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Abstract. We consider two exit problems for the Korteweg-de Vries equation

perturbed by an additive white in time and colored in space noise of amplitude
ε. The initial datum gives rise to a soliton when ε = 0. It has been proved

recently that the solution remains in a neighborhood of a randomly modulated

soliton for times at least of the order of ε−2. We prove exponential upper and
lower bounds for the small noise limit of the probability that the exit time

from a neighborhood of this randomly modulated soliton is less than T , of the

same order in ε and T . We obtain that the time scale is exactly the right one.
We also study the similar probability for the exit from a neighborhood of the

deterministic soliton solution. We are able to quantify the gain of eliminating

the secular modes to better describe the persistence of the soliton.

Résumé. Nous étudions deux problèmes de sortie d’un domaine pour des

équations de Korteweg-de Vries perturbées par un bruit additif blanc en temps

et coloré en espace d’amplitude ε. La donnée initiale donne naissance à un
soliton lorsque ε = 0. Il a été prouvé récemment que la solution reste proche

d’un soliton modulé pour des temps au moins de l’ordre de ε−2. Nous obtenons
des bornes supérieures et inférieures exponentielles de la probabilité que le

temps de sortie d’un voisinage du soliton modulé soit plus petite que T dans

la limite où l’amplitude du bruit tend vers 0 qui sont du même ordre en ε and
T . Nous obtenons que l’échelle de temps est exactement de l’ordre de ε−2.

Nous étudions également la limite des probabilités lorsque la sortie est définie

en terme de voisinage du soliton déterministe. Nous sommes donc capables de
quantifier le gain de l’élimination des modes séculaires pour mieux décrire la
persistence du soliton.
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1. Introduction

The Korteweg-de Vries (KdV) equation is a model for the evolution of weakly
nonlinear, shallow water, unidirectional long waves. It is of the form

(1.1) ∂tu+ ∂3
xu+ ∂x(u2) = 0

where the space variable x is in R. The results of this paper could easily be extended
to generalized subcritical KdV equations for which the nonlinearity is ∂x(up) for
p < 5, but we consider throughout this article the p = 2 case for simplicity. The
KdV equation is famous for its soliton solutions confirming the observation of the
solitary wave propagating on a channel by Russell in 1844. These solitons are
traveling waves of the form uc,x0(t, x) = ϕc(x − ct + x0) where c is the constant
velocity, x0 ∈ R is the initial phase and

(1.2) ϕc(x) =
3c

2 cosh2 (
√
cx/2)

These waves are localized, i.e. they decay exponentially to zero as x goes to infinity.
Their shape is stable against perturbations of the initial state. A first notion of
stability, for initial data close to ϕc, which takes into account the symmetries of
the evolution equation, is that of orbital stability. This notion of stability was first
considered, for the solution ϕc(x− ct+ x0) of the KdV equation, by Benjamin [1].
The set {ϕc(· − s), s ∈ R} is the orbit of ϕc. The functional Qc(u) = H(u) +
cM(u) is used as a Lyapunov functional in the proof. It involves two important
invariant quantities of the evolution equation (1.1): the Hamiltonian, defined for u
in H1(R), the space of square integrable functions with square integrable first order
derivatives, by

(1.3) H (u) =
1
2

∫
R

(∂xu(x))2 dx− 1
3

∫
R
u3(x)dx

and the mass defined by

(1.4) M (u) =
1
2

∫
R
u2(x)dx.

The space H1(R) is the energy space, and it is a natural space for the solutions of
(1.1) : indeed, if u ∈ C([0, T ]; H1(R)) is a solution of (1.1), then H(u(t)) = H(u0)
and M(u(t)) = M(u0) for any t ∈ [0, T ], where u0 is the initial datum in H1. The
shape of the soliton ϕc is a solution of the constrained variational problem which
consists in minimizing the Hamiltonian for a constant mass. Orbital stability means
that when the initial datum is close to ϕc in H1 then the solution remains close
to the orbit of ϕc. The second stronger notion of stability is that of asymptotic
stability. It states that, for initial datum close in H1 to ϕc, the solution converges
in some sense as time goes to infinity to a soliton where the velocity and phase
have been shifted. Convergence may correspond to weak convergence in H1, see
[15] or [16], or strong convergence in some weighted Sobolev space, see [17], for
less general perturbations of the initial datum, when the solution is written in the
soliton reference frame. Note that strong convergence in H1 is not expected due
to the possibility of a dispersive tail moving away from the soliton as time goes to
infinity.
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It is often physically relevant to consider random perturbations of equation (1.1),
see [19]. It is also interesting from a theoretical perspective to study the stability
of the soliton shape under these random perturbations. We consider as in [19] the
case of an additive noise which could model a random pressure at the surface of the
water. The corresponding stochastic partial differential equation (SPDE for short)
written in Itô form is the following

(1.5) du+
(
∂3
xu+ ∂x(u2)

