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ABSTRACT

We construct finite-sample distribution-free tests and confidence sets for the parame-

ters of a linear median regression where no parametric assumptions are imposed on the

noise distribution. The setup we consider allows for nonnormality, heteroskedasticity

and nonlinear serial dependence in the errors. Such semiparametric models are usually

analyzed using only asymptotically justified approximate methods, which can be arbi-

trarily unreliable in finite samples. We consider first the property of mediangale – the

median-based analogue of a martingale difference – and showthat the signs of medi-

angale sequences follow a nuisance-parameter free-distribution despite the presence of

nonlinear dependence and heterogeneity of unknown form. Wepoint out that a simulta-

neous inference approach in conjunction with sign transformations do provide statistics

with the required pivotality features – in addition to usualrobustness properties. Those

sign-based statistics are exploited – using Monte Carlo tests and projection techniques –

in order to produce valid inference in finite samples. An asymptotic theory which holds

under weaker assumptions is also provided. Finally, simulation results illustrating the

performance and two applications are presented.

Key words: sign-based methods; median regression; finite samples; non-normality;

heteroskedasticity; serial dependence; GARCH; stochastic volatility; sign test; simulta-

neous inference; Monte Carlo tests; bootstrap; projection methods; quantile regressions.

Journal of Economic Literature classification: C12, C14, C15.
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RÉSUMÉ

Dans cet article, nous construisons des tests et des régionsde confiance pour les

paramètres d’une régression linéaire sur la médiane, qui sont valides à distance

finie sans imposer d’hypothèse paramétrique sur la distribution des erreurs. Les er-

reurs peuvent être non gaussiennes, hétéroscédastique ou bien, présenter une dépen-

dance sérielle de forme arbitraire. Habituellement, l’analyse de ces modèles semi-

paramétriques s’appuie sur des approximations asymptotiques normales, lequelles peu-

vent être trompeuses en échantillon fini. Nous introduisonsune propriété analogue à

la différence de martingale pour la médiane, la «médiangale» et remarquons que les

signes d’une suite de «médiangale» sont indépendants entreeux et suivent une distrib-

ution connue et simulable. Nous utilisons la transformation par les signes et proposons

des statistiques pivotales qui, en plus d’être robustes, permettent de construire une ap-

proche d’inférence simultanée valide quelle que soit la taille de l’échantillon. Nous

utilisons la méthode des tests de Monte Carlo, puis déduisonspar projection des tests et

des régions de confiance pour n’importe quelle transformation du paramètre. Nous four-

nissons aussi une théorie asymptotique sous des hypothèsesplus faibles. Les études par

simulation illustrent la performance de la méthode proposée lorsque les données sont

très hétérogènes. Enfin, nous présentons deux exemples d’application.

Mots clés : méthodes de signes ; régression sur la médiane ; échantillons finis; non

normalité ; hétéroscédasticité ; dépendance sérielle ; GARCH; volatilité stochastique ;

tests de signes ; inférence simultanée ; tests de Monte Carlo ;bootstrap ; méthodes de

projection ; régressions quantiles.

Classification JEL : C12, C14, C15.
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1. Introduction

The Laplace-Boscovich median regression has received a renewed interest since two

decades. This method is known to be more robust than least squares and easily allows

for heterogeneous data [see Dodge (1997)]. It has recently been adapted to models in-

volving heteroskedasticity and autocorrelation [Zhao (2001), Weiss (1990)], endogene-

ity [Amemiya (1982), Powell (1983), Hong and Tamer (2003)],nonlinear functional

forms [Weiss (1991)] and has been generalized to other quantile regressions [Koenker

and Bassett (1978)]. Theoretical advances on the behavior ofthe associated estimators

have completed this process [Powell (1994), Chen, Linton andVan Keilegom (2003)].

In empirical studies, partly thanks to the generalization to quantile regressions, new

fields of potential applications have emerged.1 The recent and fast development of

computer technology clearly stimulates interest for theserobust, but formerly viewed as

too cumbersome, methods.

Linear median regression assumes a linear relation betweenthe dependent variable

y and the explanatory variablesx. Only a null median assumption is imposed on the dis-

turbance process. Such a condition of identification "by the median" can be motivated

by fundamental results on nonparametric inference. Since Bahadur and Savage (1956),

it is known that without strong distributional assumptions(such as normality), it is im-

possible to obtain reasonable tests on the mean ofi.i.d. observations, for any sample

size. In general, moments are not empirically meaningful without further distributional

assumptions. This form of non-identification can be eliminated, even in finite samples,

by choosing another measure of central tendency, such as themedian. Hypotheses on

the median of non-normal observations can easily be tested by signs tests [see Pratt

and Gibbons (1981)]. In nonparametric setups, one may expect models with median

identification to be more appropriate than their mean counterpart.

Median regression (and related quantile regressions) provides an attractive bridge

between parametric and nonparametric models. Distributional assumptions on the dis-

turbance process are relaxed but the functional form remains parametric. Associated

1The reader is referred to Buchinsky (1994) for an interpretation in terms of inequality and mobility
topics in the U.S. labor market, Engle and Manganelli (1999)for an application in Value at Risk issues in
finance and Koenker and Hallock (2001), Buchinsky (1998), for exhaustive reviews of this literature.
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estimators, such as the least absolute deviations (LAD) estimator, are more robust to

outliers than usual least squares (LS) methods and may be more efficient whenever

the median is a better measure of location than the mean. Thisholds for heavy-tailed

distributions or distributions that have mass at zero. Theyare especially appropriate

when unobserved heterogeneity is suspected in the data. Thecurrent expansion of such

"semiparametric" techniques reflects an intention to departfrom restrictive parametric

framework [see Powell (1994)]. However, related inferenceand confidence intervals

remain based on asymptotic normality approximations. Thisreversal to normal approx-

imate inference is certainly disappointing when so much effort has been made to get rid

of parametric models.

In this paper, we show that a testing theory based on residualsigns provides an entire

system of finite-sample exact inference for a linear median regression model. The level

of the tests is provably equal to the nominal level, for any sample size. Exact tests and

confidence regions remain valid under general assumptions involving heteroskedasticity

of unknown form and nonlinear dependence.

The starting point is a well known result of quasi-impossibility in the non-parametric

statistical literature. Lehmann and Stein (1949) proved that inference procedures that

are valid under conditions of heteroskedasticity of unknown form when the number of

observations is finite, must control the level of the tests conditional on the absolute val-

ues [see also Pratt and Gibbons (1981), Lehmann (1959)]. This result has two main

consequences. First, sign-based methods, which do controlthe conditional level, are a

general way of producing valid inference for any sample size. Second, all other meth-

ods, including the usual heteroskedasticity and autocorrelation corrected (HAC) meth-

ods developed by White (1980), Newey and West (1987), Andrews(1991) and others,

which are not based on signs, are not proved to be valid for anysample size. Although

this provides a compelling argument for using sign-based procedures, the latter have

barely been exploited in econometrics. Our point is to stress their robustness and to

generalize their use to median regressions.

To our knowledge, sign-based methods have not received muchinterest in econo-

metrics, compared to ranks or signed ranks methods. Dufour (1981), Campbell and
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Dufour (1991, 1995), Dufour, Hallin and Mizera (1998) Wright(2000), derived exact

nonparametric tests for different time series models. In a regression context, Boldin, Si-

monova and Tyurin (1997) developed inference and estimation for linear models. They

presented both exact and asymptotic-based inferences fori.i.d. observations, whereas

for autoregressive processes withi.i.d. disturbances, only asymptotic justification was

available. Our work is positioned in the following of Boldin et al. (1997). We keep

sign-based statistics related to locally optimal sign tests, which are simple quadratic

forms and can easily be adapted for estimation. However, we extend their distribution-

free properties to allow for a wide array of nonlinear dependent schemes. We propose

to conjugate them with projection techniques and Monte Carlotests to systematically

derive exact confidence sets.

The pivotality of the sign-based statistics validates the use of Monte Carlo tests, a

technique proposed by Dwass (1957) and Barnard (1963). The Monte Carlo method,

adapted to discrete statistics by a tie-breaking procedure[Dufour (2006)], yields exact

simultaneous confidence region forβ. Then, conservative confidence intervals (CIs) for

each component of the parameter (or any real function of the parameter) are obtained by

projection [Dufour and Kiviet (1998), Dufour and Taamouti (2005), Dufour and Jasiak

(2001)]. Exact CIs as they are valid can be unbounded for nonidentifiable component.

That results from the exactness of the method and insures thetrue value of the compo-

nent belongs to exact CIs with probability higher than1 − α. In practice, computation

of bounds of confidence intervals (or confidence sets) requires global optimization al-

gorithms such as simulated annealing [see Goffe, Ferrier and Rogers (1994)].

Sign-based inference methods constitute an alternative toinference derived from

the asymptotic behavior of the well known LAD estimator. TheLAD estimator (such

as related quantile estimators) is consistent and asymptotically normal in case of het-

eroskedasticity [Powell (1984) and Zhao (2001) for efficient weighted LAD estimator],

or temporal dependence [Weiss (1991)]. Fitzenberger (1997b) extended the scheme

of potential temporal dependence including stationary ARMAdisturbance processes.

Horowitz (1998) proposed a smoothed version of the LAD estimator. At the same time,

an important problem in the LAD literature consists in providing good estimates of the

3



asymptotic covariance matrix, on which inference relies. Powell (1984) suggested ker-

nel estimation, but the most widespread method of estimation is the bootstrap. Buchin-

sky (1995) advocated the use of design matrix bootstrap for independent observations.

In dependent cases, Fitzenberger (1997b) proposed a moving block bootstrap. Finally,

Hahn (1997) suggested a Bayesian bootstrap.2 Other notable areas of investigation in

theL1 literature concern the study of nonlinear functional formsand structural models

with endogeneity ["censored quantile regressions", Powell (1984, 1986) and Fitzen-

berger (1997a), Buchinsky and Hahn (1998), "simultaneous equations", Amemiya

(1982), Hong and Tamer (2003)]. More recently, authors havebeen interested in al-

lowing for misspecification [Kim and White (2002), Komunjer (2005), Jung (1996)].

In the context of LAD-based inference, kernel techniques are sensitive to the choice

of kernel function and bandwidth parameter, and the estimation of the LAD asymptotic

covariance matrix needs a reliable estimator of the error term density at zero. This

may be tricky especially when disturbances are heteroskedastic. Besides, whenever

the normal distribution is not a good finite-sample approximation, inference based on

covariance matrix estimation may be problematic. From a finite-sample point of view,

asymptotically justified methods can be arbitrarily unreliable. Test sizes can be far from

their nominal levels. One can find examples of such distortions for time series context

in Dufour (1981), Campbell and Dufour (1995, 1997) and forL1-estimation in Dielman

and Pfaffenberger (1988a, 1988b) , De Angelis, Hall and Young (1993), Buchinsky

(1995)]. Inference based on signs constitutes an alternative that does not suffer from

these shortcomings.

We study here a linear median regression model where the (possibly dependent)

disturbance process is assumed to have a null median conditional on some exogenous

explanatory variables and its own past. This setup covers non stochastic heteroskedas-

ticity, standard conditional heteroskedasticity (like ARCH, GARCH, stochastic volatil-

ity models, . . . ) as well as other forms of nonlinear dependence. However, linear

autocorrelation in the residuals is not allowed. We first treat the problem of inference

and show that pivotal statistics based on the signs of the residuals are available for any

2The reader is referred to Buchinsky (1995, 1998), for a review and to Fitzenberger (1997b) for a
comparison between these methods.
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sample size. Hence, exact inference and exact simultaneousconfidence region onβ

can be derived using Monte Carlo tests. For more general processes that may involve

stationary ARMA disturbances, these statistics are no longer pivotal. The serial depen-

dence parameters constitute nuisance parameters. However, transforming sign-based

statistics with standard HAC methods allows to asymptotically get rid of these nuisance

parameters. We thus extend the validity of the Monte Carlo method. For these kinds

of processes, we loose the exactness but keep an asymptotic validity. In particular, this

asymptotic validity requires less assumptions on moments or the shape of the distribu-

tion (such as the existence of a density) than usual asymptotic-based inference. Besides,

we do not need to evaluate the disturbance density at zero, which constitutes one of the

major difficulties of kernel-based methods. In practice, wederive sign-based statistics

from locally most powerful sign-based test statistics. We obtain exact simultaneous

confidence region by inversion, and then, conservative confidence intervals for each

component or any real function ofβ by projection techniques. Once again, we stress

the fact that sign-based statistics can provide finite-sample inference which is not the

case for usual inference theories associated with LAD and other quantile estimators,

which rely on their asymptotic distributions.

The paper is organized as follows. In section 2, we present the model and the nota-

tions. Section 3 contains general results on exact inference. They are applied to median

regressions in section 4. In section 5, we derive confidence intervals at any given con-

fidence level and illustrate the method on a numerical example. Section 6 is dedicated

to the asymptotic validity of the finite-sample inference method. In section 7, we give

simulation results from comparisons to usual techniques. Section 8 presents illustrative

applications: testing the presence of a drift in the Standard and Poor’s composite price

index series, and testing forβ-convergence between levels of per capita output across

the U. S. States. Section 9 concludes. The Appendix containsthe proofs.
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2. Framework

2.1. Model

We consider a stochastic processW = {Wt = (yt, x′
t) : Ω → R

p+1, t = 1, 2, . . .}
defined on a probability space(Ω,F , P ). Let {Wt,Ft} t=1,2,... be an adapted stochastic

sequence,i.e. Ft is aσ-field in Ω such thatFs ⊆ Ft for s < t andσ(W1, . . . ,Wt) ⊂ Ft,

whereσ(W1, . . . ,Wt) is theσ-algebra spanned byW1, . . . ,Wt. Wt = (yt, x
′
t), whereyt

is the dependent variable andxt = (xt1, . . . , xtp)
′, ap-vector of explanatory variables .

Thext’s may be random or fixed. We assume thatyt andxt satisfy a linear model of the

form:

yt = x′
tβ + ut, t = 1, . . . , n, (2.1)

whereut is an error process. Inference on this model will be made possible through

assumptions on the conditional medians of the errors.

