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ABSTRACT

We construct finite-sample distribution-free tests andfidence sets for the parame-
ters of a linear median regression where no parametric gdgum are imposed on the
noise distribution. The setup we consider allows for nonradity, heteroskedasticity
and nonlinear serial dependence in the errors. Such seamigéiic models are usually
analyzed using only asymptotically justified approximatetmods, which can be arbi-
trarily unreliable in finite samples. We consider first thegmrty of mediangale — the
median-based analogue of a martingale difference — and #sraivthe signs of medi-
angale sequences follow a nuisance-parameter freebdittm despite the presence of
nonlinear dependence and heterogeneity of unknown fornpdive out that a simulta-
neous inference approach in conjunction with sign tramsédions do provide statistics
with the required pivotality features — in addition to ust@bustness properties. Those
sign-based statistics are exploited — using Monte Carle ta®l projection techniques —
in order to produce valid inference in finite samples. An gstatic theory which holds
under weaker assumptions is also provided. Finally, sittulaesults illustrating the

performance and two applications are presented.

Key words: sign-based methods; median regression; finite samplesnoonality;
heteroskedasticity; serial dependence; GARCH; stochas@tihty; sign test; simulta-
neous inference; Monte Carlo tests; bootstrap; projectiethods; quantile regressions.
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RESUME

Dans cet article, nous construisons des tests et des rédmm®nfiance pour les
parameétres d’'une régression linéaire sur la médiane, qui walides a distance
finie sans imposer d’hypothese paramétrique sur la disioibwdes erreurs. Les er-
reurs peuvent étre non gaussiennes, hétéroscédastiquemuylEsenter une dépen-
dance sérielle de forme arbitraire. Habituellement, I'gs@ de ces modeles semi-
paramétriques s’appuie sur des approximations asympestiqgormales, lequelles peu-
vent étre trompeuses en échantillon fini. Nous introduisores propriété analogue a
la différence de martingale pour la médiane, la «médiamgataemarquons que les
signes d’une suite de «médiangale» sont indépendantseantret suivent une distrib-
ution connue et simulable. Nous utilisons la transfornmagiar les signes et proposons
des statistiques pivotales qui, en plus d’étre robustesygigent de construire une ap-
proche d'inférence simultanée valide quelle que soit Ibetaie I'échantillon. Nous
utilisons la méthode des tests de Monte Carlo, puis dédusmmsrojection des tests et
des régions de confiance pour n’importe quelle transfoonatu paramétre. Nous four-
nissons aussi une théorie asymptotique sous des hypothiasdaibles. Les études par
simulation illustrent la performance de la méthode propdeésque les données sont

tres hétérogenes. Enfin, nous présentons deux exemplgsicaion.

Mots clés: méthodes de signes ; régression sur la médiane ; échastfiluis; non
normalité ; hétéroscédasticité ; dépendance sérielle ; GAR@H4Atilité stochastique ;
tests de signes ; inférence simultanée ; tests de Monte Chdotstrap ; méthodes de

projection ; régressions quantiles.
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1. Introduction

The Laplace-Boscovich median regression has received sveenmterest since two
decades. This method is known to be more robust than leaatessjand easily allows
for heterogeneous data [see Dodge (1997)]. It has receedy bdapted to models in-
volving heteroskedasticity and autocorrelation [Zhad@0QWeiss (1990)], endogene-
ity [Amemiya (1982), Powell (1983), Hong and Tamer (2003¥nlinear functional
forms [Weiss (1991)] and has been generalized to other dgiaatjressions [Koenker
and Bassett (1978)]. Theoretical advances on the behavtbedassociated estimators
have completed this process [Powell (1994), Chen, Linton\@amdKeilegom (2003)].
In empirical studies, partly thanks to the generalizatiorgtiantile regressions, new
fields of potential applications have emergedhe recent and fast development of
computer technology clearly stimulates interest for threbest, but formerly viewed as
too cumbersome, methods.

Linear median regression assumes a linear relation bettheathependent variable
y and the explanatory variables Only a null median assumption is imposed on the dis-
turbance process. Such a condition of identification "by tleelian" can be motivated
by fundamental results on nonparametric inference. Sinba@a and Savage (1956),
it is known that without strong distributional assumptigasch as normality), it is im-
possible to obtain reasonable tests on the mean .df observations, for any sample
size. In general, moments are not empirically meaningfthewit further distributional
assumptions. This form of non-identification can be elirtedaeven in finite samples,
by choosing another measure of central tendency, such asdtimn. Hypotheses on
the median of non-normal observations can easily be testesigns tests [see Pratt
and Gibbons (1981)]. In nonparametric setups, one may éxpedels with median
identification to be more appropriate than their mean copaté

Median regression (and related quantile regressions)iges\an attractive bridge
between parametric and nonparametric models. Distribatiassumptions on the dis-

turbance process are relaxed but the functional form resnaémametric. Associated

The reader is referred to Buchinsky (1994) for an interpi@tan terms of inequality and mobility
topics in the U.S. labor market, Engle and Manganelli (1968an application in Value at Risk issues in
finance and Koenker and Hallock (2001), Buchinsky (1998)efkdhaustive reviews of this literature.



estimators, such as the least absolute deviations (LADnatir, are more robust to
outliers than usual least squares (LS) methods and may be efificient whenever
the median is a better measure of location than the mean.hbkds for heavy-tailed
distributions or distributions that have mass at zero. Téeyespecially appropriate
when unobserved heterogeneity is suspected in the dataufrent expansion of such
"semiparametric” techniques reflects an intention to ddpamt restrictive parametric
framework [see Powell (1994)]. However, related infereand confidence intervals
remain based on asymptotic normality approximations. féusrsal to normal approx-
imate inference is certainly disappointing when so mucbreffas been made to get rid
of parametric models.

In this paper, we show that a testing theory based on ressdyrs provides an entire
system of finite-sample exact inference for a linear medégnassion model. The level
of the tests is provably equal to the nominal level, for anpgi@ size. Exact tests and
confidence regions remain valid under general assumptiwot/ing heteroskedasticity
of unknown form and nonlinear dependence.

The starting point is a well known result of quasi-impodgipin the non-parametric
statistical literature. Lehmann and Stein (1949) proved thference procedures that
are valid under conditions of heteroskedasticity of unkndarm when the number of
observations is finite, must control the level of the testsd@ional on the absolute val-
ues [see also Pratt and Gibbons (1981), Lehmann (1959)}s fEsult has two main
consequences. First, sign-based methods, which do cdnéralonditional level, are a
general way of producing valid inference for any sample.s&econd, all other meth-
ods, including the usual heteroskedasticity and autolative corrected (HAC) meth-
ods developed by White (1980), Newey and West (1987), And(@é@81) and others,
which are not based on signs, are not proved to be valid fosample size. Although
this provides a compelling argument for using sign-basedguures, the latter have
barely been exploited in econometrics. Our point is to sttbeir robustness and to
generalize their use to median regressions.

To our knowledge, sign-based methods have not received mtefest in econo-

metrics, compared to ranks or signed ranks methods. Dufid81), Campbell and



Dufour (1991, 1995), Dufour, Hallin and Mizera (1998) WrigRD00), derived exact
nonparametric tests for different time series models. kEgagssion context, Boldin, Si-
monova and Tyurin (1997) developed inference and estimébiolinear models. They
presented both exact and asymptotic-based inferences .tbrobservations, whereas
for autoregressive processes withd. disturbances, only asymptotic justification was
available. Our work is positioned in the following of Boldin &. (1997). We keep
sign-based statistics related to locally optimal signstesthich are simple quadratic
forms and can easily be adapted for estimation. Howeverxtend their distribution-
free properties to allow for a wide array of nonlinear depenidchemes. We propose
to conjugate them with projection techniques and Monte Cadts to systematically
derive exact confidence sets.

The pivotality of the sign-based statistics validates the of Monte Carlo tests, a
technique proposed by Dwass (1957) and Barnard (1963). TheeMdarlo method,
adapted to discrete statistics by a tie-breaking procef@utour (2006)], yields exact
simultaneous confidence region far Then, conservative confidence intervals (ClIs) for
each component of the parameter (or any real function ofdén&peter) are obtained by
projection [Dufour and Kiviet (1998), Dufour and Taamow@0(5), Dufour and Jasiak
(2001)]. Exact Cls as they are valid can be unbounded for eotifiable component.
That results from the exactness of the method and insurdasuth&alue of the compo-
nent belongs to exact Cls with probability higher tHan «. In practice, computation
of bounds of confidence intervals (or confidence sets) regugtobal optimization al-
gorithms such as simulated annealing [see Goffe, FerrgtRargers (1994)].

Sign-based inference methods constitute an alternatiwefeéoence derived from
the asymptotic behavior of the well known LAD estimator. TtD estimator (such
as related quantile estimators) is consistent and asyiogitgtnormal in case of het-
eroskedasticity [Powell (1984) and Zhao (2001) for efficiwaighted LAD estimator],
or temporal dependence [Weiss (1991)]. Fitzenberger [98xtended the scheme
of potential temporal dependence including stationary ARM#turbance processes.
Horowitz (1998) proposed a smoothed version of the LAD estiim At the same time,

an important problem in the LAD literature consists in pohrg good estimates of the



asymptotic covariance matrix, on which inference relieswé@ll (1984) suggested ker-
nel estimation, but the most widespread method of estimagithe bootstrap. Buchin-

sky (1995) advocated the use of design matrix bootstrapftependent observations.
In dependent cases, Fitzenberger (I99foposed a moving block bootstrap. Finally,
Hahn (1997) suggested a Bayesian bootstra}ther notable areas of investigation in
the L, literature concern the study of nonlinear functional foremnsl structural models

with endogeneity ["censored quantile regressions”, Povi€l84, 1986) and Fitzen-

berger (1994), Buchinsky and Hahn (1998), "simultaneous equations”, Amami
(1982), Hong and Tamer (2003)]. More recently, authors Hsaen interested in al-

lowing for misspecification [Kim and White (2002), Komunj&005), Jung (1996)].

In the context of LAD-based inference, kernel techniquessansitive to the choice
of kernel function and bandwidth parameter, and the esiimaif the LAD asymptotic
covariance matrix needs a reliable estimator of the ernon t#ensity at zero. This
may be tricky especially when disturbances are heteroskiedaBesides, whenever
the normal distribution is not a good finite-sample appration, inference based on
covariance matrix estimation may be problematic. From &efisample point of view,
asymptotically justified methods can be arbitrarily urakle. Test sizes can be far from
their nominal levels. One can find examples of such distestior time series context
in Dufour (1981), Campbell and Dufour (1995, 1997) andfigrestimation in Dielman
and Pfaffenberger (1988 198%) , De Angelis, Hall and Young (1993), Buchinsky
(1995)]. Inference based on signs constitutes an altem#iat does not suffer from
these shortcomings.

We study here a linear median regression model where theifjpslependent)
disturbance process is assumed to have a null median coralibn some exogenous
explanatory variables and its own past. This setup covarsstaxhastic heteroskedas-
ticity, standard conditional heteroskedasticity (like ARCFHARCH, stochastic volatil-
ity models, ...) as well as other forms of nonlinear dependenHowever, linear
autocorrelation in the residuals is not allowed. We firsattbe problem of inference

and show that pivotal statistics based on the signs of théuals are available for any

>The reader is referred to Buchinsky (1995, 1998), for a w\aed to Fitzenberger (198y for a
comparison between these methods.



sample size. Hence, exact inference and exact simultaremiglence region o@
can be derived using Monte Carlo tests. For more general ggesghat may involve
stationary ARMA disturbances, these statistics are no lopgetal. The serial depen-
dence parameters constitute nuisance parameters. Hoviareforming sign-based
statistics with standard HAC methods allows to asympttyicget rid of these nuisance
parameters. We thus extend the validity of the Monte Carldhoeet For these kinds
of processes, we loose the exactness but keep an asymggatidityv In particular, this
asymptotic validity requires less assumptions on momentiseoshape of the distribu-
tion (such as the existence of a density) than usual asymyitased inference. Besides,
we do not need to evaluate the disturbance density at zeiohwhbnstitutes one of the
major difficulties of kernel-based methods. In practice,deeve sign-based statistics
from locally most powerful sign-based test statistics. Vidam exact simultaneous
confidence region by inversion, and then, conservative denfe intervals for each
component or any real function of by projection techniques. Once again, we stress
the fact that sign-based statistics can provide finite-sammference which is not the
case for usual inference theories associated with LAD ahdrajuantile estimators,
which rely on their asymptotic distributions.