)
dt = εdW

where (W (t))t≥0 is a Wiener process and ε is the small noise amplitude. As we
work in infinite dimensions, and in the absence of global smoothing property of
the group S(t) on H1 associated to the unbounded operator −∂3

x, W needs to be a
proper Wiener process on H1. Thus, the components of W (1) need to be correlated
for the law of W (1) to be a bona-fide Gaussian measure. It can then always be seen
as the direct image via a Hilbert-Schmidt self-adjoint mapping Φ of a cylindrical
measure and we assume that Φ is a mapping from L2 into H1. Recall that Φ
is Hilbert-Schmidt from L2 into H1 if it is a bounded linear operator and for a
complete orthonormal system (ei)i∈N of L2,

∑
i∈N ‖Φei‖

2
H1 is finite. The sum does

not depend on the complete orthonormal system and, endowed with its square root
as a norm, the space of Hilbert-Schmidt operators L2(L2,H1) = L0,1

2 is a Hilbert
space. As a consequence, the Wiener process could be written as

(1.6) W (t, x) =
∑
i∈N

βi(t)Φei(x), t ≥ 0, x ∈ R

where (βi)i∈N is a collection of independent standard real valued Brownian motions
and (ei)i∈N a complete orthonormal system of L2. Existence of path-wise mild
solutions, almost surely continuous in time for all t positive with values in H1, of
the SPDE supplemented with the initial datum u(0) = u0 ∈ H1 and uniqueness
among those having almost surely paths in some subspace XT ⊂ C

(
[0, T ]; H1

)
has been obtained in [3]. In [6, 7] global well posedness is obtained for rougher
noises and less regular solutions. It should be noticed that in the physics literature
the space-time white noise, corresponding to Φ = I is often considered, which we
are not able to treat mathematically. For simplicity, we consider the sequence of
operators

(1.7) Φn =
(
I −∆ +

1
n

(x2I −∆)k
)−1/2

,

which are Hilbert-Schmidt from L2 into H1 for k large enough, in order to prove
lower bounds on exit times. As n goes to infinity the Hilbert-Schmidt assumption
tends to be relaxed and the noise mimics a spatially homogeneous noise with co-
variance (I −∆)−1, which is a white noise in the Hilbert space H1. It should also
be noted that these operators are uniformly bounded in the space L0,1 of bounded
operators from L2 into H1; indeed we have for every integer n, ‖Φn‖L0,1 ≤ 1. It is
possible to work with a more general approximating sequence, see for example the
kind of assumptions made in [8].

The linearized operator around the soliton is particularly interesting to study
the stability. It has a general null-space spanned by the two secular modes ∂xϕc
and ∂cϕc. These modes are associated with infinitesimal changes in the velocity
and location of the solitary wave. In Remark 2.3 in [5], the following heuristic
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argument then implies that the random solution should at most remain close to
the deterministic solution up to times of the order ε−2/3. It is based on an analogy
with the behavior of a linear system of SDEs such that 0 is a degenerate simple
eigenvalue corresponding to a Jordan block{

dX1 = X2dt+ εdW1(t)
dX2 = εdW2(t)

with Brownian motions W1 and W2. In such a case,

X1(T ) = ε

∫ T

0

W2(s)ds+ εW1(T )

has variance of the order of ε2T 3 for large T . Thus, for a first approximation of the
solution uε,ϕc0 of (1.5) with initial datum ϕc0 , of the form

(1.8) uε,ϕc0 (t, x) = ϕc0(x− c0t) + εη̃ε(t, x− c0t),
and with an exit time defined for a neighborhood of the soliton in H1

B (ϕc0 , α) =
{
f ∈ H1 : ‖f − ϕc0‖H1 < α

}
by

τ̃ εα = inf {t ∈ [0,∞) : uε,ϕc0 (t, ·+ c0t) ∈ B (ϕc0 , α)c} ,
exit is expected to occur on a time scale of the order of ε−2/3. However, it is
believed that the soliton shape is preserved over a longer time scale. A general
approach which works for the deterministic equation, see [15, 17], is to introduce a
description by a soliton ansatz where the parameters of the soliton fluctuate with
time. In the case of an additive noise physicists use an approximation of the solution
by a soliton ansatz of the form ϕcε(t) (x− xε(t)) where cε(t) and xε(t) are random
scalar processes evolving according to a system of coupled SDEs. In the case where
the noise is the time derivative of a one dimensional standard Brownian motion,
it is easily seen (see [20]) that the solution can be written as a modulated soliton
plus a Brownian motion. However, proving such a result is more involved when
the noise is a function of space as well. A mathematical justification is given in [5]
where the following result is proved.