In the sequel,y = (y1, . . . , yn)′ ∈ R
n denote the dependent vector,X =

[x1, . . . , xn]′ then × p explanatory matrix andu = (u1, . . . , un)′ ∈ R
n the disturbance

vector. Moreover,Ft(.|x1, . . . , xn) represent the distribution function ofut conditional

onX.

A common assumption which allows for general forms of dependence contexts

is assuming that{ut, t = 1, 2, . . .} is a martingale difference with respect toFt =

σ(W1, . . . ,Wt), t = 1, 2, . . ..

Definition 2.1 MARTINGALE DIFFERENCE. Let {ut,Ft : t = 1, 2, . . .} be an

adapted stochastic sequence,{ut, t = 1, 2, . . .} is a martingale difference sequence

with respect to{Ft, t = 1, 2, . . .} iff E(ut|Ft−1) = 0, ∀t ≥ 1.

We depart from this usual assumption, which requires the existence of the first moments

of ut. Indeed, our aim is to develop a framework that is robust to heteroskedasticity of

unknown form. From Bahadur and Savage (1956), it is known thatinference on the

mean ofi.i.d. observations of a random variable without any further assumption on

the form of its distribution is impossible. Such a test has nopower. This problem

of non-testability can be viewed as a form of non-identification in a wide sense. Un-

less relatively strong distributional assumptions are made, moments are not empirically

6



meaningful. Thus, if one wants to relax the distributional assumptions, one must choose

another measure of central tendency such as the median. The median is in particular

well adapted if the distribution of the disturbance processdoes not possess moments.

As a consequence, in this median regression framework, the martingale difference as-

sumption will be replaced by an analogue in terms of median. We define the median-

martingale difference or shortly said,mediangalethat can be stated unconditional or

conditional on the design matrixX.

Definition 2.2 STRICT MEDIANGALE. Let {ut,Ft, t = 1, 2 . . .} be an adapted

sequence,{ut, t = 1, 2, . . .} is a strict mediangale with respect to{Ft, t = 1, 2, . . .} iff

P[u1 < 0] = P[u1 > 0] = 0.5 and P[ut < 0|Ft−1] = P[ut > 0|Ft−1] = 0.5, for t > 1.

Definition 2.3 STRICT CONDITIONAL MEDIANGALE . Let {ut,Ft, t = 1, 2 . . .}
be an adapted sequence andFt = σ(u1, . . . , ut, X), {ut, t = 1, 2, . . .} is a strict

mediangale conditional onX with respect to{Ft, t = 1, 2, . . .} iff P[u1 < 0|X] =

P[u1 > 0|X] = 0.5 and P[ut < 0|u1, . . . , ut−1, X] = P[ut > 0|u1, . . . , ut−1, X] =

0.5, for t > 1.

The above definitions allowut to have a discrete distribution except at zero. This con-

straint is relaxed in Definition2.4.

Definition 2.4 WEAK CONDITIONAL MEDIANGALE . Let{ut,Ft, t = 1, 2 . . .} be an

adapted sequence andFt = σ(u1, . . . , ut, X), {ut, t = 1, 2, . . .} is a weak mediangale

conditional onX with respect to{Ft, t = 1, 2, . . .} iff P[u1 > 0|X] = P[u1 <

0|X] and P[ut > 0|u1, . . . , ut−1, X] = P[ut < 0|u1, . . . , ut−1, X], for t = 2, . . . , n.

The sign operators : R → {−1, 0, 1} is defined ass(a) = 1[0,+∞)(a) − 1(−∞,0](a)

where 1A(a) = 1, if a ∈ A, 1A(a) = 0, if a /∈ A. For convenience, ifu ∈ R
n, we

will note s(u), then-vector composed by the signs of its components.

Stating that{ut, t = 1, 2, . . .} is a weak mediangale with respect to{Ft, t =

1, 2, . . .} is equivalent to assuming that{s(ut), t = 1, 2, . . .} is a martingale difference

with respect to the same sequence of sub-σ algebras{Ft, t = 1, 2, . . .}. However,

the weak conditional mediangale concept differs from a martingale difference on the

7



signs because of the conditioning upon the whole processX. Indeed, the reference

sequence of sub-σ algebras is usually taken to{Ft = σ(W1, . . . ,Wt), t = 1, 2, . . .}.

Here, the reference sequence is{Ft = σ(W1, . . . ,Wt, X), t = 1, 2, . . .}. We shall

see later that asymptotic inference may be available under weaker assumptions, as

a classical martingale difference on signs or more generally mixing conditions on

{s(ut), σ(W1, . . . ,Wt), t = 1, 2, . . .}. However, the conditional mediangale concept

allows one to develop exact inference (conditional onX). We have replaced the differ-

ence of martingale assumption on the raw process{ut, t = 1, 2, . . .} by a quasi-similar

hypothesis on a robust transform of this process{s(ut), t = 1, 2, . . .}. Below we will

see it is relatively easy to deal with a weak mediangale by a simple transformation of the

sign operator, but to simplify the presentation, we shall focus on the strict mediangale

concept. Therefore, our model will rely on the following assumption.

Assumption A1 STRICT CONDITIONAL MEDIANGALE . The components ofu =

(u1, . . . , un) satisfy a strict mediangale conditional onX.

It is easy to see that Assumption A1 entailsmed(u1|x1, . . . , xn) = 0, and

med(ut|x1, . . . , xn, u1, . . . , ut−1) = 0, t = 2, . . . , n,

Hence, we are in a median regression context.3

Our last remark concerns exogeneity. As long as thext’s are strongly exogenous

explanatory variables, the conditional mediangale concept is equivalent to a martingale

difference on signs with respect toFt = σ(W1, . . . ,Wt), t = 1, 2, . . ..4

Proposition 2.5 MEDIANGALE EXOGENEITY. Suppose{xt : t = 1, . . . , n} is a

strongly exogenous process forβ, P[u1 > 0] = P[u1 < 0] = 0.5, and

P[ut > 0|u1, . . . , ut−1, x1, . . . , xt] = P[ut < 0|u1, . . . , ut−1, x1, . . . , xt] = 0.5.

Then{ut, t ∈ N} is a strict mediangale conditional onX.

3These concepts can easily be extended to other quantiles than the median. However, our first in-
terest is to develop an inference method valid in presence ofvery heterogeneous data without further
restrictions, in which context assumption on the median make more sense than an assumption on general
quantile.

4X is strongly exogenous forβ if X is sequentially exogenous and ifY does not Granger causeX
[see Gouriéroux and Monfort (1995)]
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Model (2.1) with the Assumption A1 allows for very general forms of the disturbance

distribution, including asymmetric, heteroskedastic or dependent ones, as long as con-

ditional medians are 0. We stress that neither density nor moment existence are re-

quired. Indeed, what the mediangale concept requires is a form of independence in the

signs of the residuals. This extends results in Dufour (1981) and Campbell and Dufour

(1991, 1995, 1997).

Asymptotic normality of the LAD estimator, which is presented in its most

general way in Fitzenberger (1997b), holds under some mixing concepts on

{s(ut), σ(W1, . . . ,Wt), t = 1, 2, . . .} and an orthogonality condition betweens(ut)

andxt. Besides, it requires additional assumptions on moments.5 With such a choice,

testing is necessarily based on approximations (asymptotic or bootstrap). Here, we fo-

cus on valid finite-sample inference without any further assumption on the form of the

distributions.

2.2. Special cases

The above framework obviously covers independence but alsoa large spectrum of het-

eroskedasticity and dependence patterns. For example,ut = σt(x1, . . . , xn) εt, t =

1, . . . , n, whereε1, . . . , εn are i.i.d. conditional onX, which is relevant for cross-

sectional data. Many dependence schemes are also covered, especially any model of

the formu1 = σ1(x1, . . . , xt−1)ε1 , ut = σt(x1, . . . , xt−1 , u1, . . . , ut−1)εt , t =

2, . . . , n where ε1, . . . , εn are independent with median 0,σ1(x1, . . . , xt−1) and

σt(x1, . . . , xn , u1, . . . , ut−1), t = 2, . . . , n are non-zero with probability one. In time

series context, this includes models presenting robustness properties to endogenous dis-

turbance variance (or volatility) specification, such as:

ARCH(q) with non-Gaussian noiseεt:

σt(x1, . . . , xt−1 , u1, . . . , ut−1)
2 = α0 + α1u

2
t−1 + · · · + αqu

2
t−q;

GARCH(p, q) with non-Gaussian noisesεt:

σt(x1, . . . , xt−1 , u1, . . . , ut−1)
2 = α0 +α1u

2
t−1 + · · ·+αqu

2
t−q +γ1σ

2
t−1 + · · ·+γpσ

2
t−p;

5In Fitzenberger (1997b), LAD and quantile estimators are shown to be consistent andasymptotically
normal if amongst other,E[xtsθ(ut)] = 0, ∀t = 1, . . . , n, densities exist and second-order moments for
(ut, xt) are finite.
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stochastic volatility models with non-Gaussian noisesεt:

ut = exp(wt/2)ryεt ,

wt = a1wt−1 + · · · + a1wt−p + rwvt ; v1, . . . , vn are.i.i.d. random variables.

The mediangale property is more general because does it not specify explicitly the func-

tional form of the variance in contrast with an ARCH specification. Note again that

the disturbance process does not have to be second-order stationary. For nonstation-

ary processes that satisfy the mediangale assumption, sign-based inference will work

whereas all inference procedures based on asymptotic behavior of estimators may fail

or require difficult validity proofs.

3. Exact finite-sample sign-based inference

The most common procedure for developing inference on a statistical model can be

described as follows. First, one finds a (hopefully consistent) estimator; second, the

asymptotic distribution of the latter is established, fromwhich confidence sets and tests

are derived. Here, we shall proceed in the reverse order. We study first the test problem,

then build confidence sets, and finally estimators.6 Hence, results on the valid finite-

sample test problem will be adapted to obtain valid confidence intervals and estimators.

3.1. Motivation

In econometrics, tests are often based ont or χ2 statistics, which are derived from as-

ymptotically normal statistics with a consistent estimator of the asymptotic covariance

matrix. Unfortunately, in finite samples, these first-orderapproximations can be very

misleading. Test sizes can be quite far from their nominal level: both the probability

that an asymptotic test rejects a correct null hypothesis and the probability that a com-

ponent ofβ is contained in an asymptotic confidence interval may differconsiderably

from assigned nominal levels. One can find examples of such distortions in the dynamic

literature [see for example Dufour (1981), Mankiw and Shapiro (1986), Campbell and

Dufour (1995, 1997) and ]; on inference based onL1-estimators [see Dielman and Pfaf-

fenberger (1988a, 1988b), Buchinsky (1995) and De Angelis et al. (1993)]. This remark

6For the estimation theory, the reader is referred to Coudin and Dufour (2005).
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usually motivates the use of bootstrap procedures. In a sense, bootstrapping (once bias

corrected) is a way to make approximation closer by introducing artificial observations.

However, the bootstrap still relies on approximations and in general there is no guaran-

tee that the level condition is satisfied in finite samples.

Another way to appreciate the nonvalidity of asymptotic methods in finite samples is

to recall a theorem established by Lehmann and Stein (1949).Consider testing whether

n observations are independent with common zero median:

H0 : X1 , . . . , Xn are independent observations

each one with a distribution symmetric about zero.
(3.1)

TestingH0 turns to check whether the joint distributionFn of the observations belongs

to the setH0 = {Fn ∈ Fn : Fn satisfiesH0} without any other restriction. In other

words,H0 allows for heteroskedasticity of unknown form. For this setup, Lehmann and

Stein (1949) established the following theorem [see also Pratt-Gibbons (Sect. 3, Chap.

4, p. 218, 1981) and Lehmann (1959)].

Theorem 3.1 If a test has levelα for H0, where0 ≤ α < 1, then it must satisfy

P[ RejectingH0 | |X1| , . . . , |Xn| ] ≤ α underH0 .

The level of a valid test must equalα conditional on the observation absolute values.

Theorem3.1 also implies that any procedure that does not satisfy the above condition

has size one. It is not clear that least square-based procedures typically designated as

"robust to heteroskedasticity" or "HAC" [see White (1980) , Newey and West (1987),

Andrews (1991), etc.] do satisfy Theorem3.1 condition. For some examples of size

distortion in some specific setups, see the simulation studyin section 7.

Sign-based procedures do satisfy this condition. Besides, as we will show in section

4, distribution-free sign-based statistics are availableeven in finite samples. They have

been used in the statistical literature to derive nonparametric sign tests. The combination

of both remarks give the theoretical basis for developing anexact inference method.

3.2. Distribution-free pivotal functions and nonparametric tests

When the disturbance process is a conditional mediangale, the joint distribution of the

signs of the disturbances is completely determined. These signs are mutually indepen-
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dent equalling1 with probability1/2 and−1 with probability1/2. This result is stated

more precisely in the following proposition. The case with amass at zero can be covered

provided a transformation in the sign operator definition.

Proposition 3.2 SIGN DISTRIBUTION. Under model(2.1), suppose the errors

(u1, . . . , un) satisfy a strict mediangale conditional onX = [x1, . . . , xn]′. Then the

variabless(u1), . . . , s(un) are i.i.d. conditional onX according to the distribution

P[s(ut) = 1 |x1, . . . , xn] = P[s(ut) = −1 |x1, . . . , xn] =
1

2
, t = 1, . . . , n . (3.2)

More generally, this result holds for any combination oft = 1, . . . , n. If there is a

permutationπ : i → j such that mediangale property holds forj, then the signs are

i.i.d..

From the above proposition, it follows that the residual sign vector

s(y − Xβ) = [s(y1 − x′
1β), . . . , s(yn − x′

nβ)]′

has a nuisance-parameter-free distribution (conditionalon X), i.e. it is a pivotal func-

tion. Its distribution is easy to simulate from a combination ofn independent uniform

Bernoulli variables. Furthermore, any function of the formT = T
(

s(y − Xβ), X
)

is

pivotal conditional onX. Once the form ofT is specified, the distribution of the statistic

T is totally determined and can also be simulated.

