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Abstract

We consider the implementation of an economic outcome under
complete information when the principal cannot commit to a simul-
taneous participation game. From a general class of sequential de-
centralized participation processes and without common knowledge on
the details of the process, we introduce the concept of implementation
under robust sequential individual rationality. We solve the optimal
design program: the principal may fail to extract fully agents' surplus
relative to the harsher threats but economic e�ciency is not damaged.

Keywords: Mechanism Design, Individual Rationality, Imperfect
Commitment, Surplus Extraction, Collusion on Participation

JEL classi�cation: C72, D62

Abstract

Nous considérons la question de l'implémentation d'un mécanisme
en information complète lorsque le principal ne peut pas s'engager
sur un jeu simultané de participation. A partir d'une classe de jeux
décentralisés de participation et en s'a�ranchissant d'hypothèses de
connaissance commune relative à la forme spéci�que du jeu, nous
introduisons le concept d'implémentation robuste sous la contrainte
d'agents séquentiellement individuellement rationnels. Nous résolvons
le programme d'optimisation du principal: le surplus que le principal
peut extraire est plus faible, néanmoins l'e�cacité économique n'est
pas altérée.

Mots-clés: Mechanism Design, Rationalité individuelle, Engage-
ment, Extraction du surplus, Collusion sur la participation

Classi�cation JEL: C72, D62
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1 Introduction

The mechanism design paradigm considers that agents are taking their
participation decisions simultaneously. However, the principal in many trans-
actions lacks the ability to commit to close the participation at an exact
deadline.1 In corporate acquisitions and procurement auctions, it is com-
mon that the seller violates the announced rules to accept a subsequent
better deal. McAdams and Schwarz [17] and Vartiainen [24] consider auc-
tion models where the seller is unable to commit not to solicit another round
of o�ers after having publicly disclosed the previous o�ers. Similarly, in the
corruption literature, e.g. Compte et al. [5], the auctioneer may also provide
an opportunity for bid readjustments in exchange for a bribe.

We consider the implementation of an economic outcome under complete
information relative to agents' preferences when the principal can not com-
mit to any multi-stage mechanism and has no control on the participation
process itself. Hence, the analysis is reduced to feasible participation games
such that, sequentially, agents have the opportunity either to accept to par-
ticipate in the mechanism or to delay their participation decisions, the �nal
outcome depending only on the �nal set of participants. The general class of
participation processes we consider relies on two ingredients that are com-
mon knowledge among agents: �rst, after each acceptation by a given agent,
all the remaining agents will have the opportunity to participate. Second,
agents that have already accepted the mechanism have the opportunity to
secretly provide the evidence that they have accepted the mechanism to any
nonparticipant before receiving his last opportunity to participate. Thus
contrary to the aforementioned positive literature that assumes that partici-
pation decisions or o�ers are publicly observable, we consider the general case
where participation decisions may not be observed but where participants
have the opportunity to provide this evidence.

A mechanism is implementable if full participation is the only equilib-
rium outcome of any participation game. In the same vein as Moldovanu
and Winter [20], we require implementation to be independent of the spe-
ci�c structure of the participation game, i.e. the order of the opportunities to
participate. Moreover, in the same vein as Chung and Ely [4], we also require
implementation to be robust to any kind of beliefs for the agents relative to
the speci�c form of the process. This structure is not necessary for our main
insight, i.e. the impossibility of full surplus extraction under decentralized
sequential participation processes. But it allows a tractable characterization
of the optimal mechanism.2 The traditional individual rationality constraints

1In some auction design, as in the online version of the ascending auction used at
Amazon and analysed by Ockenfels and Roth [21], the rule of the game explicitly involves
an extension of the participation deadline after a submission.

2Relaxing the common knowledge assumptions on the trading game may seem at odd
with the so-called Wilson Doctrine [25] whose agenda is to relax the common knowledge
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are strengthened by requiring robust sequential individual rationality. Our
implementation concept requires more than the traditional condition that
participation is a best-response for agent i given that all the other agents
participate. With perfect information, i.e. when participation decisions are
publicly observed by all agents, Proposition 5.1 states that robust sequential
individual rationality requires that there is no set of agents S ⊂ N such that
all agents in S prefer the outcome where only agents in N \ S participate
to the outcome where all agents accept the mechanism. Those additional
constraints in the mechanism design program are non-linear and the set of
implementable mechanisms is thus in general not convex. Nevertheless, the
optimal design program can be simpli�ed as done in Proposition 5.3, our
main result: it allows us to separate the choice of the �nal allocation to
the structure of the optimal threats. As under a simultaneous participa-
tion game, the coasian logic still applies and we obtain that the optimal
mechanism is e�cient. Nevertheless, full extraction relative to the harsher
threats as in Jehiel et al [13] does not work anymore generally in presence
of externalities. In an incomplete information setup, Heifetz and Neeman
[11] show that generic priors on the universal type space do not allow for
full surplus extraction. Their insight is that, generically, private informa-
tion implies informational rents. Here, with the common concern for robust
mechanism design, we relax the common knowledge assumptions on the de-
tails of the participation process and show that the principal may not be able
to fully extract agents' surplus relative to their harsher threats in a complete
information setup.

The paper is organized as follows. In section 2 we introduce the general
allocation problem. Using a simple example, section 3 illustrates our critic
of the traditional mechanism design approach and supplies intuition for our
characterization of the optimal mechanism. In section 4 we describe a gen-
eral class of noncooperative sequential participation games. In section 5 we
de�ne our main concept- robust sequential individual rationality -and prove
the main results. In section 6 we provide two general examples where our
alternative mechanism design approach may be relevant and change some
insights. Concluding remarks are gathered in section 7.