Theorem 1.1. For ε > 0 and c0 > 0, there exists α0 > 0 such that for every
α ∈ (0, α0] there exists a stopping time τ εα > 0 a.s. and semi-martingales cε(t) and
xε(t) defined a.s. for t ≤ τ εα with values in (0,∞) and R respectively such that if
we set

εηε(t) = uε,ϕc0 (t, ·+ xε(t))− ϕcε(t)
then

(1.9)
∫

R
ηε(t, x)ϕc0(x)dx = (ηε, ϕc0) = 0, ∀t ≤ τ εα a.s.,

(1.10)
∫

R
ηε(t, x)∂xϕc0(x)dx = (ηε, ∂xϕc0) = 0, ∀t ≤ τ εα a.s.

and for all t ≤ τ εα,

(1.11) ‖εηε(t)‖H1 ≤ α
and

(1.12) |cε(t)− c0| ≤ α.
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Moreover, there exists C > 0 such that for all T > 0 and α ≤ α0 there exists ε0 > 0
such that for all ε < ε0,

(1.13) P (τ εα ≤ T ) ≤
Cε2T‖Φ‖L0,1

2

α4
.

The proof uses the Lyapunov functional Qc as a central tool. The equations
(1.9) and (1.10) are such that restricted to this subspace, the Lyapunov functional
is coercive, i.e. the operator Q′′c0 is positive. It allows to keep |cε(t) − c0| and
‖εηε(t)‖H1 small on a longer time interval. Also, these two conditions together with
the implicit function theorem allow to obtain cε and xε. Other results in [5] give
the asymptotic distribution of ηε as ε goes to zero as well as coupled equations for
the evolution of the random scalar parameters. The parameters and remainder do
not depend on α ≤ α0. In the upper bound (1.13) the product ε2T appears. The
theorem says that the solution stays in a neighborhood of the randomly modulated
soliton ϕcε(t)(x − xε(t)) with high probability at least for times small compared
to ε−2. The time spent in a neighborhood of a soliton-like wave, when the initial
datum gives rise to a soliton for ε = 0, is called the persistence time, see [9] for
numerical confirmations that the above order is the right order.

In this paper we first study the exit time τ̃ εα and obtain that the time scale
on which the solution stays close to the deterministic soliton is indeed at most of
the order of ε−2/3. We then revisit the upper bound (1.13) and prove a sharper
exponential bound. This bound is supplemented with an exponential lower bound
of the same order in the parameters T and ε. We thus obtain the right order of the
cumulative distribution function (CDF) of the exit time off neighborhoods of the
randomly modulated soliton. This gives a confirmation that the time scale on which
the approximation of the solution by a randomly modulated soliton is valid is of the
order ε−2. Our main tools are large deviations along with a study of the associated
variational problems. Similarly, factors T and T 3 have also been obtained in the
study of the tails of the mass and arrival time for stochastic nonlinear Schrödinger
equations (NLS) in [8, 13] with the same techniques. These quantities are the main
processes impairing soliton transmission in optical fibers. In that setting, physicists
again use the approximation by a randomly modulated soliton. An analogue of
Theorem 1.1 for stochastic NLS equations would allow to tell up to what length
of the fiber line the approximation is licit. Large deviations are also known to
be a useful tool to study the exit problem from an asymptotic equilibrium point
or noised induced transition between several equilibrium points in the small noise
limit (see [12], and [14] for an exit problem for stochastic weakly damped nonlinear
Schrödinger equation). Here we however study a simpler problem than the escape
from the asymptotically stable central manifold for the KdV equation which we
hope to study in future works.

2. Large deviations and escape from a neighborhood of the soliton

We use sample path large deviations in this article in order to obtain lower
bounds of the asymptotic as n goes to infinity and ε goes to zero of probabilities
P (τn,ε ≤ T ) where τn,ε is the exit time of a neighborhood of either the determin-
istic soliton or the randomly modulated soliton. The n recalls that we consider a
sequence of operators Φn, see (1.7). Large deviation techniques, see for example
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[10, 11], allow to quantify convergence to zero of rare events. For example, it is
easy to check that on a finite time interval [0, T ], the paths of the solution of 1.5
starting form ϕc0 converge in probability to the paths of the deterministic soliton
solution. The probability that exit from a neighborhood of the soliton occurs be-
fore T goes to zero as ε goes to zero. Large deviations quantify the convergence to
zero of such probabilities. Following Varadhan’s formalism, large deviations could
be stated as a sequence of inequalities called a large deviation principle (LDP for
short). The convergence to zero of the logarithm of the probabilities of rare events
is characterized by a speed, here ε2, and a deterministic functional In depending
on the operator Φn considered, called rate function, to be minimized on the clo-
sure and interior of the set defining the rare event in the state space. In the small
noise asymptotics and for sample path large deviations, the rate function could be
expressed in terms of the mild solution of the control problem

(2.1)
{
∂tu+ ∂3

xu+ ∂x(u2) = Φnh,
u(0) = ϕc0 and h ∈ L2

(
0, T ; L2

)
.

We denote the solution by Sn,ϕc0 (h). The mapping h → Sn,ϕc0 (h) is called the
control map and (2.1) the control equation. We recall that a rate function I on the
sample space (here the paths space C([0, T ]; H1)) is lower semicontinuous and that
a good rate function is such that I−1([0, R]) is compact for every R positive.

Theorem 2.1. The laws
(
µu

n,ε,ϕc0
)
ε>0

of the paths of the solutions of (1.5) for
the operator Φ = Φn on C([0, T ]; H1) with initial datum ϕc0 satisfy a LDP of speed
ε2 and good rate function

In(w) =
1
2

inf
h∈L2(0,T ;L2): w=Sn,ϕc0 (h)

‖h‖2L2(0,T ;L2).