Using Proposition3.2, it is possible to construct tests for which the size is fully

controlled in finite samples. Consider testingH0(β0) : β = β0 againstH1(β0) : β 6=
β0. UnderH0(β0), s(yt − x′

tβ0) = s(ut), t = 1, . . . , n. Thus, conditional onX,

T
(

s(y − Xβ0), X
)

∼ T (Sn, X) (3.3)

whereSn = (s1, . . . , sn) ands1, . . . , sn
i.i.d.∼ B(1/2). A test with levelα rejectsH0

when

T
(

s(y − Xβ0), X
)

> cT (X,α) (3.4)

wherecT (X,α) is the(1 − α)-quantile of the distribution ofT (Sn, X).

This method can be extended to error distributions with a mass at zero,i.e., P[ut =

0 |X, u1, . . . , ut−1] = pt(X, u1, . . . , ut−1) > 0 where thept(·) are unknown and
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may vary between observations. A way out consists in modifying the sign function

s(x) as s̃(x, V ) = s(x) +
[

1 − s(x)2
]

s(V − 0.5), where V ∼ U(0, 1), If Vt is

independent ofut then, irrespective of the distribution ofut, P[s̃(ut, Vt) = +1] =

P[s̃(ut, Vt) = −1] = 1
2
.. Hence, we can state Proposition3.3:

Proposition 3.3 RANDOMIZED SIGN DISTRIBUTION. Suppose(2.1) holds with

the assumption thatu1, . . . , un belong to a weak mediangale conditional onX. Let

V1, . . . , Vn be i.i.d random variables following aU(0, 1) distribution independent ofu

andX. Then the variables̃st = s̃(ut, Vt) are i.i.d. conditional onX with the distribu-

tion P[s̃t = 1 |X] = P[s̃t = −1 |X] = 1
2
, t = 1, . . . , n .

All the procedures described in the paper can be applied by replacings by s̃. When the

error distributions possess a mass at zero, the test statistic T
(

s̃(y − Xβ0, X)
)

have to

be used instead ofT
(

s(y − Xβ0, X)
)

.

4. Regression sign-based tests

In this section, we present sign-based test statistics thatare pivots and provide power

against alternatives of interest. This will enable us to build Monte Carlo tests relying on

their exact distribution. Therefore, the level of those tests is exactly controlled for any

sample size.

4.1. Regression sign-based statistics

The class of pivotal functions studied in the previous section is quite general. So,

we wish to choose a test statistic (the form of theT function) that can have power

against alternatives of interest. Unfortunately, there isno uniformly most powerful test

of H0(β0) : β = β0 againstH1(β0) : β 6= β0. Hence, for testingH0(β0) against

H1(β0) in model (2.1), we consider test statistics of the followingform:

DS(β0, Ωn) = s(y − Xβ0)
′XΩn

(

s(y − Xβ0), X
)

X ′s(y − Xβ0) (4.5)

whereΩn

(

s(y − Xβ0), X
)

is a p × p weight matrix that depends on the constrained

signss(y − Xβ0) underH0(β0). Moreover,Ωn

(

s(y − Xβ0), X
)

is assumed to be

positive definite. The weighting matrixΩn

(

s(y − Xβ0), X
)

is introduced here as a
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standardization. We will see that it can in particular account for some dependence

schemes that cannot be eliminated by the sign transformation.

Statistics of the formDS(β0, Ωn) include as special cases the ones studied by Boldin

et al. (1997) and Koenker and Bassett (1982). Namely, on taking Ωn = Ip andΩn =

(X ′X)−1, we get:

SB(β0) = s(y − Xβ0)
′XX ′s(y − Xβ0) = ‖X ′s(y − Xβ0)‖2

, (4.6)

SF (β0) = s(y − Xβ0)
′P (X)s(y − Xβ0) = ‖X ′s(y − Xβ0)‖2

M , (4.7)

where P (X) = X(X ′X)−1X ′. In Boldin et al. (1997), it is shown thatSB(β0)

and SF (β0) can be associated with locally most powerful tests in the case of i.i.d.

disturbances under some regularity conditions on the distribution function (especially

f ′(0) = 0).7 Their proof can easily be extended to disturbances that satisfy the medi-

angale property and for which the conditional density at zero is the sameft(0|X) =

f(0|X), ∀t = 1, . . . , n.

SF (β0) can be interpreted as a sign analogue of the Fisher statistic. More precisely,

SF (β0) is a monotonic transformation of the Fisher statistic for testing γ = 0 in the

regression ofs(y − Xβ0) on X: s(y − Xβ0) = Xγ + v. This remark holds also for a

general sign-based statistic of the form 4.5, whens(y − Xβ0) is regressed onΩ−1/2
n X.

Wald, Lagrange multiplier (LM) and likelihood ratio (LR) asymptotic tests for M-

estimators, such as the LAD estimator, inL1-regression are developed by Koenker and

Bassett (1982). They assumei.i.d. errors and a fixed design matrix. In that setup, the

LM statistic for testingH0(β0) : β = β0 turns out to be theSF (β0) statistic. The same

authors also remarked that this type of statistic is asymptotically nuisance-parameter-

free. It does not require one to estimate the density of the disturbance at zero contrary

to LR and Wald-type statistics.

The Boldin et al. (1997) local optimality interpretation canbe extended to het-

eroskedastic disturbances. In such a case, the locally optimal test statistic associated
7The power function of the locally most powerful sign-based test has the faster increase when de-

parting fromβ
0
. In the multiparameter case, the scalar measure required toevaluate that speed is the

curvature of the power function. Restricting on unbiased tests, Boldin et al. (1997) introduced different
locally most powerful tests corresponding to different definitions of curvature.SB(β

0
) maximizes the

mean curvature, which is proportional to the trace of the shape [see Dubrovin, Fomenko, and Novikov
(Ch. 2, pp. 76-86, 1984) , or Gray (Ch. 21, pp. 373-380, 1998),for a presentation of various curvature
notions].
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with the mean curvature –i.e., the test with the highest power function in the vicinity

of the null hypothesis according to a trace argument – will beof the following form.

Proposition 4.1 In model(2.1), suppose the mediangale Assumption A1 holds, and

the disturbances are heteroskedastic with conditional densities fi(.|X), i = 1, 2, . . .,

that are continuously differentiable around zero and such that f ′
i(0|X) = 0. Then, the

locally optimal sign test statistic associated with the meancurvature is

S̃B(β0) = s(y − Xβ0)
′X̃X̃ ′s(y − Xβ0) (4.8)

whereX̃ = diag
(

f1(0|X), . . . , fn(0|X)
)

X.

When thefi(0|x)’s are unknown, the optimal statistic is not feasible. The optimal

weights must be replaced by approximations, such as weightsderived from the normal

distribution.

Sign-based statistics of the form (4.5) can also be interpreted as GMM statistics

which exploit the property that{st ⊗ x′
t,Ft} is a martingale difference sequence. We

saw in the first section that this property is induced by the mediangale Assumption A1.

However, these are quite unusual GMM statistics. Indeed, the parameter of interest

is not defined by moment conditions in explicit form. It is implicitly defined as the

solution of some robust estimating equations (involving constrained signs):

n
∑

t=1

s(yt − x′
tβ) ⊗ xt = 0.

For i.i.d. disturbances, Godambe (2001) showed that these estimatingfunctions

are optimal among all the linear unbiased (for the median) estimating functions
∑n

t=1 at(β)s(yt − x′
tβ). For independent heteroskedastic disturbances, the set ofop-

timal estimating equations is
∑n

t=1 s(yt − x′
tβ) ⊗ x̃t = 0. In those casesX (resp. X̃)

can be viewed as optimal instruments for the linear model.

We now turn to linearly dependent processes. We propose to use a weighting matrix

directly derived from the asymptotic covariance matrix of1√
n
s(y − Xβ0) ⊗ X. Let

us denote it byJn

(

s(y − Xβ0), X
)

. We considerΩn

(

s(y − Xβ0), X
)

= 1
n
Ĵn

(

s(y −
Xβ0), X

)−1
whereĴn

(

s(y − Xβ0), X
)

stands for a consistent estimate ofJn

(

s(y −
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Xβ0), X
)

that can be obtained using kernel-estimators, for example [see Parzen (1957),

White (2001), Newey and West (1987), Andrews (1991)]]. This leads to

DS(β0,
1

n
Ĵ−1

n ) =
1

n
s(y − Xβ0)

′XĴ−1
n X ′s(y − Xβ0). (4.9)

Jn

(

s(y − Xβ0), X
)

accounts for dependence among signs and explanatory variables.

Hence, by using an estimate of its inverse as weighting matrix, we perform a HAC

correction. Note that the correction depends onβ0.

In all cases,H0(β0) is rejected when the statistic evaluated atβ = β0 is large:

DS(β0, Ωn) > cΩn(X, α) wherecΩn(X, α) is a critical value which depends on the

level α. Since we are looking at pivotal functions, the critical values can be evaluated

to any degree of precision by simulation. However, as the distribution is discrete, a test

based oncΩn(X,α) may not exactly reach the nominal level. A more elegant solution

consists in using the technique ofMonte Carlo tests with a randomized tie-breaking

procedure which do not suffer from this shortcoming.

4.2. Monte Carlo tests

Monte Carlo tests can be viewed as a finite-sample version of the bootstrap. They have

been introduced by Dwass (1957) and Barnard (1963) and can be adapted to any pivotal

statistic whose distribution can be simulated. For a general review and for extensions in

the case of the presence of a nuisance parameter, the reader is referred to Dufour (2006).

It proceeds as follows. Let us consider a statisticT whose conditional distribution

given X is free of nuisance parameters, and a test which rejects the null hypothesis

when T ≥ c(α). We denote byG(x) = P [T ≥ x] the survival function, and by

F (x) = P [T ≤ x] the distribution function. LetT (0) be the observed value ofT , and

T (1), . . . , T (N), N independent replicates ofT . The empiricalp-value is given by

p̂N(x) =
NĜN(x) + 1

N + 1
(4.10)

whereĜN(x) = 1
N

∑N
i=1 1[0,∞)(T

(i) − x). Then we have

P[p̂N(T (0)) ≤ α] =
I[α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1,
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whereI[x] stands for the largest integer less than equal tox; see Dufour (2006). IfN is

such thatα(N +1) ∈ N, thenP[p̂N(T (0)) ≤ α] = α: the test level is exactly controlled.

In the case ofdiscrete distributions, the method must be adapted to deal with

ties. Indeed, the usual order relation onR is not appropriate for comparing discrete

realizations that have a strictly positive probability to be equal.8 Here, we use a ran-

domized tie-breaking procedure for evaluating empirical survival functions. The latter

is based on replacing the usual order relation by a lexicographic order relation [see

Dufour (2006)]. Each replicationT (j) is associated with a uniform random variable

W (j) ∼ U(0, 1) to produce the pairs(T (j), W (j)). The vector(W (0), . . . ,W (n)) is inde-

pendent of(T (0), . . . , T (n)). (T (i), W (i))’s are ordered according to:

(T (i), W (i)) ≥ (T (j), W (j)) ⇔ {T (i) > T (j) or (T (i) = T (j) and W (i) ≥ W (j))}.

This leads to the followingp-value function:

p̃N(x) =
NG̃N(x) + 1

N + 1

whereG̃N(x) = 1− 1
N

∑N
i=1 s+(x−T (i))+ 1

N

∑N
i=1 δ(T (i) −x)s+(W (i) −W (0)), with

s+(x) = 1[0, ∞)(x), δ(x) = 1{0}. Then

P[p̃N(T (0)) ≤ α] =
I[α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1.

The randomized tie-breaking allows one to exactly control the level of the procedure.

This may also increase the power of the test.

To illustrate the method, consider testingH0(β0) in (2.1) under a mediangale

assumption on the errors, and usingDS(β,X ′X−1). After computingSF (0) =

DS(β0, X
′X−1) from the data, chooseN the number of replicates, such thatα(N + 1)

is an integer, whereα is the desired level. Then, generateN replicatesSF (j) =

S(j)′X(X ′X)−1X ′S(j) whereS(j) is a realization of an-vector of independent uni-

form Bernoulli random variables, and computep̃N [SF (0)]. Finally, the Monte Carlo

test rejectsH0(β0) with levelα if p̃N [SF (0)] < α.8Different procedures have been presented in the literature. They can be classified between random-
ized and nonrandomized procedures, both aiming to exactly control back the level of the test. For a good
review of this problem, the reader is referred to Coakley andHeise (1996).
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5. Regression sign-based confidence sets

In the previous section, we have shown how to obtain Monte Carlo sign-based joint

tests for which we can exactly control the level, for any given finite number of obser-

vations. In this section, we discuss how to use such tests in order to build confidence

sets forβ with known level. This can be done as follows. For each valueβ0 ∈ R
p,

perform the Monte Carlo sign test forH0(β0) and get the associated simulatedp-value.

The confidence setC1−α(β) that contains anyβ0 with p-value higher thanα has, by

construction, level1 − α [see Dufour (2006)]. From this simultaneous confidence set

for β, it is possible, byprojection techniques, to derive confidence intervals for the

individual components. More generally, we can obtain conservative confidence sets for

any transformationg(β) whereg can be any kind of real functions, including nonlinear

ones. Obviously, obtaining a continuous grid ofR
p is not realistic. We will instead

requireglobal optimization search algorithms.

5.1. Confidence sets and conservative confidence intervals

Projection techniques yield finite-sample valid confidenceintervals and confidence sets

for general functions of the parameterβ.9 The basic idea is the following one. Suppose

a simultaneous confidence set with level1 − α for β, C1−α(β), is available. Since

β ∈ C1−α(β) =⇒ g(β) ∈ g
(

C1−α(β)
)

, we haveP[β ∈ C1−α(β)] ≥ 1 − α =⇒
P[g(β) ∈ g

(

C1−α(β)
)

] ≥ 1 − α . Thus,g
(

C1−α(β)
)

is a conservative confidence set

for g(β). If g(β) is scalar, the interval (in the extended real numbers)Ig[C1−α(β)] =
[

inf
β∈C1−α(β)

g(β) , sup
β∈C1−α(β)

g(β)
]

has level1 − α :

P

[

inf
β∈C1−α(β)

g(β) ≤ g(β) ≤ sup
β∈C1−α(β)

g(β)

]

> 1 − α.

