǫ2t − ω̂ −

q∑

i=1

α̂iǫ
2
t−i

}2

.

It is worth mentioning that the LSE is asymptotically equivalent to the Yule-Walker esti-

mator of the AR(q) model (2.1) (see Chapter 8 in [9]) and to the Whittle estimator studied

by [24, 42, 46].
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The consistency and asymptotic normality of the LSE require some additional assump-

tions. For identifiability we assume that the distribution of ηt is centered and nondegener-

ate, i.e. P (η2
1 = 1) 6= 1. If E(ǫ41) < +∞, the LSE can be shown to be strongly consistent

(see [6]):

θ̂LS
n → θ0, ŝ2n → s20, a.s. as n→ ∞.

If, in addition E(ǫ81) < +∞ the estimator of θ0 is asymptotically normal (see also [6]);

more precisely,
√
n(θ̂LS

n − θ0)
d→ N

{
0, (Eη4

1 − 1)A−1BA−1
}
, (2.2)

where

A = Eθ0
(ZqZ

′
q), B = Eθ0

(h2
q+1ZqZ

′
q)

are non-singular matrices. Note that the vector Zq does not depend on the initial values

ǫ0, . . . , ǫ1−q. Consistent estimators of the matrices A and B are straightforwardly obtained

by replacing the theoretical moments by empirical ones.

In the framework of linear regression models, it is well known that for heteroscedas-

tic observations the ordinary LSE is outperformed by the quasi-generalized least squares

estimator (QGLSE); see e.g. [26] Chapter 8. In our framework the QGLSE is defined by

θ̂QGLS
n = (X ′Ω̂X)−1X ′Ω̂Y,

where Ω̂ is a consistent estimator of Ω = Diag(h−2
n , . . . , h−2

1 ). If θ̂LS
n is computed in a first

step, then Ω̂ can be obtained by replacing ht by ω̂+
∑q

i=1 α̂iǫ
2
t−i in Ω. Then the two-stage

least squares estimator θ̂QGLS
n is consistent and asymptotically normal

√
n(θ̂QGLS

n − θ0)
d→ N

{
0, (Eη4

1 − 1)J−1
}
, J = Eθ0

(h−2
q+1ZqZ

′
q), (2.3)

under the moment assumption Eǫ41 < ∞ when all the ARCH coefficients are strictly

positive, and under a slightly stronger moment assumption in the general case; see [6, 22].

The moment conditions can be made explicit using the vector representation (1.2). It

is shown in [10] that E(ǫ41) < +∞ if and only if ρ {E(A01 ⊗A01)} < 1 where ⊗ denotes the

Kronecker product and ρ(A) the spectral radius of a square matrix A. More generally, if

Eη2m
1 <∞ for some positive integer m then E(ǫ2m

1 ) < +∞ if and only if ρ
{
E(A⊗m

01 )
}
< 1,

where A⊗m
01 stands for the kronecker product of A01 by itself m times. As can be seen in

Table 1, the moment conditions imply strong reduction of the admissible parameter space.

It is the main advantage of the QMLE to avoid such restrictions.
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Table 1: Conditions for strict stationarity and for the existence of moments of the ARCH(1)

model when ηt follows a N (0, 1) or Student distributions normalized in such a way that

Eη2
1 = 1 (Stν stands for a normalized Student distribution with ν degrees of freedom)

Strict stationarity Eǫ2t <∞ Eǫ4t <∞ Eǫ8t <∞
Normal α01 < 3.562 α01 < 1 α01 < 0.577 α01 < 0.312

St3 α01 < 7.389 α01 < 1 No No

St5 α01 < 4.797 α01 < 1 α01 < 0.333 No

St9 α01 < 4.082 α01 < 1 α01 < 0.488 α01 < 0.143

Note that, as in the case of linear regression models, the QGLSE is at least as efficient

as the LSE. Indeed, setting D = hq+1A
−1Zq − h−1

q+1J
−1Zq, the matrix

Eθ0
DD′ = A−1Eθ0

(h2
q+1ZqZ

′
q)A

−1 + J−1Eθ0
(h−2

q+1ZqZ
′
q)J

−1

−A−1Eθ0
(ZqZ

′
q)J

−1 − J−1Eθ0
(ZqZ

′
q)A

−1

= A−1BA−1 − J−1

is semi-positive definite.

3 Quasi-maximum likelihood estimation

Gaussian quasi-maximum likelihood estimation has become a very popular method for

GARCH models. The basic idea of this approach is to maximize the likelihood function

written under the assumption that the noise (ηt) is Gaussian. Since ǫt is then Gaussian con-

ditionally on the past ǫ’s and σ’s, the likelihood function factorizes under a very tractable

form which is maximized to produce the QMLE. The Gaussianity of the noise is inessen-

tial for the asymptotic properties of the QMLE. We start by considering the case of pure

GARCH models, corresponding to the practical situation where a GARCH is estimated on

the log-returns.

3.1 Pure GARCH models

Conditionally on initial values ǫ0, . . . , ǫ1−q, σ̃
2
0 , . . . , σ̃

2
1−p, let us define recursively

σ̃2
t = σ̃2

t (θ) = ω +

q∑

i=1

αiǫ
2
t−i +

p∑

j=1

βj σ̃
2
t−j
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for t = 1, . . . , n. Due to the initial values, the sequence (σ̃2
t ) is not stationary, but can be

viewed (see [17]) as an approximation of the strictly stationary, ergodic and nonanticipative

solution of

σ2
t = σ2

t (θ) = ω +

q∑

i=1

αiǫ
2
t−i +

p∑

j=1

βjσ
2
t−j ∀t,

under the assumption
∑p

j=1 βj < 1. Note that σ2
t (θ0) = ht. The Gaussian quasi-likelihood

of the observations ǫ1, . . . , ǫn is the function

L̃n(θ) =
n∏

t=1

1√
2πσ̃2

t

exp

(
− ǫ2t

2σ̃2
t

)
.

A QMLE of θ0 is defined as any measurable solution θ̂QML
n of

θ̂QML
n = arg max

θ∈Θ
L̃n(θ) = arg min

θ∈Θ
l̃n(θ), (3.1)

where

l̃n(θ) = n−1
n∑

t=1

ℓ̃t, and ℓ̃t = ℓ̃t(θ) =
ǫ2t
σ̃2

t

+ log σ̃2
t .