The paper is organized as follows. In section 2, we presenttbdel and the nota-
tions. Section 3 contains general results on exact infereflcey are applied to median
regressions in section 4. In section 5, we derive confidemegvals at any given con-
fidence level and illustrate the method on a numerical exarfpéction 6 is dedicated
to the asymptotic validity of the finite-sample inferencetinoel. In section 7, we give
simulation results from comparisons to usual techniquesti@ 8 presents illustrative
applications: testing the presence of a drift in the Stashdad Poor’'s composite price
index series, and testing forconvergence between levels of per capita output across

the U. S. States. Section 9 concludes. The Appendix corttaéngroofs.



2. Framework

2.1. Model
We consider a stochastic procd$s= {W, = (y;, ) : 2 — RPF ¢t =12 ...}
defined on a probability spa¢€, 7, P). Let{W;, Fi} 1—12

sequence,e. F; is ac-field in 2 such thatF, C F, for s < t ando (W1, ..., W,;) C Fy,

... be an adapted stochastic
wheres (W7, ..., W,) is theo-algebra spanned By, ..., W;. W; = (y, z}), wherey,
is the dependent variable angd= (x4, ..., x,)’, ap-vector of explanatory variables .
Thez,’s may be random or fixed. We assume thaandz, satisfy a linear model of the
form:

w=x0+u, t=1,...,n, (2.1)
whereuw, is an error process. Inference on this model will be madeilplesgirough
assumptions on the conditional medians of the errors.

In the sequel,y = (y1,...,y,) € R" denote the dependent vectaX =
[z1,...,2,] then x p explanatory matrix and = (u4,...,u,)" € R" the disturbance
vector. Moreoverfy(.|zy, ..., z,) represent the distribution function af conditional
onX.

A common assumption which allows for general forms of depewd contexts
is assuming thafu;, t = 1,2,...} is a martingale difference with respect f =
o(Wh,...,Wy), t=1,2,....

Definition 2.1 MARTINGALE DIFFERENCE  Let{u,, F, : t = 1,2,...} be an
adapted stochastic sequendey;,t = 1,2,...} is a martingale difference sequence
with respect to{ 7, t = 1,2,...} iff  E(uF—1) =0, Vt>1.

We depart from this usual assumption, which requires th&t@xce of the first moments
of u;. Indeed, our aim is to develop a framework that is robust tereskedasticity of
unknown form. From Bahadur and Savage (1956), it is knownitifatence on the
mean ofi.i.d. observations of a random variable without any further aggiom on
the form of its distribution is impossible. Such a test haspower. This problem
of non-testability can be viewed as a form of non-identifwatin a wide sense. Un-

less relatively strong distributional assumptions are epnatbments are not empirically



meaningful. Thus, if one wants to relax the distributiorsdamptions, one must choose
another measure of central tendency such as the median. &ti@amis in particular
well adapted if the distribution of the disturbance proo#gsss not possess moments.
As a consequence, in this median regression framework, #réngale difference as-
sumption will be replaced by an analogue in terms of mediag.défine the median-
martingale difference or shortly saithediangalethat can be stated unconditional or

conditional on the design matriX.

Definition 2.2 STRICT MEDIANGALE. Let{u;, F;, t = 1,2...} be an adapted
sequencefu,, t = 1,2,...} is astrict mediangale with respect{d;, t = 1,2,...} iff

P[ul < O] = P[Ul > 0] = 0.5 and P[ut < 0|ft_1] = P[Ut > O|Ft_1] = 05, fort > 1.

Definition 2.3 STRICT CONDITIONAL MEDIANGALE. Let{u;, F;, t = 1,2...}
be an adapted sequence affd = o(uy,...,u;, X), {w, t = 1,2,...} is a strict
mediangale conditional oiX with respect to{ 7, ¢t = 1,2,...} iff Plu; < 0|X] =
Plu; > 0|X] = 0.5 and Plu; < Oluy, ..., w1, X] = Pluy > Olug, ..., uq, X] =
0.5, fort > 1.

The above definitions allow; to have a discrete distribution except at zero. This con-

straint is relaxed in Definitiod.4.

Definition 2.4 WEAK CONDITIONAL MEDIANGALE . Let{u;, F;, t =1,2...} bean
adapted sequence affd = o (uy, ..., u, X), {us, t =1,2,...} is a weak mediangale
conditional onX with respect to{ 73, ¢t = 1,2,...} iff Plu; > 0|X] = Pluy <
0|X] and Plu; > O|uy, ..., u—1, X] = Pluy < Oluy, ..., u—1,X], fort=2,... ,n.

The sign operatos : R — {—1,0,1} is defined asi(a) = 1 4o0)(a) — 1(—o00)(a)
where 1,4(a) = 1, if a € A, 14(a) = 0, if a ¢ A. For convenience, if. € R”, we
will note s(u), then-vector composed by the signs of its components.

Stating that{u;,, ¢t = 1,2,...} is a weak mediangale with respect{&;, ¢t =
1,2,...} is equivalent to assuming thét(w,), t = 1,2,...} is a martingale difference
with respect to the same sequence of sudlgebras{F;, ¢t = 1,2,...}. However,

the weak conditional mediangale concept differs from a imgate difference on the



signs because of the conditioning upon the whole proéésdndeed, the reference
sequence of sub-algebras is usually taken #oF; = o(Wy,..., W), t = 1,2,...}.
Here, the reference sequence{is, = o(Wy,..., W, X), t = 1,2,...}. We shall
see later that asymptotic inference may be available undéaker assumptions, as
a classical martingale difference on signs or more geryeralking conditions on
{s(u),c(Wy,...,Wy), t = 1,2,...}. However, the conditional mediangale concept
allows one to develop exact inference (conditional’dn We have replaced the differ-
ence of martingale assumption on the raw prodesst = 1,2, ...} by a quasi-similar
hypothesis on a robust transform of this procgss:;), t = 1,2,...}. Below we will
see itis relatively easy to deal with a weak mediangale bynalsi transformation of the
sign operator, but to simplify the presentation, we shailifoon the strict mediangale

concept. Therefore, our model will rely on the following asgtion.

Assumption A1 STRICT CONDITIONAL MEDIANGALE. The components af =

(uq,...,u,) satisfy a strict mediangale conditional ox.
It is easy to see that Assumption Al entailsd(u, |z, ..., z,) = 0, and
med(ug|xy, ..., Ty, Uty .. u—g) =0, t=2,....n,

Hence, we are in a median regression context.
Our last remark concerns exogeneity. As long asatfgeare strongly exogenous
explanatory variables, the conditional mediangale coniseguivalent to a martingale

difference on signs with respect®@ = o(Wy,..., W), t =1,2,...4

Proposition 2.5 MEDIANGALE EXOGENEITY. Suppos€z, : ¢t = 1,...,n}isa

strongly exogenous process forP[u; > 0] = Plu; < 0] = 0.5, and
Plu; > Oluq, ..., w1, 21, .., 2 = Plug < Olug,...,up_1,21,..., 2, = 0.5.

Then{u;, t € N} is a strict mediangale conditional oi .

3These concepts can easily be extended to other quantileghibanedian. However, our first in-
terest is to develop an inference method valid in presenceigf heterogeneous data without further
restrictions, in which context assumption on the medianemakre sense than an assumption on general
guantile.

4X is strongly exogenous fo if X is sequentially exogenous andyif does not Granger cause
[see Gouriéroux and Monfort (1995)]



Model (2.1) with the Assumption Al allows for very generairfs of the disturbance
distribution, including asymmetric, heteroskedastic @p@hdent ones, as long as con-
ditional medians are 0. We stress that neither density nanemb existence are re-
quired. Indeed, what the mediangale concept requires immadbindependence in the
signs of the residuals. This extends results in Dufour (1988 Campbell and Dufour
(1991, 1995, 1997).

Asymptotic normality of the LAD estimator, which is presedtin its most
general way in Fitzenberger (1997 holds under some mixing concepts on
{s(uy),c(Wy,..., W), t = 1,2,...} and an orthogonality condition betweefu,)
andx,. Besides, it requires additional assumptions on montekitith such a choice,
testing is necessarily based on approximations (asynegtotbootstrap). Here, we fo-
cus on valid finite-sample inference without any furthemuagstion on the form of the

distributions.

2.2. Special cases

The above framework obviously covers independence butzalame spectrum of het-
eroskedasticity and dependence patterns. For example, oi(x1,...,2,) &, t =
1,...,n, whereey,...,s, arei.i.d. conditional on.X, which is relevant for cross-

sectional data. Many dependence schemes are also covepatijadly any model of

the formu, = oy(xy,...,z1)e1, w = o(Ty, .o, Tp1 UL, ooy Up1)E, T =
2,...,n whereegy, ..., g, are independent with median 0;(z4,...,z;_;) and
o(T1, . Ty Uy, ..., Ug), T = 2,...,n are non-zero with probability one. In time

series context, this includes models presenting robusfreperties to endogenous dis-
turbance variance (or volatility) specification, such as:

ARCH(q) with non-Gaussian noisg:

9 2 2 .
O (T1, e Ty, UL, s Upe1)” = Qg Uy g e Uy

GARCH(p, q) with non-Gaussian noises:

2 2 2 2 2 .
Oo(T1, o Tt 5 ULy ooy Up1)™ = Qo F QU QU YT Y, 0

5In Fitzenberger (1993, LAD and quantile estimators are shown to be consistenaagchptotically
normal if amongst othed[x;sg(u:)] = 0, ¥t = 1,...,n, densities exist and second-order moments for
(ug, x¢) are finite.



stochastic volatility models with non-Gaussian noises
uy = exp(w/2)ryes ,

Wy = QW1+ F QW + Ty U1, ..., U, are.dd.d. random variables.

The mediangale property is more general because does pecifysexplicitly the func-
tional form of the variance in contrast with an ARCH specifioati Note again that
the disturbance process does not have to be second-ortlenatg. For nonstation-
ary processes that satisfy the mediangale assumptionpaggd inference will work
whereas all inference procedures based on asymptotic loelodvestimators may fail

or require difficult validity proofs.

3. Exact finite-sample sign-based inference

The most common procedure for developing inference on &ttal model can be
described as follows. First, one finds a (hopefully consijtestimator; second, the
asymptotic distribution of the latter is established, fratmch confidence sets and tests
are derived. Here, we shall proceed in the reverse orderiWilg &rst the test problem,
then build confidence sets, and finally estimafoidence, results on the valid finite-

sample test problem will be adapted to obtain valid confidentervals and estimators.

3.1. Motivation

In econometrics, tests are often based on \? statistics, which are derived from as-
ymptotically normal statistics with a consistent estinnaibthe asymptotic covariance
matrix. Unfortunately, in finite samples, these first-ordpproximations can be very
misleading. Test sizes can be quite far from their nominalieboth the probability
that an asymptotic test rejects a correct null hypothegistlaa probability that a com-
ponent of3 is contained in an asymptotic confidence interval may diffansiderably
from assigned nominal levels. One can find examples of sistbrtions in the dynamic
literature [see for example Dufour (1981), Mankiw and Sha1986), Campbell and
Dufour (1995, 1997) and ]; on inference basedgrestimators [see Dielman and Pfaf-
fenberger (1988 198&), Buchinsky (1995) and De Angelis et al. (1993)]. This remark

SFor the estimation theory, the reader is referred to CoudihZufour (2005).
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usually motivates the use of bootstrap procedures. In a&seoststrapping (once bias
corrected) is a way to make approximation closer by intrauypartificial observations.
However, the bootstrap still relies on approximations angdneral there is no guaran-
tee that the level condition is satisfied in finite samples.

Another way to appreciate the nonvalidity of asymptoticmoels in finite samples is
to recall a theorem established by Lehmann and Stein (1@4$)sider testing whether

n observations are independent with common zero median:

Hy: X1, ..., X, are independent observations (3.1)
each one with a distribution symmetric about zero.
TestingH, turns to check whether the joint distributidfy of the observations belongs
to the setl, = {F,, € F, : F, satisfiesH,} without any other restriction. In other
words, H,, allows for heteroskedasticity of unknown form. For thisupet_ehmann and
Stein (1949) established the following theorem [see alsttf@ibbons (Sect. 3, Chap.

4,p. 218,1981) and Lehmann (1959)].

Theorem 3.1 If a test has leveh for Hy, where0 < o < 1, thenit must satisfy
P[RejectingH, | | X1|, ..., |X.|] < aunderHj .

The level of a valid test must equalconditional on the observation absolute values.
Theorem3.1 also implies that any procedure that does not satisfy theeabondition
has size one. It is not clear that least square-based pnaetipically designated as
"robust to heteroskedasticity" or "HAC" [see White (1980) , Ngvaad West (1987),
Andrews (1991), etc.] do satisfy Theore3ril condition. For some examples of size
distortion in some specific setups, see the simulation studgction 7.

