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Abstract

We slightly modify the Ausubel-Milgrom [3] Proxy Auction by
adding a �nal stage which possibly induces some discounts relative
to the �nal accepted bids of the `original' auction. The proxy auction
with �nal discounts is such that the outcome is a point in the bidder
optimal frontier of the Core. Then truthful reporting is an equilibrium
if and only if the Vickrey outcome is in the Core, a condition that is
necessary but not su�cient in the original version of the proxy auction
as illustrated by an example.

Keywords: Auctions, multi-unit auctions, Core, Vickrey implemen-
tation
JEL classi�cation: D44, D45

Abstract

Nous modi�ons légèrement l'enchère proxy d'Ausubel-Milgrom [3]
en ajoutant une étape supplémentaire qui correspond à des réductions
au regard des prix �naux par rapport à la dynamique de l'enchère
d'origine. L'enchère proxy avec des remises implémente une alloca-
tion dans la frontière des optima parétiens du Coeur. Reporter ces
préférences de manière sincère est alors une stratégie d'équilibre si et
seulement si l'allocation de Vickrey est dans le coeur, une condition
qui est nécessaire mais pas su�sante dans la version d'origine du mé-
canisme, comme nous l'illustrons par un exemple.

Mots-clés: Enchères, Enchères multi-unitaires, Coeur, Allocation
de Vickrey
Classi�cation JEL: D44, D45
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1 Introduction

Ausubel and Milgrom [3] (A&M henceforth) introduce an ascending proxy
auction which is supposed to combine the advantages from Vickrey insofar
as the e�cient allocation is implemented in dominant strategy and from �rst
price `menu' auctions insofar as it is robust to shill bidding and losers' de-
viation. On the one hand, robustness to losers' deviation is satis�ed very
generally and follows from the fact that the �nal outcome of the proxy auc-
tion belongs to the Core relative to the reported preferences. On the other
hand, truthful reporting is a dominant strategy only if the �nal outcome
is the Vickrey outcome. Since the outcome of the proxy auction lies al-
ways in the Core, this condition is satis�ed only if the Vickrey outcome lies
in the Core. However, A&M derives a stronger su�cient condition: imple-
mentation of the e�cient allocation in dominant strategy is obtained under a
buyer-submodularity condition, which is equivalent to the condition that the
Vickrey outcome lies in the Core for any set of bidders. Generically, it cor-
responds to the condition that goods are substitutes in assignment problems
without allocative externalities.

A natural question raised by A&M's analysis is then to characterize for
the ascending proxy auction the full set of preferences that implements the
e�cient outcome in truthful dominant strategy. The natural candidate are
preferences such that the Vickrey outcome is in the Core. However, A&M
do not clarify whether this condition is su�cient or not.

First, this note provides an example such that the Vickrey outcome is
in the Core but where the Ausubel-Milgrom proxy auction does not lead
to the Vickrey outcome. Second the main contribution of this note is to
propose a slight modi�cation of the auction by adding a �nal stage, where
the seller awards some discounts to the �nal prices, such that the mechanism
always leads to a bidder-optimal frontier outcome. Those �nal discounts are
a kind of `Vickrey�cation' of the proxy auction giving better incentives for
truthful reporting. For this modi�ed auction, and more generally for the
class of auctions leading to the bidder-optimal frontier, the set of preferences
such that truthful reporting is a Nash Equilibrium is perfectly characterized:
the Vickrey outcome must be in the Core. Without ambiguity, the �nal
discount stage is an improvement from A&M perspective: it enlarges the set
of bidders' preferences such that truthful reporting is an equilibrium whereas
the modi�ed auction keeps the desirable properties resulting from the `Core
membership' of the �nal outcome. Moreover, the truthful equilibrium of
the proxy auction with �nal discounts can be implemented by a dynamic
mechanism leaving some privacy about bidders' valuations. Finally, in the
background of our analysis, we clarify the status of the �nal outcome of
the `original' Ausubel-Milgrom proxy auction: it implements a payo� in the
weak bidder-optimal frontier relative to the reported preferences, i.e. some
-but not all- bidders' payo� may be raised such that the outcome remains in
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the Core.

Another strand of the auction literature uses a seemingly di�erent ap-
proach to reach dynamically the Vickrey allocation: Clock Auctions [8, 10,
6, 1, 2] are mimicking a Walrasian tâtonnement. Demange, Gale and So-
tomayor [8] and Gul and Stacchetti [10] propose dynamic auction mecha-
nisms with di�erentiated commodities which are converging to the smallest
Walrasian prices and truthful reporting is hence an equilibrium if and only
if those Walrasian prices coincide with Vickrey's. The Bikhchandani and
Ostroy [5]'s linear programming formulation of the assignment model allows
de Vries et al [7] to link the two approaches by interpreting the aforemen-
tioned clock auctions as a primal-dual algorithm and A&M's auction as a
subgradient algorithm.