Let Aθ(z) =
∑q

i=1 αiz
i and Bθ(z) = 1−∑p

j=1 βjz
j with Aθ(z) = 0 if q = 0 and Bθ(z) = 1

if p = 0.

The paper [4] by Berkes, Horváth and Kokoszka was the first one where the GARCH(p, q)

QMLE was captured in a mathematically rigorous way under weak conditions. Several

technical assumptions made in [4] were relaxed by [17] and [46]. The two latter papers

show that, under the following assumptions

A1: θ0 ∈ Θ and Θ is compact,

A2: γ(A0) < 0 and ∀θ ∈ Θ,
∑p

j=1 βj < 1,

A3: η2
t has a non-degenerate distribution with Eη2

1 = 1,

A4: if p > 0, Aθ0
(z) and Bθ0

(z) have no common root, Aθ0
(1) 6= 0, and α0q + β0p 6= 0,

the QMLE is strongly consistent,

θ̂QML
n → θ0, a.s. as n→ ∞. (3.2)

Note that in A2 the condition for strict stationarity is imposed on the true value of the

parameter only. To show where Assumptions A1-A4 are used we present the scheme of

proof of (3.2), the reader being referred to [17] and [46] for a detailed proof. From the
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second part of A2 and the compactness of Θ, we have supθ∈Θ

∑p
i=1 βj < 1. This inequality

is used to show that almost surely σ̃2
t (θ) − σ2

t (θ) → 0 uniformly in θ ∈ Θ as t → ∞, and

to show that the initial values do not matter asymptotically:

lim
n→∞

sup
θ∈Θ

∣∣∣̃ln(θ) − ln(θ)
∣∣∣ = 0 a.s.

where ln(θ) is a stationary ergodic sequence defined by replacing σ̃2
t (θ) by σ2

t (θ) in l̃n(θ).

Then the first condition in A2 and the ergodic theorem show that l̃n(θ) converges a.s. to

the asymptotic criterion Eθ0
l1(θ). For any random variable X, let X+ = max(X, 0) and

X− = max(−X, 0). Note that Eθ0
l
+
1 (θ) can be equal to +∞, but Eθ0

l
−
1 (θ) is always finite

(because infθ∈Θ ω > 0) and Eθ0
l
+
1 (θ0) is also finite (because under A2 we have Eθ0

hs
t <∞

for some s > 0, see [4] and [43] for a proof of this result). Under the identifiability

assumptions A3 and A4, Eθ0
l1(θ) ≥ Eθ0

l1(θ0) with equality if and only if θ = θ0. These

are the main arguments to show that (3.2) holds. The rest of the proof does not require

additional assumptions.

Notice that the condition Eη1 = 0 is not required. The assumption that Eη2
1 = 1

is made for identifiability reasons and is not restrictive provided Eη2
1 < ∞; see [2]. The

identifiability condition A4 excludes that all coefficients α0i be zero when p > 0, as well

as the overidentification of both orders p and q. However, other situations where some

coefficients α0i or β0j vanish are allowed. This is worth-noting since it is no longer the case

for the asymptotic normality (AN).

Indeed, the main additional assumption required for the AN is that θ0 belongs to the

interior
◦
Θ of Θ. The case where θ0 belongs to the boundary of Θ will be considered below.

Following [17], under Assumptions A1-A4 and

A5: θ0 ∈
◦
Θ, A6: Eη4

1 <∞,

the QMLE is asymptotically normal; more precisely

√
n(θ̂QML

n − θ0)
d→ N

{
0, (Eη4

1 − 1)J−1
}
, J = Eθ0

1

σ4
1

∂σ2
1

∂θ

∂σ2
1

∂θ′
(θ0). (3.3)

It is shown in [17] that σ−2
1 (∂σ2

1/∂θ) admits moments of any order. For simplicity we

give the arguments in the GARCH(1,1) case. We have σ2
t = ω + αǫ2t−1 + βσ2

t−1 = ω(1 −
β)−1 +α

∑∞
i=0 β

iǫ2t−i−1. Thus σ−2
1 (∂σ2

1/∂ω) and σ−2
1 (∂σ2

1/∂α) are bounded, and therefore

admit moments of any order. We have already seen that the strict stationarity condition
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A2 implies the existence of some s ∈ (0, 1) such that Eθ0
|ǫ1|2s < ∞. Using ∂σ2

t /∂βj =
∑∞

k=1 kβ
k−1(ω + αǫ2t−1−k), σ2

t ≥ ω + βk(ω + αǫ2t−1−k), and the elementary inequality

x/(1 + x) ≤ xs for all x ≥ 0, we obtain for any d > 0

∥∥∥∥
1

σ2
t

∂σ2
t

∂β

∥∥∥∥
d

≤
∥∥∥∥∥

1

β

∞∑

k=1

kβk
(
ω + αǫ2t−k−1

)

ω + βk
(
ω + αǫ2t−k−1

)
∥∥∥∥∥

d

≤ 1

β

∞∑

k=1

k

∥∥∥∥∥∥

{
βk
(
ω + αǫ2t−k−1

)

ω

}s/d
∥∥∥∥∥∥

d

≤ 1

ωs/dβ

{
Eθ0

(
ω + αǫ21

)s}1/d
∞∑

k=1

k|β|sk/d <∞, (3.4)

where ‖X‖d
d = E|X|d for any random variable X. The idea of exploiting the inequality

x/(1 + x) ≤ xs for all x > 0 is due to [8]. Finally σ−2
1 (∂σ2

1/∂θ) admits moments of

any order, and J is well defined. The identifiability assumptions A3 and A4 entail the

invertibility of J (see (ii) of the proof of Theorem 2.2 in [17]). The consistency (3.2) of the

QMLE, Assumption A5 and a Taylor expansion of ∂ l̃n(·)/∂θ yield

0 =
√
n
∂ l̃n(θ̂QML

n )

∂θ
=

√
n
∂ l̃n(θ0)

∂θ
+

(
∂2

l̃n(θ∗ij)

∂θi∂θj

)
√
n
(
θ̂QML
n − θ0

)

where the θ∗ij are between θ̂QML
n and θ0. The AN in (3.3) is then obtained by showing that

√
n
∂ l̃n(θ0)

∂θ
=

1√
n

n∑

t=1

(1 − η2
t )

1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′
(θ0) + oP (1)

d→ N
{
0, (Eη4

1 − 1)J
}
, (3.5)

and

n−1
n∑

t=1

∂2

∂θi∂θj
ℓ̃t(θ

∗
ij) → J(i, j) in probability. (3.6)

The convergence (3.5) follows from the central limit theorem for martingale differences

given by [5]. To show (3.6), a new Taylor expansion and already given arguments are

employed.