Sign-based procedures do satisfy this condition. Besidasgawill show in section
4, distribution-free sign-based statistics are availabten in finite samples. They have
been used in the statistical literature to derive nonpanacregn tests. The combination

of both remarks give the theoretical basis for developingxatct inference method.

3.2. Distribution-free pivotal functions and nonparametric tests

When the disturbance process is a conditional mediangagoitiit distribution of the

signs of the disturbances is completely determined. Thgss sre mutually indepen-
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dent equallingl with probability 1/2 and—1 with probability 1/2. This result is stated
more precisely in the following proposition. The case withass at zero can be covered

provided a transformation in the sign operator definition.

Proposition 3.2 SIGN DISTRIBUTION. Under model(2.1), suppose the errors
(u1,...,u,) satisfy a strict mediangale conditional o = [z;,...,,]. Then the

variabless(u,), ..., s(u,) are i.i.d. conditional onX according to the distribution
Pls(ug) = 1|xy, ...,z = Pls(uy) = =1|z1,...,2,] ==, t=1,...,n. (3.2)

More generally, this result holds for any combinationtof 1,...,n. If there is a
permutationr : i — j such that mediangale property holds forthen the signs are
1.1.d..

From the above proposition, it follows that the residuahsigctor

s(y — XB) = [s(yr —218), ..., s(yn — 2,8)]

has a nuisance-parameter-free distribution (conditionaX), i.e. it is a pivotal func-
tion. Its distribution is easy to simulate from a combinatiomahdependent uniform
Bernoulli variables. Furthermore, any function of the fofim= T'(s(y — X3), X) is
pivotal conditional onX. Once the form of is specified, the distribution of the statistic
T is totally determined and can also be simulated.

Using Propositior3.2, it is possible to construct tests for which the size is fully
controlled in finite samples. Consider testifg(3,) : 5 = [, againstd,(5,) : 3 #
Bo-UnderHy(5,), s(y: — x,0,) = s(uy), t = 1,...,n. Thus, conditional orX,

T(s(y — XBy), X) ~ T(S,, X) (3.3)
wheresS, = (s1,...,8,) andsy,...,s, i B(1/2). A test with levela rejectsH,
when

T(s(y — XBy), X) > er(X, a) (3.4)

wherecr (X, a) is the(1 — «)-quantile of the distribution of'(S,,, X).
This method can be extended to error distributions with asmaégeroj.e., Plu; =

01X, wry ..., ue—1] = pe(X, uq, ..., u—1) > 0 where thep,(-) are unknown and
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may vary between observations. A way out consists in maatifthe sign function
s(z) ass(z, V) = s(z) + [1 — s(x)?]s(V — 0.5), where V ~ U(0, 1), If V, is
independent ofi; then, irrespective of the distribution af, P[5(u;, V;) = +1] =

P[5(u, V;) = —1] = 5 .. Hence, we can state Propositi8rs

Proposition 3.3 RANDOMIZED SIGN DISTRIBUTION.  Suppos€2.1) holds with
the assumption that,, ... , u, belong to a weak mediangale conditional an Let
Vi, ..., V, bei.i.d random variables following &(0, 1) distribution independent of
and X. Then the variables; = s(u;, V;) are i.i.d. conditional onX with the distribu-
tionP(5, =1|X]=P[s,=-1]|X] =3, t=1,...,n.

All the procedures described in the paper can be appliedgscimgs by s. When the
error distributions possess a mass at zero, the test tatigt(y — X 3,, X)) have to

be used instead af (s(y — X 3,, X)).

4. Regression sign-based tests

In this section, we present sign-based test statisticsafeapivots and provide power
against alternatives of interest. This will enable us tddoMionte Carlo tests relying on
their exact distribution. Therefore, the level of thosdgés exactly controlled for any

sample size.

4.1. Regression sign-based statistics

The class of pivotal functions studied in the previous secis quite general. So,
we wish to choose a test statistic (the form of thidunction) that can have power

against alternatives of interest. Unfortunately, themeasiniformly most powerful test

of Hy(B,) : B = B, againstd,(5,) : [ # B,. Hence, for testing?y(3,) against
H,(5,) in model (2.1), we consider test statistics of the followiogn:

Ds(By, £2,) = s(y — Xﬁo)/XQn(S(y — XBy), X)X's(y — X B) (4.5)

WhereQn(s(y — Xﬁo),X) is ap x p weight matrix that depends on the constrained
signss(y — X f3,) under Hy(3,). Moreover, (2,(s(y — X3,),X) is assumed to be
positive definite. The weighting matri®, (s(y — X5,), X) is introduced here as a
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standardization. We will see that it can in particular actdior some dependence
schemes that cannot be eliminated by the sign transformatio

Statistics of the fornDs(5,, £2,,) include as special cases the ones studied by Boldin
et al. (1997) and Koenker and Bassett (1982). Namely, ondakin= 1, and (2, =
(X'X)~1, we get:

SB(By) = s(y — XBy) X X's(y — XBy) = | X's(y — Xﬁo)”2 ) (4.6)

SF(By) = s(y — XB,) P(X)s(y — XBo) = | X"s(y — Xﬁo)“?ﬂ ’ (4.7)
where P(X) = X(X'X)'X’. In Boldin et al. (1997), it is shown thatB(;3,)
and SF((,) can be associated with locally most powerful tests in the @ds.i.d.
disturbances under some regularity conditions on theilbligion function (especially
1'(0) = 0).” Their proof can easily be extended to disturbances thafgdlie medi-
angale property and for which the conditional density abZsrthe samef,(0|.X) =
fO0|X), Vt=1,...,n.

SF((,) can be interpreted as a sign analogue of the Fisher statiétie precisely,
SF((,) is a monotonic transformation of the Fisher statistic fatiteyy = 0 in the
regression of(y — X3,) on X: s(y — X3,) = X7 + v. This remark holds also for a
general sign-based statistic of the form 4.5, wh@n— X j3,) is regressed or, /2 X.

Wald, Lagrange multiplier (LM) and likelihood ratio (LR) asyptotic tests for M-
estimators, such as the LAD estimator /inregression are developed by Koenker and
Bassett (1982). They assumeéd. errors and a fixed design matrix. In that setup, the
LM statistic for testingH,(5,) : G = 5, turns out to be th& F'(3,) statistic. The same
authors also remarked that this type of statistic is asyhmatity nuisance-parameter-
free. It does not require one to estimate the density of teeeidiance at zero contrary
to LR and Wald-type statistics.

The Boldin et al. (1997) local optimality interpretation cha extended to het-

eroskedastic disturbances. In such a case, the locallynaptest statistic associated

"The power function of the locally most powerful sign-basest thas the faster increase when de-
parting fromg,. In the multiparameter case, the scalar measure requiredaloate that speed is the
curvature of the power function. Restricting on unbiasetisteBoldin et al. (1997) introduced different
locally most powerful tests corresponding to different digfins of curvature.SB(3,) maximizes the
mean curvature, which is proportional to the trace of thgstaee Dubrovin, Fomenko, and Novikov
(Ch. 2, pp. 76-86, 1984) , or Gray (Ch. 21, pp. 373-380, 19f8)a presentation of various curvature
notions].
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with the mean curvature #¢., the test with the highest power function in the vicinity

of the null hypothesis according to a trace argument — wilbbie following form.

Proposition 4.1 In model (2.1), suppose the mediangale Assumption Al holds, and
the disturbances are heteroskedastic with conditional tiessf;(.|X), i = 1,2,...,
that are continuously differentiable around zero and suwdt ¥/ (0| X) = 0. Then, the

locally optimal sign test statistic associated with the mearvature is
SB(By) = sly — XBy) XX's(y — X5,) (4.8)

whereX = diag(f1(0|X), ..., f,(0[X))X.

When thef;(0|z)’'s are unknown, the optimal statistic is not feasible. Théal
weights must be replaced by approximations, such as weilghiged from the normal
distribution.

Sign-based statistics of the form (4.5) can also be intezdras GMM statistics
which exploit the property thats, ® z}, F;} is a martingale difference sequence. We
saw in the first section that this property is induced by thdiamggale Assumption Al.
However, these are quite unusual GMM statistics. Indeesl prameter of interest
is not defined by moment conditions in explicit form. It is ilmcgly defined as the

solution of some robust estimating equations (involvingstmained signs):

n

Zs(yt —1,6) ® 1y = 0.

t=1
For i.i.d. disturbances, Godambe (2001) showed that these estimatimgiions
are optimal among all the linear unbiased (for the mediatimasing functions
Yo ar(B)s(y — z}5). For independent heteroskedastic disturbances, the sgt-of
timal estimating equations is_;_, s(y; — z,3) ® Z; = 0. In those caseX (resp. X)
can be viewed as optimal instruments for the linear model.

We now turn to linearly dependent processes. We proposesta weighting matrix
directly derived from the asymptotic covariance matrixﬁfs(y — X5, ® X. Let
us denote it byJ,, (s(y — X3,), X). We consider?, (s(y — X3,),X) = LJ,(s(y —
Xf3,), X)~" whereJ,(s(y — X3,), X) stands for a consistent estimate.bf(s(y —
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X0G,), X) that can be obtained using kernel-estimators, for examspkeParzen (1957),
White (2001), Newey and West (1987), Andrews (1991)]]. Thads to

Ds (B -0 = sy — X5y XJ; X'sly — X ). (@.9)

S|

Jn(s(y - X0Gy), X) accounts for dependence among signs and explanatory heiab
Hence, by using an estimate of its inverse as weighting matre perform a HAC

correction. Note that the correction dependsign

In all cases,Hy(03,) is rejected when the statistic evaluatedsat= [, is large:
Ds(By, £2,) > cq,(X, a) Wherecq,, (X, «) is a critical value which depends on the
level . Since we are looking at pivotal functions, the criticalued can be evaluated
to any degree of precision by simulation. However, as theiligion is discrete, a test
based on,, (X, o) may not exactly reach the nominal level. A more elegant gwiut
consists in using the technique lifonte Carlo testswith a randomized tie-breaking

procedure which do not suffer from this shortcoming.

4.2. Monte Carlo tests

Monte Carlo tests can be viewed as a finite-sample versioredidbtstrap. They have
been introduced by Dwass (1957) and Barnard (1963) and casfelpéesl to any pivotal
statistic whose distribution can be simulated. For a gémevéew and for extensions in
the case of the presence of a nuisance parameter, the reaglerred to Dufour (2006).
It proceeds as follows. Let us consider a statigtiavhose conditional distribution
given X is free of nuisance parameters, and a test which rejectsuthdrypothesis

whenT > c¢(«). We denote byG(z) = P[T > z| the survival function, and by

F(z) = P[T < z] the distribution function. LeT®) be the observed value @f, and

7O, ..., T™) N independent replicates @f. The empiricap-value is given by
R NGN(QT) +1
= 4.10
p(e) N+1 ( )

whereG y(z) = 2 SN | 11900y (T? — ). Then we have

Ila(N + 1)]

Pl (T) < o] = Nl

,for0<a <1,
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wherel[z] stands for the largest integer less than equat &ee Dufour (2006). IV is
such thaty(N + 1) € N, thenP[pn(T®)) < o] = a: the test level is exactly controlled.

In the case ofdiscrete distributions, the method must be adapted to deal with
ties. Indeed, the usual order relation Bnis not appropriate for comparing discrete
realizations that have a strictly positive probability t® &quaf Here, we use a ran-
domized tie-breaking procedure for evaluating empirica/sal functions. The latter
is based on replacing the usual order relation by a lexiqdgcaorder relation [see
Dufour (2006)]. Each replicatiof) is associated with a uniform random variable
W ~1(0,1) to produce the pair€r'), W), The vecto W@, ..., W™) is inde-
pendent of 7). .. T™), (T® W®)s are ordered according to:

(T("), W(")) > (T(J')’ W(J’)) o {T(i) > T o (T(") =T and W > W(j))}_

This leads to the following-value function:

. NGy(z)+1

) =N T

whereGy(z) = 1— & SN sy (x—TW) + ~ SV LS(TD — )5, (W — WO with
S+(ZL‘) = 1[07 OO)(I), 5(I) = 1{0}. Then

I[a(N +1)]

Plpn(T) < o] = ===

, for0<a< 1.

The randomized tie-breaking allows one to exactly contnellevel of the procedure.
This may also increase the power of the test.