Ausubel's clock auctions ([1, 2]) are implementing the Vickrey outcome
by means of an auctioneer whose announced prices are converging to a Wal-
rasian equilibrium price vector. However, contrary to [8, 10], a `clinching' rule
disconnects the prices that are paid with the closing prices of the auctioneer
making truthful reporting an equilibrium for a larger set of preferences. For
general valuations and for a larger class of ascending price auctions, Mishra
and Parkes [14] generalize the idea of using Walrasian prices to reveal pref-
erences and then to implement the Vickrey payo�s via price discounts. Our
�nal discount stage presents a similarity with such `clinching' rules: the
pricing rule gets closer to Vickrey's. We express our idea in the perspec-
tive of A&M's package auction. Nevertheless, as in [14], our discount stage
applies more generally, e.g. also for auctions corresponding to primal-dual
algorithms.

This note is organized as follows. Section 2 introduces the assignment
problem and the related Core concepts. Section 3 de�nes the algorithm which
concisely characterizes the Ausubel-Milgrom proxy auction. The algorithm
is the iteration of a mapping whose �xed points are Core outcomes. Section
4 gives an example where the �nal outcome is not in the bidder-optimal
frontier of the Core. Section 5 concludes by proposing the �nal discount
stage modi�cation and characterizes the set of preferences that renders the
truthful strategy an equilibrium.

2 Model and notation

There are N buyers (With a slight abuse of notation, N will represent
the set as well as the number of buyers) indexed by l = 1, . . . , N and a seller
designated by l = 0. For any set of buyers S ⊂ N , denote by S∗ the set
S ∪ {0}. Denote by M the �nite set of indivisible items to be auctioned.
We de�ne an allocation as an assignment of the items, denoted by A =
(A0,A1, · · · ,AN ) where Al ∈ M speci�es the items acquired by agent l.
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Denote by A the set of feasible allocations, i.e. such that
⋃

l∈N∗ Al = M
and Al ∩Ak = ∅. Each buyer l has a valuation vector Πl = (Πl(A),A ∈ A),
where Πl(A) ≥ 0 speci�es the value of allocation A to bidder l. Denote by
Π := (Π1, . . . ,ΠN ) the vector of all buyers' types. As in A&M, we limit and
simplify the set of preferences by the following assumptions.

First, we consider a private values framework where each agent is pri-
vately informed about his preferences and where one's valuation depends
solely on his private signal and not on his opponents' signals. Hence, we
exclude any informational externality. Second, we exclude any allocative ex-
ternality: an agent's valuation on an assignment depends solely on the set
of items that he acquires. Third, we consider that the seller is indi�erent
to the �nal allocation.1 Fourth, we consider that a buyer obtains his lowest
valuation when he acquires no item2. Fifth, we consider that agents are risk
neutral.

To summarize, if bidder l ∈ N pays a bid bl(A) such that the allocation
A is chosen, then he earns a net payo� of Πl(A) − bl(A), where Πl(A)
depends only on Al. On the other hand the seller's payo� is her revenue∑

l∈N bl(A). The payo� of a bidder who acquires nothing and pays nothing
is thus normalized to zero.

We de�ne a (feasible) outcome as an N + 1-uple (A, (bl)l∈N ) where A is
the allocation chosen and bl the price paid by buyer l to the seller. Equiv-
alently, a vector of net payo�s (πl)l∈N∗ , such that there exits an alloca-
tion A such that

∑
l∈N∗ πl =

∑
l∈N∗ Πl(A),will be referred to as a (fea-

sible) outcome. Given a set of players and of preferences, we face an al-
location problem {N, (Πl)l∈N}. Our perspective is to implement the e�-
cient allocation denoted A∗, which maximizes the total welfare, i.e. A∗ ∈
Arg maxA∈A {

∑
l∈N Πl(A)}.

As a useful tool for the following analysis, we �rst characterize the coali-
tional form game (N∗, w) associated with the allocation problem {N, (Πl)l∈N},
where N∗ is the set of players and w is the coalitional value function. For
any coalition of buyers S ⊂ N , w is de�ned by the following expression:

w(S∗) = max
A∈A

∑
l∈S

Πl(A) ; w(S) = 0

In particular, it means that if the seller is not a member of the coalition,
then the coalition obtains no items.

1Indeed, all the analysis can be extended to a framework with allocative externalities
provided that non-purchasers are indi�erent to the �nal assignment, i.e. they can `escape
to the moon' in Jehiel and Moldavonu's [12] terminology, and a non-neutral seller pro-
vided that she is not strategic. The generalization of the proxy auction with allocative
externalities has been investigated by Ranger [15].

2This is a weaker form of the `free disposal' assumption made in A&M and Ranger
[15]. It is indeed su�cient in their analysis.
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Then we de�ne the set of core outcomes, denoted by Core(N∗, w), related
to this coalitional value function w:

Core(N∗, w) =

{
(πl)l∈N∗ | (a) :

∑
l∈N∗

πl = w(N∗); (b) : (∀S ⊂ N∗) w(S) ≤
∑
l∈S

πl

}

(a) is the feasibility condition meaning that a Core outcome implements the
e�cient allocation, whereas inequalities (b) mean that the payo�s are not
blocked by any coalition S.

Remark 2.1 The outcome resulting from a transfer of payo�s from a given
buyer l to the seller remains in the Core if the initial outcome is in the
Core and provided that πl remains nonnegative. This comes from the fact
that inequalities (b) when 0, l ∈ S are not altered, whereas such inequalities
with 0 /∈ S are always satis�ed provided that πl ≥ 0, i.e. the individual
rationality constraint is satis�ed, and that inequalities (b) with l /∈ S are
only strengthened. In particular, the outcome such that π0 = w(N∗) and
πl = 0 for all l = 1 . . . N belongs to the Core which is thus non empty.