It is worth-noting that no moment assumption is required for the observed process.

This is particularly interesting for financial series, for which the existence of fourth and

even second-order moments is questionable. The moment assumption A6 on the iid process

(ηt) is obviously necessary for the existence of the variance of the Gaussian distribution

in (3.3). In the ARCH case we find the same asymptotic variance as for the QGLSE; see
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(2.3). Note also that the iid assumption on (ηt) can be replaced by a martingale difference

assumption at the price of additional moment assumptions; see [15].

Tables 2 and 3 illustrate the asymptotic accuracy obtained from using the LSE and the

QMLE for several ARCH(1) models with Gaussian errors and parameter ω0 = 1. When

a sequence of random vectors Xn converges in law to a Gaussian distribution, we denote

by Varas(Xn) the variance of this Gaussian distribution. In view of (2.2), the asymptotic

variance of the LSE in Table 2 is explicitly given by

Varas{
√
n(θ̂LS

n − θ0)} = 2A−1BA−1,

where

A =


 1 Eθ0

ǫ21

Eθ0
ǫ21 Eθ0

ǫ41


 , B =


 Eθ0

σ4
2 Eθ0

σ4
2ǫ

2
1

Eθ0
σ4

2ǫ
2
1 Eθ0

σ4
2ǫ

4
1


 ,

with

Eθ0
ǫ21 =

ω0

1 − α01
, Eθ0

ǫ41 = 3Eθ0
σ4

1 =
3ω2

0(1 + α01)

(1 − 3α2
01)(1 − α01)

.

The other terms of the matrix B are obtained using σ4
2 = (ω0 + α01ǫ

2
1)

2 and computing

the moments of order 6 and 8 of ǫ21. For an ARCH(1) model, the asymptotic variance of

the QMLE is given by

Varas{
√
n(θ̂QML

n − θ0)} = 2J−1, J = Eθ0




1
(ω0+α01ǫ2

1
)2

ǫ2
1

(ω0+α01ǫ2
1
)2

ǫ2
1

(ω0+α01ǫ2
1
)2

ǫ4
1

(ω0+α01ǫ2
1
)2


 ,

but it seems impossible to obtain J explicitly as a function of θ0 = (ω0, α01)
′. For this

reason, the asymptotic variance in Table 3 is approximated by 2Ĵ−1, where

Ĵ−1 =
1

N

N∑

t=1




1
(ω0+α01ǫ2t )2

ǫ2t
(ω0+α01ǫ2t )2

ǫ2t
(ω0+α01ǫ2t )2

ǫ4t
(ω0+α01ǫ2t )2


 ,

and ǫ1, . . . , ǫN is a simulation of length N = 10, 000 of the ARCH(1) model with parameter

θ0 and the N (0, 1) distribution for ηt. Due to the moment conditions the asymptotic

variance of the LSE does not exist for α01 > 0.312 (see Table 1). Even when α01 is

sufficiently small so that all moments exist up to a sufficiently large order, the asymptotic

accuracy is much better with the QMLE than with the LSE.
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Table 2: Asymptotic covariance matrix of the LSE of an ARCH(1) model

α01 0.1 0.2 0.3

Varas{
√
n(θ̂LS

n − θ0)}


 3.98 −1.85

−1.85 2.15





 8.03 −5.26

−5.26 5.46





 151.0 −106.5

−106.5 77.6




Table 3: Approximation of the asymptotic variance of an ARCH(1) QMLE

α01 0.1 0.5 0.95

V̂aras{
√
n(θ̂QML

n − θ0)}


 3.46 −1.34

−1.34 1.87





 4.85 −2.15

−2.15 3.99





 6.61 −2.83

−2.83 6.67




In passing we mention that [28] considers the QMLE α̂ in ARCH(1) models of the form

ht = ω0 +α01ǫ
2
t−1, when the scale parameter ω0 is known. In [28, 29], consistency and AN

of α̂ are established even when α01 is outside the strict stationarity region. Although the

assumption that ω0 is known does not correspond to any realistic situation, these results

are interesting from a theoretical point of view.

3.2 ARMA-GARCH models

Assuming that the log-returns follow a GARCH model may be found restrictive. The

autocorrelations of certain log-returns are incompatible with a GARCH model, and lead

practitioners to specify the conditional mean. In this section we limit ourselves to ARMA

specifications with GARCH errors. The GARCH process is not directly observed and the

observations, which represent log-returns, are now denoted by r1, . . . , rn. The (rt) process

satisfies an ARMA(P,Q)-GARCH(p, q) model of the form




rt − c0 =
∑P

i=1 a0i(rt−i − c0) + ǫt −
∑Q

j=1 b0jǫt−j

ǫt =
√
htηt

ht = ω0 +
∑q

i=1 α0iǫ
2
t−i +

∑p
j=1 β0jht−j

(3.7)

where (ηt) and the coefficients ω0, α0i and β0j are defined as in (1.1), and where c0, a0i

and b0j are real parameters. If one allows for an ARMA part, one considerably extends

the range of applications, but this approach also entails serious technical difficulties in the

proof of asymptotic results. References for the estimation of ARMA-GARCH processes

are [17, 35, 36, 37].

10



In [17] it is shown that the consistency of the QMLE holds under assumptions similar to

the pure GARCH case. In particular, the observed process does not need a finite variance

for the QMLE to be consistent. However the assumption Eη1 = 0 is required.

The extension of the AN is more costly in terms of moments. This is not very surprising

since in the case of pure ARMA models with iid innovations, the QMLE is asymptotically

normal only when these innovations admit second-order moments; see [9]. With GARCH

innovations the AN is established in [17] under a fourth-moment condition on the observed

process or equivalently on the GARCH process.

4 Efficient estimation

An important issue is the possible efficiency loss of the QMLE, resulting from the use of

an inappropriate Gaussian error distribution. In practice, the true error distribution is if

course unknown and the MLE cannot be computed. However, it is interesting to consider

the MLE in comparison with the QMLE, as a gauge of (in)efficiency. In particular we will

see that, contrary to common belief, the QMLE can be efficient even if the underlying error

distribution is not Gaussian.