2 The Model

Let N = {1, 2, . . . , n} be a set of agents and A = {a1, a2, . . . , aK} be a
�nite set of possible outcomes. Denote by Σ(N) the set of the permutations
over the set N . For a given permutation σ : N → N , denote by T σ

i the subset
{σ(1), σ(2), . . . , σ(i− 1)}, i.e. the i− 1 �rst smallest agents according to the

assumption on agents' beliefs about another's preferences or information and not the ones
about the trading process itself. We think that we remain coherent with the Wilson
doctrine insofar as enforcement on the details of the participation process seems di�cult.
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implicit order de�ned by σ. We assume that the agents and the principal,
characterized by the subscript 0, have quasilinear preferences over outcomes
and (divisible) money. Preferences are assumed to be common knowledge.
The utility of a player i over outcome a ∈ A and the money transfer ti is:

Ui(a, ti) = V a
i − ti.

We �rst describe the class of procedures among which the principal
chooses an optimal mechanism. In step 1, the principal designs a mech-
anism. In a complete information setting, a mechanism, denoted by (a, t),
speci�es a �nal outcome a(S) and a vector of monetary transfers t(S) for each
possible set of participants S ⊂ N . We emphasize that such a reduced form
mechanism should not be viewed as resulting from some Revelation Princi-
ple, a logic that can not be invoked in our framework. On the contrary, we
consider implicitly that the principal has a very limited commitment power:
he can not commit to any multi-stage game, i.e. he can not commit not to
change the rule of the game after observing some report, but rather only
in one shot mechanism. We make the further restriction that the outcome
depends only on the set of participants, a maxmin foundation for such an
approach being given in section 5.3.3 In step 2, the agents are playing a se-
quential decentralized participation process described in next section. In the
previous mechanism design literature, the decisions whether to participate
or not in the proposed mechanism are assumed to be taken simultaneously.
Here we consider that the principal cannot commit to such a simultaneous
participation game: an agent will always have at least one opportunity to
participate in the mechanism after each decision to accept the mechanism
by an agent. In step 3, the mechanism is implemented according to the
participation set S ⊂ N . A mechanism is said to be feasible if:

• For each set of participants S, the �nal outcome belongs to A(S), the
subset of A of accessible or feasible outcome with the consent of agents
in S.

• If agent i decides not to participate the principal cannot extract a
positive payement from that agent: ti(S) ≤ 0, if i ∈ N \ S.

• Transfers are budget-balanced:
∑n

i=0 ti(S) = 0, for any S ⊂ N .

The second and third restrictions are standard. The �rst restriction
means that some outcome in A may not be feasible if some agents refuse

3Implicitly, we also exclude any mechanism that depends on the precise order of the
participation decisions of the agents. One argument is that the timing of the participa-
tion decisions is not veri�able. Note nevertheless that Jehiel et al [13]'s full extraction
mechanism with the optimal threats for each agent can not always be reached with such
richer mechanisms con�rming thus our main insight that individual rationality constraints
should be strengthened (it can be shown in our simple example).
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to participate. For example, in the case of the sale of an indivisible good,
Jehiel et al. [13] considers that one cannot `dump' the object on a non-
participating agent. We do not impose any speci�c structure on the feasibil-
ity sets {A(S)}S⊂N except that:

Assumption 1 A(S) ⊂ A(T ), whenever S ⊂ T .

Assumption 1 states that if the consent of the agents in S is enough to
implement a given �nal outcome a, then the extra consent of some agents
outside S cannot make this outcome unfeasible. Then, there is no loss of
generality to consider that A(N) = A. To simplify the exposition, we as-
sume that, for a given utility level, an agent strictly prefers to participate
in the mechanism. With this trick, the set of implementable mechanisms -
which is de�ned in section 5 -is a closed set and has thus an optimal ele-
ment. Furthermore, in the sequential participation process, we also assume
that agents prefers to accept the mechanism as soon as possible, for a given
outcome. This additional trick is also innocuous, but allows us to consider
a general universal belief space à la Mertens-Zamir [19] still avoiding related
pathological phenomena.

For an agent i and a set of participants S ⊂ N \{i}, denote by a∗i (S) the
harsher feasible threat that the principal can in�ict on i given that the agents
in S have accepted the mechanism: a∗i (S) ∈ Arg mina∈A(S) V a

i . Denote

by V ∗
i (S) = V

a∗i (S)
i the corresponding utility level. In mechanism design

under simultaneous participation, only the threats a∗i (N \{i}) do matter. In
the optimal design, if one agent refuses the mechanism, the remaining ones
commit to this harsher threat also called `minmax punishment' as in Jehiel
et al. [13] or Dequiedt [8]. On the other hand, in mechanism design under
robust sequential individual rationality, the whole set of the feasible threats
a∗i (S) will play an active role in the computation of the optimal mechanism.

Finally, our framework is characterized by the 4-uple: (N,A, {V a
i }i∈N,a∈A, {A(S)}S⊂N ).

Let us de�ne two special subsets among those frameworks: externality-free
and negative-externality-free frameworks.

De�nition 1 • A framework is said to be externality-free if for any
agent i, the map a → V a

i is constant over the set A(N \ {i}).

• A framework is said to be negative-externality-free if the optimal threat
V ∗

i (S) for any agent i is independent of the set of participant S ⊂
N \ {i}: V ∗

i (S) = V ∗
i (∅) for any i.

A framework is said to be externality-free if the agents do not care about
the �nal outcome in the event where they do not participate in the mech-
anism. For the sale of some goods and under the assumption that a non-
participant does not receive any good, it corresponds to the standard case
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where agents care only on the set of goods they obtain and in particular are
indi�erent to the �nal allocation when they are non-purchaser. Negative-
externality-free is less restrictive: it only requires that the principal can
credibly threat any agent with the minmax punishment independently to
the other participants, i.e. by retaining all goods in the above example.