Another speci�c outcome is the Vickrey outcome, denoted by πV :=
(πV

l )l∈N∗ , such that buyer l's payo� πV
l equals to w(N∗)−w(N∗ \ {l}) and

the seller receives the revenue πV
0 = w(N∗) −

∑
l∈N πV

l . A main issue in
the analysis of the Ausubel-Milgrom proxy auction is whether the Vickrey
outcome is a Core outcome. This is equivalent to the fact that the set
of Pareto-optima from the perspective of the buyers is a singleton (A&M
theorem 6). This set will be quali�ed as the bidder-optimal frontier of the
core.

De�nition 1 The bidder-optimal frontier (respectively the weak bidder-optimal
frontier) of the core is the set containing the elements (πl)0≤l≤N∗ ∈ Core(N∗, w)
such that there exists no outcome (π′l)0≤l≤N∗ ∈ Core(N∗, w) with π′l ≥ πl

for all l = 1 . . . N and such that at least one inequality is strict (respectively
with π′l > πl for all l = 1 . . . N).

On the one hand, the bidder-optimal frontier is a standard concept in
the literature. In particular, Berheim and Whinston [4] have established
that the outcomes of the coalitional-proof equilibria of the �rst price `menu'
auction coincide with the bidder-optimal frontier. On the other hand, we are
not aware of any previous work in multi-unit auctions that focuses on the
weak bidder-optimal frontier. Nevertheless, we show in next section that, in
general, the Ausubel-Milgrom proxy auction ends in the weak bidder-optimal
frontier.

A&M has introduced a condition that makes truthful reporting a domi-
nant strategy in the ascending proxy auction: buyer-submodularity.
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De�nition 2 (Buyer submodularity) The coalitional value function w is
buyer-submodular if for any l ∈ N and any coalitions S and S′ satisfying
l ∈ S ⊂ S′ ⊂ N , we have

w(S∗)− w(S∗ \ {l}) ≥ w(S′∗)− w(S′∗ \ {l})

The term w(S∗)−w(S∗ \ {l}) represents the surplus associated with the
presence of bidder l in the coalition S∗. It is a kind of `substitutes' condition:
the bidders should be viewed as substitutes insofar as the surplus associated
with the presence of a bidder is non-increasing with the set of competitors.

3 The Ausubel-Milgrom proxy auction

We �rst de�ne the ε-Ausubel-Milgrom proxy auctions (ε > 0). The
Ausubel-Milgrom proxy auction is the mechanism de�ned by taking the limit
ε → 0.3 As in A&M, those sealed bid mechanisms can be viewed as the out-
come of the ascending package auction where each bidder l has instructed
a `proxy agent' that bids on his behalf according to a straightforward bid-
ding strategy parameterized by ε which re�ects the increment used by the
bidders to reduce their target pro�t. Indeed what is below referred to as the
Ausubel-Milgrom proxy auction is a speci�c version of the family of proxy
auctions de�ned by A&M. Considering the whole family would not modify
the insights but introduce cumbersome notation. A&M slackens their anal-
ysis by considering a family of straightforward bidding strategies. Here we
give more structure to the de�nition of the straightforward strategies used
by proxy bidders. In A&M, the parameter ε corresponds to the upper bound
on the bid increments. Here it re�ects the increment used for target pro�t
reductions. Furthermore, A&M restricts their analysis to the limit ε → 0,
whereas all our results are valid for any increment ε.4

De�nition 3 The ε-Ausubel-Milgrom proxy auction (Aε, bε) is the function
mapping Π, the vector of reported valuations, into an outcome in A × RN

3The outcome of ε-generalized ascending proxy auctions lies in the compact set of
feasible and individually rational payo�s. So there exists a sequence (εn)n∈N such that the
limit exists.

4Note also that the ascending proxy auction in A&M is not fully characterized: the
�nal outcome still remains ambiguous (except under the buyer-submodularity condition).
In their de�nition of the proxy auction, they consider the limit where the upper bound
of bid increments are negligibly small ε → 0. For example, each bidder could use in its
straightforward strategy a di�erent increment εl such that εl = λl · ε. Up to a normaliza-
tion, each speci�c choice of (λl)l=1,··· ,N de�nes a speci�c mechanism at the limit ε → 0.
Implicitly, our analysis is restricted to a uniform increment across bidders, i.e. λl = 1. To
convince himself that the Ausubel-Milgrom proxy auction is sensitive to the choice of the
increments, it is left to the reader to check that, in our example in section 4, if (λl)l=1,··· ,N

is chosen such that λ1 is su�ciently smaller than λ2 = λ3 = λ4, then the Ausubel-Milgrom
proxy auction (without �nal discounts) would converge to the Vickrey outcome unlike the
case with uniform increments.
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according to the following algorithm:

1 Initialization a := (∅, . . . , ∅); π̂l = maxA∈A Πl(A); y := 0
2 While y = 0 do
3 y := 1
4 for l = 1 to N do
5 if Πl(a) < π̂l

6 then π̂l := max {0, π̂l − ε} ; y := 0
7 bl(A) = max {0,Πl(A)− π̂l} (∀l ∈ N,∀A ∈ A)
85 a := Arg maxA∈A

(∑N
l=1 bl(A)

)
9 Aε(Π) := a; bε

l (Π) := bl(a)

The function mapping (a, (π̂l)l∈N ) ∈ A × R+N into itself according to
the preceding loop `while' (lines 2-8) is quali�ed as the T ε − mapping. The
numbers π̂l are referred to as target pro�ts. For a bidder l, if bl(A) =
Πl(A)− π̂l, then allocation A is referred to as a target allocation relative to
bidder l.