To illustrate the method, consider testif}(5,) in (2.1) under a mediangale
assumption on the errors, and usifgS(3, X' X~!). After computing SF(© =
DS(B,, X'X~1) from the data, choos¥ the number of replicates, such thgtV + 1)
is an integer, wherev is the desired level. Then, generake replicatesSFU) =
SOV X(X'X)'X'SU) where SY) is a realization of an-vector of independent uni-

form Bernoulli random variables, and compuite[SF“]. Finally, the Monte Carlo

. . . ~ (O)
mede iL ﬁ&iteraﬂihey can be classified between random-

ized and nonrandomized procedures, both aiming to exaatiyral back the level of the test. For a good
review of this problem, the reader is referred to Coakleyldaite (1996).
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5. Regression sign-based confidence sets

In the previous section, we have shown how to obtain MontedCsign-based joint
tests for which we can exactly control the level, for any givmite number of obser-
vations. In this section, we discuss how to use such testedier @o build confidence
sets for3 with known level. This can be done as follows. For each valye= R?,
perform the Monte Carlo sign test féf,(3,) and get the associated simulajedalue.
The confidence seft_,(5) that contains anys, with p-value higher thanv has, by
construction, level — « [see Dufour (2006)]. From this simultaneous confidence set
for (3, it is possible, byprojection techniques to derive confidence intervals for the
individual components. More generally, we can obtain cors®&e confidence sets for
any transformatiomg () whereg can be any kind of real functions, including nonlinear
ones. Obviously, obtaining a continuous gridI®f is not realistic. We will instead

requireglobal optimization search algorithms

5.1. Confidence sets and conservative confidence intervals

Projection techniques yield finite-sample valid confideintervals and confidence sets
for general functions of the paramet&f The basic idea is the following one. Suppose
a simultaneous confidence set with level « for 5, C,_,(73), is available. Since
B € CialB) = g(8) € g(Ci-a(B)), we haveP[3 € C1 4(8)] > 1 —a —
Plg(B) € g(Ci—a(B))] > 1 — . Thus,g(C1_.(p)) is a conservative confidence set
for g(5). If g(5) is scalar, the interval (in the extended real numbésg);_.(5)] =

inf B), su has levell — « :
[, dnf 570 ﬂeoliri(mg(ﬁ)}

P inf < < su z1l-a.
ﬁecl_a(ﬁ)g(ﬂ) <9(f) < ﬁeclfi(ﬁ)g(ﬁ)

Hence, to obtain valid conservative confidence intervaldie individual component
B, in the model (2.1) under mediangale Assumption Al, it is sigfit to solve the

following numerical optimization problems where s.c. skafor "subject to the con-

9For examples of use in different settings and for furthecuision, the reader is referred to Dufour
(1990, 1997), Abdelkhalek and Dufour (1998), Dufour andi&ti\(1998), Dufour and Jasiak (2001),
Dufour and Taamouti (2005).
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straint". The optimization problems are stated here for thessic S F:

min B 8. py(SF(9) za, max §; s py(SF(F) = a,

wherepy is computed as proposed in the previous section, uimgplicatesS F)
of the statisticS /' under the null hypothesis. In practice, we sgaulated annealing
as optimization algorithm [see Goffe et al. (1994), and &résukolsky, Vetterling and
Flannery (2002)].

In the case of multiple tests, projection techniques allmywerform tests on an arbi-
trary number of hypotheses without ever loosing controhef averall level: rejecting

at least one true null hypothesis will not exceed the speliéeel o.

5.2. Numerical illustration

This part reports a numerical illustration. We generateftlewing normal mixture

process, fon = 50,

iid N[0, 1]  with probability0.95
y=0g+ Lo +uw, t=1...,n u ~ _ N
N[0, 100%] with probability0.05.

We conduct an exact inference procedure with N=999 regigcal he true process is
generated with3, = 5, = 0. We perform tests ot{y(3*) : 5 = (" on a grid for
g* = (85, 57) and retain the associated simulateglalues. Asj is a 2-vector, we
can provide a graphical illustration. To each value of thetaes is associated the
corresponding simulategvalue. Confidence region with levél— « contains all the
values of3 with p-values greater tham. Confidence intervals are obtained by projecting
the simultaneous confidence region on the axisofr 3,, see Figure 1 and Table 1.
The obtained confidence regions increase with the level anerother confidence
regions with smaller level. Confidence regions are highlyefigstic and thus may
lead to different results than an asymptotic inference. €omog confidence intervals,
sign-based ones appear to be largely more robust than OL®vaitd Cl and are less

sensitive to outliers.
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Figure 1. Confidence regions provided by SF-based inference.

Table 1. Confidence intervals.
OoLS White SF
B, 95%Cl [-4.57,0.82] [-4.47,0.72] [-0.54,0.23]
98%CI| [-5.10,1.35] [-4.98,1.23] [-0.64,0.26]
B, 95%Cl [-2.50,3.22] [-1.34,2.06] [-0.42,0.59]
98%Cl| [-3.07,3.78] [-1.67,2.39] [-0.57,0.64]

6. Asymptotic theory

This section is dedicated to asymptotic results. We poirtttbat the mediangale
Assumption Al can be seen as too restrictive and excludes sommon processes
whereas usual asymptotic inference still can be conductethem. We relax As-
sumption Al to allow randonX that may not be independent of We show that the
finite-sample sign-based inference remains asymptativalld. For a fixed number of
replicates, when the number of observations goes to infithigylevel of a test tends to
the nominal level. Besides, we stress the ability of our m#tho cover heavy-tailed

distributions including infinite disturbance variance.

6.1. Asymptotic distributions of test statistics

In this part, we derive asymptotic distributions of the sizased statistics. We show that
a HAC-corrected version of the sign-based statibti¢3,, %jn‘l) in (4.9) allows one to
obtain an asymptotically pivotal function. The set of asptions we make to stabilize

the asymptotic behavior will be needed for further asympt@&sults. We consider the
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linear model (2.1), with the following assumptions.

Assumption A2 MIXING. {(z},u;)}i=12.. iSa-mixing of size-r/(r — 2),r > 2.10

-----

Assumption A3 MOMENT CONDITION. E[s(u:)x¢) =0, Vt=1,...,n, Vn € N,

Assumption A4 BOUNDEDNESS z; = (Z1¢,...,%p) @and Elxp|” < A < oo, h =
1,...,p,t=1,...,n, VneN.

Assumption A5 NON-SINGULARITY. J, = var[\/iﬁ > i s(u¢)zy] is uniformly posi-

tive definite.

Assumption A6 CONSISTENT ESTIMATOR OFJ,.  (2,(f,) iS symmetric positive

definite uniformly over, and (2, — £.J* —, 0.

Theorem 6.1 ASYMPTOTIC DISTRIBUTION OF STATISTICSHAC. In model(2.1),
with Assumptions A2- A6, we have, undgy, Ds(5,, 2.) — x*(p).

Corollary 6.2 In model(2.1), suppose the mediangale Assumption A1 and bounded-
ness Assumption A4 are fulfilled. X' X /n is positive definite uniformly over and

converges in probability to a definite positive matrix, thenderH,, SF(3,) — x*(p).

When the mediangale condition holds, reduces ta&(X’'X/n), and(X'X/n)~! is a

consistent estimator of; .

6.2. Asymptotic validity of Monte Carlo tests

We first state some general results on asymptotic validitylofte Carlo-based infer-

ence methods. Then, we apply these results to sign-basadmce methods.

6.2.1. Generalities

Let us consider a parametric or semiparametric m¢tié}, 5 € ©}, where the pa-
rameters is identified. LetS,,(5,) be a test statistic fof,(5,). Letc, be the rate of
convergence. Undef,(5,), the distribution function of.,S,,(53,) is denotedF,,(z).

We suppose thak,,(z) converges almost everywhere to a distribution functitin).

10See White (2001) for a definition ef-mixing.
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G(z) andG,(z) are the corresponding survival functions. In Theo®®) we show
that if a sequence of conditional survival functicﬁ§(x|Xn(w)) given X (w) satisfies
G, (2]|X,(w)) — G(z), with probability one, wheré& does not depend on the realiza-
tion X (w), thenG, (z|X,,(w)) can be used as an approximation(gf(z).** It can be

seen as @seudasurvival function ofc,, S, (5,).

Theorem 6.3 GENERIC ASYMPTOTIC VALIDITY. LetS,(3,) be a test statistic for
testingHy(5,) : 8 = (3, againstd,(3,) : § # [, in model(2.1). Suppose that, under
Ho(Bo),

PlenSn(By) = 2| X, = Gu(2]X,) =1 — F (2] X,) — G(x) a.e

n—oo

where{c, } is a sequence of positive constants and supposéthat| X, (w)) is a series

of survival functions such that,, (v|X,(w)) — G(z) with probability one. Then

n—o0o

lim P[Ga(caS(By). Xu(w)) < ] < @ (6.2)

n—oo

This theorem can also be stated in a Monte Carlo version. \wgirgcal survival func-
tions and empiricagp-values adapted to discrete statistics in a randomized Bafopr
(2006)], but the replicates are not drawn from the sameildigion as the observed sta-
tistic. However, both distribution functions resp, and £, converge to the same limit
F.LetU(N+1) = (UO, UM .. UMN)Dbe avector ofV+1i.i.d. real variables drawn
from ai/[0, 1] distribution, S is the observed statistic, astl(N) = (S, ..., S™)

a vector of N independent replicates drawn frofy. Then, the randomizegseudo

empirical survival function under the null hypothesis is

N
a 1
G (2,1, S0, S,(N),UN +1)) = Zsuc’—cn
j:1
1 N
— _ ) (0)

G\ (x,n,SéO),Sn(N), U(N + 1)) is in a sense an approximation 6%,(z). Thus

it depends on the number of replicatég, and the number of observations, The

"Note thatG(z) can depend on some parameters of the distributioki.of
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randomizecbseudo empiricalp-value function is defined as

NG (2) +1

(V)
b (%) N +1

n

(6.2)
We can now state the Monte Carlo-based version of The@:@m

Theorem 6.4 MONTE CARLO TEST ASYMPTOTIC VALIDITY. LetS,(5,) be a test
statistic for testingH, (3,) : 8 = 83, againstH,(8,) : 3 # 3, in model(2.1) and 5"
the observed value. Suppose that, unbgfs,),

PlcnSn(By) = z| X, = Gu(2|X,) =1 — F(z]X,) — G(x) a.e.,

n—oo

where {c,} is a sequence of positive constants. Sgtbe a random variable with

conditional survival functiort?,, (z| X,,) such that

Plc,Sn > z|X,] = Gn(2]X,) =1 — Ey(2]X,) — G(z) ae.,

n—oo

and (S,(f), . ,S,SN)) be a vector ofV independent replicates &f, where(N + 1)«
is an integer. Then, the randomized version of the Monte Cadb with levelx is

asymptotically validi.e. lim,_... P[p\" (3,) < o] < a.

These results can be applied to sign-based inference mekkmwlever, Theorem6.3
and6.4 are much more general. They do not exclusively rely on asgtigabormality:
the limiting distribution may be different from a Gaussiameo Besides, the rate of

convergence may differ fronyn.

6.2.2. Asymptotic validity of sign-based inference

In model (2.1), suppose that conditions A2- A6 hold and atersiestingHy(5,) : 0 =

3, againstH, (3,) : 5 # §,. Let Dg(8,J; ) be the test statistic as defined in (4.9).
ObserveSF© = Dg(3,,.J;'). Draw N replicates of sign vector as if the obser-
vations were independent. Thecomponents of the sign vectors are independent and
drawn from a uniform Bernoulli distribution. Comput§ "), SF® . SFWN),

the N pseudoreplicates of Ds(3,, X’ X ') under Hy(3,). We call them "pseudo”
replicates because they are drawn as if observations wdepémdent. DrawN + 1

independent replicatgdV’ ), ..., W ™)) from al{; distribution and form the couple
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(SFW, W), Computepi’ (3,) using (6.2). From Theorer®.4, the confidence re-
gion {3 € Rp]ﬁLN) (B) > «a} is asymptotically conservative with level at ledst «.
Hqo(B,) is rejected ifp" (8,) < a.

Contrary to usual asymptotic tests, this metldogs not require the existence of
moments nor a density on{u;; t = 1,2,...}. Usual Wald-type inference is based
on the asymptotic behavior of estimators and consequentiyare restrictive. More
moments existence restrictions are needed, see for exdntpémberger (1993 and
Weiss (1991). Besides, asymptotic covariance matrix of tAB lestimator involves
the conditional density at zero ¢i,; ¢t = 1,2,...} as unknown nuisance parameter.
The approximation and estimation of asymptotic covarianag&rices constitute a large
issue in asymptotic inference. This usually requires Kemmethods. We get around

those problems by adopting the finite-sample sign-basezedioe.