3 A Simple Example

The following example consider the sale of a single object involving
identity-dependent externalities. It formalizes the starting examples of Jehiel
and Moldovanu [12] and Das Varma [7] where two potential buyers su�ering
from important reciprocal negative externalities prefer not to participate in
the bidding process for a single item and let a third buyer win at a low price.
We emphasize that those previous modellings can not embrace our kind of
strategic nonparticipation.

Let n = 3 and A = {0, 1, 2, 3} where allocation i corresponds to the
allocation of the item to player i. We consider that the seller is able to
allocate the item only to participating agents: A(S) = {i|i ∈ S ∪ {0}}. Let
V i

i be equal respectively to V , v and 0 for i ∈ {1, 2}, i = 3 and i = 0. Let
V j

i , i 6= j be equal to −α if i, j ∈ {1, 2} and 0 otherwise. Assume that
V > v > V − α > 0. Thus the e�cient allocation consists in allocating
the item to agent 3. Nevertheless, agents 1 and 2 are valuing the item more
than agent 3. They are also chosen symmetric only to simplify the exposition.
The same kind of results holds in the neighborhood of the parameter values
or even with huge asymmetries between agents 1 and 2 provided that the
reciprocal negative-externalities between them are big enough.

Standard Auctions Consider �rst a simultaneous participation game as
in [12]: the buyers have �rst the opportunity to decide whether or not they
want to participate in the auction. Those decisions are made simultaneously
and are publicly revealed before the auction takes place. We consider the
�rst price auction, but the results are similar for any other standard auction
as the English button auction considered in [7]. In any equilibrium, the item
is sold either to agent 1 or to agent 2. In the unique symmetric equilibrium,
agents 1 and 2 both participate with probability 1 and are submitting the
bid V +α. They are both su�ering from a loss of α compared to their pro�t
in the case where they could jointly coordinate themselves not to participate.
In our example, non-participation from agent 1 is vain and cannot prevent
the purchase by agent 2 in the auction because V > v.4

Now consider a sequential participation game with agents 1 and 2 such
that potential buyers are always eligible to participate after one has decided
to participate and such that participation decisions are publicly observable

4Strategic non-participation as in [12] emerges only if v > V and thus not here.
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among agents (the proper formalization is done in section 4). Now it is a
subgame perfect equilibrium for agents 1 and 2 not to participate if and only
if his `feared' opponent did so. Under sequential participation, we obtain
the paradox that seems to correspond to the stories reported in [12, 7] and
that cannot emerge in previous models with simultaneous participation: an
agent may prefer not to submit a bid though his intrinsic value for the good,
i.e. excluding the motivations to outbid resulting from the fear of negative
externalities, is greater than the �nal bid.

The Optimal Mechanism Under a simultaneous participation game, Je-
hiel et al. [13] presents an optimal mechanism where participation is a strictly
dominant strategy. The optimal mechanism is e�cient and the seller can ex-
tract surplus from agents who do not obtain the object by using the optimal
threats a∗i (N \{i}) for each agent i. Here the e�cient allocation is to allocate
the object to agent 3 and the optimal mechanism raises the revenue v+2 ·α:
each non-purchaser has to pay α in order to avoid that the seller gives the
object to his most feared opponent. But what can be implemented if agents
1 and 2 can coordinate their participation decisions thanks to a sequential
participation process? Then the seller can not allocate the object to agent 3
and extract a strictly positive surplus from both agents 1 and 2. In partic-
ular, she cannot threat simultaneously agents 1 and 2 with their respective
tougher threat. Otherwise, they could jointly not participate and obtain a
null payo� since the seller is assumed to be unable to `dump' the object. To
maximize her revenue, the seller should use a divide and conquer strategy:
it consists in giving the incentive to participate for one agent, say 1, inde-
pendently of the participation decision of agent 2. Then given that agent 1
participates, she could really threat agent 2 to allocate the object to agent 1
in case of non-participation. Indeed we will show that it is the optimal mech-
anism and it raises the revenue v + α. It illustrates several features that are
generalized in section 5: �rst, the optimal selling procedure is still e�cient
under the robust sequential individual rationality constraints; second, those
constraints reduce the revenue. Finally, we �nd surprisingly that although
agents 1 and 2 are symmetric, they should not be treated in a symmetric
way in an optimal mechanism. That is the reason why standard auctions
that are intrinsically symmetric were leading to joint non-participation.

4 Sequential Participation Processes

We describe a simple sequential participation procedure based on a given
mechanism (a, t). Suppose that the agents in S have already accepted the
mechanism, then the remaining agents are playing a participation game
where each agent has once the possibility to accept the mechanism or to
delay his decision. If all those agents do not accept the mechanism, then
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the participation game stops and the outcome (a(S), t(S)) is implemented.
Otherwise, if at least one agent i accepts the mechanism, then his acceptance
is followed by a participation game given the consent of S ∪ {i}. Observe
that, in this informal described situation, the order according to which agents
have the possibility to accept or not the mechanism has not been speci�ed.
Indeed, each order generates a di�erent extensive form game. Moreover, we
should also specify the structure of the information sets. We wish to com-
pare �nal outcomes in these di�erent games, and therefore we proceed to a
formal description of the participation games.