Note that the N + 1-uples (a, (π̂l)l∈N ) are not necessary (feasible) out-
comes. That is the reason why we use the `hatted' π̂ for target pro�ts instead
of π , which is the notation used for outcomes.

As in A&M, this algorithm could be interpreted as a dynamic auction
with the original buyers represented by proxy bidders whose strategies are
entirely determined by the reports Πl to the proxy. We comment then the
algorithm in this perspective. At each round of this relating dynamic auction
algorithm (i.e. for each iteration of the loop `while') and for each bidder l,
there are two kind of allocations. First, there are the target allocations for
which the pro�t equals to the target pro�t π̂l if this allocation is chosen by
the seller. The target pro�t π̂l also corresponds to the highest pro�t that is
conceivable at the current round for agent l (for any possible continuation of
the algorithm). Second, there are the allocations for which the pro�t is less
than the target pro�t and for which the bids are still null (line 7).

Given the current bids of the proxies, the algorithm chooses a current
allocation which maximizes the auctioneer's payo�, i.e. that maximizes the
sum of all agents bids (line 8).

The tricky part of the algorithm is the dynamic revision of the bids
by the proxies (line 4-7). Two events may arise for bidder l when his is

5In the event of a tie between di�erent allocations, we assume at least that the e�-
cient allocation is chosen if available. This tie-breaking rule, that is not made in A&M,
guarantees that the algorithm stops exactly when it reaches the Core. This is just a tech-
nical trick that guarantees that the weak bidder-optimal frontier are �xed points of the
T ε −mapping . Otherwise, the algorithm would stop anyway when it reaches the interior
of the Core.
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asked to revise his bids. First, the current allocation chosen is a target
allocation (if Πl(a) ≥ π̂l), then he does not change his bids. Second, if the
current allocation is not a target allocation (if Πl(a) < π̂l, line 5), then
the buyer reduces his target pro�t by ε (line 6) (provided that his target
pro�t remains positive, else he stops at his null target pro�t), which roughly
corresponds to outbid ε on target allocations (line 7). When he reduces his
target pro�t, it possibly corresponds to bid on new allocations: the target
allocations sets are increasing sets as the algorithm goes along. For the other
allocations the bids are still sticking to zero. Such a strategy is referred to
as a straightforward bidding strategy in A&M. The algorithm stops when
no agent outbids his previous bids (in the algorithm, the binary variable y
re�ects this information: y = 1 meaning that all agents have been inactive
in the previous round.).

The rest of this section establishes the link between the �nal outcome
of the proxy auction with Core outcomes. A&M has proved that the proxy
auction terminates at a Core outcome which is roughly equivalent to the
fact that �xed point of T ε are in the Core. Hat�eld and Milgrom [11] show
that the Ausubel-Milgrom proxy auction is a cumulative o�er processes that
approaches the Core from above in term of bidders payo�s and ends at the
bidder-optimal frontier under a `substituability' condition. This condition
enables them to apply �xed point theorems in lattices: the Core has then a
lattice structure implying that the bidder-optimal frontier is a singleton and
thus that the Vickrey outcome is in the Core. Nevertheless, the intuition of
the tâtonnement from above is not restricted to such `substitutes' preferences
as will be stated in proposition [3.2] where we show that the �nal outcome
always converges to the weak bidder optimal frontier relative to the reported
preferences. Before, the following proposition characterizes the Core as the
set of �xed points of the map T ε, an approach which is similar to Echenique
and Oviedo [9].

Proposition 3.1 The set of �xed points of the T ε −mapping are the Core
outcomes.

Proof 1 The following lemma provides another expression for the revenue
of the seller after the application of the T ε −mapping.

Lemma 3.1 The seller maximum revenue at the current allocation a that
maximizes her revenue when the vector of target pro�t is (π̂l)l∈N is given by:

π̂0 = max
a∈A

N∑
l=1

bl(a) = max
S⊂N

{
w(S∗)−

∑
l∈S

π̂l

}
(1)

Proof 2 This is a careful rewriting by reversing the order of the `max' op-
erator. For more details, refer to A&M pp. 20. The seller's maximization
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program can be viewed as two stages: �rst choose the set of buyers S that
will pay a strictly positive amount and obtain consequently a target alloca-
tion, second given this set of buyers choose the allocation that maximizes their
contribution. For the target allocations of buyers in S there is no distortion
between the bids and the preferences (they are all equal up to a constant) and
the second stage then consists in choosing the allocation they jointly prefer,
i.e. corresponding to the surplus w(S∗).