7. Simulation study

In this section, we study the performance of sign-based odstitompared to usual
asymptotic tests based on OLS or LAD estimators with difie@gproximations for
asymptotic covariance matrices. We consider the signebsta¢isticsD g (5, (X’X)*l)
andDs(3, J; ') when a correction is needed for linear serial dependencezonsider
a set of general DGP’s to illustrate different classicalgbeans one may encounter in
practice. Results are presented in the way suggested byabigythirirst, we investigate

the performance of tests, then, confidence sets. We useaa tiggression model:
vy =80+ u, t=1,...,n, (7.1)

wherex;, = (1, z2,, x3,)" andg, are3 x 1 vectors. We denote the sample sizé/Ne in-
vestigate the behavior of inference and confidence regaris3Xgeneral DGP’s that are
presented in Table 2. For the first 7 onés,, t = 1,2...} isi.i.d. or depends on the
explanatory variables and its past values mutiplicativeheteroskedastic or dependent
and stationary wayy; = h(zy, u1,...,u1)e, t = 1,...,n. In those cases, the error
term constitutes a strict conditional mediangale givér{see Assumption Al). Cor-
respondingly, the levels of sign-based tests and confidseiseare exactly controlled.

Next, we study the behavior of the sign-based inferencelinvyg a HAC correction)
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when inference is only asymptotically valid. In cases 8-#0andu; are such that
E(u¢x;) = 0 andE[s(u;)x¢| = 0 for all t. Finally, cases 11 and 12 illustrate two kinds of
second-order nonstationary disturbances. As we notedougy, sign-based inference
does not require stationary assumptions in contrast watis teerived from a CLT.

Cases C1 and C2 presentd. normal observations without and with conditional
heteroskedasticity. Case C3 involves outliers in the ernon.teThis can be seen as
an example of measurement error in the obseme@€ases C4 and C5 involve other
heteroskedastic schemes with stationary GARCH and stochadditility disturbances.
Case C6is a very unbalanced design matrix (where the LAD etstimparforms poorly).
Case C6 BIS combines the previous unbalanced scheme in the desigx with het-
eroskedastic disturbances. Case C7 is an example of hedagy-tarors (Cauchy).
Cases C8, C9 and C10 illustrate the behavior of sign-based mtienehen the error
term involves linear dependence at different levels. lynehses C11 and C12 involve
disturbances that are not second-order stationary (nasaay GARCH and exponen-
tial variance) but for which the mediangale assumption fiol@ihe design matrix is
simulated once for all the presented cases. Hence, resaltoaditional. Cases C1-
2, C8-10 have been used by Fitzenberger (bY%@ study the performance of block
bootstrap {/ BB).

7.1. Size

We first study level distortions. We consider the testingbpgm: H, : (5, =
(1,2,3)" againstd; : 5, # (1,2,3)". We compare exact and asymptotic tests based
on SF = Ds(B,(X'X)"") andSHAC = Ds(3,J;"), whereJ; ! is estimated by

a Bartlett kernel, with various asymptotic tests. Wald andtipe tests are consid-
ered. We consider Wald tests based on the OLS estimate wiitheBedt covariance
estimators: the usual under homoskedasticity and indespexed( / D), White correc-
tion for heteroskedasticityi{ /7), and Bartlett kernel covariance estimator with auto-
matic bandwidth parameteB(") [Andrews (1991)]. Concerning the LAD estimator,

we study Wald-type tests based on several covariance éstgnarder statistic estima-
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Table 2. Simulated models.

C1:
C2:

C3:

C4:

C5:

Cé6:

C 6 BIS:

CT7:

C8:

cCo:

C 10:

C11:

C1iz:

NormalHOM:

NormalH ET":

Outlier:

Stat.
GARCH(1,1):

Stoc.
Volatility:

Deb.
design mat.:

Deb. design matrix

+ HET. dist.:

Cauchy
disturbances:

AR(1)-HOM,
Py =D

AR(1)-HET,
Py = D"
Py =D

AR(1)-HOM,
Pu=-9:

Nonstat.
GARCH(1,1):

Exp. Var.:

($27t7$3,t, ug) d N(O, I3),t=1,...,n

.y iid
(fEZt,l’g’t,Ut)/ "ZV N(07[3)
up = min{3, max[0.21, |zo ||} x 4y, t=1,...,1n

(wa,r, x34) s N(0, Iz),

y, il N0, 1] with p = 0.95
! N0, 1000%] with p = 0.05
xt, ur, independentt = 1,...,n.

(224, 30)" X N(0, 1), ug = oper with

o2 = 0.666u2_, + 0.33302_, wheree, "% N(0, 1),
T, €, independent; = 1,... n.

(o1, x34) i N(0, 1), uy = exp(wy/2)e, with
wy = 0.5we_1 + vy, wheree, "= A7(0,1), v & v,y (3),

xt, ur, independentt = 1,...,n.

way ~ B(1,0.3), 23, " N(0,.012),
w "B N(0,1), 24, u independent = 1, ... ., n.

2o T N(0,1), 25 X (1),

o _
up = x3eq, €~ N(0,1), 24, ¢ independent;, = 1,..., n.

(.%2'7,5', $3,t)/ ~ N(O, IQ);
up "5 Cxy,ug, independentt = 1,.. ., n.

('7:2,157 $3,t7 V%L)/ ~ N(O7 13)7 t= 27 o, n,
Up = Py Ui—1 + VY,
(21,231) ~ N(0, 1), v} insures stationarity.

Tji = ppTis—1+ i, j=1,2,
up = min{3, max[0.21, |z ||} X u,
U = Py Ut—1 + V¢,
2 i.1.d
(v, v, v) "REN(0,I3), t=2,...,n
v?,v3 andv¥ chosen to insure stationarity.

(x27t7 x3,t7 V%L), ~ N(O7 13)7 t= 27 o, n,
up = pyut—1 + V¢,
(21,231) ~ N(0, 1), v} insures stationarity.

i.7.d.
(.%'2715,.%3,15, 6,5)’ SRS N(O, Ig), t=1,...,n,
ut = orer, 07 = 0.8u_; + 0.807 ;.

(.IQJ, $3,t7 Gt)/ l}\’d N(O, I3), Uy = €$p(.2t)6t.
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tor (OS),'? Bartlett kernel covariance estimator with automatic bawithvparameter
[Powell (1984), Buchinsky (1995)IKT), design matrix bootstrap centering around the
sample estimate/{ M B) [Buchinsky (1998)], moving block bootstrap centering ardu
the sample estimate\{ BB) [Fitzenberger (199%)].*2 Finally, we consider the likeli-
hood ratio statistic (LR) assuming.d. disturbances with af.S estimate of the error
density [Koenker and Bassett (1982)]. When errors aré andX is fixed, the LM sta-
tistic for testing the joint hypothesi,(/3,) turns out to be thé& F' sign-based statistic.
Consequently, the three usual forms (Wald, LR, LM) of asympteists are compared
in our setup.

In Tables 3 and 4, we report the simulated sizes for a comgititest with nominal
level o = 5% given X. The number of replicates for the bootstrap and the MonteoCarl
sign-based method is the same, N = 2999. All bootstrapped samples are of size
n = 50. We simulate)M = 5000 random samples to evaluate the sizes of these tests.
For both sign-based statistics, we also report the asymopésel whenever processes
are stationary.

Table 3 contains models where the mediangale condition Adish&izes of tests de-
rived from sign-based finite-sample methods are exactlyrotbed, whereas asymptotic
tests may greatly overreject or underreject the null hypsith This remark especially
holds for cases involving strong heteroskedasticity (€& C6 BIS). The asymptotic
versions of sign-based tests suffer from the same undeti@jethan other asymptotic
tests, suggesting that, for small samples={ 50), the distribution of the test statistic
is really far from its asymptotic limit. Hence, the sign-bdsnethod that deals directly
with this distribution has clearly an advantage on asymptoethods. When the de-
pendence in the disturbance process is highly nonlineare(C&sBIS), theBT method
based on a kernel estimation of the LAD asymptotic covagamatrix is not reliable
anymore.

In Table 4, we illustrate behaviors when the error term ivesllinear serial depen-

dence. The Monte carl§ H AC' sign-based test does not control exactly the level but

2this assumesi.d. residuals; an estimate of the residual density at zero aimdd from a confidence
interval constructed for the/2th residual [Buchinsky (1998)].
13The block size is 5.
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Table 3. Linear regression under mediangale errors: ecapsizes of conditional tests
for Hy : = (1,2,3).

yr = 240 + g, SIGN LAD oLS
t=1,...,50. | SF SHAC| OS DMB MBB BT LR |ID WH BT
Stationary models

C 1: HOM .052 .050 | .086 .050 .089 .047 .068.060 .096 .113
pe = py =0, 047* 019%
C 2. HET .052 .057 | .300 .037 .059 .051 .13y7.162 .100 .118
pe=p, =0, 045% 023*
C3 .047 .048 | .088 .043 .083 .039 .066.056 .008 .009
Ouitlier .044* .015**
C4 .042 .046 | .040 .005 .005 .004 .012.080 .046 .046
St. GARCH(1,1)| .040* .013**
C5 .043 .041 | .063 .006 .014 .006 .031.054 .014 .014
Stoch. Volat. .045* .021**
cé: .047 .049 | .080 .048 .084 .043 .064.085 .060 .095
Debalanced .043*  .022**
CcT .058 .059 | .069 .013 .033 .012 .044.061 .023 .023
Cauchy .049* .021**

Nonstationary models
C 6 BIS: .044 .042 | .687 .020 .044 152 .30y 421 .171 .173
Deb.+ Het. .040* .018**
C 11: Nonst. .054 .057 | .003 .000 .001 .000 .002.060 .016 .016
GARCH(1,1)
C 12 Exp. Var. .049 .051 | .017 .000 .000 .000 .000.132 .014 .014

Table 4. Linear regression with serial dependence: engpsizes of conditional tests
for Hy: 6= (1,2,3)".

* sizes using asymptotic critical values basedd(8).

yr = 240 + ug, SIGN LAD OoLS

t=1,...,50. | SF SHAC| OS DMB MBB BT LR | IID WH BT
Serial dependence (cases when mediangale condition fails)

C 8. HOM 126 022 | 171 124 118 .085 .151.201 .240 212

Pe=.9, p, =0 - .019*

C9 HET .218 026 | 440 131 .097 .108 .308 .407 .328 .276

Pe =Py =D - .017*

C 10 HOM 521 .012 | 553 516 339 355 .551.649 .677 .534

pe =9, p, = 0** - .003*

* sizes using asymptotic critical values basedd(8).
xx automatic bandwidth parameters are restricted ta i@ to avoid inversibility problems.
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is still asymptotically valid, and yields the best resuN8e underscore its advantages
compared to other asymptotically justified methods. WhetieadNVald and LR tests
overreject the null hypothesis, the latter test seems tebebntrol the level than its as-
ymptotic version, avoiding underrejection. There existpartant differences between
using critical values from the asymptotic distribution $H AC' statistic and critical
values derived from the distribution of tl#&H AC' statistic for a fixed number of inde-
pendent signs. Besides, we underscore the dramatic owvioege of asymptotic Wald
tests based on HAC estimation of the asymptotic covariaraeixnwhen the data set
involves a small number of observations. These resultsesigm a sense, that when
the data suffer from both a small number of observations arei dependence, the

first problem to solve is the finite-sample distortion, whigmot what is usually done.

7.2. Power

Then, we illustrate thpower of these tests. We are particularly interested in comparing
the sign-based inference to kernel and bootstrap methoesowsider the simultaneous
hypothesisH,, as before. The true process is obtained by fixthgnd 3, at the tested
value, i.ef;, = 1 and; = 3, and letting vary3,. Simulated power is given by a
graph withj3, in abscissa. The power functions presented here (figuresa2e 3ocally
adjusted for the level, which allows comparisons betweethous. However, we should
keep in mind that only the sign-based methods lead to exadtdemce levels without
adjustment. Other methods may overreject the null hypathesd do not control the
level of the test, or underreject it, and then, loose power.

Sign-based inference has a comparable power performanicausual methods in
cases C1, C2, C3, C6, C9 with the advantage that the level is exacttyolled, which
leads to great difference in small samples. In heteroskedasheterogenous cases
(C4, C5, C7, C11, C12), sign-based inference greatly dominates otethods: levels
are exactly controlled and power functions largely excetbénrs, even methods that are
size-corrected with locally adjusted levels. In the preseof linear serial dependence,
the Monte Carlo test based ds (3, J;'), which is still asymptotically valid, seems

to lead to good power performance for a mild autocorrelatadong with a better size
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control (cases C9 and C1#).Only for very high autocorrelation (close to unit root

process), the sign-based inference is not adapted.