Hence, to obtain valid conservative confidence intervals for the individual component

βk in the model (2.1) under mediangale Assumption A1, it is sufficient to solve the

following numerical optimization problems where s.c. stands for "subject to the con-

9For examples of use in different settings and for further discussion, the reader is referred to Dufour
(1990, 1997), Abdelkhalek and Dufour (1998), Dufour and Kiviet (1998), Dufour and Jasiak (2001),
Dufour and Taamouti (2005).
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straint". The optimization problems are stated here for the statisticSF :

min
β∈Rp

βk s.c. p̃N

(

SF (β)
)

≥ α, max
β∈Rp

βk s.c. p̃N

(

SF (β)
)

≥ α,

wherep̃N is computed as proposed in the previous section, usingN replicatesSF (j)

of the statisticSF under the null hypothesis. In practice, we usesimulated annealing

as optimization algorithm [see Goffe et al. (1994), and Press, Teukolsky, Vetterling and

Flannery (2002)].

In the case of multiple tests, projection techniques allow to perform tests on an arbi-

trary number of hypotheses without ever loosing control of the overall level: rejecting

at least one true null hypothesis will not exceed the specified levelα.

5.2. Numerical illustration

This part reports a numerical illustration. We generate thefollowing normal mixture

process, forn = 50,

yt = β0 + β1xt + ut , t = 1, . . . , n, ut
i.i.d.∼







N [0, 1] with probability0.95

N [0, 1002] with probability0.05.

We conduct an exact inference procedure with N=999 replicates. The true process is

generated withβ0 = β1 = 0. We perform tests ofH0(β
∗) : β = β∗ on a grid for

β∗ = (β∗
0, β

∗
1) and retain the associated simulatedp-values. Asβ is a 2-vector, we

can provide a graphical illustration. To each value of the vector β is associated the

corresponding simulatedp-value. Confidence region with level1 − α contains all the

values ofβ with p-values greater thanα. Confidence intervals are obtained by projecting

the simultaneous confidence region on the axis ofβ0 or β1, see Figure 1 and Table 1.

The obtained confidence regions increase with the level and cover other confidence

regions with smaller level. Confidence regions are highly nonelliptic and thus may

lead to different results than an asymptotic inference. Concerning confidence intervals,

sign-based ones appear to be largely more robust than OLS andWhite CI and are less

sensitive to outliers.
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Figure 1. Confidence regions provided by SF-based inference.

Table 1. Confidence intervals.
OLS White SF

β
0

95%CI [-4.57, 0.82] [-4.47, 0.72] [-0.54, 0.23]
98%CI [-5.10, 1.35] [-4.98, 1.23] [-0.64, 0.26]

β
1

95%CI [-2.50, 3.22] [-1.34, 2.06] [-0.42, 0.59]
98%CI [-3.07, 3.78] [-1.67, 2.39] [-0.57, 0.64]

6. Asymptotic theory

This section is dedicated to asymptotic results. We point out that the mediangale

Assumption A1 can be seen as too restrictive and excludes some common processes

whereas usual asymptotic inference still can be conducted on them. We relax As-

sumption A1 to allow randomX that may not be independent ofu. We show that the

finite-sample sign-based inference remains asymptotically valid. For a fixed number of

replicates, when the number of observations goes to infinity, the level of a test tends to

the nominal level. Besides, we stress the ability of our methods to cover heavy-tailed

distributions including infinite disturbance variance.

6.1. Asymptotic distributions of test statistics

In this part, we derive asymptotic distributions of the sign-based statistics. We show that

a HAC-corrected version of the sign-based statisticDS(β0,
1
n
Ĵ−1

n ) in (4.9) allows one to

obtain an asymptotically pivotal function. The set of assumptions we make to stabilize

the asymptotic behavior will be needed for further asymptotic results. We consider the
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linear model (2.1), with the following assumptions.

Assumption A2 M IXING . {(x′
t, ut)}t=1,2,..., is α-mixing of size−r/(r − 2), r > 2.10

Assumption A3 MOMENT CONDITION. E[s(ut)xt] = 0, ∀t = 1, . . . , n, ∀n ∈ N.

Assumption A4 BOUNDEDNESS. xt = (x1t, . . . , xpt)
′ andE|xht|r < ∆ < ∞, h =

1, . . . , p, t = 1, . . . , n, ∀n ∈ N.

Assumption A5 NON-SINGULARITY. Jn = var[ 1√
n

∑n
t=1 s(ut)xt] is uniformly posi-

tive definite.

Assumption A6 CONSISTENT ESTIMATOR OFJn. Ωn(β0) is symmetric positive

definite uniformly overn andΩn − 1
n
J−1

n →p 0.

Theorem 6.1 ASYMPTOTIC DISTRIBUTION OF STATISTICSHAC. In model(2.1),

with Assumptions A2- A6, we have, underH0, DS(β0, Ωn) → χ2(p).

Corollary 6.2 In model(2.1), suppose the mediangale Assumption A1 and bounded-

ness Assumption A4 are fulfilled. IfX ′X/n is positive definite uniformly overn and

converges in probability to a definite positive matrix, then, underH0, SF (β0) → χ2(p).

When the mediangale condition holds,Jn reduces toE(X ′X/n), and(X ′X/n)−1 is a

consistent estimator ofJ−1
n .

6.2. Asymptotic validity of Monte Carlo tests

We first state some general results on asymptotic validity ofMonte Carlo-based infer-

ence methods. Then, we apply these results to sign-based inference methods.

6.2.1. Generalities

Let us consider a parametric or semiparametric model{Mβ, β ∈ Θ}, where the pa-

rameterβ is identified. LetSn(β0) be a test statistic forH0(β0). Let cn be the rate of

convergence. UnderH0(β0), the distribution function ofcnSn(β0) is denotedFn(x).

We suppose thatFn(x) converges almost everywhere to a distribution functionF (x).

10See White (2001) for a definition ofα-mixing.
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G(x) andGn(x) are the corresponding survival functions. In Theorem6.3, we show

that if a sequence of conditional survival functionsG̃n

(

x|Xn(ω)
)

givenX(ω) satisfies

G̃n

(

x|Xn(ω)
)

→ G(x), with probability one, whereG does not depend on the realiza-

tion X(ω), thenG̃n

(

x|Xn(ω)
)

can be used as an approximation ofGn(x).11 It can be

seen as apseudosurvival function ofcnSn(β0).

Theorem 6.3 GENERIC ASYMPTOTIC VALIDITY. Let Sn(β0) be a test statistic for

testingH0(β0) : β = β0 againstH1(β0) : β 6= β0 in model(2.1). Suppose that, under

H0(β0),

P[cnSn(β0) ≥ x|Xn] = Gn(x|Xn) = 1 − Fn(x|Xn) →
n→∞

G(x) a.e.,

where{cn} is a sequence of positive constants and suppose thatG̃n(x|Xn(ω)) is a series

of survival functions such that̃Gn

(

x|Xn(ω)
)

→ G(x)
n→∞

with probability one. Then

lim
n→∞

P[G̃n(cnSn(β0), Xn(ω)) ≤ α] ≤ α. (6.1)

This theorem can also be stated in a Monte Carlo version. with empirical survival func-

tions and empiricalp-values adapted to discrete statistics in a randomized way [Dufour

(2006)], but the replicates are not drawn from the same distribution as the observed sta-

tistic. However, both distribution functions resp.Fn andF̃n converge to the same limit

F . LetU(N+1) = (U (0), U (1), . . . , U (N)) be a vector ofN+1 i.i.d. real variables drawn

from aU [0, 1] distribution,S(0)
n is the observed statistic, andSn(N) = (S

(1)
n , . . . , S

(N)
n )

a vector ofN independent replicates drawn from̃Fn. Then, the randomizedpseudo

empirical survival function under the null hypothesis is

G̃(N)
n

(

x, n, S(0)
n , Sn(N), U(N + 1)

)

= 1 − 1

N

N
∑

j=1

s+(x − cnS
(j)
n )

+
1

N

N
∑

j=1

δ(cnS
(j)
n − x)u(U (j) − U (0)).

G̃
(N)
n

(

x, n, S
(0)
n , Sn(N), U(N + 1)

)

is in a sense an approximation of̃Gn(x). Thus

it depends on the number of replicates,N , and the number of observations,n. The

11Note thatG(x) can depend on some parameters of the distribution ofX.
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randomizedpseudo empiricalp-value function is defined as

p̃(N)
n (x) =

NG̃
(N)
n (x) + 1

N + 1
. (6.2)

We can now state the Monte Carlo-based version of Theorem6.3.

Theorem 6.4 MONTE CARLO TEST ASYMPTOTIC VALIDITY. Let Sn(β0) be a test

statistic for testingH0(β0) : β = β0 againstH1(β0) : β 6= β0 in model(2.1) andS
(0)
n

the observed value. Suppose that, underH0(β0),

P[cnSn(β0) ≥ x|Xn] = Gn(x|Xn) = 1 − Fn(x|Xn) →
n→∞

G(x) a.e.,

where{cn} is a sequence of positive constants. LetS̃n be a random variable with

conditional survival functioñGn(x|Xn) such that

P[cnS̃n ≥ x|Xn] = G̃n(x|Xn) = 1 − F̃n(x|Xn) →
n→∞

G(x) a.e.,

and (S
(1)
n , . . . , S

(N)
n ) be a vector ofN independent replicates of̃Sn where(N + 1)α

is an integer. Then, the randomized version of the Monte Carlotest with levelα is

asymptotically valid,i.e. limn→∞ P[p̃
(N)
n (β0) ≤ α] ≤ α.

These results can be applied to sign-based inference method. However, Theorems6.3

and6.4are much more general. They do not exclusively rely on asymptotic normality:

the limiting distribution may be different from a Gaussian one. Besides, the rate of

convergence may differ from
√

n.

6.2.2. Asymptotic validity of sign-based inference

In model (2.1), suppose that conditions A2- A6 hold and consider testingH0(β0) : β =

β0 againstH1(β0) : β 6= β0. Let DS(β, Ĵ−1
n ) be the test statistic as defined in (4.9).

ObserveSF (0) = DS(β0, Ĵ
−1
n ). Draw N replicates of sign vector as if then obser-

vations were independent. Then components of the sign vectors are independent and

drawn from a uniform Bernoulli distribution. Compute(SF (1), SF (2), . . . , SF (N)),

the N pseudoreplicates ofDS(β0, X
′X−1) underH0(β0). We call them "pseudo"

replicates because they are drawn as if observations were independent. DrawN + 1

independent replicates(W (0), . . . ,W (N)) from aU[0,1] distribution and form the couple
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(SF (j), W (j)). Computep̃(N)
n (β0) using (6.2). From Theorem6.4, the confidence re-

gion {β ∈ R
p|p̃(N)

n (β) ≥ α} is asymptotically conservative with level at least1 − α.

H0(β0) is rejected ifp̃(N)
n (β0) ≤ α.

Contrary to usual asymptotic tests, this methoddoes not require the existence of

moments nor a density on{ut; t = 1, 2, . . .}. Usual Wald-type inference is based

on the asymptotic behavior of estimators and consequently is more restrictive. More

moments existence restrictions are needed, see for exampleFitzenberger (1997b) and

Weiss (1991). Besides, asymptotic covariance matrix of the LAD estimator involves

the conditional density at zero of{ut; t = 1, 2, . . .} as unknown nuisance parameter.

The approximation and estimation of asymptotic covariancematrices constitute a large

issue in asymptotic inference. This usually requires kernel methods. We get around

those problems by adopting the finite-sample sign-based procedure.

7. Simulation study

In this section, we study the performance of sign-based methods compared to usual

asymptotic tests based on OLS or LAD estimators with different approximations for

asymptotic covariance matrices. We consider the sign-based statisticsDS

(

β, (X ′X)−1
)

andDS(β, Ĵ−1
n ) when a correction is needed for linear serial dependence. Weconsider

a set of general DGP’s to illustrate different classical problems one may encounter in

practice. Results are presented in the way suggested by the theory. First, we investigate

the performance of tests, then, confidence sets. We use a linear regression model:

yt = x′
tβ0 + ut, t = 1, . . . , n, (7.1)

wherext = (1, x2,t, x3,t)
′ andβ0 are3×1 vectors. We denote the sample sizen. We in-

vestigate the behavior of inference and confidence regions for 13 general DGP’s that are

presented in Table 2. For the first 7 ones,{ut, t = 1, 2 . . .} is i.i.d. or depends on the

explanatory variables and its past values in amultiplicativeheteroskedastic or dependent

and stationary way,ut = h(xt, ut−1, . . . , u1)ǫt, t = 1, . . . , n. In those cases, the error

term constitutes a strict conditional mediangale givenX (see Assumption A1). Cor-

respondingly, the levels of sign-based tests and confidencesets are exactly controlled.

Next, we study the behavior of the sign-based inference (involving a HAC correction)
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when inference is only asymptotically valid. In cases 8-10,xt and ut are such that

E(utxt) = 0 andE[s(ut)xt] = 0 for all t. Finally, cases 11 and 12 illustrate two kinds of

second-order nonstationary disturbances. As we noted previously, sign-based inference

does not require stationary assumptions in contrast with tests derived from a CLT.

Cases C1 and C2 presenti.i.d. normal observations without and with conditional

heteroskedasticity. Case C3 involves outliers in the error term. This can be seen as

an example of measurement error in the observedy. Cases C4 and C5 involve other

heteroskedastic schemes with stationary GARCH and stochastic volatility disturbances.

Case C6 is a very unbalanced design matrix (where the LAD estimator performs poorly).

Case C6 BIS combines the previous unbalanced scheme in the design matrix with het-

eroskedastic disturbances. Case C7 is an example of heavy-tailed errors (Cauchy).