Suppose that (a, (π̂l)l∈N ) is a �xed point of the T ε − mapping. For any
�xed point, each bidder obtains his target pro�t, i.e. bl(a) = Πl(a) − π̂l.
Hence, for any other allocation a′, we have:∑

l∈N

Πl(a)−
∑
l∈N

π̂l =
∑
l∈N

bl(a) ≥
∑
l∈N

bl(a′) ≥
∑
l∈N

Πl(a′)−
∑
l∈N

π̂l

The �rst inequality uses the de�nition of allocation a which maximizes the
seller's revenue. The second inequality follows from the bidding strategy that
corresponds to the target pro�ts. The inequality between the two extreme im-
plies that allocation a is the e�cient allocation and the feasibility constraint
is then satis�ed. At a �xed point, target pro�t equals realized pro�t and equa-
tion (1) is satis�ed with π̂l = πl and the blocking constraints of the Core
are thus ful�lled. Finally we have proved that �xed points of T ε are Core
outcomes.

Now suppose that (a, (π̂l)l∈N ) is a Core outcome. Then we have both:∑
l∈N bl(a) = w(N∗)−

∑
l∈N π̂l and

∑
l∈N bl(a) ≥ w(S∗)−

∑
l∈S π̂l. Finally,

the maximum in equation (1) is reached for the coalition N , i.e. the entire
set of bidders receive their target pro�t. Hence, due to our tie-breaking rule
restriction (see footnote 5), the e�cient allocation is chosen and each agent
obtains his target pro�t. Finally, it means that no agent reduces his target
pro�t and then that the outcome is a �xed point

The ε-Ausubel-Milgrom proxy auction corresponds to the iteration of
the mapping T ε with the initial target pro�ts being equal to maxA Πl(A) for
each bidder l (line 1). For any increment ε, the target pro�t of each bidder
is decreasing along the path of the algorithm and is also decreasing from less
than ε at each step. Therefore, when the algorithm stops, target pro�ts are
distant of at most ε from the weak bidder-optimal frontier. We say that the
�nal outcome ε− approximates the weak bidder-optimal frontier according
to the following de�nition.

De�nition 4 An outcome (a, (πl)l∈N ) is said to ε − approximate a set K
if there is an outcome (a′, (π′l)l∈N ) in K such that a = a′ and |πl − π′l| ≤ ε
for any l ∈ N .
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Proposition 3.2 In the ε-Ausubel-Milgrom proxy auction, given the reported
preferences, the �nal outcome ε−approximates the weak bidder optimal fron-
tier of the Core. Consequently, the Ausubel-Milgrom proxy auction ends in
the weak bidder-optimal frontier.

Proof 3 Suppose that the �nal outcome (a, (πl)l∈N ) does not ε−approximates
the weak bidder optimal frontier of the Core. Suppose additionally that the
outcome (a, (πl + ε)l∈N ) is not in the Core. From standard convex analysis
(see in Rockafellar [16]), the Core is a polyhedral convex set and there exists a
hyperplane separating the Core and the singleton (a, (πl + ε)l∈N ). Thus there
is a point in the interval [(πl)l∈N∗ , (πl + ε)l∈N∗ ] which belongs to the bidder
optimal frontier raising a contradiction with (a, (πl)l∈N ) ε−approximating
the weak bidder optimal frontier. Finally we have proved that the outcome
(a, (πl + ε)l∈N ) is in the Core. Then as pointed by remark [2.1], the whole
cube {(a, (xl)l∈N )|πl ≤ xl ≤ πl + ε} is included in the Core. It means that,
in the previous round of the ε-Ausubel-Milgrom proxy auction, the state of
the algorithm was necessary in this cube, which raises a contradiction with
proposition [3.1] which states that the algorithm stops when it reaches a Core
outcome.

4 An Illustrative Example

The following example with 4 bidders and 2 identical items for sale with-
out externalities has several aims.6 First, it illustrates the dynamics of the
algorithm. Second, it gives an example where the �nal outcome is not in
the bidder-optimal frontier but only in the weak bidder-optimal frontier of
the Core. Third, it illustrates our proposal to add a �nal discount stage to
the Ausubel-Milgrom proxy auction. Thanks to the modi�cation, truthful
reporting is an equilibrium which leads to the single-valued bidder-optimal
frontier, hence the Vickrey outcome. On the contrary, thruthful reporting is
not an equilibrium in the `original' proxy auction in this example.

Bidder 1 is valuing 100 the �rst item and 0 an additional item, bidder 2
and 3 are identical and are valuing any additional item 60. For the moment,
the bidders have substitutes preferences. Let us introduce an additional

6Four is the minimal number of bidders such that Vickrey is in the Core (relative to the
whole coalition) and w is not buyer-submodular. The buyer submodularity condition is
equivalent to Vickrey being in the Core for each possible coalition (A&M theorem 7). Then
for less than two bidders, the equivalence between buyer-submodularity and Vickrey is the
Core is tautologic. For three bidders, Vickrey in the Core implies w(N∗)−w(N∗ \ {i}) ≤
w(N∗ \ {j})−w(N∗ \ {i, j}) (otherwise N∗ \ {i, j} would be a blocking coalition). Given
that w({0}) = 0, the remaining inequalities to obtain the buyer-submodularity are of the
kind: w({i, j}∗) ≤ w({i}∗) + w({j}∗). Those inequalities are always satis�ed without
externalities. Thus, for three bidders, Vickrey in the Core implies w buyer-submodular.
Obviously, two is also the minimal number of items for w not being buyer-submodular
without externalities.
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bidder 4 who has complement preferences: he values the bundle of the two
items 100, but values 0 a single item. Bidder 4 su�ers from complementarity.
Note that bidder 4 is neutral from a Vickrey implementation point of view:
he does not change the e�cient allocation which is to assign the items either
to the couple {1, 2} or to {1, 3} and to make both purchasers pay the amount
of 60. Bidder 4 is also neutral from a Core allocation point of view: he does
not modify the structure of the Core.