It means that for every Borel set B of C
(
[0, T ]; H1

)
, we have the lower bound

− inf
◦

w ∈ B

In(w) ≤ limε→0ε
2 log P (un,ε,ϕc0 ∈ B)

and the upper bound

limε→0ε
2 log P (un,ε,ϕc0 ∈ B) ≤ − inf

w∈B
In(w).

The proof uses the LDP for the laws of the stochastic convolution εZ where
Z(t) =

∫ t
0
S(t − s)dW (s) on the Banach path space XT ; it is a subspace of

C
(
[0, T ]; H1

)
where the fixed point argument proving the local well-posedness is

used, see [3]. The stochastic convolution appears when we write the equation sat-
isfied by the mild solution of (1.5). These laws are Gaussian measures and the
LDP is a consequence of the general result on LDP for centered Gaussian measures
on real Banach spaces, see [11]. The second step is to prove the continuity of the
mapping which, to the perturbation Z in XT assigns the solution un,1,ϕc0 := G(Z)
in C

(
[0, T ]; H1

)
. It is obtained noting that G(Z) = v(Z) + Z where v(x) denotes

the solution of {
∂tv + ∂3

xv + ∂x
(
(v + Z)2

)
= 0

v(0) = ϕc0 .

Then the continuity of G is a consequence of the continuity of v with respect to the
perturbation Z. It could be proved as in [4] where the stochastic NLS equation is
considered. LDP for the paths of the mild solution of the SPDE is then obtained by
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a direct application of the contraction principle which states that we can push for-
ward LDP for measures on a Hausdorff topological space to a LDP for direct image
measures on another Hausdorff topological space when the mapping is continuous.
More details on the proof of such LDP are given in [13] where the stochastic NLS
equation with additive noise is considered. The control map SH,ϕc0 (h) for the the-
oretical stochastic equation with spatially homogeneous noise is defined as the mild
solution of

(2.2)
{
∂tu+ ∂3

xu+ ∂x(u2) = ΦHh,
u(0) = ϕc0 and h ∈ L2

(
0, T ; L2

)
,

where ΦH = (I−∆)−1/2. Note that though we cannot give a mathematical meaning
to the stochastic equation with such homogeneous noise, the corresponding control
map is well defined.

Let us now consider the exit times τ̃n,εα . Note that we only consider here a lower
bound of the probability since it is enough to prove the heuristic of Remark 2.3 in
[5]. Recall that we want to check that the time scale on which the approximation
by the deterministic soliton is licit is at most of the order of ε−2/3. When studying
the exit times τn,εα , however, we give both upper and lower bounds of the tail
probabilities of the same order in the parameters ε and T .

Proposition 2.2. Take T , c0 positive; then for α0 small enough, for every α < α0,
there exists a constant C(α, c0) which depends on α and c0 but not on T such that

limn→∞limε→0ε
2 log P (τ̃n,εα ≤ T ) ≥ −C(α, c0)

T 3
.

Proof. For fixed n, using Theorem 2.1, limε→0ε log P (τ̃n,εα ≤ T ) is larger than

−1
2

inf
{
‖h‖2L2(0,T ;L2), h : ‖Sn,ϕc0 (h)(T )− ϕc0(· − c0T )‖H1 > α

}
.

In a first step, we consider the preceding variational problem in which the operator
Φn is replaced by the operator ΦH = (I − ∆)−1/2 and α is replaced by 2α. We
give upper bounds on the infimum by minimizing on smaller and smaller sets of
controls, until we are able to handle the variational problem. Note that up to now,
the problem is a control problem for the KdV equation that we cannot handle. We
will show that we can work on more restrictive classes of controls and still obtain
a nice qualitative order. Using the Sobolev embedding of H1 into L∞, with norm
C∞, the infimum is found to be less than

inf
{
‖h‖2L2(0,T ;L2), h :

∥∥SH,ϕc0 (h)(T )− ϕc0(· − c0T )
∥∥

L∞
> 2C∞α

}
since we then minimize on a smaller set. We consider controls h giving rise to
modulated solitons of the form

ϕc(t)

(
x−

∫ t

0

c(s)
)

in the homogeneous case. They are such that c(0) = c0 and

ΦHh(t, x) = c′(t) ∂cϕc|c=c(t)

(
x−

∫ t

0

c(s)ds
)
,

since the soliton profile ϕc satisfies the equation

−c∂xϕc + ∂3
xϕc + ∂x(ϕc)2 = 0.
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Again, taking the infimum on a smaller set of controls, we obtain the lower bound

−1
2

inf

{∫ T

0

∥∥∥∥c′(t)Φ−1
H

[
∂cϕc|c=c(t)

(
x−

∫ t

0

c(s)ds
)]∥∥∥∥2

L2

dt,

c ∈ C1([0, T ]; (0,+∞)) : c(0) = c0,

∣∣∣∣∣ϕc(T )