Cases C8, C9 and C10 illustrate the behavior of sign-based inference when the error

term involves linear dependence at different levels. Finally, cases C11 and C12 involve

disturbances that are not second-order stationary (nonstationary GARCH and exponen-

tial variance) but for which the mediangale assumption holds. The design matrix is

simulated once for all the presented cases. Hence, results are conditional. Cases C1-

2, C8-10 have been used by Fitzenberger (1997b) to study the performance of block

bootstrap (MBB).

7.1. Size

We first study level distortions. We consider the testing problem: H0 : β0 =

(1, 2, 3)′ againstH1 : β0 6= (1, 2, 3)′. We compare exact and asymptotic tests based

on SF = DS

(

β, (X ′X)−1
)

andSHAC = DS(β, Ĵ−1
n ), whereĴ−1

n is estimated by

a Bartlett kernel, with various asymptotic tests. Wald and LR-type tests are consid-

ered. We consider Wald tests based on the OLS estimate with 3 different covariance

estimators: the usual under homoskedasticity and independence (IID), White correc-

tion for heteroskedasticity (WH), and Bartlett kernel covariance estimator with auto-

matic bandwidth parameter (BT ) [Andrews (1991)]. Concerning the LAD estimator,

we study Wald-type tests based on several covariance estimators: order statistic estima-
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Table 2. Simulated models.

C 1: NormalHOM : (x2,t, x3,t, ut)
′ i.i.d∼ N (0, I3), t = 1, . . . , n

C 2: NormalHET : (x2,t, x3,t, ũt)
′ i.i.d∼ N (0, I3)

ut = min{3, max[0.21, |x2,t|]} × ũt, t = 1, . . . , n

C 3: Outlier: (x2,t, x3,t)
′ i.i.d.∼ N (0, I2),

ut
i.i.d.∼

{

N [0, 1] with p = 0.95
N [0, 10002] with p = 0.05

xt, ut, independent,t = 1, . . . , n.

C 4: Stat. (x2,t, x3,t)
′ i.i.d.∼ N (0, I2), ut = σtǫt with

GARCH(1,1): σ2
t = 0.666u2

t−1 + 0.333σ2
t−1 whereǫt

i.i.d.∼ N (0, 1),
xt, ǫt, independent,t = 1, . . . , n.

C 5: Stoc. (x2,t, x3,t)
′ i.i.d.∼ N (0, I2), ut = exp(wt/2)ǫt with

Volatility: wt = 0.5wt−1 + vt, whereǫt
i.i.d.∼ N (0, 1), vt

i.i.d.∼ χ2(3),
xt, ut, independent,t = 1, . . . , n.

C 6: Deb. x2,t ∼ B(1, 0.3), x3,t
i.i.d.∼ N (0, .012),

design mat.: ut
i.i.d.∼ N (0, 1), xt, ut independent,t = 1, . . . , n.

C 6 BIS: Deb. design matrix x2t
i.i.d∼ N (0, 1), x3t

i.i.d∼ χ2(1),

+ HET. dist.: ut = x3tǫt, ǫt
i.i.d∼ N (0, 1), xt, ǫt independent,t = 1, . . . , n.

C 7: Cauchy (x2,t, x3,t)
′ ∼ N (0, I2),

disturbances: ut
i.i.d.∼ C,xt, ut, independent,t = 1, . . . , n.

C 8: AR(1)-HOM , (x2,t, x3,t, ν
u
t )′ ∼ N (0, I3), t = 2, . . . , n,

ρu = .5 : ut = ρuut−1 + νu
t ,

(x2,1, x3,1)
′ ∼ N (0, I2), νu

1 insures stationarity.

C 9: AR(1)-HET , xj,t = ρxxj,t−1 + νj
t , j = 1, 2,

ρu = .5, : ut = min{3, max[0.21, |x2,t|]} × ũt,
ρx = .5 ũt = ρuũt−1 + νu

t ,

(ν2
t , ν

3
t , ν

u
t )′

i.i.d∼ N (0, I3), t = 2, . . . , n
ν2

1, ν
3
1 andνu

1 chosen to insure stationarity.

C 10: AR(1)-HOM , (x2,t, x3,t, ν
u
t )′ ∼ N (0, I3), t = 2, . . . , n,

ρu = .9 : ut = ρuut−1 + νu
t ,

(x2,1, x3,1)
′ ∼ N (0, I2), νu

1 insures stationarity.

C 11: Nonstat. (x2,t, x3,t, ǫt)
′ i.i.d.∼ N (0, I3), t = 1, . . . , n,

GARCH(1,1): ut = σtǫt, σ2
t = 0.8u2

t−1 + 0.8σ2
t−1.

C 12: Exp. Var.: (x2,t, x3,t, ǫt)
′ i.i.d.∼ N (0, I3), ut = exp(.2t)ǫt.
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tor (OS),12 Bartlett kernel covariance estimator with automatic bandwidth parameter

[Powell (1984), Buchinsky (1995)] (BT ), design matrix bootstrap centering around the

sample estimate (DMB) [Buchinsky (1998)], moving block bootstrap centering around

the sample estimate (MBB) [Fitzenberger (1997b)].13 Finally, we consider the likeli-

hood ratio statistic (LR) assumingi.i.d. disturbances with anOS estimate of the error

density [Koenker and Bassett (1982)]. When errors arei.i.d. andX is fixed, the LM sta-

tistic for testing the joint hypothesisH0(β0) turns out to be theSF sign-based statistic.

Consequently, the three usual forms (Wald, LR, LM) of asymptotic tests are compared

in our setup.

In Tables 3 and 4, we report the simulated sizes for a conditional test with nominal

levelα = 5% givenX. The number of replicates for the bootstrap and the Monte Carlo

sign-based method is the same,i.e. N = 2999. All bootstrapped samples are of size

n = 50. We simulateM = 5000 random samples to evaluate the sizes of these tests.

For both sign-based statistics, we also report the asymptotic level whenever processes

are stationary.

Table 3 contains models where the mediangale condition A1 holds. Sizes of tests de-

rived from sign-based finite-sample methods are exactly controlled, whereas asymptotic

tests may greatly overreject or underreject the null hypothesis. This remark especially

holds for cases involving strong heteroskedasticity (cases C4, C6 BIS). The asymptotic

versions of sign-based tests suffer from the same underrejection than other asymptotic

tests, suggesting that, for small samples (n = 50), the distribution of the test statistic

is really far from its asymptotic limit. Hence, the sign-based method that deals directly

with this distribution has clearly an advantage on asymptotic methods. When the de-

pendence in the disturbance process is highly nonlinear (Case C6 BIS), theBT method

based on a kernel estimation of the LAD asymptotic covariance matrix is not reliable

anymore.

In Table 4, we illustrate behaviors when the error term involves linear serial depen-

dence. The Monte carloSHAC sign-based test does not control exactly the level but

12this assumesi.i.d. residuals; an estimate of the residual density at zero is obtained from a confidence
interval constructed for then/2th residual [Buchinsky (1998)].

13The block size is 5.
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Table 3. Linear regression under mediangale errors: empirical sizes of conditional tests
for H0 : β = (1, 2, 3)′.

yt = xtβ + ut, SIGN LAD OLS
t = 1, . . . , 50. SF SHAC OS DMB MBB BT LR IID WH BT

Stationary models
C 1: HOM .052 .050 .086 .050 .089 .047 .068 .060 .096 .113
ρǫ = ρx = 0, .047* .019**
C 2: HET .052 .057 .300 .037 .059 .051 .137 .162 .100 .118
ρǫ = ρx = 0, .045* .023**
C 3: .047 .048 .088 .043 .083 .039 .066 .056 .008 .009
Outlier .044* .015**
C 4: .042 .046 .040 .005 .005 .004 .012 .080 .046 .046
St. GARCH(1,1) .040* .013**
C 5: .043 .041 .063 .006 .014 .006 .031 .054 .014 .014
Stoch. Volat. .045* .021**
C 6: .047 .049 .080 .048 .084 .043 .064 .085 .060 .095
Debalanced .043* .022**
C 7: .058 .059 .069 .013 .033 .012 .044 .061 .023 .023
Cauchy .049* .021**

Nonstationary models
C 6 BIS: .044 .042 .687 .020 .044 .152 .307 .421 .171 .173
Deb.+ Het. .040* .018**
C 11: Nonst. .054 .057 .003 .000 .001 .000 .002 .060 .016 .016
GARCH(1,1)
C 12: Exp. Var. .049 .051 .017 .000 .000 .000 .000 .132 .014 .014

∗ sizes using asymptotic critical values based onχ2(3).

Table 4. Linear regression with serial dependence: empirical sizes of conditional tests
for H0 : β = (1, 2, 3)′.

yt = xtβ + ut, SIGN LAD OLS
t = 1, . . . , 50. SF SHAC OS DMB MBB BT LR IID WH BT

Serial dependence (cases when mediangale condition fails)
C 8: HOM .126 .022 .171 .124 .118 .085 .151 .201 .240 212
ρǫ = .5, ρx = 0 - .019*
C 9: HET .218 .026 .440 .131 .097 .108 .308 .407 .328 .276
ρǫ = ρx = .5 - .017*
C 10: HOM .521 .012 .553 .516 .339 .355 .551 .649 .677 .534
ρǫ = .9, ρx = 0** - .003*

∗ sizes using asymptotic critical values based onχ2(3).

∗∗ automatic bandwidth parameters are restricted to be< 10 to avoid inversibility problems.
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is still asymptotically valid, and yields the best results.We underscore its advantages

compared to other asymptotically justified methods. Whereasthe Wald and LR tests

overreject the null hypothesis, the latter test seems to better control the level than its as-

ymptotic version, avoiding underrejection. There exists important differences between

using critical values from the asymptotic distribution ofSHAC statistic and critical

values derived from the distribution of theSHAC statistic for a fixed number of inde-

pendent signs. Besides, we underscore the dramatic overrejections of asymptotic Wald

tests based on HAC estimation of the asymptotic covariance matrix when the data set

involves a small number of observations. These results suggest, in a sense, that when

the data suffer from both a small number of observations and linear dependence, the

first problem to solve is the finite-sample distortion, whichis not what is usually done.

7.2. Power

Then, we illustrate thepower of these tests. We are particularly interested in comparing

the sign-based inference to kernel and bootstrap methods. We consider the simultaneous

hypothesisH0 as before. The true process is obtained by fixingβ1 andβ3 at the tested

value, i.eβ1 = 1 andβ3 = 3, and letting varyβ2. Simulated power is given by a

graph withβ2 in abscissa. The power functions presented here (figures 2, 3) are locally

adjusted for the level, which allows comparisons between methods. However, we should

keep in mind that only the sign-based methods lead to exact confidence levels without

adjustment. Other methods may overreject the null hypothesis and do not control the

level of the test, or underreject it, and then, loose power.

Sign-based inference has a comparable power performance with usual methods in

cases C1, C2, C3, C6, C9 with the advantage that the level is exactlycontrolled, which

leads to great difference in small samples. In heteroskedastic or heterogenous cases

(C4, C5, C7, C11, C12), sign-based inference greatly dominates other methods: levels

are exactly controlled and power functions largely exceed others, even methods that are

size-corrected with locally adjusted levels. In the presence of linear serial dependence,

the Monte Carlo test based onDS

(

β, Ĵ−1
n

)

, which is still asymptotically valid, seems

to lead to good power performance for a mild autocorrelation, along with a better size
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control (cases C9 and C10).14 Only for very high autocorrelation (close to unit root

process), the sign-based inference is not adapted.

7.3. Confidence intervals

As the sign-based confidence regions are by construction of level higher that1 − α

whenever inference is exact, a performance indicator for confidence intervals may be

their width. Thus, we wish to compare the width of confidence intervals obtained by

projecting the sign-based simultaneous confidence regionsto those based ont-statistics

on the LAD estimator. We useM = 1000 simulations, and report average width of

confidence intervals for eachβk and coverage probabilities in Table 5. We only consider

the stationary examples. In the nonstationary cases, inference based ont-statistics may

not mean anything. Spreads of confidence intervals obtainedby projection are larger

than asymptotic confidence intervals. This is due to the factthat they are by construction

conservative confidence intervals. However, it is not clearthat valid confidence intervals

that do not have this feature can even be built. [p]

8. Examples

In this section, two illustrative applications of the sign-based inference are presented.

One on financial data, one in growth theory. First, we consider testing a drift on the Stan-

dard and Poor’s composite price index (S&P) 1928-1987, which is known to involve a

large amount of heteroskedasticity. We consider robust tests on the whole period and

on the 1929 Krach subperiod. In the second illustration, we test for the presence of

β-convergence across the U.S. States during the 1880-1988 period using the Barro and

Sala-i Martin (1991) data set. Finite-sample sign-based inference is also particularly

adapted to regional data sets, which have by nature fixed sample size.

8.1. Standard and Poor’s drift

We test the presence of a drift on the Standard and Poor’s composite price index

(SP ), 1928-1987. That process is known to involve a large amountof heteroskedas-

ticity and have been used by Gallant, Hsieh and Tauchen (1997) and Valéry and Du-

14The power functions for case C8 are not reported here as they lead to similar results as case C9.
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(a) C 1: normal

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true value of beta2

p
ro

b
a

b
ili

ty
 o

f 
re

je
c
ti
n

g
 H

0

 

 

Sign−SF LAD−DMB OLS−WH LAD−OS LAD−BT

(b) C 2: normal HET
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(c) C 3: outliers
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(d) C 4: stationary GARCH
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(e) C 5: stochastic Volatility
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(f) C 6: DEB

Sign: SF = DS(β,X ′X−1), SHAC = DS(β, Ĵ−1

n ); LAD/OLS: DMB = design matrix boot.,

MBB = moving block boot.;BT = Bartlett kern.,IID = homo.,WH = White cor.,OS = order

stat.

Figure 2. Power functions (level corrected) (1).
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(a) C 6BIS: DEB+HET
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(b) C 7: Cauchy
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(c) C 9:AR(1) HET, ρx = ρu = .5
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(d) C 10:AR(1) HOM, ρu = .9
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(e) C 11 : Nonstationary GARCH
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(f) C 12: exponential variance

Sign: SF = DS(β,X ′X−1), SHAC = DS(β, Ĵ−1

n ); LAD/OLS: DMB = design matrix boot.,

MBB = moving block boot.;BT = Bartlett kern.,IID = homo.,WH = White cor.,OS = order

stat.