Core({1, 2, 3, 4}) =

{
(π̂l)0≤l≤N |

N∑
l=0

π̂l = 160; π1 ∈ [0, 40] ; π2 = π3 = π4 = 0

}
If bidder 4 were absent, then we could apply A&M's results since the

buyer-submodularity would be satis�ed. Consequently, the Vickrey outcome
would be in the Core and truthful reporting would be a Nash equilibrium
in the proxy auction. Nevertheless, the mere presence of bidder 4 disturbs
the dynamics of the auction. The �nal outcome is no longer the Vickrey
outcome.

Let us detail a little the dynamic of the auction which could be decom-
posed into three distinct stages which correspond to modi�cations in the
target allocation set for some agents. Just to �x ideas, consider that the
bid increment ε equals to 1 (but any smaller increment does not modify the
insights). Moreover, in case of ties (line 8 of the algorithm), say that the
allocations which favour the bidders with the smaller indexes are chosen. To
simplify the presentation, we just focus on �ve possible assignments: the
optimal assignments {1, 2} and {1, 3}, and the assignments {2}, {3}, {4}
which give both items to the related single bidder. Indeed those are the only
relevant assignments in the auction algorithm. Other assignments, such as
{1} or {2, 3}, are omitted in the following analysis of the target allocation
and received bids.

Stage 1: from round 1 to round 80 Initially, the target allocations of
bidder 1 are {1, 2} and {1, 3}. The target allocation of bidder 2 (respec-
tively 3 and 4) is {2} (respectively {3} and {4}). Each bidder adds the bid
increment 1 on his target allocations except when the chosen allocation is
one of those target allocations, i.e. three times out of four he actively bids
whereas one time out of four his target allocation is chosen. After round 80,
the submitted bids are those shown in table 1.

Stage 2: from round 81 to round 130 Now there is a change in the
target allocation set of bidders 2 (respectively 3): he is willing to bid for
assignment {1, 2} (respectively {1, 3}). Note that at the beginning of that
stage, bidder 1 has reached his Vickrey payo� and that consequently, if he
were now strategic, he should better not raise any incremental bid. Never-
theless his proxy bidder will do so. The reason is that he outbids when {4}
is the selected assignment. The precise dynamic of the selected allocation
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{1,2} {1,3} {2} {3} {4}
1 60 60 0 0 0
2 0 0 60 0 0
3 0 0 0 60 0
4 0 0 0 0 60

Table 1: Bids after round 80

follows a �ve period-cycle. Table 2 follows the �ve �rst rounds of this second
stage. For each round and for each (relevant) assignment, the �rst row re-
ports the set of agents that is raising an incremental bid on this assignment.
For example, at round 83, bidder 1 is raising his submitted bids for assign-
ment {1, 2} and {1, 3}, whereas bidder 2 (respectively 3) is raising his bid
on allocation {1, 2} (respectively {1, 3}). The second row reports for each
assignment the sum of submitted bids and the last column the revenue max-
imizing assignment that is selected. For example, at round 82, the allocation
{4} is the single revenue maximizing allocation and is therefore selected.

Round {1,2} {1,3} {4} Selected
81 3 4

60 61 61 {1,3}
82 2 4

61 61 62 {4}
83 1,2 1,3

63 63 62 {1,2}
84 3 4

63 64 63 {1,3}
84 2 4

64 64 64 {1,2}

Table 2: Incremental Bids for rounds 81-85

Then this stage ends at round 130 where the corresponding bids are
reported in table 3. The striking point is that bidder 1 has continued to par-
ticipate actively in the mechanism and has overbidden 10 above the Vickrey
outcome bid. He has overbidden as if bidder 4 were a `serious' opponent
against which he should �ght.

Stage 3: from round 131 to round 170 Now bidder 4's target pro�t is
null and he quits the auction. One of bidder 1's target allocation is always
selected such that from now on, bidder 1 does not raise bids anymore. The
auction terminate in a `duel' between agent 2 and 3. The �nal assignment
is either {1, 2} or {1, 3}. The �nal revenue is 130. All bids are reported in
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{1,2} {1,3} {2} {3} {4}
1 70 70 0 0 0
2 30 0 90 0 0
3 0 30 0 90 0
4 0 0 0 0 100

Table 3: Bids after round 130

table 4. Note that if bidder 1 were able to reduce slightly his submitted bids,
he would do so without modifying the payo�s of the other bidders but only
reducing the revenue of the seller.