In this section we limit ourselves to pure GARCH models. The proof of the results of

this section can be found in [18]. See also [3, 46] for results in a more general setting.

We assume that the error process (ηt) is iid, endowed with a positive density f which

is known. Conditionally on initial values, the likelihood is given by

Ln,f(θ) = Ln,f (θ; ǫ1, . . . , ǫn) =

n∏

t=1

1

σ̃t
f

(
ǫt
σ̃t

)
.

A MLE of θ is defined as any measurable solution θ̂ML
n of

θ̂ML
n = arg max

θ∈Θ
Ln,f(θ). (4.1)

Recall that f is supposed to be positive. Assume that f is derivable and write g(y) =

yf ′(y)/f(y). The following conditions on the smoothness of f and g are introduced:

A7: There is a δ1 > 0 such that supy∈R |y|1±δ1f(y) <∞;

A8: There exist 0 < C0, δ2 <∞ such that |g(y)| ≤ C0(|y|δ2 + 1) for all y ∈ (−∞,∞).

Such conditions are obviously satisfied for the standard normal distribution. For the Stu-

dent distribution with ν degree of freedom, we have f(x) = K(y2 + ν)−(1+ν)/2 where K is

11



a positive constant and g(y) = −y2(1 + ν)/(y2 + ν). Assumptions A7 and A8 are thus

satisfied with ν > 0, for 0 < δ1 ≤ min{ν, 1} and δ2 ≥ 0. Under A1, A2, A4, A7, A8 the

ML estimator is strongly consistent,

θ̂ML
n → θ0, a.s. as n→ ∞.

It should be noted that no moment assumption is needed for the iid process (ηt). For the

QMLE, it was crucial to assume the existence of the first two moments, and an assumption

such as Eη2
1 = 1 was required for identifiability reasons. Here, because the density f is fixed,

there is no identification problem. For instance, the volatility
√
ht can not be multiplied

by a positive constant c 6= 1 and the noise ηt with density f can not be changed in the new

noise η∗t = ηt/c, because the density of η∗t would not be f . Obviously when the assumption

Eη2
1 = 1 is relaxed, ht is no more the conditional variance of ǫt given the past, but as in

[3], one can interpret ht as a conditional scaling parameter of ǫt. The assumption that

the density f is entirely known is clearly not realistic for the applications. Straumann

[46] considers the situation where the density f belongs to a known class of densities

parameterized by a nuisance parameter ν, for instance a normalized Student distribution

Stν with ν degrees of freedom and unit variance. Berkes and Horváth [3] consider a very

general framework in which the function f involved in the definition (4.1) is not necessarily

the true density of ηt. Under some regularity assumptions, [46] and [3] showed that this

(non Gaussian) QMLE converges almost surely to

θ∗0 = (dω, dα1, . . . , dαq, β1, . . . , βp)
′ , d > 0. (4.2)

When the density f is misspecified and non Gaussian, d is generally not equal to 1 and

θ̂ML
n is inconsistent.

For the asymptotic normality of the MLE, it is necessary to strengthen the smoothness

assumptions in A7 and A8. Assume that g is twice derivable and let g(0)(y) = g(y),

g(1)(y) = g′(y) and g(2)(y) = g′′(y).

A9: There is 0 < C0 < ∞ and 0 ≤ κ < ∞ such that |ykg(k)(y)| ≤ C0(|y|κ + 1) for

all y ∈ (−∞,∞) and such that E|η1|κ <∞ for k = 0, 1, 2.

A10: Ĩf =
∫
{1 + g(y)}2 f(y)dy <∞, and limy→±∞ y2f ′(y) = 0.

The assumptions on the density f are mild and are satisfied for various standard distribu-

tions, such as (i) the standard Gaussian distribution, for any δ1 ∈ (0, 1], δ2 ≥ 2 and κ ≥ 2;

12



(ii) the Student distribution with parameter ν > 0, for δ1 ≤ min{ν, 1}, δ2 ≥ 0 and κ < ν;

(iii) the density displayed in (4.4) below with δ1 ≤ 2a, δ2 ≥ 2 and κ ≥ 2. If A1, A2, A4,

A5 and A7-A10 hold, then

√
n
(
θ̂ML
n − θ0

)
d→ N

(
0,

4

Ĩf
J−1

)
, as n→ ∞. (4.3)

It is worth-noting that, contrary to the QMLE (see [2]), the MLE can be
√
n-consistent

even when Eη4
1 = ∞.

The asymptotic distributions in (3.3) and (4.3) allow to quantify the efficiency loss due

to the use of Gaussian likelihood. The asymptotic variances differ only by a scaling factor,

which is independent of the GARCH orders and coefficients. Interestingly, the QMLE is

not always inefficient when the error distribution is not normal. More precisely, under the

assumptions required for (3.3) and (4.3), the QMLE has the same asymptotic variance as

the MLE when the density of ηt is of the form

f(y) =
aa

Γ(a)
exp(−ay2)|y|2a−1, a > 0, Γ(a) =

∫ ∞

0
ta−1 exp(−t)dt. (4.4)

Figure 1 displays the graph of this density for different values of a. When the density f

does not belong to this family of distributions, the QMLE is asymptotically inefficient in

the sense that

Varas

√
n
{
θ̂QML
n − θ0

}
− Varas

√
n
{
θ̂ML
n − θ0

}
=

(
Eη4

1 − 1 − 4

Ĩf

)
J−1

is positive definite. Table 4 illustrates the loss of efficiency of the QMLE in the case of the

Student distribution with ν degrees of freedom (rescaled so that they have the required

unit variance). The Asymptotic Relative Efficiency (ARE) of the MLE with respect to the

QMLE is (for ν > 3)

ARE = Varas
√
n
(
θ̂QML
n − θ0

){
Varas

√
n
(
θ̂QML
n − θ0

)}−1
=

ν(ν − 1)

ν(ν − 1) − 12
.

An efficient estimator can be constructed from the QMLE in two steps. The method

consists, in a first step, of running one Newton-Raphson iteration with the QMLE, or any

other
√
n-consistent preliminary estimator θ̃n of θ0, as starting point:

√
n(θ̃n−θ0) = OP (1).
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Figure 1: Graph of the density defined by (4.4) for several values of a > 0. When ηt has a density

of this form the QMLE has the same asymptotic variance as the MLE.