Figure 3. Power functions (level corrected) (2).
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Table 5. Width of confidence intervals (for stationary cases).
yt = xtβ + ut, t = 1, . . . , T. Proj. based SF Proj. based SHAC LADt-stat. with DMB LAD t-stat. with MBB LAD t-stat. with BT
T = 50, (β

1
, β

2
, β

3
) = (1, 2, 3) β

1
β

2
β

3
β

1
β

2
β

3
β

1
β

2
β

3
β

1
β

2
β

3
β

1
β

2
β

3

Models which satisfy the mediangale condition
C 1: av. spread 1.29 1.52 1.40 1.16 1.36 1.02 .81 .90 .89 .79 .88 .85 .82 .88 .87
ρu = ρx = 0 (st. dev.) (.21) (.27) (.29) (.14) (.28) (.29) (.23) (.21) (.22) (.21) (.24) (.24) (.15) (.19) (.22)
HOM cov. lev. 1.0 1.0 1.0 1.0 1.0 1.0 .97 .97 .97 .95 .96 .95 .97 .96 .96
C 2: .76 1.43 .74 .66 1.26 .48 .43 .94 .43 .42 .90 .41 .50 .92 .50
ρu = ρx = 0 (.14) (.29) (.17) (.15) (.28) (.18) (.09) (.24) (.11) (.10) (.27) (.12) (.11) (.29) (.11)
HET 1.0 1.0 1.0 1.0 1.0 1.0 .98 .97 .99 .97 .95 .97 .99 .95 .99
C 3: 1.26 1.37 1.05 1.15 1.24 .91 .92 .94 .98 .88 .98 1.04 .88 .88 .88
Outlier (.26) (.31) (.30) (.25) (.29) (.30) (.80) (.79) (1.29) (.67) (1.36) (2.73) (.17) (.20) (.24)

1.0 1.0 .98 1.0 .99 .96 .98 .98 .98 .97 .97 .97 .97 .98 .97
C 4: 50.4 58.5 57.3 49.5 55.9 56.1 30.6 33.4 25.9 35.0 38.3 41.5 29.3 32.6 32.3
Stat. (101) (118) (122) (100) (115) (117) (64.6) (74.6) (61) (76.7) (82.6) (84) (70.3) (76.9) (78)
GARCH(1,1) 1.0 1.0 .93 .99 .99 .94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
C 5: 27.3 30.4 33.1 22.8 29.4 27 13.3 15.9 15.5 15.1 20.7 19.1 15.7 15.4 15.6
Stoc. Vol.: (14.4) (16.7) (18.1) (12.2) (17.6) (15.8) (6.4) (15.9) (15.5) (9.6) (28.0) (19.3) (7.5) (7.8) (7.5)

1.0 .98 1.0 1.0 1.0 1.0 .99 1.0 .99 .98 1.0 .99 .99 1.0 .99
C 6: 1.64 2.82 188.5 1.42 2.48 162.9 1.01 1.70 108.7 .99 1.64 104.2 1.03 1.68 105.67
Deb. des. mat.: (.29) (.50) (32.3) (.32) (.51) (34.4) (.26) (.36) (25.6) (.31) (.43) (27.7) (.21) (.33) (24.5)

1.0 1.0 1.0 1.0 1.0 1.0 .96 .98 .97 .94 .96 .96 .96 .96 .96
C 7: 2.20 2.75 2.59 1.88 2.33 1.95 1.25 1.47 1.47 1.21 1.41 1.42 1.39 1.52 1.53
Cauchy dist.: (.59) (.82) (.82) (.56) (.78) (.74) (.32) (.46) (.45) (.38) (.57) (.53) (.37) (.49) (.47)

1.0 1.0 1.0 1.0 1.0 .99 .98 .98 .98 .97 .98 .97 .99 .98 .99
Models which do not satisfy the mediangale condition

C 8: 1.59 1.71 1.46 1.63 1.47 1.05 .99 1.00 .94 1.17 .96 .86 1.23 .91 .81
ρu = .5, ρx = 0 (.30) (.32) (.30) (.38) (.31) (.28) (.25) (.26) (.24) (.34) (.26) (.23) (.36) (.23) (.21)
HOM .99 1.0 1.0 .99 1.0 .99 .86 .98 .99 .90 .97 .97 .91 .96 .95
C 9: 1.25 1.46 1.56 1.23 1.64 .99 .68 1.12 .96 .79 1.23 .96 .94 1.11 1.01
ρu = ρx = .5 (.31) (.40) (.40) (.41) (.51) (.35) (.17) (.33) (.24) (.24) (.42) (.26) (.33) (.55) (.36)
HET 1.0 .99 1.0 .98 .97 .94 .93 .88 .98 .95 .89 .98 .97 .83 .97
C 10: 2.46 2.42 2.69 3.00 2.00 2.41 1.52 1.41 1.51 2.46 1.56 1.53 2.89 1.21 1.27
ρu = .9, ρx = 0 (.84) (.82) (.95) (1.06) (.68) (.96) (.57) (.56) (.61) (1.00) (.60) (.63) (1.46) (.47) (.61)
HOM .68 .99 1.0 .74 1.0 .99 .47 .95 .98 .66 .97 .98 .71 .87 .91
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four (2004) to fit a stochastic volatility model. Here, we areinterested in robust test-

ing without modeling the volatility in the disturbance process. The data set consists

in a series of 16,127 daily observations ofSPt, then converted in price movements,

yt = 100[log(SPt) − log(SPt−1)] and adjusted for systematic calendar effects. We

consider a model involving a constant and a drift:

yt = a + bt + ut, t = 1, . . . , 16127; (8.2)

and we let the possibility that{ut}t=1,...,16127 presents a stochastic volatility or any kind

of nonlinear heteroskedasticity of unknown form. White and Breush-Pagan tests for

heteroskedasticity both reject homoskedasticity at1%.15.

We derive confidence intervals for the two parameters with the Monte Carlo sign-

based method and we compare them with the ones obtained by Wald techniques applied

to LAD and OLS estimates. Then, we perform a similar experiment on two subperi-

ods, the whole year 1929 (291 observations) and on the last 90opened days of 1929,

which roughly corresponds to the 4 last months of 1929 (90 observations), to investi-

gate behaviors of the different methods in small samples. Due to the financial crisis, one

may expect data to involve heavy heteroskedasticity duringthis period. Let us remind

the Wall Street krach occurred between October 24 (Black Thursday) and October 29

(Black Tuesday). Hence, the second subsample corresponds to September, October with

the krach period, and November and December with the early beginning of the Great

Depression. Heteroskedasticity tests reject homoskedasticity for both subsamples.16

In Table 6, we report95% confidence intervals fora and b obtained by various

methods: finite-sample sign-based method (forSF andSHAC which involves a HAC

correction); LAD and OLS with different estimates of their asymptotic covariance ma-

trices (order statistic, bootstrap, kernel...). If the mediangale Assumption A1 holds, the

sign-based confidence interval coverage probabilities arecontrolled.

First, results on the drift are very similar between methods. The absence of a drift

cannot be rejected with5% level. But results concerning the constant differ greatly

between methods and time periods. In the whole sample, the conclusions of Wald-tests

15White: 499 (p-value=.000) ; BP: 2781 (p-value=.000)
161929: White: 24.2,p-values: .000 ; BP: 126,p-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,

p-values: .004; BP: 1.76,p-values: .18.
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Table 6. S&P price index: 95 % confidence intervals.

Whole sample Subsamples
Constant parameter (a) (16120 obs) 1929 (291 obs) 1929 (90 obs)
Methods
Sign

SF statistics [-.007, .105] [-.226, .522] [-1.464, .491]
SHAC statistics [-.007, .106] [-.135, .443] [-.943, .362]

LAD (estimate) (.062) (.163) (-.091)
with OS cov. matrix est. [.033, .092] [-.144, .470] [-1.015, .832]
with DMB cov. matrix est. [.007, .117] [-.139, .464] [-1.004, .822]
with MBB cov. matrix est. (b=3) [.008, .116] [-.130, .456] [-1.223, 1.040]
with kernel cov. matrix est. (Bn=10) [-.019, .143] [-.454, -.780] [-1.265, 1.083]

OLS (-.005) (.224) (-.522)
with iid cov. matrix est. [-.041, .031] [-.276, .724] [-2.006, .962]
with DMB cov. matrix est. [-.054, .045] [-.142, .543] [-1.335, .290]
with MBB cov. matrix est. (b=3) [-.056, .046] [-.140, .588] [-1.730, .685]

Drift parameter ( b)
Methods ×10−5 ×10−2 ×10−1

Sign
SF statistics [-.676, .486] [-.342, .344] [-.240, .305]
SHAC statistics [-.699 , .510] [-.260, .268] [-.204, .224]

LAD (.184) (.000) (-.044)
with OS cov. matrix est. [-.504 , .320 ] [-.182, .182] [-.220, .133]
with DMB cov. matrix est. [-.688 , .320 ] [-.256, .255] [-.281, .194]
with MBB cov. matrix est. (b=3) [-.681 , .313] [-.236, .236] [-.316, .229]
with kernel cov. matrix est. [-.671, -.104] [-.392, .391] [-.303, .215]

OLS (.266) (-.183) (.010)
with iid cov. matrix est. [-.119 , .651] [-.480, .113] [-.273, .293]
with DMB cov. matrix est. [-.213 , .745 ] [-.544, .177] [-.148, .169]
with MBB cov. matrix est. (b=3) [-.228 , .761] [-.523, .156] [-.250, .270]

based on the LAD estimator differ greatly depending on the choice of the covariance

matrix estimate. Concerning the test of a positive constant,Wald tests with bootstrap

or with an estimate derived if observations arei.i.d. (OS covariance matrix) which is

totally illusory in that sample, reject, whereas Wald test with kernel (so as sign-based

tests) cannot reject the nullity ofa. This may lead the practitioner in a perplex mind.

Which is the correct test?

In all the considered samples, Wald tests based on OLS seem really unreliable. Ei-

ther, confidence intervals are huge (see OLS results on both subperiods) either some

bias is suspected (see OLS results on the whole period). Takethe constant parame-

ter, on the one hand, sign-based confidence intervals and LADconfidence intervals are

rather deported to the right, on the other hand, OLS confidence intervals seem to be
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biased toward zero. This may due to the presence of some influential observations.

Moreover, the OLS estimate for the whole sample is negative.In settings with arbitrary

heteroskedasticity, least squares methods should be avoided.

Sign-based tests seem really adapted for small samples settings. Let us examine the

third column of Table 6. The tightest confidence intervals for the constant parameter is

obtained for sign-based tests based on theSHAC statistic, whereas LAD (and OLS)

ones are larger. Note besides the gain obtained by usingSHAC instead ofSF in that

setup. This suggests the presence of autocorrelation in thedisturbance process. In

such a circumstance, finite-sample sign-based tests remains asymptotically valid such

as Wald methods. However, they are also corrected for the sample size and yield to very

different results.

8.2. β-convergence across U.S. States

With the neoclassical growth model as theoretical background, Barro and Sala-i Martin

(1991) testedβ convergence between the levels of per capita output across 48 U.S.

States for different time periods between 1880 and 1988. They used nonlinear least

squares to estimate equations of the form

(1/T ) ln(yi,t/yi,t−T ) = a − [ln(yi,t−T )] × [(1 − e−βT )/T ] + x′
iδ + ǫt,T

i , (8.3)

i = 1, . . . , 48, T = 8, 10 or 20,

t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.

Theirbasic equationdoes not include any other variables but they also consider aspec-

ification with regional dummies (Eq. with reg. dum.). Thebasic equationassumes that

the 48 States share a common per capita level of personal income at steady state while

the second specification allows for regional differences insteady state levels. Their

regressions involve 48 observations and are run for each 20-year or 10-year period be-

tween 1880 and 1988. They tended to accept a positiveβ and concluded on a conver-

gence between levels of per capita personal income across U.S. States. However, both

the NLLS method and the Wald-type tests they performed are only asymptotically jus-

tified and can be unreliable for only 48 observations. This unreliability is strengthened
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Table 7. Regressions for personal income across U.S. States,1880-1988: summary of
regression diagnostics.

Period Heterosked.* Nonnormality** Influent. obs.** Possible outliers**
Basic eq. Eq Reg.

Dum.
1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

*

White and Breush-Pagan tests for heteroskedasticity are performed. If at least one test rejects at5%

homoskedasticity, a "yes" is reported in the table, else a "-" is reported, when tests are both nonconclusive.

** Scatter plots, kernel density, leverage analysis, studendized or standardized residuals> 3, DFbeta and

Cooks distance have been performed and lead to suspicions for nonnormality, outlier or high influential

observation presence.

here because the data suffers from heteroskedasticity, departure from normality, pres-

ence of outliers and observations with possibly high influence. Indeed, residual analysis

show that departures from a normal standard case are presentin most periods (see Table

7).17 Only, the outstanding growth period of 1960-1970 does not seem to show poten-

tial data problems. Similar results hold for the equation with regional dummies. This

survey highly reduces the validity of least squares methodsand suggests the need of a

test, valid in finite samples and robust to heteroskedasticity of unknown form. Hence,

we propose to perform finite-sample based sign tests to see whether the conclusion of

β-convergence still holds. We consider the linear equation:

(1/T ) ln(yi,t/yi,t−T ) = a + γ[ln(yi,t−T )] + x′
iδ + ǫt,T

i (8.4)

wherexi contains regional dummies when included, and compute projection-based CI

for γ, a, and forβ = −(1/T ) ln(γT +1) as a bijective transformation ofγ, in both spec-

ifications. We compare projection-based valid95%-confidence intervals forβ based on

the sign-based statisticSF with Barro and Sala-i-Martin nonlinear least squares asymp-

totic 95%-confidence intervals (Table 8).