(∫ T

0

(c0 − c(s))ds

)
− 3c0

2

∣∣∣∣∣ > 2C∞α

}
,

where we have bounded from below the L∞ norm of the function by its value at
c0T . This is in turn bigger than

− 1
2

inf

{∫ T

0

(c′(t))2
∥∥∥Φ−1

H

(
∂cϕc|c=c(t)

)∥∥∥2

L2
dt,

c ∈ C1([0, T ]; (0,+∞)) : c(0) = c0,
3c0
2
− ϕc(T )

(∫ T

0

(c0 − c(s))ds

)
> 2C∞α

}
,

due to the fact that ΦH commutes with spatial translations. Let us fix α0 <
3c0

4C∞

so that c0 − 4C∞α
3 > 0 for 0 < α < α0. A sufficient condition for the constraint on

the terminal value to hold is

c0 −
4C∞α

3
>

4c(T )

exp
(√

c(T )
∫ T
0

(c0 − c(s))ds
) .

Noticing that the function λ defined by λ(x) = 4x2 exp
(
−x
∫ T
0

(c0 − c(s))ds
)

at-

tains its maximum at x = 2/
∫ T
0

(c0 − c(s))ds for x ≥ 0, if
∫ T
0

(c0 − c(s))ds ≥ 0, we
obtain that it is enough to have∫ T

0

(c0 − c(s))ds >
4

e
√
c0 − 4C∞α/3

:= δ(c0, α).

As in [8] for the tails of the arrival time of a pulse driven by a stochastic nonlinear
Schrödinger equation where we obtained the order −CT−3, the boundary condition
is in integrated form. The integral to be minimized is of the form∫ T

0

(c′(t))2 g (c(t)) dt

where g(c) = ‖(I −∆)1/2∂cϕc‖2L2 . Instead of solving the problem of the calculus of
variations with a nonstandard boundary condition, we make a guess and look for
solutions of the form c(t) = c0−2γt/T 2 for some positive γ with c0−2γ/T > 0. Note
that if γ = inf{ 3

2δ(c0, α), c04 }, then the boundary condition is satisfied for T ≥ 1.
Also the term g(c(t)) in the integral is then such that there exists a constant C(c0)
with ∫ T

0

(c′(t))2 g (c(t)) dt ≤ C(c0)
∫ T

0

(c′(t))2 dt, for T ≥ 1,

since c0/2 ≤ c(t) ≤ c0 for any T ∈ [0, T ]. Thus, for a new constant C(α, c0), we
obtain ∫ T

0

(c′(t))2 g (c(t)) dt ≤ C(α, c0)
T 3

, for T ≥ 1.
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Let us now consider the case where the square root of the covariance operator of
the noise is Φn, and let us start from the path c(t) exhibited in the homogeneous
noise case; we denote the corresponding control by

hc(t, x) = c′(t) (I −∆)1/2
(
∂cϕc|c=c(t)

(
· −
∫ t

0

c(s)ds
))

.

Then, since for such hc∥∥SH,ϕc0 (hc)(T )− ϕc0(· − c0T )
∥∥

H1 > 2α,

we deduce from the continuity of the mild-solution of the control map with respect
to the convolution of the semi-group with the control, used to prove the LDP, and
the continuity of this last quantity with respect to the control, that for sufficiently
large n

‖Sn,ϕc0 (hc)(T )− ϕc0(· − c0T )‖H1

=
∥∥∥∥SH,ϕc0 ((I −∆)1/2(I −∆ +

1
n

(x2I −∆)k)−1/2hc

)
(T )− ϕc0(· − c0T )

∥∥∥∥
H1

> α.

This ends the proof. �

As a consequence, the time scale on which an exit from a neighborhood of the
soliton occurs is at most ε−2/3. In the next section we prove that the time scale on
which the solution remains close to the randomly modulated soliton is exactly of
the much longer order ε−2. We provide upper and lower bounds for this result.

3. Escape from a neighborhood of the randomly modulated soliton

In the proof of Theorem 2.1 in [5] a local parametrization u 7→ (C(u),X (u))
is used, in order to obtain parameters of the soliton wave form such that u =
ϕC(u)(· − X (u)) +R(u) with R satisfying some adequate orthogonality conditions.
This parametrization is obtained using the implicit function theorem, imposing
that the constraints (1.9) and (1.10) hold. Such a parametrization holds as long as
u remains in a proper neighborhood of the spatial translates of ϕc0 ; thus, setting
cε(t) = C(uε,ϕc0 (t)) and xε(t) = X (uε,ϕc0 (t)), with uε,ϕc0 a solution of (1.5) with
paths a.s. in C1(R+; H1) and initial datum ϕc0 , the processes cε(t) and xε(t) are
well defined adapted processes, up to a stopping time of the form

τ εα = inf {t ≥ 0, |cε(t)− c0| ≥ α or ‖uε,ϕc0 (t, ·+ xε(t))− ϕc0‖H1 ≥ α} .