D
l1 (NO)

(YES)

l2 (NO)

(YES)

l3

(YES)

(NO) lm (NO)

g1 g2 g3 gm

(YES)

-intermediate nodegi

-terminal node: (a(S), t(S))

-responder node

Figure 1

D -disclosure node

For a given mechanism (a, t), we de�ne recursively the set of partici-
pation games as a function of the cardinality of the set of the agents that
have already accepted the mechanism. We denote by G(a, t, S, β) the set
of participation games if the agents in S have accepted the mechanism and
where β = {βi}i∈N\S represents the vector of the initial priors about the
acceptance of the other agents. If S = N , this set corresponds to the
(unique) degenerate game where agents make no choice and the �nal out-
come (a(N), t(N)) is implemented. If S ( N , we consider a participation
game g = ((a, t), S, {li}i=1,...,m, {gi}i=1,...,m, {βi}i∈N\S) where (a, t) is a fea-
sible mechanism, S is the set of the agents that have previously accepted the
mechanism, {li}1,...,m, where m = #N \S, is an ordered list of the agents in
N \S and gi is a participation game in G(a, t, S ∪{li}, {βi}i∈N\S∪{li}) which
is properly de�ned by the induction hypothesis. See Figure 1.

There are four kinds of positions in g ∈ G(a, t, S, β):

1. Disclosure nodes of the form Scurrent where Scurrent is the current set
of the agents that have previously accepted the mechanism (a, t).

2. Responder nodes of the form (li, S), where S ⊂ N is the set of the
agents that have previously accepted the mechanism and li ∈ N \ S is
the identity of the agent with the initiative.

3. Intermediate nodes of the form gi, where gi is a participation game in
G(a, t, S ∪ {li}, β).
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4. Terminal nodes of the form (a, t, S) where S is the set of the agents
that have previously accepted the mechanism (a, t).

At an intermediate node gi, agents have no choice and the game moves
to the disclosure node of the game gi or moves to the terminal node (a, t, N)
if all agents give their consent. At a terminal node (a, t, S), the game ends
and the outcome (a(S), t(S)) is implemented.

At any responder position (li, S) there is the choice:

1. (li+1, S) if i < m which means that agent li delays participation and
li+1 becomes the new responder. It corresponds to the two �rst arrays
(NO) at the left of Fig. 1.

2. (a, t, S) if i = m which means that agent li refuses participation and
the game ends at this terminal node. It corresponds to the array (NO)
at the extreme right of Fig. 1.

3. gi which means that agent li accepts the mechanism and the game
moves to the intermediate node gi. It corresponds to the arrays (YES)
in Fig. 1.

At a disclosure node Scurrent, each agent in Scurrent can secretly give the
evidence that he has accepted the mechanism to any subset of his opponents.
This evidence can also be revealed by the nature in a purely exogenous way.

The disclosure structure in the participation game has been incorporated
to go beyond participation games with perfect information, where partici-
pation decisions are publicly observed by the agents. The precise structure
of the information states will not matter: the crucial ingredient is that each
participant has the opportunity at least once to prove to any of the remaining
potential participants that he has accepted the mechanism.

The closure of the participation game after a �nite number of delays
may seem incoherent with our paradigm that agents do not decide whether
they accept or reject the mechanism but rather that they either accept the
mechanism or delay their acceptance decision. Indeed, apart from tech-
nical details, our following analysis is unchanged with the related in�nite
participation games, i.e. if {li}i=1,...,m with m = ∞ is an in�nite ordered
list of agents, where an in�nite delay for the agents in N \ S, given that
agents in S gave their consent, results in the implementation of the outcome
(a(S), t(S)). Participation games with a �nite number of nodes and a unique
opportunity to accept the mechanism at a given stage have been chosen to
ease the backward induction argument and the presentation.

Let G =
⋃

S⊂N G(a, t, S, β) be the set of all participation games and
GPI ( G the subset of the participation games with perfect information,
i.e. the set of current participants is publicly revealed at the disclosure
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node. Since the number of participation games is �nite, the parameter-space
of the game they are playing about which they are uncertain is compact.
Then we can build a universal type space Ω à la Mertens-Zamir [19] to
represent agents' beliefs in the participation game (respectively ΩPI with
perfect information). Hence, our analysis does not hinge on any speci�c
bidders' beliefs about irrelevant details of the participation process.

Then we assume that, whenever possible, beliefs are updated according
to Bayes' rule. When an agent (or the Nature) provides the evidence to some
agents that he has accepted the mechanism then their �rst-order beliefs are
then stuck to the probability one that he has accepted the mechanism.

5 Optimal Design under robust sequential individ-

ual rationality

We now de�ne a rationality constraint that removes the dependence of
the participation decisions on the exact structure of the participation game
and the corresponding beliefs of the agents.

De�nition 2 • A mechanism (a, t) is robustly sequentially individually
rational (respectivelly robustly sequentially individually rational with
perfect information) if (a(N), t(N)) is the �nal outcome in any sub-
game perfect equilibrium of any participation game (with perfect infor-
mation) g ∈ G(a, t, S, β).

• A mechanism is implementable (with perfect information) if it is fea-
sible and robustly sequentially individually rational (with perfect infor-
mation).

• A mechanism (a, t) is implementable under simultaneous participa-
tion if it is feasible and if full participation is an equilibrium of the
simulatenous participation game, i.e. if participation is a best response
conditionally on the participation of all the other agents.

The sets of implementable, implementable with perfect information and
implementable under simultaneous participation are respectively denoted by
,ג PIג and .simג Note that our implementation concept under simultaneous
participation is milder than the dominant strategy implementation concept
according to which Jehiel et al. [13] shows that the principal obtains full
extraction of the optimal threats under complete information.

Note the di�erence of the `order independent' nature of our implementa-
tion concept with the `order independent equilibrium' concept of Moldovanu
and Winter [20]. In a nutshell, [20] considers strategy pro�les that are an
equilibrium independently of the speci�c structure of their coalition forma-
tion game. Here we consider �nal outcomes, more precisely the outcome
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(a(N), t(N)) derived from full participation, that are the equilibrium out-
come of any equilibrium independently of the speci�c structure of the par-
ticipation game and agents' initial beliefs.