{1,2} {1,3} {2} {3} {4}
1 70 70 0 0 0
2 60 0 120 0 0
3 0 60 0 120 0
4 0 0 0 0 100

Table 4: Bids after round 170

This suggest to add a stage to the generalized proxy auction where the
auctioneer reduce incrementally the bid of some bidders such that the re-
maining allocation still stay in the Core. This stage will be referred to as the
�nal discount stage. In our case, it is clear that such a discount for the win-
ner among 2 and 3 is impossible since the payo�s would be driven out of the
Core. On the other hand, the �nal discount stage will imply a reduction in
bidder 1's price: he will pay only 60. Indeed, 60 corresponds to the amount
that he should pay to internalize the externality imposed on his opponents.
Somehow clumsily, he has bid above 60 because bidder 1's proxy, at the be-
ginning, bid as if he should internalize the externality imposed only on his
opponents {4}, an externality which is stronger than the one he imposes on
the bigger set of opponents {2, 3, 4}. This is exactly those events that the
buyer-submodularity condition avoids.

{1,2} {1,3} {2} {3} {4}
1 60+ 60 + 0 0 0
2 60 0 120 0 0
3 0 60 0 120 0
4 0 0 0 0 100

Table 5: Bids after the discount to bidder 1

Indeed, it can be proved that the payo� of bidder l in the Ausubel-
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Milgrom proxy auction is at least minS⊂N w(S∗)− w(S∗ \ l).7 If minS⊂N w(S∗)− w(S∗ \ l) ≥
πV

l , then truthful reporting leads to the Vickrey payo�s and is thus a best
response for bidder l. The buyer-submodularity condition is a stronger one.
In our example, we have chosen precisely that minS⊂N w(S∗)− w(S∗ \ l) =
w({1, 4})− w({4}) = 0 < πV

l = 40.
Next section de�nes properly the �nal discount stage. Unambiguously,

such an additional stage gives better incentives for truthful reporting.

5 The Ausubel-Milgrom generalized proxy auction

with �nal discounts

The �nal discount stage that we propose for the ε-Ausubel-Milgrom proxy
auction intervenes when the previous mechanism has stopped: this stage does
not modify the �nal allocation but only the prices that will be paid at the
end. Instead of the �nal accepted bids for the �nal allocation, the bidders
will pay �nal discounted bids. Iteratively, for all winning bidders, bids on
all allocations are uniformly discounted provided that the �nal allocation
remains the revenue maximizing allocation. It should be emphasized that the
�nal discount stage is de�ned only from the �nal allocation and the entire set
of submitted bids in the last round. Thus it is de�ned without any reference
to the reported preferences to the proxy bidder. Hence, such a discount
stage could be implemented in the dynamic version of the ascending package
auction. Actually, the Ausubel-Milgrom generalized proxy auction with �nal
discounts falls within the class of ascending price auctions introduced by
Mishra and Parkes [14].

De�nition 5 (The Final Discount Stage) The �nal discount stage is the
function mapping (A∗, (bl(A))1≤l≤N,A∈A, i.e. the �nal allocation A∗ and the
entire set of submitted bids, into the outcome (A∗, (bl(A∗))1≤l≤N where the
�nal accepted bids are discounted according to the following algorithm:

for l = 1 to N do
if A∗

l 6= ∅
then do bl(A) := max {0, bl(A)− d}
where d is the largest number such that

A∗ ∈ Arg maxA∈A

(
max {0, bl(A)− d}+

∑N
k=1,k 6=l bk(A)

)
Remark 5.1 The �nal discount stage has not been presented in a symmet-
ric way: a bidder may �nd strictly advantageous to be selected at the �rst
iterations of the discount stage. A proper randomization makes the discount
stage symmetric.

7It is left to the reader to check that it is proved implicitly in the proof of A&M's
Theorem 8.
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The �nal discount stage could also be interpreted relative to the target
pro�ts: the discount d on submitted bids of bidder l is equivalent to the
increase in d of the target pro�t of bidder l. After a discount, the e�cient
allocation must remain the pro�t maximizing allocation: in the perspective
of lemma [3.1], it means that w(N∗)−

∑
l∈N πl = maxS⊂N w(S∗)−

∑
l∈S πl.

The preceding de�nition is illustrated in Figure [1a] and [1b]. Those
�gures show the dynamic of the Ausubel-Milgrom proxy auction in a two
dimensional target pro�t space of two selected bidders 8. Dashed lines depict
those dynamics starting from the initial target pro�t πMax where each bidder
obtains his most preferred allocation with a null bid and stoping at a point
in the weak bidder-optimal frontier. In both cases, the �nal outcome of the
Ausubel-Milgrom proxy auction is not in the bidder-optimal frontier and
the discount stage is an active stage illustrating how the proposal concretely
modify the outcome of the action. Fig [1a] is such that the Vickrey payo�
is in the Core. In this case, the `original' proxy auction does not implement
truthfully the e�cient assignement whereas the proxy auction with �nal
discounts does.