The second step does not require any optimization procedure. Let În,f be any weakly

consistent estimator of If (θ0). Then the sequence (θ̄n) defined by

θ̄n = θ̄n,f = θ̃n + Î−1
n,f

1

n

∂

∂θ
logLn,f(θ̃n)

has the same asymptotic distribution (4.3) as the MLE, under the same assumptions. In

concrete situations, f is unknown and θ̄n is not feasible. A feasible estimator is obtained

by replacing the unknown error density f by an estimator, which can be obtained from the

standardized residuals η̂t = ǫt/σt(θ̂
QML
n ), t = 1, . . . , n. A non parametric kernel density

estimator f̂ can for instance be used. An issue is whether θ̄n,f̂ is an adaptive estimator, in

the sense that it inherits the asymptotic optimality properties of θ̄n,f . Adaptive estimation

in GARCH models has been studied by several authors; see e.g [12, 14, 38, 39]. From these

references, adaptiveness holds in the sense that the volatility parameters can be estimated

up to a scale parameter, with the same asymptotic precision as if the error distribution were

known; see [12]. However, adaptive estimation of all GARCH coefficients is not possible.

Efficiency losses of the QMLE and semi-parametric estimators, with respect to the MLE,

are quantified in [21] and illustrated numerically in [12, 14].
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Table 4: ARE of the MLE with respect to the QMLE when the density f of ηt is the

normalized Student distribution with ν degrees of freedom and unit variance: f(y) =
√
ν/ν − 2fν(y

√
ν/ν − 2), where fν denotes the standard Student density with ν degrees

of freedom

ν 5 6 7 8 9 10 20 30 ∞
ARE 2.5 1.66 1.4 1.27 1.2 1.15 1.03 1.01 1

5 Alternative estimators

It is known that parameter estimation is not standard for ARMA models with infinite

variance innovations; see [41]. Indeed, with the notation of Section 3.2, the score vec-

tor ǫt∂ǫt/∂ϑ has a finite variance I when Eǫ21 < ∞ and the ǫt are iid. In the presence

of conditionally heteroscedastic innovations, or more generally when the ǫt are not iid,

the existence of fourth-order moments is required for the existence of I. Thus the mo-

ment condition Er41 < ∞ seems necessary for the asymptotic normality of the LSE of the

ARMA-GARCH models defined by (3.7). Similarly, it can be shown that the variance of

the quasi-maximum likelihood score vector may not exist when Er21 = +∞. We have seen

in Section 3.2 that moment conditions are not needed for the consistency of the QMLE.

For statistical inference, consistency is however not sufficient, and the asymptotic distrib-

ution of the estimator is generally required. The asymptotic distributions of the LSE and

QMLE are unknown when Er41 = +∞. Sections 5.1 and 5.2 present alternative estimators

which require less moment assumptions on the observed process rt. The estimators defined

in Sections 5.3 and 5.4 allow one to reduce the moment assumptions on the iid process

(ηt). Section 5.5 is devoted to the Whittle estimator. It will be seen that this estimator

is less attractive for GARCH models than for ARMA models. The moment estimators

mentioned in Section 5.6 seem particularly interesting to allow for GARCH-type effects

without imposing a fully specified model. To save space we only present the main ideas of

these estimation methods. The precise assumptions and asymptotic variance matrices can

be found in the corresponding references.
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5.1 Self-weighted LSE for the ARMA parameters

To estimate the ARMA parameters

ϑ0 = (c0, a01, . . . a0P , b01, . . . , b0Q)′

of the ARMA-GARCH model (3.7), Ling [33] considered the self-weighted LSE (SWL)

defined by

ϑ̂SWL
n = arg min

ϑ∈Ψ
n−1

n∑

t=1

ω2
t ǫ̃

2
t (ϑ),

where the weights ωt are positive measurable functions of rt−1, rt−2, . . . , Ψ is a compact sub-

space of R
P+Q+1, and ǫ̃t(ϑ) are the ARMA residuals computed for the value ϑ of the ARMA

parameter and with fixed initial values. Take for instance ω−1
t = 1 +

∑t−1
k=1 k

−1−1/s|rt−k|
with E|r1|2s < ∞ and s ∈ (0, 1). It can be shown that there exist constants K > 0 and

ρ ∈ (0, 1) such that

|ǫ̃t| ≤ K (1 + |ηt|)
(

1 +

t−1∑

k=1

ρk|rt−k|
)

and

∣∣∣∣
∂ǫ̃t
∂ϑi

∣∣∣∣ ≤ K

t−1∑

k=1

ρk|rt−k|.

It follows that

|ωtǫ̃t| ≤ K (1 + |ηt|)
(

1 +

∞∑

k=1

k1+1/sρk

)
,

∣∣∣∣ωt
∂ǫ̃t
∂ϑi

∣∣∣∣ ≤ K

(
1 +

∞∑

k=1

k1+1/sρk

)
.

Thus

E

∣∣∣∣ω2
t ǫ̃t

∂ǫ̃t
∂ϑi

∣∣∣∣
2

≤ K4E (1 + |η1|)2
(

∞∑

k=1

k1+1/sρk

)4

<∞,

which entails a finite variance for the SWL score vector ω2
t ǫ̃t∂ǫ̃t/∂ϑ. Ling [34] then deduced

the asymptotic normality of
√
n(ϑ̂SWL

n − ϑ0), allowing for the case Er21 = ∞.

5.2 Self-weighted QMLE

To obtain an AN estimator of the parameter ϕ0 = (ϑ′0, θ
′
0)

′ in the ARMA-GARCH model

(3.7) under mild moment assumptions on the observed process, Ling [34] proposed the

self-weighted QMLE

ϕ̂SWQ
n = arg min

ϕ∈Φ
n−1

n∑

t=1

ωtℓ̃t(ϕ),

where ℓ̃t(ϕ) = ǫ̃2t (ϑ)/σ̃2
t (ϕ)+log σ̃2

t (ϕ) with obvious notations. To understand the principle

of this estimator, let us note that the minimized criterion generally converges to a limit
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criterion l(ϕ) = Eϕωtℓt(ϕ) satisfying

l(ϕ) − l(ϕ0) = Eϕ0
ωt

{
log

σ2
t (ϕ)

σ2
t (ϕ0)

+
σ2

t (ϕ0)

σ2
t (ϕ)

− 1

}
+ Eϕ0

ωt
{ǫt(ϑ) − ǫt(ϑ0)}2

σ2
t (ϕ)

+ Eϕ0
ωt

2ηtσt(ϕ0){ǫt(ϑ) − ǫt(ϑ0)}
σ2

t (ϕ)
.