5.1 Participation processes with perfect information

Proposition 5.1 A mechanism (a, t) is implementable with perfect infor-
mation if and only if it is feasible and for any S ⊂ N

max
i∈N\S

{V a(N)
i − ti(N)− V

a(S)
i } ≥ 0 (1)

Proof 1 We �rst prove the `Only if ' part. Suppose that (a, t) is imple-

mentable and that there exists a subset S such that V
a(N)
i −ti(N)−V

a(S)
i < 0

for any agent i ∈ N \S. Then consider a participation game g ∈ G(a, t, N, β)
where β is such that it is common knowledge among the agents in S believe
that the agents in N \ S have accepted the mechanism. Hence, agents in S
are playing as in a participation game in G(a, t, S, β) where it is common
knowledge that the agents in N \ S have accepted the mechanism. At any
node where he is the last responder, the best response of an agent in S is
to refuse the mechanism (if he accepts, the only equilibrium outcome is full
participation since we have assumed that (a, t) is implementable). By back-
ward induction, the best response of an agent in S at any node is to delay.
Consequently, any subgame perfect equilibrium of the game g leads to the
non-participation of the agents in N \ S which raises a contradiction.

The su�ciency part is proved by induction on the cardinality of the set of
the agents that have already accepted the mechanism. The initial step where
this set has the cardinality n is immediate. Now consider that all agents in

S ( N have accepted the mechanism and suppose that maxi∈N\S {V
a(N)
i − ti(N)− V

a(S)
i } ≥

0. By the induction hypothesis, we obtain that every agents accept the mech-
anism in any subgame perfect equilibrium of any subgame {gi}i=1,...,m of the
participation game g ∈ G(a, t, S, β). It remains to show that, for any game
g ∈ G(a, t, S, β), it cannot belong to any equilibrium path that all agents
refuse the mechanism at the responder nodes {li}i=1,...,m. In such a case, the

agent i such that V
a(N)
i − ti(N) − V

a(S)
i ≥ 0 has a pro�table deviation: he

accepts (with probability one) the mechanism when he is the responder, i.e.
for a responder node such that lk = i, which exists from the structure of the
participation game. Note that in the case where he believes that the equilib-
rium outcome is still full participation if he delays, then he prefers strictly
to accept immediately the mechanism as it has been assumed.

The inequality (1) with S = N \ {i} corresponds to the standard indi-
vidual rationality constraint of agent i in the standard mechanism design
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approach under a simultaneous participation game. Thus the lack of com-
mitment in the participation game results in a limitation of the set of imple-
mentable mechanisms. On the other hand, in an externality-free framework,
the standard individual rationality constraints V

a(N)
i + ti(N) ≥ V

a(N\{i})
i

imply that V
a(N)
i + ti(N)− V

a(S)
i ≥ 0 for any S and any i ∈ N \ S, the in-

equalities (1) are thus satis�ed. Those points are summed up in the following
corollary.

Corollary 5.2 Any implementable mechanism with perfect information is
implementable under simultaneous participation. In an externaltity-free frame-
work, the converse holds: a mechanism that is implementable under simul-
taneous participation is implementable with perfect information.

In the previous literature on mechanism design (with possibly incom-
plete information), the set of constraints that makes a mechanism imple-
mentable, i.e. feasibility, incentive compatibility and individual rationality
constraints, results from inequalities that are linear according to the mech-
anisms (a, t).5 Thus the set of the mechanisms that are implementable is
a convex set. Moreover, the payo� of the principal depends linearly on the
mechanism. From an optimal design perspective, there is thus no loss of gen-
erality to consider mechanisms that are symmetric if agents are symmetric.
Suppose that a given asymmetric mechanism m is optimal. Then consider
the permutations mσ of this mechanism where σ ∈ Σ(N). By symmetry,
those mechanisms implement the same revenue for the principal. Finally,
the mechanism 1

n!

∑
σ∈Σ(N) mσ implements the same revenue in a symmetric

way. On the contrary, the robust sequential individual rationality constraint
results from inequalities involving the maximum of some linear maps and
is thus not linear. Let us reconsider our simple example to illustrate the
possible non-convexity of the set of implementable mechanisms.

Example 5.1 A simple example (suite) Let a(S) = 1, t1(S) = V and
ti(S) = 0 if i 6= 1 in the event where 1 ∈ S and 2 /∈ S. Let a(S) = 0,
ti(S) = 0 for any i ∈ N in the event where 1 /∈ S. Let a(S) = 3, t1(S) = 0,
t2(S) = α and let t3(S) = v, if S = {1, 2, 3} and a(S) = 0, t1(S) = 0,
ti(S) = α for any i ∈ N in the event where S = {1, 2}. It is easily checked
that this mechanism is feasible. Agents 1 and 3 obtain the same utility level
(zero) independently of the �nal set of participants. Thus the inequalities (1)
are satis�ed if either 1 or 3 belongs to N \S. Thus, it remains to check that
the inequality (1) is satis�ed if S = {1, 3}. Finally, the mechanism (a, t) is
implementable. The mechanism (a′, t′) where the roles of 1 and 2 have been

5The implicit space structure according to which linearity applies is the following. For
two mechanisms, (a, t) and (a′, t′) and a real number λ ∈ [0, 1], the mechanism λ · (a, t)+
(1 − λ) · (a′, t′) is the mechanism that implements the mechanism (a, t) (respectively
(a′, t′)) with probability λ (resp. (1− λ)).
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switched is implementable by symmetry. Now consider the mechanism where,
at a terminal node, each mechanisms (a, t) and (a′, t′) are implemented with
probability one half. This mechanism is of course feasible. Nevertheless,
it is not robustly sequentially individually rational. The constraint (1) with
S = {3} is violated. If agents 1 and 2 do not jointly participate, they obtain
a null payo�. On the contrary, under full participation, their expected payo�
is equal to −α

2 . Indeed the (e�cient) mechanism (a, t) is the optimal design
as it will appear as an application of proposition 5.3.