We can indeed always replace a function u by the function u(· + X (u)) and come
back to the case where xε(t) is close to 0, and it is not necessary to include a
condition of the form |xε(t)| ≥ α. It is also shown that this stopping time could be
bounded above and below by

τ εCα = inf
{
t ≥ 0, |cε(t)− c0| ≥ α or ‖uε,ϕc0 (t, ·+ xε(t))− ϕcε(t)‖H1 ≥ α

}
for some constants C depending solely on c0 and α0, with 0 < α ≤ α0. Hence,
the two stopping times are equivalent and the qualitative behavior of P(τ εα ≤ T )
with respect to ε and T should be the same as the original P(τ εα ≤ T ). These new
stopping times τ εα prove to be more convenient to work with. Note that the implicit
function theorem says that each function in H1 sufficiently close to a translate of
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the soliton could be written as a translated soliton with slightly different param-
eters plus a remainder in the subspace of H1 orthogonal in L2 to ϕc0 and ∂xϕc0 .
Therefore the exit in terms of the H1 norm is the exit of a proper open subset.

Let us first revisit the upper bound given in [5] and prove that the upper bound
is indeed exponential. The proof relies on exponential tail estimates. We denote by
L−1,0 and L0,1 the spaces of bounded operators from H−1 to L2 (respectively from
L2 to H1).

Proposition 3.1. For T > 0 and 0 < α ≤ α0 fixed, there exists a constant
C(α, c0), depending on α and c0 but not on T , and ε0 > 0 with ε20T sufficiently
small depending on ‖Φ‖L0,1

2
and α, such that for every positive ε < ε0,

(3.1) P (τ εα ≤ T ) ≤ exp
(
− C(α, c0)
ε2T‖Φ‖2L0,1

)
.

Proof. Fix T positive. The estimate (1.13) relies on the two following inequalities.
Let τ = τ εα ∧ T ; then for α0 sufficiently small there exists a positive constant C
independent of T such that

|cε(τ)− c0|2 ≤ C

[
‖εηε(τ)‖4L2 + 4ε2

∣∣∣∣∫ τ

0

(uε,ϕc0 (s), dW (s))L2

∣∣∣∣2 + ε4τ2‖Φ‖4L0,1
2

]
and

‖εηε(τ)‖2H1 ≤C

[
‖εηε(τ)‖4L2 + 4ε2

∣∣∣∣∫ τ

0

(uε,ϕc0 (s), dW (s))L2

∣∣∣∣2 + ε4τ2‖Φ‖4L0,1
2

+ ε

∫ τ

0

(∂xuε,ϕc0 (s), ∂xdW (s))L2 − ε
∫ τ

0

(
(uε,ϕc0 (s))2 , dW (s)

)
L2

+ c0ε

∫ τ

0

(uε,ϕc0 (s), dW (s))L2 +
ε2

2
τ‖Φ‖2L0,1

2

+ε2‖Φ‖2L0,1
2

∫ τ

0

‖uε,ϕc0 (s)‖L2ds+ c0
ε2

2
τ‖Φ‖2L0,1

2

]
.

These are obtained from several manipulations of the Lyapunov functional and
evolution equations for the mass and Hamiltonian evaluated on the solution of the
stochastic KdV equation (see [5]). The evolution of these quantities is obtained
using the Itô formula and a smoothing procedure. We do not reproduce the proof
here. We may also write

P (τ εα ≤ T ) ≤ P
(
|cε (τ)− c0|2 ≥ α2 or ‖εηε (τ) ‖2H1 ≥ α2

)
≤ P

(
|cε (τ)− c0|2 ≥ α2

)
+ P

(
‖εηε (τ) ‖2H1 ≥ α2

)
.

Note that when |cε (τ)− c0|2 ≥ α2 we have |cε (τ)− c0|2 = α2 and ‖εηε (τ) ‖L2 ≤ α.
Thus for ε0 sufficiently small, depending on ‖Φ‖L0,1

2
, T (so that ε20T is small) and

α, and for ε < ε0,

P
(
|cε (τ)− c0|2 ≥ α2

)
≤ P

(
ε

∣∣∣∣∫ τ

0

(uε,ϕc0 (s), dW (s))L2

∣∣∣∣ ≥ α

4

)
≤ P

(
ε sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
uε,ϕc0 ,τ

ε
α(s), dW (s)

)
L2

∣∣∣∣ ≥ α

4

)
.(3.2)
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where uε,ϕc0 ,τ
ε
α is the process stopped at time τ εα. Similarly, using as well the

following property

(P ) When |cε (τ) − c0| ≤ α ≤ α0, then for some C depending only on c0 and
α0, ‖ϕcε(t) − ϕc0‖H1 ≤ Cα, for all t ≤ τ ,

we obtain that there exists ε0 sufficiently small, depending on ‖Φ‖L0,1
2

, T (with ε20T
small) and α, such that for all ε < ε0,

P
(
‖εηε (τ) ‖2H1 ≥ α2

)
≤P

(
ε sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
uε,ϕc0 ,τ

ε
α(s), dW (s)

)
L2

∣∣∣∣ ≥ 1
2

√
α2

10

)