The last expectation (when it exists) is zero because ηt is centered and is independent of

the other random variables involved in the expectation. From the inequality x− 1 ≥ log x,

we have

Eϕ0
ωt

{
log

σ2
t (ϕ)

σ2
t (ϕ0)

+
σ2

t (ϕ0)

σ2
t (ϕ)

− 1

}
≥ Eϕ0

ωt

{
log

σ2
t (ϕ)

σ2
t (ϕ0)

+ log
σ2

t (ϕ0)

σ2
t (ϕ)

}
.

Hence under the usual identifiability assumptions, l(ϕ) ≥ l(ϕ0) with equality if and only

if ϕ = ϕ0. Note that the orthogonality between ηt and the weight ωt is essential.

Ling [34] showed consistency and AN of ϕ̂SWQ
n under the assumption E|r1|s < ∞ for

some s > 0.

5.3 Lp-estimators

The weighted estimators of the previous sections require the moment assumption Eη4
1 <∞.

Practitioners often claim that financial series do not admit (even low-order) moments. In

GARCH processes an infinite variance can be obtained either by relaxing the parameters

constraint or by allowing an infinite variance for ηt. In the GARCH(1,1) case the two sets

of assumptions

i) :





α01 + β01 ≥ 1

Eη2
1 = 1

or ii) : Eη2
1 = ∞

imply an infinite variance for ǫt. Under i), and the strict stationarity assumption, the

asymptotic distribution of the QLME is generally Gaussian (see Section 3), whereas the

usual estimators have non standard asymptotic distributions or are even non-consistent

under ii); see [2, 25, 42]. It is therefore of interest to define alternative estimators enjoying

a Gaussian asymptotic distribution under ii), or even under the more general situation

where both α01 + β01 > 1 and Eη2
1 = ∞ are allowed for.

Note that a GARCH model is generally defined under the standardization Eη2
1 = 1.

When the existence of Eη2
1 is relaxed, one can identify the GARCH coefficients by imposing

that the median of η2
1 be τ = 1. In the framework of ARCH(q) models, Horváth and Liese
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[27] consider Lp-estimators, including the L1-estimator

θ̂L1

n = arg min
θ

n−1
n∑

t=1

ωt

∣∣∣∣∣ǫ
2
t − ω −

q∑

i=1

αiǫ
2
t−1

∣∣∣∣∣ ,

where, for example, ω−1
t = 1 +

∑p
i=1 ǫ

2
t−i + ǫ4t−i. When η2

t has a density, continuous and

positive around its median τ = 1, the consistency and asymptotic normality of θ̂L1

n is shown

in [27], without any moment assumption.

5.4 Least absolute deviations estimators

In the framework of ARCH and GARCH models, Peng and Yao [44] studied several least

absolute deviations estimators. An interesting specification is the following

θ̂LAD
n = arg min

θ
n−1

n∑

t=1

∣∣log ǫ2t − log σ̃2
t (θ)

∣∣ . (5.1)

With this estimator it is convenient to define the GARCH parameters under the condition

that the median of η2
1 is equal to 1. It entails a reparametrization of standard GARCH

models. Consider, for instance, a GARCH(1,1) model with parameters ω0, α01 and β01,

and a Gaussian noise ηt. Since the median of η2
1 is τ = 0.4549..., the median of the square

of η∗t = ηt/
√
τ is 1, and the model is rewritten as

ǫt = σtη
∗
t , σ2

t = τω0 + τα01ǫ
2
t−1 + β01σ

2
t−1.

It is interesting to note that the error terms log η∗2t = log ǫ2t − log σ̃2
t (θ) are iid with median

0 when θ = θ0. Intuitively, this is the reason why it is not necessary to use weights in the

sum (5.1). Under the moment assumption Eǫ21 < ∞ and certain regularity assumptions,

it is shown in [44] that there exists a local solution of (5.1) which is weakly consistent and

AN, with the standard rate of convergence n1/2. This convergence holds even in the case

of heavy-tailed errors : no condition on the moments of η1 beyond Eη2
1 = 1 is imposed.

5.5 Whittle estimator

Whittle estimation is a standard method for ARMA models, working in the spectral domain

of the process; see [9], Section 10.8 for further details. It is well known that, under the

moment assumption Eǫ41 <∞, the square of a GARCH(p, q) model satisfies an ARMA(p∧
q, q) model

φθ0
(L)ǫ2t = ω0 + ψθ0

(L)ut, (5.2)
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where L denotes the lag operator,

φθ0
(z) = 1 −

p∧q∑

i=1

(α0i + β0i)z
i, ψθ0

(z) = 1 −
p∑

i=1

β0iz
i, ut = (η2

t − 1)σ2
t .

Thus, the spectral density of ǫ2t is

fθ0
(λ) =

Eu2
t

2π

∣∣ψθ0
(e−iλ)

∣∣2

|φθ0
(e−iλ)|2

.

Denote by γ̂ǫ2(h) the sample autocovariance of ǫ2t at lag h. At the Fourier frequencies

λj = 2πj/n ∈ (−π, π], the periodogram

In(λj) =
∑

|h|<n

γ̂ǫ2(h)e
−ihλj , j ∈ J =

{[
−n

2

]
+ 1, . . . ,

[n
2

]}
,

can be considered as a non parametric estimator of 2πfθ0
(λj). Let

ut(θ) =
φθ(L)

ψθ(L)

{
ǫ2t − ωφ−1

θ (1)
}
.

It can be shown that

Eu2
1(θ) =

Eu2
1(θ0)

2π

∫ π

−π

fθ0
(λ)

fθ(λ)
dλ ≥ Eu2

1(θ0)

with equality if and only if θ = θ0; see [9] Proposition 10.8.1. In view of this inequality, it

seems natural to consider the so-called Whittle estimator

θ̂W
n = arg min

θ

1

n

∑

j∈J

In(λj)

fθ(λj)
.