There is no loss of generality to invite all agents to the mechanism since
the set of feasible allocations does not shrink when some participants are
added (Assumption 1). It su�ces to extent the mechanism to the additional
agents such that they do not modify the �nal outcomes and that they receive
no transfer. The optimal design program is thus:

max
(a,t)

V
a(N)
0 +

n∑
i=1

ti(N)

subject to

∀S ⊂ N, max
i∈N\S

{V a(N)
i − ti(N)− V

a(S)
i } ≥ 0,

where (a, t) is a feasible mechanism.
Nevertheless, in this form, the program is hardly tractable and it is un-

clear whether the optimal design is e�cient. We simplify the program by
showing that there is no loss of generality to restrict the maximisation to
a subclass of implementable mechanisms which are fully characterized by
a couple (α, σ) ∈ A × Σ(N). Let us introduce a last useful notation: for
a given set S ⊂ N and a permutation σ ∈ Σ(N), denote by j(S, σ) the
smallest agent according to the order σ that is not belonging to S. For-
mally, j(S, σ) = max {j ∈ N |T σ

j ⊂ S}. This agent plays a key role in the
subclass that we de�ne below and such that if the set of participants is S,
the principal will in�ict the minmax punishment to the agent j(S, σ).

De�nition 3 For (α, σ) ∈ A × σ(N), we de�ne the (α, σ)- optimal threat
mechanism as the mechanism (a, t) de�ned in the following way:

• a(N) = α

• a(S) = a∗j(S,σ)(S), if S ( N

• ti(N) = V α
i − V ∗

i (T σ
σ−1(i))

• ti(S) = 0, if S ( N

14



Those mechanisms can be interpreted in the following way: take one
agent, σ(1), and give him the incentive to participate independently to the
participation decision of the other agents by using the optimal threat among
A(∅) ; then take another agent, σ(2), and give him the incentive to partic-
ipate taken as given that σ(1) surely participates and independently to the
participation decisions of the other agents in N \{σ(1)} by using the optimal
threat among A({σ(1)}) ; and so on. In particular, for the last agent, σ(N),
in this new order σ, the principal uses the optimal threat in A(N \ {σ(N)})
as in the standard literature with simultaneous participation.

We �rst show that this restricted class of mechanisms is a subset of the
implementable mechanisms.

Lemma 5.1 Any (α, σ)- optimal threat mechanism is implementable.

Proof 2 It is immediately feasible by de�nition of a∗j(S,σ)(S) which is the

minmax punishment for agent j(S, σ) given the participation set S. Consider
S ⊂ N and the agent j(S, σ) who does not belong to S. We have:

V
a(N)
j(S,σ) − tj(S,σ)(N)− V

a(S)
j(S,σ) = V ∗

j(S,σ)(T
σ
σ−1(j(S,σ)))− V ∗

j(S,σ)(S) ≥ 0

The equality comes from the de�nition of tj(S,σ)(N) and because a(S) =
a∗j(S,σ)(S). The inequality is satis�ed because T σ

σ−1(j(S,σ)) = {σ(1), . . . , σ(j(S, σ)−
1)} ⊂ S (the inclusion comes from the de�nition of j(S, σ)). Thus we have
proved that the inequality (1) holds for any S ⊂ N .

Then we show that there is no loss of generality to look for an (α, σ)-
optimal threat mechanism to solve the optimal design program.

Proposition 5.3 For any implementable mechanism (a, t), there exists an
implementable mechanism that belongs to the class of (α, σ)- optimal threat
mechanisms and that raises at least the same utility level for the principal.
The optimal design program becomes:

max
(α,σ)∈A×σ(N)

{
n∑

i=0

V α
i −

n∑
i=1

V ∗
i ({σ(1), . . . , σ(σ−1(i)− 1)})

}
(2)

Proof 3 For a given mechanism (a, t), we de�ne a corresponding (α, σ)- op-
timal threat mechanism in the following way: α = a(N), σ is de�ned by in-

duction such that σ(1) = Arg maxi∈N {V a(N)
i − ti(N)− V

a(∅)
i } (initial step)

and σ(i) = Arg maxi∈N\{σ(1),...,σ(i−1)} {V
a(N)
i − ti(N)− V

a({σ(1),...,σ(i−1)})
i }

(inductive step). The map σ is by de�nition a permutation. From lemma
5.1, the (α, σ)- optimal threat mechanism is implementable. It remains to
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show that it raises a greater utility for the principal than the original mech-
anism (a, t). More precisely, the principal implements the same economic

outcome and extracts more surplus from each agent. Let t(α,σ)
i (N) be the

transfer for agent i in the (α, σ)- optimal threat mechanism at equilibrium.
We have:

t(α,σ)
i (N) = V

a(N)
i − V ∗

i (T σ
σ−1(i)) ≥ V

a(N)
i − V

a(T σ
σ−1(i)

)

i ≥ ti(N)

The �rst equality results from the de�nition of t(α,σ)
i (N) and that α = a(N).

The �rst inequality comes from the de�nition of the map V ∗
i (.) and since

a(T σ
σ−1(i)) ∈ A(T σ

σ−1(i)). The last inequality results from our subtle construc-

tion of σ and the inequality (1) for the set T σ
σ−1(i). This latter inequality states

that maxj∈N\{σ(1),...,σ(σ−1(i)−1)} {V
a(N)
j − tj(N)− V

a({σ(1),...,σ(σ−1(i)−1)})
j } ≥

0 if (a, t) is implementable. The construction of σ(i) guarantees that the

expression in the `max' is positive for j = σ(i), i.e. V
a(N)
σ(i) − V

a(T σ
σ−1(i)

)

σ(i) ≥

tσ(i)(N). To sum up, we have proved that α = a(N) and t(α,σ)
i (N) ≥ ti(N)

for all agents. The utility level of the principal is thus higher in the (α, σ)-
optimal threat mechanism we have constructed than in (a, t).