+P

(
ε sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
∂xu

ε,ϕc0τ
ε
α(s), ∂xdW (s)

)
L2

∣∣∣∣ ≥ α2

10

)

+P

(
ε sup
t∈[0,T ]

∣∣∣∣∫ t

0

((
uε,ϕc0τ

ε
α(s)

)2

, dW (s)
)

L2

∣∣∣∣ ≥ α2

10

)

+P

(
ε sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
uε,ϕc0 ,τ

ε
α(s), dW (s)

)
L2

∣∣∣∣ ≥ α2

10c0

)
.(3.3)

Let us denote by Zi(t) for i = {1, 2, 3} the stochastic integrals arising in the right
hand sides of (3.2) and (3.3). We obtain exponential tail estimates for each of
the above probabilities in the usual way, see for example [18], Theorem 2.1. We
introduce the function fl(x) =

√
1 + lx2, where l is a positive parameter. We then

apply the Itô formula to fl (Zi(t)) and each process decomposes into 1 + El,i(t) +
Rl,i(t) where

El,i(t) =
∫ t

0

lZi(t)√
1 + lZi(t)2

dZi(t)−
1
2

∫ t

0

(
lZi(t)√

1 + lZi(t)2

)2

d < Zi >t,

and

Rl,i(t) =
1
2

∫ t

0

(
lZi(t)√

1 + lZi(t)2

)2

d < Zi >t +
1
2

∫ t

0

d < Zi >t

(1 + lZi(t)2)3/2
.

Let us for example consider Z2. Given (ej)j∈N a complete orthonormal system of
L2,

< Z2 >t=
∫ t

0

∑
j∈N

(
∂xu

ε,ϕc0τ
ε
α , ∂xΦej

)2

L2
(s)ds;

thus, using the Hölder inequality and the property (P ) we have, for some constant
C(α, c0) = Cα2 + ‖∂xϕc0‖H1 , and any t,

< Z2 >t≤ C(α, c0)‖Φ∗‖2L−1,0t.

Then

|Rl,2(t)| ≤ lC(α, c0)‖Φ‖2L0,1T.
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The same bound also holds for Z1 and Z3. We may thus write for any i and
constants δi > 0,

P

(
sup
t∈[0,T ]

|Zi(t)| ≥
δi
ε

)

= P

(
sup
t∈[0,T ]

exp (fl(Zi(t))) ≥ exp
(
fl

(
δi
ε

)))

≤ P

(
sup
t∈[0,T ]

exp (El,i(t)) ≥ exp
(
fl

(
δi
ε

)
− 1− lC(α, c0)‖Φ‖2L0,1T

))
.

The Novikov condition is also satisfied and El,i(t) is such that (exp (El,i(t)))t≥0 is
a uniformly integrable martingale. The Doob inequality then gives

P

(
sup
t∈[0,T ]

exp (El,i(t)) ≥ exp
(
fl

(
δi
ε

)
− 1− lC(α, c0)‖Φ‖2L0,1T

))

≤ exp
(
−fl

(
δi
ε

)
+ 1 + lC(α, c0)‖Φ‖2L0,1T

)
E [exp (El,i(T ))] .

Since exp (El,i(T )) is an exponential martingale E [exp (El,i(T ))] = E [exp (El,i(0))] =
1. For ε0 small enough we have for ε < ε0

C(α, c0)‖Φ‖2L0,1T <
δ2i
2ε2

which implies that the l-derivative at 0 of the function in the exponential bound is
negative. Then, optimizing on the parameter l, we obtain the minimum in l of the
upper bound, which has the form

exp
(

1− C(α, c0)
ε2T‖Φ‖2L0,1

)
,

with possibly another constant C(α, c0). Using the largest of all constants in the
exponentials for each tail probabilities, and taking a constant slightly bigger and ε0
smaller if necessary, the multiplicative constant in front of the exponential decay
disappears and the result follows. �

Remark 3.2. As will appear elsewhere, Theorem 1.1 also holds for a noise of
multiplicative type, and an exponential upper bound holds as well.

If we now consider the sequence of operators Φn mimicking the spatially homo-
geneous noise with covariance operator (I −∆)−1, denoting the exit times τn,εα , we
obtain the following statement:

Corollary 3.3. For T > 0, 0 < α < α0 and n fixed, there exists a constant
C(α, c0), depending on α and c0, and there exists ε0 > 0 with ε20T sufficiently small
with respect to ‖Φn‖L0,1

2
and α, such that for every ε < ε0,

(3.4) P (τn,εα ≤ T ) ≤ exp
(
−C(α, c0)

ε2T

)
.

In particular, we have the following double asymptotic result

limn→∞limε→0ε
2 log P (τn,εα ≤ T ) ≤ −C(α, c0)

T
.
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Let us now prove that when considering the sequence of operators Φn as above,
one can obtain a lower bound of the same order in the parameters T and ε as the
upper bound in Corollary 3.3. We make use of the approximation via a modulated
soliton together with the LDP obtained in Theorem 2.1, and again minimize the
rate function on a smaller set of controls giving rise to a set of parameterized exit
paths.