7.3. Confidence intervals

As the sign-based confidence regions are by constructioavet higher thatl — «
whenever inference is exact, a performance indicator fafidence intervals may be
their width. Thus, we wish to compare the width of confidentenvals obtained by
projecting the sign-based simultaneous confidence regioih®se based omnstatistics

on the LAD estimator. We us&/ = 1000 simulations, and report average width of
confidence intervals for each. and coverage probabilities in Table 5. We only consider
the stationary examples. In the nonstationary casesginéerbased ofistatistics may
not mean anything. Spreads of confidence intervals obtdygqatojection are larger
than asymptotic confidence intervals. This is due to thetfettthey are by construction
conservative confidence intervals. However, it is not dlear valid confidence intervals

that do not have this feature can even be built. [p]

8. Examples

In this section, two illustrative applications of the silgased inference are presented.
One onfinancial data, one in growth theory. First, we comsating a drift on the Stan-
dard and Poor’s composite price index (S&P) 1928-1987, wiidknown to involve a
large amount of heteroskedasticity. We consider robusst tas the whole period and
on the 1929 Krach subperiod. In the second illustration, @st tor the presence of
(-convergence across the U.S. States during the 1880-1988i pesing the Barro and
Sala-i Martin (1991) data set. Finite-sample sign-baséetemce is also particularly

adapted to regional data sets, which have by nature fixedleaize.

8.1. Standard and Poor’s drift

We test the presence of a drift on the Standard and Poor’s a@sitepprice index
(SP), 1928-1987. That process is known to involve a large amotiheteroskedas-

ticity and have been used by Gallant, Hsieh and Tauchen J1&8¥ Valéry and Du-

The power functions for case C8 are not reported here asdlaeytd similar results as case C9.
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Figure 2. Power functions (level corrected) (1).
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Figure 3. Power functions (level corrected) (2).
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Table 5. Width of confidence intervals (for stationary cases
Proj. based SF

Proj. based SHAC

LABtat. with DMB  LAD ¢-stat. with MBB  LAD t-stat. with BT

T =50, (B1,85,83) = (1,2,3) ‘ By By Bs ‘ By By Bs ‘ By By B3 ‘ By Ba Bs ‘ B Ba B3
Models which satisfy the mediangale condition
CclL av.spread 1.29 152 140|116 136 1.02| .81 .90 .89 .79 .88 .85 .82 .88 .87
Pu=ps=0 (st. dev.)| (.21) (.27) (.29)| (\14) (.28) (.29)| (\23) (.21) (.22) | (.21) (24) (24) | (15 (19 (.22
HOM cov. lev. | 1.0 1.0 10 | 10 1.0 1.0 | .97 .97 .97 .95 .96 .95 .97 .96 .96
c2 .76 143 .74 | .66 126 .48 | .43 .94 43 42 .90 41 .50 .92 .50
Pu=20p:=0 (.14) (29) (17)| (\15) (.28) (.18)| (.09) (.24) (.11) | (10) (27) (12) | (11) (.29 (.11
HET 1.0 1.0 10 | 10 1.0 1.0 | .98 .97 .99 .97 .95 .97 .99 .95 .99
Cc3 126 137 105|115 124 91 | .92 .94 .98 .88 .98 1.04 | .88 .88 .88
Outlier (.26) (.31) (.30)| (.25) (.29) (.30)| (.80) (.79) (1.29)| (.67) (1.36) (2.73)| (.17) (.20) (.29
1.0 1.0 98 | 1.0 .99 96 | .98 .98 .98 .97 .97 .97 .97 .98 .97
C4 504 585 57.3|495 559 56.1|/306 334 259 |350 383 415 |293 326 323
Stat. (101) (118) (122) (100) (115) (117) (64.6) (74.6) (61) (76.7) (82.6) (84) (70.3) (76.9) (78)
GARCH(1,1) 1.0 1.0 93 | .99 .99 94 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
C5: 27.3 304 331|228 294 27 13.3 159 155 151 20.7 191 157 154 15.6
Stoc. Vol.: (14.4) (16.7) (18.1)(12.2) (17.6) (15.8)(6.4) (15.9) (15.5)| (9.6) (28.0) (19.3)| (7.5) (7.8) (7.5)
1.0 .98 10 | 10 1.0 1.0 | .99 1.0 .99 .98 1.0 .99 .99 1.0 .99
cé6: 164 282 1885142 248 162.91.01 170 108.7 | .99 1.64 104.2| 103 1.68 105.67
Deb. des. mat.: (.29) (.50) (32.3) (.32) (.51) (34.4) (.26) (.36) (25.6) | (.31) (43) (27.7)| ((21) (.33) (24.5)
1.0 1.0 10 | 10 1.0 1.0 | .96 .98 .97 .94 .96 .96 .96 .96 .96
CcT. 220 275 259|188 233 195|125 147 1.47 121 141 142 139 152 153
Cauchy dist.: (.59) (.82) (.82)| (56) (.78) (.74)| (.32) (.46) (.45) | (.38) (.57) (53) | ((.37) (.49 (.47
1.0 1.0 10 | 10 1.0 99 | .98 .98 .98 .97 .98 .97 .99 .98 .99
Models which do not satisfy the mediangale condition
c8: 159 171 146|163 147 1.05|.99 1.00 .94 117 .96 .86 1.23 .91 .81
Pu=2D p, =0 (.30) (.32) (.30)| (.38) (.31) (.28)| (.25) (.26) (.24) | (.34) (.26) (.23) | (.36) (.23) (.21)
HOM .99 1.0 1.0 | .99 1.0 99 | .86 .98 .99 .90 .97 .97 91 .96 .95
co 125 146 156|123 164 .99 | .68 112 .96 .79 123 .96 .94 111 1.01
Py =Py =D (.31) (.40) (40)| (41) (51) (.35)| ((17) (.33) (.24) | (24) (42) (.26) | (.33) (.55) (.36)
HET 1.0 .99 1.0 | .98 .97 94 | .93 .88 .98 .95 .89 .98 .97 .83 .97
C 10 246 242 269|300 200 241|152 141 151 |246 156 153 |289 121 1.27
Pu=29 p,=0 (.84) (.82) (.95)| (1.06) (.68) (.96)| (.57) (.56) (.61) | (1.00) (.60) (.63) | (1.46) (.47) (.61)
HOM .68 .99 1.0 | .74 1.0 99 | .47 .95 .98 .66 .97 .98 71 .87 91




four (2004) to fit a stochastic volatility model. Here, we arterested in robust test-
ing without modeling the volatility in the disturbance pess. The data set consists
in a series of 16,127 daily observations $F,, then converted in price movements,
v = 100[log(SP;) — log(SP,_1)] and adjusted for systematic calendar effects. We

consider a model involving a constant and a drift:
yy=a+bt+u, t=1,...,16127, (8.2)

and we let the possibility thdtu; },—1 ... 16127 presents a stochastic volatility or any kind

of nonlinear heteroskedasticity of unknown form. White anéuh-Pagan tests for
heteroskedasticity both reject homoskedasticitifat®.

We derive confidence intervals for the two parameters wighMonte Carlo sign-
based method and we compare them with the ones obtained loht&¢ainiques applied
to LAD and OLS estimates. Then, we perform a similar expenino two subperi-
ods, the whole year 1929 (291 observations) and on the lagp80ed days of 1929,
which roughly corresponds to the 4 last months of 1929 (9@asions), to investi-
gate behaviors of the different methods in small sampleg. tDthe financial crisis, one
may expect data to involve heavy heteroskedasticity duhigyperiod. Let us remind
the Wall Street krach occurred between OctoberBéadk Thursdayand October 29
(Black Tuesday Hence, the second subsample corresponds to Septembare®Owith
the krach period, and November and December with the eaginbmg of the Great
Depression. Heteroskedasticity tests reject homoskietagor both subsample¥.

In Table 6, we reporb5% confidence intervals for and b obtained by various
methods: finite-sample sign-based method {érand S H AC which involves a HAC
correction); LAD and OLS with different estimates of thesyanptotic covariance ma-
trices (order statistic, bootstrap, kernel...). If the madale Assumption Al holds, the
sign-based confidence interval coverage probabilities@néolled.

First, results on the drift are very similar between methotdse absence of a drift
cannot be rejected with% level. But results concerning the constant differ greatly

between methods and time periods. In the whole sample, th&@usions of Wald-tests

BSWhite: 499 p-value=.000) ; BP: 2781ptvalue=.000)
161929: White: 24.2p-values: .000 ; BP: 12G;-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,
p-values: .004; BP: 1.7¢-values: .18.
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Table 6. S&P price index: 95 % confidence intervals.

Whole sample Subsamples
Constant parameter (@) (16120 obs) 1929 (291 obs) 1929 (90 obs)
Methods
Sign
SF statistics [-.007, .105] [-.226, .522] [-1.464, .491]
SHAC statistics [-.007, .106] [-.135, .443] [-.943, .362]
LAD (estimate) (.062) (.163) (-.091)
with OS cov. matrix est. [.033, .092] [-.144, .470] [-1.015, .832]
with DMB cov. matrix est. [.007, .117] [-.139, .464] [-1.004, .822]
with MBB cov. matrix est. (b=3) [.008, .116] [-.130, .456] [-1.223, 1.040]
with kernel cov. matrix est. (Bn=10) [-.019, .143] [-.454,-780] [-1.265, 1.083]
OoLS (-.005) (.224) (-.522)
with iid cov. matrix est. [-.041, .031] [-.276, .724] [-2.006, .962]
with DMB cov. matrix est. [-.054, .045] [-.142, .543] [-1.335, .290]
with MBB cov. matrix est. (b=3) [-.056, .046] [-.140, .588] [-1.730, .685]
Drift parameter ( b)
Methods x107° x1072 x1071
Sign
SF statistics [-.676, .486] [-.342, .344] [-.240, .305]
SHAC statistics [-.699, .510] [-.260, .268] [-.204, .224]
LAD (.184) (.000) (-.044)
with OS cov. matrix est. [-.504,.320] [-.182,.182] [-.220, .133]
with DMB cov. matrix est. [-.688,.320] [-.256, .255] [-.281, .194]
with MBB cov. matrix est. (b=3) [-.681, .313] [-.236, .236] [-.316, .229]
with kernel cov. matrix est. [-.671, -.104] [-.392, .391] [-.303, .215]
OLS (.266) (-.183) (.010)
with iid cov. matrix est. [-.119, .651] [-.480, .113] [-.273, .293]
with DMB cov. matrix est. [-.213,.745] [-.544, .177] [-.148, .169]
with MBB cov. matrix est. (b=3) [-.228,.761] [-.523, .156] [-.250, .270]

based on the LAD estimator differ greatly depending on th&@aehof the covariance
matrix estimate. Concerning the test of a positive consiéatd tests with bootstrap
or with an estimate derived if observations afed. (O.S covariance matrix) which is
totally illusory in that sample, reject, whereas Wald teghwiernel (so as sign-based
tests) cannot reject the nullity ef This may lead the practitioner in a perplex mind.
Which is the correct test?

In all the considered samples, Wald tests based on OLS sedimuareliable. Ei-
ther, confidence intervals are huge (see OLS results on lodbesiods) either some
bias is suspected (see OLS results on the whole period). thakeonstant parame-
ter, on the one hand, sign-based confidence intervals anddohiilddence intervals are

rather deported to the right, on the other hand, OLS confielemervals seem to be
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biased toward zero. This may due to the presence of somentillebservations.
Moreover, the OLS estimate for the whole sample is negaliiveettings with arbitrary
heteroskedasticity, least squares methods should beeakoid

Sign-based tests seem really adapted for small sampleggsettet us examine the
third column of Table 6. The tightest confidence intervalstii®@ constant parameter is
obtained for sign-based tests based on4#EAC' statistic, whereas LAD (and OLS)
ones are larger. Note besides the gain obtained by usthgC' instead ofSF’ in that
setup. This suggests the presence of autocorrelation iniherbance process. In
such a circumstance, finite-sample sign-based tests reraaymptotically valid such
as Wald methods. However, they are also corrected for thplsasize and yield to very

different results.

8.2. [-convergence across U.S. States

With the neoclassical growth model as theoretical backglpBarro and Sala-i Martin
(1991) testeds convergence between the levels of per capita output aci®43.4.
States for different time periods between 1880 and 1988.y Tised nonlinear least

squares to estimate equations of the form

(1/T)In(yis/yie—1) = a—[(yie—r)] x [(1L— e 1) /T)+ 2} + €, (8.3)
i=1,...,48, T = 8,10 or 20,

t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.

Theirbasic equatiordoes not include any other variables but they also considpee-

ification with regional dummiesHg. with reg. dun). Thebasic equatiorassumes that
the 48 States share a common per capita level of personahaeb steady state while
the second specification allows for regional differencesteady state levels. Their
regressions involve 48 observations and are run for eagredfeor 10-year period be-
tween 1880 and 1988. They tended to accept a positi@ad concluded on a conver-
gence between levels of per capita personal income acr&sSthtes. However, both
the NLLS method and the Wald-type tests they performed ageasymptotically jus-

tified and can be unreliable for only 48 observations. Thigligbility is strengthened
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Table 7. Regressions for personal income across U.S. Si8@@3;1988: summary of
regression diagnostics.