17Omitted variables, misspecification of the model can also lead to similar conclusions, we do not
consider those problems here, which yields to entirely rethink the growth theory and the model.
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The results we find for the basic regression are close to thoseof Barro and Sala-i

Martin (1991). We fail to rejectβ = 0 at 5%-level, for the 1880-1900, 1920-1930,

1980-1988 periods, whereas Barro and Sala-i Martin (1991) fail to rejectβ = 0 at 5%

(asymptotic)-level for the 1920-1930 and 1980-1988 periods. Our results differ only

for the 1880-1900 period. That may be due to the strong heteroskedasticity and de-

parture from normality affecting least squares methods as we show in Table 7. When

regional dummies are included, we fail to rejectβ = 0 at 5%-level 7 times over 9

whereas Barro and Sala-i Martin (1991) fail to reject 3 times over 9. Finally, a positive

β convergence seems to pass both NLLS-based asymptotic testsand finite sample-based

robust sign tests with the basic specification, yielding to astrong argument in favor of

the theory. However, that is no longer true for the specification with regional dummies,

which reduces the idea of a strictly positiveβ convergence with possibly different re-

gional steady state levels. This also may in part be due to theconservativeness of the

projection-based method but there is no evidence that smaller exact confidence intervals

can be constructed.

Table 8. Regressions for personal income across U.S. States,1880-1988.
Period Basic equation Eq. with reg. dum.

β SIGN (SF) NLLS* SIGN (SF) NLLS*
1880-1900: [95%CI] [-.0010, .0208] [.0058, .0532] [-.0033, .0251] [.0146, .0302]

(βNLLS) (.0101) (.0224)
1900-1920: [.0092, .0313] [.0155, .0281] [ -.0081, .0558] [.0086, .0332]

(.0218) (.0209)
1920-1930: [-.0301, .0018] [-.0249, -.0049] [-.0460, .0460] [-.0267, .0023]

(-.0149) (-.0122)
1930-1940: [.0043, .0234] [.0082, .0200] [ -.0187, .0377] [.0027, .0227]

(.0141) (.0127)
1940-1950: [.0291, .0602] [.0372, .0490] [.0082, .0620] [.0314, .0432]

(.0431) (.0373)
1950-1960: [.0084, .0352] [.0121, .0259] [.0007, .0506] [.0100, .0304]

(.0190) (.0202)
1960-1970: [.0099, .0377] [.0170, .0322] [-.0112, .0431] [.0047, .0215]

(.0246) (.0131)
1970-1980: [.0021, .0346] [.0076, .0320] [-.0227, .0721] [-.0016, .0254]

(.0198) (.0119)
1980-1988: [-.0552, .0503] [-.0315, .0195] [-.0467, .0754] [-.0273, .0173]

(-.0060) (-.0050)

*

Barro and Sala-i Martin (1991) NLLS results are reported in those two columns.
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9. Conclusion

In this paper, we have proposed an entire system of inferencefor theβ parameter of a

linear median regression that relies on distribution-freesign-based statistics . We show

that the procedure yields exact tests in finite samples for mediangale processes and

remains asymptotically valid for more general processes including stationary ARMA

disturbances. Simulation studies indicate that the proposed tests and confidence sets are

more reliable than usual methods (LS, LAD) even when using the bootstrap. Despite the

programming complexity of sign-based methods, we advocatetheir use when arbitrary

heteroskedasticity is suspected in the data and the number of available observations is

small. Finally we have presented two practical examples: wetest the presence of a drift

on the S&P price index, for the whole period 1928-1987 and forshorter subsamples.

And, we reinvestigate whether aβ- convergence between levels of per capita personal

income across U.S. States occurred between 1880 and 1988.

Appendix

Proof of Proposition 2.5. We use the fact that, as{Xt, t = 1, 2, . . .} is strongly exoge-

nous,{ut, t = 1, 2, . . .} does not Granger cause{Xt, t = 1, 2, . . .}. It follows directly

thatl(st|ut−1, . . . , u1, xt, . . . , x1) = l(st|ut−1, . . . , u1, xn, . . . , x1) wherel stands for the

density ofst = s(ut).

Proof of Proposition 3.2. Consider the vector[s(u1), s(u2), . . . , s(un)]′ ≡
(s1, s2, . . . , sn)′. From Assumption A1, we derive the two following equalities:

P[ut > 0|X] = E(P[ut > 0|ut−1, . . . , u1, X]) = 1/2,

P[ut > 0|st−1, . . . , s1, X] = P[ut > 0|ut−1, . . . , u1, X] = 1/2,∀t ≥ 2.

Further, the joint density of(s1, s2, . . . , sn)′ can be written:

l(s1, s2, . . . , sn|X) =
n
∏

t=1

l(st|st−1, . . . , s1, X)

=
n
∏

t=1

P[ut > 0|ut−1, . . . , u1, X](1−st)/2

{1 − P[ut > 0|ut−1, . . . , u1, X]}(1+st)/2
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=
n
∏

t=1

(1/2)(1−st)/2[1 − (1/2)]](1+st)/2 = (1/2)n.

Hence, conditional onX, s1, s2, . . . , sn
i.i.d.∼ B(1/2).

Proof of Proposition 3.3. Consider model (2.1) with{ut}t=1,2,... being a weak condi-

tional mediangale givenX. Let show that̃s(u1), s̃(u2), . . . , s̃(un) can have the same

role in Proposition3.2 ass(u1), s(u2), . . . , s(un) under Assumption A1. The random-

ized signs are defined bỹs(ut, Vt) = s(ut) + [1 − s(ut)
2]s(Vt − .5), hence

P[s̃(ut, Vt) = 1|ut−1, . . . , u1, X] = P[s(ut)+[1−s(ut)
2]s(Vt−.5) = 1|ut−1, . . . , u1, X].

As (V1, . . . , Vn) is independent of(u1, . . . , un) andVt ∼ U(0, 1), it follows

P[s̃(ut, Vt) = 1] = P[ut > 0|ut−1, . . . , u1, X] +
1

2
P[ut = 0|ut−1, . . . , u1, X]. (A.1)

The weak conditional mediangale assumption givenX entails:

P[ut > 0|ut−1, . . . , u1, X] = P[ut < 0|ut−1, . . . , u1, X] =
1 − pt

2
, (A.2)

wherept = P[ut = 0|ut−1, . . . , u1, X]. Substituting (A.2) into (A.1) yields

P[s̃(ut, Vt) = 1|ut−1, . . . , u1, X] =
1 − pt

2
+

pt

2
=

1

2
. (A.3)

In a similar way,

P[s̃(ut, Vt) = −1|ut−1, . . . , u1, X] =
1

2
. (A.4)

The rest is similar to the proof of Proposition3.2.

Proof of Proposition 4.1. Let us consider first the case of a single explanatory variable

case (p = 1) which contains the basic idea for the proof. The case withp > 1 is just an

adaptation of the same ideas to multidimensional notions. Under model (2.1) with the

mediangale Assumption A1, the locally optimal sign-based test (conditional onX) of

H0 : β = 0 againstH1 : β 6= 0 is well defined. Among tests with a given confidence

level α, the power function of the locally optimal sign-based test has the highest slope

around zero. The power function of a sign-based test conditional onX can be written

Pβ[s(y) ∈ Wα|X], whereWα is the critical region with levelα. Hence, we should
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include inWα the sign vectors for whichd
dβ

Pβ[S(y) = s|X]β=0, is as large as possible.

An easy way to determine that derivative, is to identify the terms of a Taylor expansion

around zero. Under Assumption A1, we have

Pβ[S(y) = s|X] =
n
∏

i=1

[Pβ(yi > 0|X)](1+si)/2[Pβ(yi < 0|X)](1−si)/2 (A.5)

=
n
∏

i=1

[1 − Fi(−xiβ|X)](1+si)/2[Fi(−xiβ|X)](1−si)/2. (A.6)

Assuming that continuous densities at zero exist, a Taylor expansion at order one entails:

Pβ[S(y) = s|X] =
1

2n

n
∏

i=1

[1 + 2fi(0|X)xisiβ + o(β)] (A.7)

=
1

2n

[

1 + 2
n
∑

i=1

fi(0|X)xisiβ + o(β)

]

. (A.8)

All other terms of the product decomposition are negligibleor equivalent too(β). That

allows us to identify the derivative atβ = 0:

d

dβ
Pβ=0[S(y) = s|X] = 2−n+1

n
∑

i=1

fi(0|X)xisi . (A.9)

Therefore, the required test has the form

Wα =

{

s = (s1, . . . , sn)|
n
∑

i=1

fi(0|X)xisi| > cα

}

, (A.10)

or equivalently,Wα = {s|s(y)′X̃X̃ ′s(y) > c′α} , wherecα andc′α are defined by the

significance level. When the disturbances have a common conditional density at zero,

f(0|X), we find the results of Boldin et al. (1997). The locally optimal sign-based

test is given byWα = {s|s(y)′XX ′s(y) > c′α} . The statistic does not depend on the

conditional density evaluated at zero.

Whenp > 1, we need an extension of the notion of slope around zero for a mul-

tidimensional parameter. Boldin et al. (1997) propose to restrict to the class of locally

unbiased tests with given levelα and to consider the maximal mean curvature. Thus, a

locally unbiased sign-based test satisfies,dPβ(Wα)

dβ

∣

∣

∣

β=0
= 0, and, asf ′

i(0) = 0, ∀i, the

behavior of the power function around zero is characterizedby the quadratic term of its

Taylor expansion

β′1

2

(

d2Pβ(Wα)

dβ2

)

β =
1

2n−2

∑

1≤i6=

∑

j≤n

[fi(0|X)siβ
′xi][fj(0|X)sjx

′
jβ]. (A.11)
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The locally most powerful sign-based test in the sense of themean curvature maximizes

the mean curvature which is, by definition, proportional to the trace ofd
2
Pβ(Wα)

dβ2

∣

∣

∣

β=0
; see

Boldin, Simonova, and Tiurin (p. 41, 1997), Dubrovin, Fomenko, and Novikov (ch. 2,

pp. 76-86, 1984) or Gray (ch. 21, pp. 373-380,1998). Taking the trace in expression

(A.11), we find (after some computations) that

tr

(

d2Pβ(Wα)

dβ2

∣

∣

∣

∣

β=0

)

=
∑

1≤i6=

∑

j≤n

fi(0|X)fj(0|X)sisj

p
∑

k=1

xikxjk. (A.12)

By adding the independent ofs quantity
∑n

i=1

∑p
k=1 x2

ik to (A.12), we find

p
∑

k=1

(

n
∑

i=1

xikfi(0|X)si

)2

= s′(y)X̃X̃ ′s(y). (A.13)

Hence, the locally optimal sign-biased test in the sense developed by Boldin et al. (1997)

for heteroskedastic signs, isWα = {s : s′(y)X̃X̃ ′s(y) > c′α} .

Another quadratic test statistic convenient for large-sample evaluation is obtained

by standardizing bỹX ′X̃: Wα = {s : s′(y)X̃(X̃ ′X̃)−1X̃ ′s(y) > c′α} .

Proof of Theorem 6.1. This proof follows the usual steps of an asymptotic normal-

ity result for mixing processes [see White (2001)]. Consider model (2.1). In the

following, st stands fors(ut). Under Assumption A5,V −1/2
n exists for anyn. Set

Znt = λ′V
−1/2
n x′

ts(ut), for someλ ∈ R
p such thatλ′λ = 1. The mixing prop-

erty A2 of (x′
t, ut) gets transmitted toZnt; see White (2001), Theorem 3.49. Hence,

λ′V
−1/2
n s(ut) ⊗ xt is α-mixing of size−r/(r − 2), r > 2. Assumptions A3 and A4

imply

E[λ′V −1/2
n x′

ts(ut)] = 0, ∀t = 1, . . . , n, ∀n ∈ N. (A.14)

E|λ′V −1/2
n x′

ts(ut)|r < ∆ < ∞, ∀t = 1, . . . , n, ∀n ∈ N. (A.15)

Note also that

Var

(

1√
n

n
∑

t=1

Znt

)

= Var

[

1√
n

n
∑

t=1

λ′V −1/2
n s(ut) ⊗ xt

]

= λ′V −1/2
n VnV −1/2

n λ = 1.

(A.16)

The mixing property ofZnt and equations (A.14)-(A.16) allow one to apply a central

limit theorem [see White (2001), Theorem 5.20] that yields

1√
n

n
∑

t=1

λ′V −1/2
n s(ut) ⊗ xt → N (0, 1). (A.17)
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Sinceλ is arbitrary withλ′λ = 1, the Cramér-Wold device entails

V −1/2
n n−1/2

n
∑

t=1

s(ut) ⊗ xt → N (0, Ip). (A.18)

Finally, Assumption A6 states thatΩn is a consistent estimate ofV −1
n . Hence,

n−1/2Ω1/2
n

n
∑

t=1

s(ut) ⊗ xt → N (0, Ip), (A.19)

andn−1s′(y − Xβ0)XΩnX ′s(y − Xβ0) → χ2(p).

Proof of Corollary 6.2. Let Ft = σ(y0, . . . , yt, x
′
0, . . . , x

′
t). When the mediangale

Assumption A1 holds,{s(ut) ⊗ xt,Ft, t = 1, . . . , n} belong to a martingale differ-

ence with respect toFt . Hence,Vn = Var
[

1√
n
s ⊗ X

]

= 1
n

∑n
t=1 E(xtsts

′
tx

′
t) =

1
n

∑n
t=1 E(xtx

′
t) = 1

n
E(X ′X), andX ′X/n is a consistent estimate ofE(X ′X/n). The-

orem6.1yieldsSF (β0) → χ2(p).

Proof of Theorem 6.3. G(−∞) = G̃n(−∞) = 0, G(+∞) = G̃n(+∞) = 1, and

G̃n

(

x|Xn(ω)
)

→ G(x) a.e.. The following LemmaA.1, whose proof can be found in

Chow and Teicher (sec. 8.2, p. 265, 1988), entails that(G̃n)nN converges uniformly to

G. The same holds forGn.

Lemma A.1 Let (Fn)n∈N and F be right continuous distribution functions. Suppose

that Fn(x) →
n→∞

F (x), ∀x ∈ R. Then,(Fn)n∈N converges uniformly toF in R, i.e.

sup
−∞<x<+∞

|Fn(x) − F (x)| →
n→∞

0.