For ARMA models with iid innovations the Whittle estimator has the same asymptotic

behavior as the QMLE and LSE. For GARCH processes the Whittle estimator has still the

same asymptotic behavior as the LSE, but simulations studies indicate that the Whittle

estimator, for normal and student noises (ηt), is less accurate than the QMLE. Moreover

[24, 42, 46] have shown that consistency requires the existence of Eǫ41, and asymptotic

normality requires Eǫ81 <∞.

5.6 Moment estimators

A sequence (ǫt) is called weak white noise if the ǫt’s are centered and uncorrelated, but not

necessarily independent. In contrast, a sequence of centered and independent random vari-

ables is sometimes called strong white noise. The GARCH process is a leading example of
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weak white noise, but there exist numerous other examples of weak white noises satisfying

(5.2). Consider for example the process vt = ηtηt−1 where (ηt) is iid N (0, 1). This process

is clearly weak white noise. Straightforward computations show that v2
t satisfies a weak

MA(1) representation of the form v2
t = 1 + ut + θut−1, where (ut) is weak white noise.

Although (vt) does not belong to the class of the strong GARCH models defined by (1.1),

it can be called weak GARCH, in the sense that (vt) is a white noise and (v2
t ) satisfies

an ARMA model. The ARMA representations (5.2) of these weak GARCH models are

estimated in [16] by LS, under moment and mixing conditions, but without imposing a

particular parametric model for (ǫt).

The generalized method of moment (GMM) approach is particularly relevant (see [45])

to estimate ARCH models without assuming strong assumptions on the noise (ηt).

To finish this non exhaustive list of alternative GARCH estimators, let us mention the

existence of Bayesian estimators, using Monte Carlo integration with importance sampling

for the computation of the posterior expectations; see [23].

6 Properties of estimators when some GARCH coefficients

are equal to zero

To obtain the AN of the QMLE of GARCH models, a crucial assumption is that the

true parameter vector has strictly positive components. When some components are equal

to zero, the parameter, which is constrained to have nonnegative components, lies at

the boundary of the parameter space and then, Assumption A5 in Section 3.1 is not

satisfied. This assumption is a serious limitation to the estimation theory of GARCH.

Indeed it could be particularly useful to derive the asymptotic distribution of the QMLE of

a GARCH(p, q) model when, for instance, the underlying process is a GARCH(p−1, q), or a

GARCH(p, q−1) process. Tests of the significance of the coefficients and tests of conditional

homoscedasticity constitute typical situations where we have to study the QMLE when the

parameter is at the boundary.

In this section we study the asymptotic behaviour of the QMLE for GARCH processes,

when the true parameter may have zero coefficients. We first see, by means of an elementary

example, why the asymptotic distribution of the QMLE cannot be Gaussian when one or

several GARCH coefficients are equal to zero.
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6.1 Fitting an ARCH(1) model to a white noise

The QMLE of an ARCH(1) model is obtained by minimizing the criterion

ln(ω,α) = n−1
n∑

t=2

ℓt(ω,α), ℓt(ω,α) =
ǫ2t
σ2

t

+ log σ2
t ,

where σ2
t = ω + αǫ2t−1. In absence of constraints on the coefficients, the value of σ2

t could

be negative (this is the case when α < 0, ω > 0 and ǫ2t−1 > −ω/α). In such a situation,

ℓt(ω,α), and thus the objective function ln(ω,α), are not defined. This is the reason why

the minimization is made under the constraints ω > 0 and α ≥ 0. The QMLE estimator

(ω̂n, α̂n) = arg min
ω>0, α≥0

ln(ω,α)

then satisfies α̂n ≥ 0 almost surely, for all n. When the process is a white noise, then

α01 = 0 and with probability one

√
n(α̂n − α01) =

√
nα̂n ≥ 0, ∀n.

In this case
√
n(α̂n − α01) cannot converge in law to any non-degenerate Gaussian distri-

bution N (m, s2) with s2 > 0. Indeed

lim
n→∞

P
{√

n(α̂n − α01) < 0
}

= 0 whereas P
{
N (m, s2) < 0

}
> 0.

For the same reason, when the true value of a general GARCH parameter has zero com-

ponents, the asymptotic distribution cannot be Gaussian, for the QMLE or for any other

estimator which takes into account the positivity constraints.

6.2 On the need of additional assumptions

To prove the existence of the information matrix involved in the asymptotic distribution

of the QMLE, we have to show that the variance of the vector σ−2
t (θ0)∂σ

2
t (θ0)/∂θ, and the

expectation of the matrix

Jt =
1

σ4
t (θ0)

(
∂σ2

t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)

are finite. A bound for these norms can be shown to be of the form Kc−1 or Kc−2, where

K is a constant and c > 0 is the smallest component of θ0. Obviously, the proof breaks

down when one or several components of θ0 are equal to zero.
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To see this technical problem more clearly, let us consider the ARCH(1) example. If

ω0α01 > 0 then the expectation of Jt is finite because

EJt = E
1

(ω0 + α01ǫ21)
2


 1 ǫ21

ǫ21 ǫ41


 ≤


 ω−2

0 ω−1
0 α−1

01

ω−1
0 α−1

01 α−2
01


 ,

where the last inequality has to be taken componentwise. However, if α01 = 0

EJt =
1

ω2
0

E


 1 ǫ21

ǫ21 ǫ41




is finite when Eǫ41 <∞ only.

Such extra moment assumptions seem necessary for ARCH models and for the GARCH(1,1),

but can sometimes be avoided for more complex GARCH models. Consider for example

a strictly stationary GARCH(p, q) process with α01 > 0 and β01 > 0. Then, because
∑p

j=1 β0j < 1, the following ARCH(∞) expansion holds σ2
t (θ0) = c0 +

∑∞
j=1 b0jǫ

2
t−j with

c0 > 0 and b0j > 0 for all j; see [20] for a review on ARCH(∞) models. Similar expansions

hold for the derivatives ∂σ2
t /∂θi. Thus every term ǫ2t−j appearing in the numerator of this

ratio {∂σ2
t /∂θ}/σ2

t is also present in the denominator. In such a situation the moment

assumption Eǫ41 <∞ is not necessary for the existence of EJt.