Period Heterosked.* Nonnormality**  Influent. obs.** Possible bats**

Basiceq. EqReg.

Dum.

1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no .
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT)  yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

White and Breush-Pagan tests for heteroskedasticity aferpexd. If at least one test rejects &
homoskedasticity, a "yes" is reported in the table, elséia teported, when tests are both nonconclusive.
** Scatter plots, kernel density, leverage analysis, staieed or standardized residuais3, DFbeta and
Cooks distance have been performed and lead to suspicionsrioormality, outlier or high influential
observation presence.

here because the data suffers from heteroskedasticitgrtep from normality, pres-
ence of outliers and observations with possibly high infageindeed, residual analysis
show that departures from a normal standard case are preseost periods (see Table
7).17 Only, the outstanding growth period of 1960-1970 does netrst® show poten-
tial data problems. Similar results hold for the equatiothwegional dummies. This
survey highly reduces the validity of least squares metlaodssuggests the need of a
test, valid in finite samples and robust to heteroskedasttiunknown form. Hence,
we propose to perform finite-sample based sign tests to setheuhthe conclusion of

(#-convergence still holds. We consider the linear equation:
(1/T) In(yis/yie—1) = a +y[In(yir7)] + 256 + € (8.4)

wherex; contains regional dummies when included, and compute grojebased Cl
for~, a, and forg = —(1/7") In(yT'+1) as a bijective transformation of in both spec-
ifications. We compare projection-based valido-confidence intervals fof based on
the sign-based statisticF’ with Barro and Sala-i-Martin nonlinear least squares asymp-

totic 95%-confidence intervals (Table 8).

"Omitted variables, misspecification of the model can alsal e similar conclusions, we do not
consider those problems here, which yields to entirelyim&tthe growth theory and the model.
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The results we find for the basic regression are close to thbBarro and Sala-i
Martin (1991). We fail to rejecti = 0 at 5%-level, for the 1880-1900, 1920-1930,
1980-1988 periods, whereas Barro and Sala-i Martin (199ofaeject 5 = 0 at5%
(asymptotic)-level for the 1920-1930 and 1980-1988 pexio@ur results differ only
for the 1880-1900 period. That may be due to the strong hs&tedasticity and de-
parture from normality affecting least squares methodseshow in Table 7. When
regional dummies are included, we fail to rejett= 0 at 5%-level 7 times over 9
whereas Barro and Sala-i Martin (1991) fail to reject 3 timesr®. Finally, a positive
[ convergence seems to pass both NLLS-based asymptotiatestimite sample-based
robust sign tests with the basic specification, yielding strang argument in favor of
the theory. However, that is no longer true for the specificatvith regional dummies,
which reduces the idea of a strictly positideconvergence with possibly different re-
gional steady state levels. This also may in part be due tadhservativeness of the
projection-based method but there is no evidence that snedact confidence intervals

can be constructed.

Table 8. Regressions for personal income across U.S. Si8i&3;1988.

Period Basic equation Eq. with reg. dum.

I6] SIGN (SF) NLLS* SIGN (SF) NLLS*

1880-1900: 95%CIl| | [-.0010, .0208] [.0058,.0532] | [-.0033,.0251] [.0146, .0302]
(BNLLS) (.0101) (.0224)

1900-1920: [.0092, .0313] [.0155,.0281] | [-.0081, .0558] [.0086,.0332]
(.0218) (.0209)

1920-1930: [-.0301, .0018] [-.0249, -.0049]| [-.0460, .0460] [-.0267,.0023]
(-.0149) (-.0122)

1930-1940: [.0043, .0234] [.0082,.0200] | [-.0187,.0377] [.0027,.0227]

(.0141) (.0127) .

1940-1950: [.0291, .0602] [.0372,.0490] | [.0082,.0620] [.0314,.0432]
(.0431) (.0373)

1950-1960: [.0084,.0352] [.0121,.0259] | [.0007,.0506] [.0100,.0304]
(.0190) (.0202)

1960-1970: [.0099, .0377] [.0170,.0322] | [-.0112,.0431] [.0047,.0215]
(.0246) (.0131)

1970-1980: [.0021,.0346] [.0076,.0320] | [-.0227,.0721] [-.0016, .0254]
(.0198) (.0119)

1980-1988: [-.0552, .0503] [-.0315,.0195] | [-.0467,.0754] [-.0273,.0173]
(-.0060) (-.0050)

Barro and Sala-i Martin (1991) NLLS results are reportechivse two columns.
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9. Conclusion

In this paper, we have proposed an entire system of infermdbe  parameter of a
linear median regression that relies on distribution-Bigm-based statistics . We show
that the procedure yields exact tests in finite samples fatiamgale processes and
remains asymptotically valid for more general processekiding stationary ARMA
disturbances. Simulation studies indicate that the pregtessts and confidence sets are
more reliable than usual methods (LS, LAD) even when usiadptiotstrap. Despite the
programming complexity of sign-based methods, we advdbaie use when arbitrary
heteroskedasticity is suspected in the data and the nunmlasaibable observations is
small. Finally we have presented two practical examplestesethe presence of a drift
on the S&P price index, for the whole period 1928-1987 andsfmrter subsamples.
And, we reinvestigate whether® convergence between levels of per capita personal

income across U.S. States occurred between 1880 and 1988.
Appendix

Proof of Proposition 2.5 We use the fact that, §s;, ¢t = 1,2, ...} is strongly exoge-

nous,{u;, t =1,2,...} does not Granger cau$&;, t = 1,2,...}. It follows directly

thatl(s|u—1,...,u1, Te, ..., x1) = U(Se|ws—1, ..., u1, 2y, ..., x1) Wherel stands for the
density ofs; = s(uy). O
Proof of Proposition 3.2  Consider the vectors(uy),s(us),...,s(u,)] =

(s1,$2,...,5,). From Assumption Al, we derive the two following equalities

Plus > 0|X] = E(P[us > Olus—q,...,us, X]) =1/2,
P[Ut>0|5t,1,...,81,X] = P[ut>O|ut,1,...,u1,X]:1/2,‘v’t22.
Further, the joint density dfs,, s», ..., s,)’ can be written:

n

I(s1,82,...,8,]X) = Hl(st|st_1, ooy 51, X)
=1

— HP[ut > 0lug_y, ..., uy, X](1750/2

t=1
{1 = Pluy > Olws_1,...,us, X]}(Hs’f)/2
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= I/t 20— @/2net2 = 1/2)".

Hence, conditional o, sy, s, ..., s, <" B(1/2). O

Proof of Proposition 3.3 Consider model (2.1) withu;}:— »... being a weak condi-

gooe

tional mediangale giveX. Let show thats(u;), $(us),. .., $(u,) can have the same
role in PropositiorB.2ass(uy), s(us), ..., s(u,) under Assumption Al. The random-

ized signs are defined Byu,, V;) = s(u;) + [1 — s(u;)?]s(V, — .5), hence

Pl3(us, Vi) = 1|wg_1, ..., ur, X] = P[s(ug)+[1—s(u)?]s(V;—.5) = Nuy_1, ..., u1, X].

As (Vi,...,V,) is independent ofus, . .., u,) andV; ~ U(0, 1), it follows
PMWWD_H_Pm>qurumhﬂ+%ﬂm_mm4w”th](AD

The weak conditional mediangale assumption gixeantails:

1—
Plu; > Olug—1, ..., u1, X| = Plug < Olwg_q, ..., u1, X]| = 2pt, (A.2)

wherep; = Plu; = O|ug_1, ..., u1, X|. Substituting (A.2) into (A.1) yields

- 1- 1
Pl3(us, V) = 1wt ... up, X] = 2%+%:§. (A.3)
In a similar way,
~ 1
P[S(Ut,‘/t) :—1|ut,1,...,u1,X] 25 (A4)
The rest is similar to the proof of Propositi8r2 n

Proof of Proposition 4.1 Let us consider first the case of a single explanatory vieriab
case f = 1) which contains the basic idea for the proof. The case with1 is just an
adaptation of the same ideas to multidimensional notiomsled model (2.1) with the
mediangale Assumption Al, the locally optimal sign-bassd (conditional onX) of

Hy : g = 0againstH; : § # 0 is well defined. Among tests with a given confidence
level «, the power function of the locally optimal sign-based test the highest slope
around zero. The power function of a sign-based test camdition X can be written

Psls(y) € W,|X], whereW, is the critical region with levek. Hence, we should
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include inWV,, the sign vectors for Whiclgiﬁ Ps[S(y) = s|X]s=0, is as large as possible.
An easy way to determine that derivative, is to identify terts of a Taylor expansion

around zero. Under Assumption Al, we have
Ps[S(y) = sIX] = [[IPs(si > 01X+ [Pys(y; < 0] x)] /2 (A5)
i=1

= ]t = F(=2:B81 X)) 02 [Fy (=8| X)) 02072, (AL6)

=1
Assuming that continuous densities at zero exist, a Tayloaesion at order one entails:

PolS(y) = 5IX] = QiH 1+ 2£(0/X )s5:0 + o(3)] (A7)
- o L2 OX)mss B | (AB)

=1
All other terms of the product decomposition are negligini@quivalent ta(/3). That
allows us to identify the derivative at= 0:

d

g5Te-olS) = slX] =271 ) fi(01X )i (A.9)

Therefore, the required test has the form
Wa: {S: (81778n)|2f2(0|X)IZSZ| >Ca} ) (AlO)
=1

or equivalently,V, = {s|s(y)XX's(y) > c,} , wherec, and¢, are defined by the
significance level. When the disturbances have a common toomali density at zero,
f(0]X), we find the results of Boldin et al. (1997). The locally optirsmn-based
test is given by, = {s|s(y)' X X's(y) > ¢, } . The statistic does not depend on the
conditional density evaluated at zero.

Whenp > 1, we need an extension of the notion of slope around zero foula m
tidimensional parameter. Boldin et al. (1997) propose ttrictgo the class of locally
unbiased tests with given leveland to consider the maximal mean curvature. Thus, a

(Wa) _ — ;
T gy 0, and, asf/(0) = 0, Vi, the

behavior of the power function around zero is charactermethe quadratic term of its

Taylor expansion

& (d Pc?}g/ >> b= 2n1—2 > D HO01X)s: 8z ][f;(01X) ;a6 (ALD)

1<i# j<n
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The locally most powerful sign-based test in the sense afiés@n curvature maximizes

Ps(Wa)
dp2 4=0
Boldin, Simonova, and Tiurin (p. 41, 1997), Dubrovin, Fomenknd Novikov (ch. 2,

pp. 76-86, 1984) or Gray (ch. 21, pp. 373-380,1998). Takimgttace in expression

(A.11), we find (after some computations) that

tr (M ) >N A01X)£5(01X) slsjzxzkxjk (A.12)
B=0

the mean curvature which is, by definition, proportionahtetrace ofEPaWa) ; see

dﬁz 1<i# j<n
By adding the independent sfquantity> ;" , >>¥_ 2% to (A.12), we find
P n
Z (Z $ikfi(O‘X)5i> =5 (y) X X's(y). (A.13)
k=1 =1

Hence, the locally optimal sign-biased test in the senseldped by Boldin et al. (1997)
for heteroskedastic signs, &, = {s: s'(y) X X's(y) > .} .

Another quadratic test statistic convenient for large{si@nevaluation is obtained
by standardizing byX' X: W, = {s : s'(y) X (X'X) ' X's(y) > .} . O

Proof of Theorem 6.1 This proof follows the usual steps of an asymptotic normal-
ity result for mixing processes [see White (2001)]. Considedet (2.1). In the
following, s; stands fors(u,). Under Assumption A5V, ? exists for anyn. Set
Z = NV, %2s(u,), for someX € RP such that\'’A = 1. The mixing prop-
erty A2 of (z},u;) gets transmitted t&,;; see White (2001), Theorem 3.49. Hence,
NV 2s(u,) ® x, is a-mixing of size—r/(r — 2), r > 2. Assumptions A3 and A4
imply
ENV, V22! s(u)] =0, Vt=1,...,n, Vn € N. (A.14)
EINV. Y22ls(u)|" < A< oo, VE=1,...,n, Vn € N, (A.15)

Note also that

ar (% é Zm) = Var
- (A.16)

The mixing property ofZ,; and equations (A.14)-(A.16) allow one to apply a central
limit theorem [see White (2001), Theorem 5.20] that yields

1 n
NG SNV Ps(w) @ | = NV, PV, VA =1
t=1

% Z NV 25(u) @ 2y — N(0,1). (A.17)
t—
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Since is arbitrary withA’\ = 1, the Cramér-Wold device entails

| Z s(ug) ® & — N(0,1,). (A.18)

t=1

Finally, Assumption A6 states th&, is a consistent estimate df . Hence,

n

n 2N " s(uy) @ 3 — N0, 1), (A.19)

t=1

andn='s'(y — X 3) X 2,X's(y — X5,) — x*(p). ~

Proof of Corollary 6.2. Let 7, = o(vo,.-., Y %, - - -, x;). When the mediangale
Assumption Al holds{s(u;) ® x;, F;, t = 1,...,n} belong to a martingale differ-
ence with respect t¢F, . Hence,V,, = Var [\%s@X] = 230 E(msisiay) =
L5 B(ze)) = TE(X'X), andX’ X /n is a consistent estimate 6f X' X /n). The-

orem6.1yields SF(3,) — xa(p)- O

Proof of Theorem 6.3 G(—c0) = G,(—o0) = 0, G(+00) = Gp(+00) = 1, and
Gy (2]X,(w)) — G() a.c.. The following LemmaA.1, whose proof can be found in
Chow and Teicher (sec. 8.2, p. 265, 1988), entails ¢@al)nN converges uniformly to
G. The same holds fat,,.