πMax πMax

The Core The Core

πV πV

A
M

D
yn
am

ic
s

Discount

AM
Dyn

ami
cs

Discount

Fig 1a: Vickrey in the Core Fig 1b: Vickrey outside the Core

We then prove that, from any point in the Core, the �nal discount stage
leads to a point in the bidder-optimal frontier. This is proved in two steps.
First, a bid discount iteration is such that the payo�s remain in the Core.
Second, we show that the �nal payo�s (πl)l∈N do not lie below the bidder-
optimal frontier. Otherwise, there is a bidder l such that his bids could be
discounted until a target pro�t π∗l > πl and such that the �nal allocation is

8With only two bidders, w is always buyer-submodular and the discounts have no e�ect
on the outcomes since the Vickrey outcome is directly implemented. From 3 bidders, the
discounts can possibly modify the �nal outcome: consider section 4's example and suppress
bidder 3 as an example.
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still the revenue maximizing one. Then, when it was bidder l's turn in the
�nal discount stage algorithm, bidder l's target pro�t should have been raised
until π∗l , which raises a contradiction since it has been raised only until πl.
Since the �nal allocation of the original ε-Ausubel-Milgrom proxy auction is
in the Core, the �nal discount stage applied to the ε-Ausubel-Milgrom proxy
auction leads to an outcome in the bidder-optimal frontier as stated in the
following proposition.

Proposition 5.1 In the ε-Ausubel-Milgrom proxy auction with �nal dis-
counts, given the reported preferences, the �nal outcome is in the bidder
optimal frontier of the Core.

Proof 4 It remains to prove the two aforementioned steps. A bid discount
is just a transfer between the seller and one bidder. Both outcomes share
the same �nal allocation A∗. Consequently, condition (a) in the de�nition
of the Core remains unchanged. Moreover the discounts are such that A∗ re-
mains the pro�t maximizing allocation relative to the target pro�t, then due
to lemma [3.1], inequalities (b) are still satis�ed. In a nutshell, the outcome
after a discount remains in the Core provided that the initial allocation is in
the Core.
Then it remains to prove that if the �nal outcome is strictly below the bidder-
optimal frontier, or equivalently if the bids of a bidder, say l, could be dis-
counted until a target pro�t π∗l , then it should have been discounted previ-
ously until that level in the algorithm, which raises a contradiction. Denote
by (πl)l∈N (respectively (π′l)l∈N ) the target pro�ts at the end of the �nal
discount stage (respectively just before bidder l's turn in the �nal discount
algorithm). For both target pro�t vectors, A∗ is the pro�t maximizing allo-
cation. Moreover, πl ≥ π′l since the continuation of the algorithm involves
only discounts in bids, or equivalently increases in the target pro�ts. We have
assumed above that the target pro�t vector (π1, · · · , πl−1, π

∗
l , πl+1, · · · , πN ) is

such that A∗ is still pro�t maximizing:9

w(N∗)−
∑

k∈N,k 6=l πk − π∗
l = maxS⊂N

{
w(S∗)−

∑
k∈S,k 6=l πk − π∗

l · I[l ∈ S]
}

.

Since πl ≥ π′l, we have:

maxS⊂N

{
w(S∗)−

∑
k∈S,k 6=l πk − π∗

l · I[l ∈ S]
}

+
∑

k∈N,k 6=l πk ≥

maxS⊂N

{
w(S∗)−

∑
k∈S,k 6=l π′

k − π∗
l · I[l ∈ S]

}
+

∑
k∈N,k 6=l π′

k.

We conclude that:
w(N∗)−

∑
k∈N,k 6=l π′

k−π∗
l ·I[l ∈ S] ≥ maxS⊂N

{
w(S∗)−

∑
k∈S,k 6=l π′

k − π∗
l · I[l ∈ S]

}
.

Consequently, for the target pro�t vector (π′1, · · · , π′l−1, π
∗
l , π

′
l+1, · · · , π′N ),

A∗ is the pro�t maximizing allocation. Thus we have raised a contradiction
with the course of the �nal discount stage.

If the Vickrey outcome is in the Core, then the ε-Ausubel-Milgrom proxy
auction with �nal discounts implements the Vickrey outcome under truth-

9Denote by I[l ∈ S] the indicator function equal to 1 if l ∈ S and else equal to 0.
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ful reporting since the bidder-optimal frontier is then a singleton coinciding
with the Vickrey payo�s (see A&M theorem 6). Hence truthful reporting is
a Nash equilibrium strategy pro�le if the Vickrey outcome is in the Core.
The converse statement results from the fact that if his opponents are truth-
ful, a bidder can guarantee himself his Vickrey outcome by one of his best
response's report: it corresponds to report the Vickrey pro�t as a target
pro�t. Thus we have proved the following corollary which is indeed true for
any mechanism that implements an outcome in the bidder-optimal frontier
relative to the reported preferences.

Corollary 5.2 Truthful reporting is a Nash equilibrium strategy pro�le if
and only if the Vickrey outcome is in the Core. Then the ε−Ausubel-Milgrom
proxy auction with �nal discounts leads to the Vickrey outcome.

In A&M, the truthful Nash Equilibrium is obtained for the mechanism
by taking the limit ε → 0. Otherwise, the mechanism ends generically in the
interior of the Core thus not at the Vickrey outcome. On the other hand,
note that our corresponding result for the proxy auction with �nal discounts
is true for any increment ε.

More generally, even if the Vickrey outcome is not in Core, then the
�nal stage brings the �nal outcome unambiguously closer to the Vickrey
outcome. According to Milgrom's [13] terminology, the Ausubel-Milgrom
proxy auction with �nal discounts is a core-selecting auction that provides
optimal incentives.
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