The optimal program (2) allows us to separate the choice of the �nal
outcome α to the choice of the optimal threat structure, which is indeed
reduced to the choice of a permutation that speci�es the order according to
which agents will be threat taken as given the participation decision of the
agents that are lower in this order. The optimal choice of α thus coincides
with the maximisation of the allocative e�ciency.

Corollary 5.4 Optimal robustly sequentially individually rational feasible
mechanisms are e�cient.

The expression (2) of the utility level of the principal should be compared
with the standard expression under simultaneous participation:

max
α∈A

{
n∑

i=0

V α
i

}
−

n∑
i=1

V ∗
i (N \ {i}) (3)

In general, the possibility to commit to a simultaneous participation
game leads to a greater payo� for the principal since V ∗

i (S) is decreas-
ing in S. Under robust sequential individual rationality and in an (α, σ)-
optimal threat mechanism, the set of implementable threats is reduced to
V ∗

σ(i)({σ(1), . . . , σ(i − 1)}) for the agent σ(i) . Nevertheless, in a negative-
externality-free framework, the optimal threat V ∗

i (N \{i}) against agent i re-
quires economic an outcome a that is always feasible independently to the set
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of participant, i.e. a ∈ A(∅), and is thus always equal to V ∗
i ({σ(1), . . . , σ(σ−1(i)−

1)}). We obtain the following corollary:

Corollary 5.5 In a negative-externality-free framework, the optimal rev-
enue under simultaneous participation can be implemented under robustly
sequentially individually rationality.

5.2 Participation processes with imperfect information

The optimal design derived in Proposition 5.3 extends to a general infor-
mation states structure with partial observability of participations decisions
but where participants can strategically disclose evidence that they have ac-
cepted the mechanism. We exclude any strategic disclosure by the seller of
evidence on participation decisions to remain coherent with our assumption
that the seller can not control the participation process. It would not alter
the following result.

Proposition 5.6 The optimal outcome (a(N), t(N)) implementable with
perfect information is implementable for any participation process with pos-
sibly imperfect information.

Proof 4 The construction is exactly the same as with perfect information
with only an additional care on the transfers ti(S) when S is a strict subset
of N . Remind that those transfers did not play any role with perfect infor-
mation. A mechanism that is implementable with perfect information may
not be implementable in general because some agents may prefer to partic-
ipate without disclosing this information. There may exist some subgame
perfect equilibria where agents uses mixed strategies leading in some cases to
incomplete participation. Nevertheless, if the transfers with incomplete par-

ticipation are su�ciently high, e.g. ti(S) > ti(N)−V
a(N)
i +V

a(S)
i for S ( N ,

then it guarantees that any participant would disclose that he has accepted
the mechanism, if there were a terminal node with incomplete participation
in the equilibrium path.

5.3 A maxmin foundation

In the same way as a maxmin principal which is uncertain about agents'
beliefs lays the foundation of dominant strategy implementation (see Chung
and Ely [4]), our implementation concept requires that full acceptance is the
only equilibrium for any kind of beliefs for the agents. Moreover, we made the
somehow ad hoc assumption that the mechanism's outcomes depend only on
the set of participants and so that agents can not report their beliefs. With a
maxmin decision maker, that maximizes the worst-case performance, there
is no loss of generality to search for a detail-free optimal design where a
participant does not report any message.
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Proposition 5.7 The use of implementable mechanisms has a maxmin foun-
dation; i.e.,

sup
(a,t):Ω∗→A×RN

(a,t)feasible

inf
µ∈M(Ω∗)

Eω[V a(ω)
0 +

n∑
i=1

ti(ω)] = sup
(a,t)∈ג

V
a(N
0 ) +

n∑
i=1

ti(N),

where M(Ω∗) is the set of all probability measures on Ω∗. The same equality
holds for by replacing Ω and ג by respectively Ω∗

PI and PIג .

Proof 5 Suppose that we can implement a higher revenue with a more com-
plex mechanism with a arbitrary set of messages. Hence, by proposition 5.1,
there is a set S such that the constraint (1) is violated. If it is common
knowledge among the agents in N \ S that there are playing a given partic-
ipation process where the agents in S have already accepted the mechanism,
then any subgame perfect outcome involves nonparticipation of the agents in
N \ S. Thus we have raised a contradiction.

6 Examples

As illustrated by our starting example, an important class of applications
where our new rationality constraints are binding is auctions with negative
externalities as in [12, 13, 14, 7, 9]. The scope of application may seem quite
limited since the optimal design is unchanged in a negative-externality-free
framework. Our two following examples show how robust sequential individ-
ual rationality may be fruitful �rst to model general collusion mechanisms
and second contracting in dynamic environments when long-term contracts
are not available.