Moreover asG̃n can be rewritten as

G̃n

(

cnSn(β0)|Xn

)

=
[

G̃n

(

cnSn(β0)|Xn(ω)
)

− G
(

cnSn(β0)
)]

+
[

G
(

cnSn(β0)
)

− Gn

(

cnSn(β0)|Xn(ω)
)]

+Gn

(

cnSn(β0)|Xn

)

,

it follows that

Gn

(

cnSn(β0)|Xn

)

= G̃n

(

cnSn(β0)|Xn

)

+ op(1). (A.20)
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As cnS
n
0 is a discrete positive random variable andGn, its survival function is also

discrete. It directly follows from properties of survival functions, that for eachα ∈
Im
(

Gn(R+)
)

, i.e. for each point of the image set, we have

P
[

Gn

(

cnSn(β0)
)

≤ α
]

= α. (A.21)

Consider now the case whenα ∈ (0, 1)\Im
(

Gn(R+)
)

. α must be between the two

values of a jump of the functionGn. SinceGn is bounded and decreasing, there exist

α1, α2 ∈ Im
(

Gn(R+)
)

, such thatα1 < α < α2 and

P
[

Gn

(

cnSn(β0)
)

≤ α1

]

≤ P
[

Gn

(

cnSn(β0)
)

≤ α
]

≤ P
[

Gn

(

cnSn(β0)
)

≤ α2

]

.

More precisely, the first inequality is an equality. Indeed,

P
[

Gn

(

cnSn(β0)
)

≤ α
]

= P
[

{Gn

(

cnSn(β0)
)

≤ α1} ∪ {α1 < Gn

(

cnSn(β0)
)

≤ α}
]

= P
[

Gn

(

cnSn(β0)
)

≤ α1

]

+ 0,

as{α1 < Gn

(

cnSn(β0)
)

≤ α} is a zero-probability event. Applying (A.21) toα1,

P
[

Gn

(

cnSn(β0)
)

≤ α
]

= P
[

Gn

(

cnSn(β0)
)

≤ α1

]

= α1 ≤ α. (A.22)

Hence, forα ∈ (0, 1), we haveP
[

Gn

(

cnSn(β0)
)

≤ α
]

≤ α. The latter combined with

equation (A.20) allows us to conclude

P
[

G̃n

(

cnSn(β0)
)

≤ α
]

= P
[

Gn

(

cnSn(β0)
)

≤ α
]

+ op(1) ≤ α + op(1).

Proof of Theorem 6.4. LetS(0)
n be the observed statistic andSn(N) = (S

(1)
n , . . . , S

(N)
n ),

a vector ofN independent replicates drawn from̃Fn(x). Usually, validity of Monte

Carlo testing is based on the fact the vector(cnS
(0)
n , . . . , cnS

(N)
n ) is exchangeable. In-

deed, in that case, the distribution of ranks is fully specified and yields the validity of

empiricalp−value [see Dufour (2006)]. In our case, it is clear that(cnS
(0)
n , . . . , cnS

(N)
n )

is not exchangeable, so that Monte Carlo validity cannot be directly applied. Neverthe-

less, asymptotic exchangeability still holds, which will enable us to conclude. To obtain
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that the vector(cnS
(0)
n , . . . , cnS

(N)
n ) is asymptotically exchangeable, we show that for

any permutationπ : [1, N ] → [1, N ],

lim
n→∞

P[S(0)
n ≥ t0, . . . , S

(N)
n ≥ tN ] − P[Sπ(0)

n ≥ t0, . . . , S
π(N)
n ≥ tN ] = 0.

First, let rewrite

P[S(0)
n ≥ t0, . . . , S

(N)
n ≥ tN ] = EXn{P[S(0)

n ≥ t0, . . . , S
(N)
n ≥ tN , Xn = xn]}.

The conditional independence of the sign vectors (replicated and observed) entails:

P[S(0)
n ≥ t0, . . . , S

(N)
n ≥ tN , Xn = xn] = P[Xn = xn]

N
∏

i=0

P[S(i)
n ≥ ti|Xn = xn]

= Gn(t0|Xn = xn)
N
∏

i=1

G̃n(ti|Xn = xn).

As each survival function converges with probability one toG(x), we finally obtain

P[S(0)
n ≥ t0, S

(1)
n ≥ t1, . . . , S

(N)
n ≥ tN , Xn = xn] →

N
∏

i=0

G(ti)with probability one.

Moreover, it is straightforward to see that forπ : [1, N ] → [1, N ], we have asn → ∞:

P[S(0)
n ≥ tπ(0), S

π(1)
n ≥ t1, . . . , S

π(N)
n ≥ tN , Xn = xn] →

N
∏

i=0

G(ti)with probability one.

Note that asG(t) is not a function of the realizationX(ω) so that

lim
n→∞

P[S(0)
n ≥ t0, . . . , S

(N)
n ≥ tN ] − P[Sπ(0)

n ≥ t0, . . . , S
π(N)
n ≥ tN ] = 0.

Hence, we can apply an asymptotic version of Proposition 2.2.2 in Dufour (2006) that

validates Monte Carlo testing for general possibly noncontinuous statistics. The proof of

this asymptotic version follows exactly the same steps as the proofs of Lemma 2.2.1 and

Proposition 2.2.2 of Dufour (2006). We just have to replace the exact distributions of

randomized ranks, the empirical survival functions and theempiricalp−values by their

asymptotic counterparts and this is sufficient to conclude.Suppose thatN , the number

of replicates is such thatα(N + 1) is an integer. Then,limn→∞ p̃N
n (cnS

(0)
n ) ≤ α.
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Technical appendix

Detailed analysis of Barro and Sala-i-Martin data set. This section contains ad-

ditional results for the Barro and Sala-i-Martin application. Table 9 contains results

of heteroskedasticity tests. Complementary sign-based inference results for the model

parameters are reported in Table 10.

Table 9. Regressions for personal income across U.S. States,1880-1988: tests for
heteroskedasticity.

Period Basic equation Eq. with reg. dum.
p-values White test Breush-Pagan test White test Breush-Pagan test

1880-1900 .018 .652 .249 .830

1900-1920 .023 .043 .069 .050

1920-1930 .723 .398 .435 .557

1930-1940 .673 .633 .537 .601

1940-1950 .243 .943 .513 .272

1950-1960 .595 .223 .740 .221

1960-1970 .205 .247 .236 .441

1970-1980 .641 .675 .777 .264

1980-1988 .058 .022 .080 .226
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Table 10. Regressions for personal income across U.S. States, 1880-1988:
complementary results.

Period Basic equation Eq. with reg. dum.

Variable: constant (a) 95% projection-based CI(a)

1880-1900 [-.0147, -.0020] [.0206, .0005]
1900-1920 [-.0205, -.0084] [-.0431, .0095]
1920-1930 [-.0018, .0328] [-.0351, .0589]
1930-1940 [-.0232, -.0042] [-.0443, .0221]

1940-1950 [-.0452, -.0258] [-.0517, -.0070]
1950-1960 [-.0297, -.0080] [-.0435, .0043]
1960-1970 [-.0314, .0088] [-.0345, .0119]
1970-1980 [-.0296, -.0020] [-.0478, .0288]
1980-1988 [-.0414, .0695] [-.0563, .0566]

Variable: ln(y) (γ) 95% projection-based CI(a)

1880-1900 [-.0170, .0010] [-.0197, .0034]

1900-1920 [-.0233, -.0084] [-.0336, .0088]
1920-1930 [-.0018, .0351] [-.0369, .0584]
1930-1940 [-.0209, -.0042] [-.0314, .0206]
1940-1950 [-.0452, -.0253] [-.0462, .0079]
1950-1960 [-.0297, -.0080] [-.0397, -.0007]

1960-1970 [-.0314, -.0094] [-.0350, .0119]
1970-1980 [-.0292, -.0020] [-.0514, .0255]
1980-1988 [-.0414, .0695] [-.0566, .0566]

51



Compared inference methods in simulations.

Two sign-based statisticsare studied: one adapted for mediangale process,

SF (β0) = DS(β0, (X
′X)−1) = s(y − Xβ0)

′X(X ′X)−1X ′s(y − Xβ0) (T.1)

and, one corrected for serial dependence,

SHAC = DS(β0, Ĵ
−1
n ) = s(y − Xβ0)

′XĴ−1
n X ′s(y − Xβ0). (T.2)

where

Ĵn =
n

n − p

n−1
∑

j=−n+1

k

(

j

Bn

)

Γ̂n(j), (T.3)

with

Γ̂n(j) =







1
n

∑n
t=j+1 Vt(β0)V

′
t−j(β0) for j ≥ 0

1
n

∑n
t=−j+1 Vt+j(β0)V

′
t (β0) for j < 0,

(T.4)

andVt(β0) = s(yt − x′
tβ0) × xt, t = 1, . . . , n andk(.) is a real-valued kernel, here

Bartlett kernel is used with an automatically adjusted bandwidth parameterBn [An-

drews (1991)].

Sign-based tests are compared to LR and Wald-type tests based onOLS andLAD

estimators with different covariance matrix estimators. Wald-type statistics for testing

H0 : β = β0 are of the formn(β̂ − β0)D̂
−1
n (β̂ − β0) whereD̂n is an estimate of the

asymptotic covariance matrix for̂β.

The OLS estimator is computed in GAUSS:̂βOLS = (X ′X)−1X ′y. Both classic

i.i.d. andWhite covariance matrix estimatorsare considered.WH asymptotic covari-

ance matrix estimator is corrected for heteroskedasticitybut not for linear dependence:

D̂WH(β̂OLS) =

(

1

T

∑

xtx
′
t

)−1(
1

T (T − k)

∑

û2
t xtx

′
t

)(

1

T

∑

xtx
′
t

)−1

.

The LAD estimator is computed in GAUSS by the qreg procedure, which uses a

minimization by interior point method:̂βLAD = arg min
∑n

t=1 |yt−x′
tβ|. The following

LAD covariance matrix estimators are considered:

The order statistic estimator (OS) [see Chamberlain (1994), Buchinsky (1995, 1998)],

which is valid fori.i.d observations, is used as a benchmark. Fori.i.d observations, the

LAD covariance matrix reduces to

D(β̂LAD) =
1

4f 2
u(0)

(E[xx′])−1 = σ2
LAD(E[xx′])−1,
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where fu stands for the density ofut. An estimate forσLAD can be constructed

from a confidence interval for the sample median,i.e., then/2-th order statistic. let

y1, y2, . . . , yn be independent random observations with distribution function Fy(.)

and y(j), y(k), the j−th and thek−th order statistics ofy1, y2, . . . , yn. Note that

P[y(j) ≤ ξ1/2] =
∑n

i=j Ci
n(1/2)n, which entails

P[y(j) ≤ ξ1/2 ≤ y(k)] = P[y(j) ≤ ξ1/2] − P[y(k) < ξ1/2] =
k−1
∑

i=j

Ci
n(1/2)n.

A symmetric confidence interval with level1 − α can be constructed as follows. Let

j = int(n/2 − l), k = int(n/2 + l) andX ∼ B(n, 1/2), with E[X] = n/2 and

var(X) = n/4. Then,

P[Yint(n/2−l) ≤ ξ1/2 ≤ Yint(n/2+l)] = P[int(n/2) − l ≤ X ≤ int(n/2) + l]

= P

[

X − n/2
√

n/4
≤ l
√

n/4

]

.

A central limit theorem,X−n/2√
n/4

→ N (0, 1) entails thatl = Z1−α/2

√

n/4 whereZ1−α/2

is the1 − α/2th quantile of a standard normal distribution. Approachingthe width of

the exact confidence interval by that of asymptotic confidence interval giveŝσ2
LAD =

n(Yint(n/2+l)−Yint(n/2−l))
2

4Z2
1−α/2

. Finally, D(β̂LAD) can be estimated by,

D̂OS(β̂LAD) = σ̂2
LAD

(

1

n

n
∑

i=1

xix
′
i

)−1

.

Design matrix bootstrap centering around the sampleLAD estimate (DMB) is also

considered [see Buchinsky (1995, 1998)]. Let(y∗
i , x

∗
i ), i = 1, . . . ,m be a randomly

drawn sample from the empirical distribution functionFnxy. Let β̂
∗
LAD be the bootstrap

estimate obtained from a LAD regression ofy∗ on X∗. This process is carried outB

times and yieldsB bootstrap estimates,β̂
∗
LAD1, β̂

∗
LAD2, . . . , β̂

∗
LADB. The design matrix

bootstrap asymptotic covariance matrix estimator is givenby,

D̂DMB =
m

n

{

n

B

B
∑

j=1

(β̂
∗
LADj − β̂LAD)(β̂

∗
LADj − β̂LAD)′

}

. (T.5)

The moving block bootstrap centering around the sample estimate (MBB) was pro-

posed by Fitzenberger (1997b). Basically, blocks of fixed sizeb are bootstrapped in-

stead of individual observations.q = T − b + 1 blocks of observations of sizeb,
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Bi = ((yi, xi), . . . , (yi+b, xi+b)) are defined.m blocks, drawn from the initial sample,

constitute a bootstrapped sampleZj of sizem×b. From eachZj, j = 1, . . . , B, aLAD

regression is performed yielding the estimateβ̂
∗j
LAD. TheMBB estimator of theLAD

asymptotic covariance matrix can then be approached thanksto the bootstrap paradigm,

by

D̂MBB(β̂LAD) =
mb

B

{

B
∑

j=1

(β̂
∗
LADj − β̂LAD)(β̂

∗
LADj − β̂LAD)′

}

. (T.6)

Both for OLS andLAD estimatorsBartlett kernel covariance matrix estimators with

automatic bandwidth parameter(BT ) are also considered [see Parzen (1957), Newey

and West (1987), Andrews (1991)] with a methodology similarto the one presented

previously for deriving theSHAC-sign statistic.

Finally, theLR statistic[see Koenker and Bassett (1982)] has the following form:

4f̂u(0)
[

∑

|yi − x′
iβ0| −

∑

|yi − x′
iβ̂LAD|

]

(T.7)

where anOS estimate is used for̂fu(0).
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