6.3 Asymptotic distribution of the QMLE on the boundary

For simplicity, let us take a parameter space of the form

Θ = [ω, ω] × [0, α1] × · · · × [0, βp]

where ω > 0 and α1, . . . , βp > 0. We assume that

A11: θ0 ∈ (ω, ω) × [0, α1) × · · · × [0, βp),

allowing for zero GARCH coefficients, but excluding the case where θ0 is on the upper

boundary of Θ. When Θ is not a product of intervals, Assumption A11 must be modified

appropriately. We now define the "local" parameter space

Λ = Λ(θ0) = Λ1 × · · · × Λp+q+1,

where Λ1 = R, and, for i = 2, . . . , p + q + 1, Λi = R if θ0i 6= 0 and Λi = [0,∞) if θ0i = 0.

In view of the positivity constraints, the random vector
√
n(θ̂n − θ) belongs to Λ with

probability one.
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We already know that the QMLE is consistent under A1–A4, even when θ0 is on the

boundary of Θ. If in addition A6, A11 and either

A12: Eǫ61 <∞

or

A12’: σ2
t (θ0) = c0 +

∑∞
j=1 b0jǫ

2
t−j with b0j > 0 for all j ≥ 1

hold, then
√
n(θ̂QML

n − θ0)
d→ λΛ := arg inf

λ∈Λ
{λ− Z}′ J {λ− Z} , (6.1)

with Z ∼ N
(
0, (Eη4

1 − 1)J−1
)
.

When θ0 ∈
◦
Θ, we have Λ = R

p+q+1 and we retrieve the standard result because λΛ =

Z ∼ N
(
0, (Eη4

1 − 1)J−1
)
. When θ0 is on the boundary, the asymptotic distribution of

√
n(θ̂QML

n − θ0) is more complex than a Gaussian. This is the law of the projection of the

Gaussian vector Z on the convex cone Λ. The reader is referred to [1] for similar results on

a general framework, and to [19] for the proof of (6.1). For fitting ARCH(q) models, [30]

allows a parameter belonging to the boundary of a non compact set, and a DGP which

is not necessarily an ARCH process, but requires in particular the moment assumption

Eǫ81 <∞.

6.4 Application to hypothesis testing

An important consequence of the non Gaussian behavior of the QMLE is that the Wald

and Likelihood-Ratio (LR) tests do not have the standard χ2 asymptotic distribution. As

an illustration consider the ARCH(2) case with θ0 = (ω0, 0, 0). We have

Z =




Z1

Z2

Z3


 ∼ N





0, (Eη4
1 − 1)J−1 =




(Eη4
1 + 1)ω2

0 −ω0 −ω0

−ω0 1 0

−ω0 0 1








and we can show that

λΛ =




Z1 + ωZ−
2 + ωZ−

3

Z+
2

Z+
3


 , Z+

i = max{Zi, 0} and Z−
i = min{Zi, 0}.

We can see that, asymptotically, we have α̂1 = 0 (or α̂2 = 0) with probability 1/2, and

α̂1 = α̂2 = 0 with probability 1/4. Consequently, for the test of the null hypothesis
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α α

α̂ = α01 = 0 α01 = 0 α̂

Figure 2: Projected Log-likelihood (full line) α 7→ logLn(ω̂, α) of an ARCH(1) model with α01 = 0.

In the right-hand graph we have â > 0, ∂ logLn(ω̂, α)/∂α = 0 and the score ∂ logLn(ω̂, 0)/∂α > 0.

In the left-hand graph we have α̂ = 0 and ∂ logLn(ω̂, α)/∂α = ∂ logLn(ω̂, 0)/∂α < 0. In both

cases the score is almost surely non null.

H0 : α1 = α2 = 0, the Wald statistic Wn = n
(
α̂2

1 + α̂2
2

)
has a discrete component, and

thus cannot be the usual χ2
2. More precisely, it is easy to see that under H0

Wn
d→ W ∼ 1

4
δ0 +

1

2
χ2

1 +
1

4
χ2

2.

One can show that the LR test has the same nonstandard asymptotic distribution (in

the Gaussian case), whereas the Lagrange Multiplier (LM) test conserves its usual χ2

asymptotic distribution, even when H0 puts θ0 on the boundary of the parameter space;

see [11, 19]. This is not very surprising, since the likelihood of the constrained model is

equal to that of the unconstrained model when α̂1 = α̂2 = 0, but the score is not necessarily

zero when α̂1 = α̂2 = 0 (see Figure 2).

Another important consequence of the non standard asymptotic distribution (6.1), is

that the Wald, LM and LR tests do not have the same local asymptotic power. The

Wald test generally outperforms the LM test in terms of local asymptotic power. This is

not surprising because the LM test do not take into account the one-sided nature of the

alternatives. It is of course possible to derive one-sided versions of the LM test; see e.g.

[11].

7 Conclusion

Since many financial series exhibit heavy-tailed marginal distributions, it is particularly

important to obtain estimation procedures which do not hinge on high-order moment
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assumptions. The QMLE is the most popular method for estimating GARCH models. In

the general ARMA-GARCH case, the consistency is obtained without moment assumption

on the observed process ǫt, even when the parameter is on the boundary of the parameter

space (a situation frequently encountered in test problems). In the pure GARCH case with

θ0 ∈
◦
Θ the AN is also obtained without moment assumption on ǫt, but addition assumptions

are required in the general ARMA-GARCH case. When θ0 is on the boundary of the

parameter space, the asymptotic distribution of the QMLE is no longer Gaussian, but is

that of the projection of a Gaussian vector on a convex cone. The main drawbacks of the

QMLE are that i) the estimator is not explicit and it requires a numerical optimization,

ii) the AN requires the existence of fourth-order moments for the iid process ηt, iii) the

estimator is in general inefficient, iv) the AN requires moments assumptions on ǫt in the

general ARMA-GARCH case, v) a fully parametric specification is required. Concerning

the point iii) it is however interesting to note that the QMLE is not only efficient in

the Gaussian case, but also when the distribution of ηt belongs to the class defined in

Section 4. At least in the ARCH case, a two-step LSE should respond satisfactorily to

the point i), but with a cost in terms of moment conditions. Weighted Lp and least

absolute deviations estimators have been recently developed to alleviate the point ii). The

MLE is a fully satisfactory response to the points ii) and iii), but requires a complete

specification of the error distribution, unless adaptive estimators be employed. Also very

recently, self-weighted LSE and self-weighted QMLE have been developed to respond to the

point iv). Methods based on orthogonality conditions, such as the GMM, are simple and

obviously more robust to model misspecifications, and are therefore worthwhile procedures

for considering the points i) and v).
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