6.1 Example 1: The design of collusion mechanisms

In the recent mechanism design literature on collusion as in Che and Kim
[3], one agent or a third party proposes a mechanism that can be vetoed
by each agent. When an agent breaks the collusion process, the game is
played in a non-cooperative way under passive-beliefs. Thus contrary to
the mainstream mechanism design literature, the principal is signi�cantly
limited in the way she can punish non-participants. In an auction framework,
Caillaud and Jehiel [1] relax slightly this veto power assumption by also
considering the case where a defection leads to a collusive report from the
agents that are remaining in the collusion process. Dequiedt [8] considers
that the remaining agent can commit to the harsher punishment if the other
agent refuses the collusion mechanism. The reluctance to adopt the standard
mechanism design approach to model collusion may come from the seemingly
excessive commitment power that it requires and which is slightly softened
under our approach.
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Let us discuss those di�erences in a simple example under complete in-
formation: a symmetric triopoly under Cournot competition. Each �rm has
a constant null marginal cost and a maximum capacity qmax = 0.5. Inverse
demand is given by P = 1−Q, where Q denotes the total quantity supplied.
Without collusion, the quantity supplied by each �rm in equilibrium is equal
to 1/4 and the corresponding total pro�t of the triopoly is Πnc = 3/16.
The collusive outcome corresponds to the total production Q = 1/2 and the
joint pro�t Πcol = 1/4. Suppose that a collusion mechanism, which spec-
i�es the quantities produced by each participant and balanced monetary
transfers among participants for each possible set of participant, is proposed
by one �rm, say 1. Under complete information, all the di�erent models,
leads to the collusive outcome in the optimal mechanism. Nevertheless,
the distribution of the pro�ts from collusion that can be implemented are
very di�erent according to the model for collusion. Under veto power, an
assumption that is often made, each �rm is guaranteed to obtain her non-
cooperative pro�t 1/16. The proposer is able to capture all the rents from
collusion Πcol−Πnc = 1/16. At the other extreme as in Dequiedt [8], a non-
participant can be punished by the minmax punishment which leads here
to a null payo�: the two remaining participants commit to produce q = 0.5
which leads to a null price. Nevertheless, this mechanism may seem poorly
convincing since �rm 1 manages to extract all the surplus from trade (1/4)
from both �rms by threatening each to �ood the market with the help of
the other one. With our model, the maximal surplus that �rm 1 can extract
is intermediate: she can extract the full surplus only to one �rm and has
to leave the surplus 1/36 to the other one, the pro�t corresponding to the
Cournot outcome after the commitment to produce q = 0.5 by �rm 1. Thus
she should use a divide and conquer strategy.

6.2 Example 2: Dynamic processes of social and economic

interactions

Gomes and Jehiel [10] consider a model of dynamic interactions in com-
plete information where, at each period, an agent is selected to make an o�er
to a subset of the other agents to move the state of the economy. They do
not only assume that long-term contracts are not available but also restrict
the analysis to simple-o�er contracts where each approached agent can veto
the proposed move. Indeed, as they emphasize, this restriction is with no
loss of generality if a third party can coordinate the approached agents by
means of a `strong' collusion contract with transfers. With general contracts
-i.e. without any form of collusion- the economy moves immediately to the
e�cient state. On the contrary, with simple-o�er contracts, e�ciency is no
longer guaranteed. This negative result compared with the Coasian intuition
depends critically on the model for collusion. If collusion is modeled without
any monetary tranfers only by means of robust sequential individual ratio-
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nality, interpreted here as a mild collusion device, then the transposition
of corollary 5.4 in their framework restores e�ciency: all Markov Perfect
Equilibria of the economy with general spot contract that are robustly se-
quentially individually rational are e�cient, entailing an immediate move
to the e�cient state, where it remains forever. Note however that, under
our milder collusion device, the expected payo� of the selected proposer is
lower than with general contracts. At the other extreme, under a mildly
stronger form of collusion where the third party can also contract with non-
approached agents and where collusion is not observable by the proposer,
the economy also moves immediately to the e�cient state.

7 Concluding Remarks

We relax the commitment ability of the principal in some minimal way
and give some theoretical foundations for such a re�nement of the standard
mechanism design approach. The scope of application may seem relatively
restricted since the optimal design is unchanged in a negative-externality-
free framework. Nevertheless, jointed with other commitment failures as the
unability to commit not to propose a new mechanism if the �rst one fails to
work, e.g. the unability to commit never to attempt to resell the good if she
fails to sell it as in McAfee and Vincent [18] and Skreta [23], robust sequential
individual rationality may have some bite even in pure private value trading
framework without externality. For example, in a procurement auction, the
designer may be unable to set a high reserve price since this would trigger a
joint boycott of the main market participants that will force the designer to
propose a new mechanism.

Our sequential participation game can be also interpreted as a minimal
collusive device for the agents. The main contributions on collusion-proof im-
plementation [15, 16, 3] preclude any collusion on the participation decisions
themselves and restrict the collusive activity to the reports. In this litera-
ture, the collusion technologies allow agents to fully contract (with monetary
transfers) their reports to the principal. Surprisingly, Che and Kim [3] show
that optimal noncollusive mechanism can be made collusion-proof in a broad
class of circumstances including economic environment with (allocative) ex-
ternalities. Here our collusive device is much weaker: neither monetary
transfers nor binding agreements on the reports are available. Nevertheless,
it consists in a form of collusion that includes the participation decisions.
We show that in general, except when the framework is negative-externality
free, the principal may raise a lower revenue at the optimal design under this
device. It contrasts with the insights of Pavlov [22] and Che and Kim [2],
where the collusion mechanism proposed by a third party takes place before
the participation decisions, and where the second best is still implementable
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with collusion.6 Those papers consider the auction of a single item in the
independent private value framework and thus exclude any kind of external-
ity. We thus shed some light on the impact of collusion on participation -any
stronger collusive device as the ones in [8, 22, 2] above would only strengthen
our results- independently of any informational asymmetry.

Finally, we have restricted attention to a complete information setup.
It is left for further research how to extend the notion of implementation
under sequential participation processes in incomplete information in order
to analyse the interactions with the incentive compatibility constraints and
ask whether this constraint is bene�cial or not to the welfare. As for the
concept of rati�ability introduced by Cramton and Palfrey [6], incomplete
information requires a careful treatment of how agents revise their beliefs
relative to the participation decisions of their opponents.

6In this line, Dequiedt [8] is an exception: in a binary type environment, he shows that
asymmetric information do not prevent bidders to collude e�ciently, i.e. to act as a single
agent when the third party can manipule the participation decisions.
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