LemmaA.1 Let (F,),eny and F' be right continuous distribution functions. Suppose
that F,(x) — F(x), Yo € R. Then,(F,).en converges uniformly td' in R, i.e.
sup |Fn(x) — F(z)] — 0.

—oo<r<+00

Moreover ag,, can be rewritten as

én (Cnsn(ﬁo)an) = [én(cnsn(ﬁo)an(w» - G<Cnsn(ﬁ0)>}
+[G(caSu(B)) = Gu(caSu(B9) [ Xa(w))]
+Gy, (CnSn(ﬁo)’Xn)a

it follows that

G (cnSn(Bo)|Xn) = G (caSu(Bo)| X)) + 0,(1). (A.20)
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As ¢, S is a discrete positive random variable afig, its survival function is also
discrete. It directly follows from properties of survivalrictions, that for each <

Im(G,(R")), i.e. for each point of the image set, we have
PG (cnSn(By)) < o] = . (A.21)

Consider now the case whene (0,1)\/m(G,(R")). a must be between the two
values of a jump of the functio&',,. SinceG,, is bounded and decreasing, there exist

a1, as € Im(G,(RT)), such thaty, < o < a and

P[Gn(cnSn(By)) < o] < P[Gr(cnSn(B)) < a] < P[Gr(cnSn(By)) < as).

More precisely, the first inequality is an equality. Indeed,

PG (cnSn(By) <] = PH{Gn(caSn(By)) < a1} U{an < Gp(cnSn(By)) < a}]
= P[Gn(caSa(By)) < 1] +0,

as{a; < G, (c,S(8,)) < o} is a zero-probability event. Applying (A.21) te,
P[Gn (cnSn(ﬁo)) < 04] = P[Gn(cnSn(ﬁO)) < 041} =qa; < a. (A.22)

Hence, fora: € (0, 1), we haveP (G, (¢, 5, (3y)) < a] < . The latter combined with

equation (A.20) allows us to conclude
P[én(cnsn(ﬁO)) S O‘} - P[Gn(cnsn(ﬁ0>) S O[} + Op(]') S o+ Op(l)'
O

Proof of Theorem 6.4 Let S\ be the observed statistic asd(N) = (S, ..., S{"),

a vector of N independent replicates drawn froy(x). Usually, validity of Monte
Carlo testing is based on the fact the vec(tQLrST(LO), e cn&(LN)) is exchangeable. In-
deed, in that case, the distribution of ranks is fully spediand yields the validity of
empiricalp—value [see Dufour (2006)]. In our case, it is clear thatSflO), ce cnSle))
is not exchangeable, so that Monte Carlo validity cannot ety applied. Neverthe-

less, asymptotic exchangeability still holds, which wiledble us to conclude. To obtain
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that the vector(cnS,(lo), S )) is asymptotically exchangeable, we show that for

any permutationr : [1, N] — [1, N],

lim P[S© >ty ..., 8™ > 5] —P[STO > ¢,,..., 5™ > ¢y] =

n—~oo

First, let rewrite
P[S© > ty,..., 8™ > ty] = Ex, {P[S > to,..., S > ty, X, = 2,]}.
The conditional independence of the sign vectors (re@ittand observed) entails:

N

N
= Gt X, = z,) H Go(t:| X = ).

=1
As each survival function converges with probability oné&:t), we finally obtain
PISO >, SW > ¢, .. SN >ty X, =z, HG t;)with probability one.

Moreover, it is straightforward to see that for. [1, N| — [1, N], we have ag — oc:

N
PS>t 0), 8T > ¢t),..., ™) >ty X, = z,] — HG(ti)with probability one.

n
1=0

Note that ag7(¢) is not a function of the realizatioN (w) so that

lim P[S© >ty,..., 8™ > 5] —P[STO > ¢,,...,5™™) > ¢y] =0,

n—oo

Hence, we can apply an asymptotic version of Propositior22r2Dufour (2006) that
validates Monte Carlo testing for general possibly nonewtus statistics. The proof of
this asymptotic version follows exactly the same stepsaptbofs of Lemma 2.2.1 and
Proposition 2.2.2 of Dufour (2006). We just have to repldwedxact distributions of
randomized ranks, the empirical survival functions andetmpiricalp—values by their
asymptotic counterparts and this is sufficient to concli&lgpose thalv, the number

of replicates is such that(/N + 1) is an integer. Therjm,, ﬁﬁ)’(cnSﬁO)) <o O
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Technical appendix

Detailed analysis of Barro and Sala-i-Martin data set. This section contains ad-
ditional results for the Barro and Sala-i-Martin applicatioTable 9 contains results
of heteroskedasticity tests. Complementary sign-basedente results for the model

parameters are reported in Table 10.

Table 9. Regressions for personal income across U.S. Si8@@3;1988: tests for

heteroskedasticity.
Period Basic equation Eq. with reg. dum.
p-values White test Breush-Pagan test White test Breush-Pagan test
1880-1900 .018 .652 .249 .830
1900-1920 .023 .043 .069 .050
1920-1930 723 .398 435 .557
1930-1940 673 .633 537 .601
1940-1950 .243 .943 513 272
1950-1960 595 223 .740 221
1960-1970 .205 247 .236 441
1970-1980 .641 .675 T77 .264
1980-1988 .058 .022 .080 .226
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Table 10. Regressions for personal income across U.S. St&8&3-1988:

complementary results.

Period

Basic equation

Eqg. with reg. dum.

Variable: constantd)

95% projection-based Cij

1880-1900
1900-1920
1920-1930
1930-1940
1940-1950
1950-1960
1960-1970
1970-1980
1980-1988

[-.0147, -.0020]
[-.0205, -.0084]
[-.0018, .0328]
[-.0232, -.0042]
[-.0452, -.0258]
[-.0297, -.0080]
[-.0314, .0088]
[-.0296, -.0020]
[-.0414, .0695]

[.0206, .0005]
[-.0431, .0095]
[-.0351, .0589]
[-.0443, .0221]
[-.0517, -.0070]
[-.0435, .0043]
[-.0345, .0119]
[-.0478, .0288]
[-.0563, .0566]

Variable: In(y) (v)

95% projection-based Cij

1880-1900
1900-1920
1920-1930
1930-1940
1940-1950
1950-1960
1960-1970
1970-1980
1980-1988

[-.0170, .0010]
[-.0233, -.0084]
[-.0018, .0351]
[-.0209, -.0042]
[-.0452, -.0253]
[-.0297, -.0080]
[-.0314, -.0094]
[-.0292, -.0020]
[-.0414, .0695]
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[-.0197, .0034]
[-.0336, .0088]
[-.0369, .0584]
[-.0314, .0206]
[-.0462, .0079]
[-.0397, -.0007]
[-.0350, .0119]
[-.0514, .0255]
[-.0566, .0566]



Compared inference methods in simulations

Two sign-based statisticare studied: one adapted for mediangale process,
SF(8y) = Ds(Bo, (X' X)™") = s(y — XBo) X(X'X) "' X's(y — X))  (T.1)

and, one corrected for serial dependence,

SHAC = Ds(By. J; ") = s(y — XBo) X, X's(y — XB,).  (T.2)
where B
=" N k(L) ) (T.3)
n n— p]__n+1 Bn n )
with
f() = %Z?:jﬂ Vi(Bo)Vi_;(B)  forj >0 (T.4)
%Zt:—j—&-l Vit (Bo)V{(By) forj <0,
andV,(8,) = s(y — x,5,) x =, t = 1,...,n andk(.) is a real-valued kernel, here

Bartlett kernel is used with an automatically adjusted badtiwparameterB,, [An-
drews (1991)].

Sign-based tests are compared to LR and Wald-type testd bagel.S and LAD
estimators with different covariance matrix estimatorsaldAtype statistics for testing
H, : (8 = 3, are of the formn(3 — 3,)D;'(3 — ,) whereD,, is an estimate of the
asymptotic covariance matrix fot.

The OLS estimator is computed in GAUSS,,; ¢ = (X'X)~'X’y. Both classic
1.1.d. andWhite covariance matrix estimatoase consideredl/ H asymptotic covari-

ance matrix estimator is corrected for heteroskedastititynot for linear dependence:

0 o) = (7 520) (g St (7 )

The LAD estimator is computed in GAUSS by the greg procedure, whigs @
minimization by interior point method3, ,,, = arg min > iy lye—=,5]. The following
LAD covariance matrix estimators are considered:

The order statistic estimator)S) [see Chamberlain (1994), Buchinsky (1995, 1998)],
which is valid fori.i.d observations, is used as a benchmark.:Eaf observations, the
LAD covariance matrix reduces to

1 1

(ﬁLAD) 4f2( )(E[xx/])il = U2LAD<E[xx/])7 ’
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where f,, stands for the density of;. An estimate foro;,p can be constructed
from a confidence interval for the sample median,, the n/2-th order statistic. let
Y1,Y2,- .., Y, be independent random observations with distribution tioncF(.)
and y(;), yx), the j—th and thek—th order statistics ofy;,y,...,y,. Note that
Ply) < &) = 2o, Cr,(1/2)", which entails

Plyg) < &ije Syl =Plyg) < &ijel — Pluw < &ijel = ZC’ 1/2)".

A symmetric confidence interval with levél— o can be constructed as follows. Let
j = int(n/2 —1), k = int(n/2 + 1) and X ~ B(n,1/2), with E[X]| = n/2 and
var(X) =n/4. Then,

_p [ - n/2 [ ]
A central limit theorem,X‘\/”7/42 — N(0,1) entails that = Z,_,/2+/n/4 whereZ,_,,

is thel — «/2th quantile of a standard normal distribution. Approachtmg width of

the exact confidence interval by that of asymptotic confidenterval givesss ,,, =

n(Yint(n/241) —Yint(n/2—1))°
472

_Finally, D(3,.4,,) can be estimated by,

D (Brap) = 6%ap ( Zx X >
Design matrix bootstrap centering around the sampléD estimate DM B) is also

considered [see Buchinsky (1995, 1998)]. Let,z7), « = 1,...,m be a randomly

l1—a/2

drawn sample from the empirical distribution functiéj,,. Let ﬁz 4p be the bootstrap
estimate obtained from a LAD regressionydfon X*. This process is carried out
times and yields3 bootstrap estimates, 41, 31apa:-- -+ Braps. The design matrix
bootstrap asymptotic covariance matrix estimator is glwen
B
~ m n ~ % ~ ~ % ~
DPME = = {E > (Brap; — Brap) (Bran; - ﬁm)’} - (T.5)
j=1
The moving block bootstrap centering around the samplenesti (\/ BB) was pro-
posed by Fitzenberger (1997 Basically, blocks of fixed sizé are bootstrapped in-

stead of individual observationsy; = T — b + 1 blocks of observations of sizie
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B; = ((yi, i), - - -, (Yirp, xirp)) are defined.m blocks, drawn from the initial sample,
constitute a bootstrapped samglgof sizem x b. Fromeact?;, j =1,...,B,aLAD
regression is performed yielding the estiméiéD. The M BB estimator of the.AD

asymptotic covariance matrix can then be approached tharke bootstrap paradigm,
by
B

D )= {3, Buao Py~ bl | 9
Both for OLS and LAD estimatc;r:sll?)artlett kernel covariance matrix estimators with
automatic bandwidth parametéB7T) are also considered [see Parzen (1957), Newey
and West (1987), Andrews (1991)] with a methodology simitathe one presented
previously for deriving theS H AC-sign statistic.

Finally, the L R statistic[see Koenker and Bassett (1982)] has the following form:

4£,(0) [Z lyi — @8] — Z | — 2B rapl (T.7)

where arD S estimate is used fof, (0).
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