Proposition 3.4. For every T and α positive, there exists a constant C(α, c0)
which depends on c0 and α but not on T , such that

limn→∞limε→0ε
2 log P (τn,εα ≤ T ) ≥ −C(α, c0)

T
.

Proof. Let us denote by Uα0 the open set

Uα0 =
{
ϕc(· − y) + g, g ∈ H1 : ‖g‖H1 < α0, y ∈ R, |c− c0| < α0

}
.

We know from [5] that the velocity is obtained via a continuous mapping C from
Uα0 to R such that

cε(t) = C (un,ε,ϕc0 (t)) .

Also for fixed n, we write that for 0 < 2α < α0,

P (τn,εα ≤ T ) ≥ P (un,ε,ϕc0 ∈ B)

where

B =
{
u ∈ C([0, T ]; H1) : ∀t ∈ [0, T ], u(t) ∈ Uα0 , |C (u(T ))− c0| > α

}
.

Theorem 2.1 then leads to the following lower bound for limε→0ε log P (τn,εα ≤ T ):
(3.5)

−1
2

inf
{
‖h‖2L2(0,T ;L2), h : ∀t ∈ [0, T ], Sn,ϕc0 (h)(t) ∈ Uα0 , |C (Sn,ϕc0 (h)(T ))− c0| > α

}
.

Let us, as in the proof of Proposition 2.2, replace in a first step the above varia-
tional problem by a variational problem for Φ = ΦH = (I −∆)−1/2 and α by 2α.
Minimizing on a smaller set, we obtain

−1
2

inf
{
‖h‖2L2(0,T ;L2), h : ∀t ∈ [0, T ], SH,ϕc0 (h)(t) ∈ Uα0 , C

(
SH,ϕc0 (h)(T )

)
− c0 = 3α

}
.

We minimize on an even smaller set, considering solutions of the controlled equation
which are modulated solitons of the form

ϕc(t)

(
x−

∫ t

0

c(s)
)

where the one dimensional paths c are assumed to belong to C1([0, T ]; (0,+∞)).
The boundary conditions are thus that c(0) = c0 and c(T ) = c0 + 2α. A control hc
associated to such a solution is given by

hc(t, x) = Φ−1
H

(
∂tSH,ϕc0 (hc) + ∂3

xS
H,ϕc0 (hc) + ∂x

(
SH,ϕc0 (hc)2

))
(t, x)

= c′(t) Φ−1
H ∂cϕc

∣∣
c=c(t)

(
x−

∫ t

0

c(s)ds
)
.
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Note that this control is the same as in Proposition 2.2, only the terminal boundary
condition changes. We thus obtain the lower bound

−1
2

inf

{∫ T

0

∥∥∥∥c′(t)(I −∆)1/2 ∂cϕc|c=c(t)

(
x−

∫ t

0

c(s)ds
)∥∥∥∥2

L2

dt,

c ∈ C1([0, T ]; (0,+∞)) : c(0) = c0, c(T ) = c0 + 2α
}
.(3.6)

We now have to solve a problem of the calculus of variations. Our aim is to find the
optimal paths c among the set of constrained paths minimizing the path integral.
The integral may be written, with the same function g as in Proposition 2.2, as∫ T

0

(c′(t))2 g (c(t)) dt.

Using successively the change of variables t = Tu and the change of unknown
function v(u) = c(Tu), we obtain an upper bound of the form

1
T

∫ 1

0

(v′(u))2 g(v(u))du

for functions v which are C1([0, T ]; (0,+∞)) and satisfy the two boundary condi-
tions v(0) = c0 and v(1) = c0 + 2α independent of T . We recall that
g(c) = ‖(I − ∆)1/2∂cϕc‖2L2 so that s 7→ g(v(s)) is bounded on [0, 1] for any
v ∈ C1([0, T ]; (0,+∞)). Hence we deduce that the infimum in (3.6) is bounded
above by C(α,c0)

T . Now, coming back to the case where Φn is the square root of the
covariance operator of the noise, we start from a path c obtained from v which say
minimizes the objective function in the above problem of the calculus of variations,
though following the above argument it does not really matter. Then, the control
hc is such that

C
(
SH,ϕc0 (hc)(T )

)
= c0 + 2α.

From the continuity of the mild-solution of the control map with respect to the
convolution of the semi-group with the control, used to prove the LDP, and the
continuity of this last quantity with respect to the control, and using also the
continuity of C with respect to u ∈ Uα0 , we know that for sufficiently large n

C (Sn,ϕc0 (hc)(T ))

= C
(
SH,ϕc0

(
(I −∆)1/2(I −∆ +

1
n

(x2I −∆)k)−1/2hc

)
(T )
)

> α.

We deduce that the inf-limit as n goes to infinity of the infimum in (3.5) is again
bounded above by C(α,c0)

T and this ends the proof of Proposition 3.4. �

As a consequence of our two bounds, the typical time scale on which the solution
remains in the neighborhood of the modulated soliton is indeed 1/ε2.
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