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Abstract

We consider standard auction models when bidders' identities are
not observed by the econometrician. First, we adapt the de�nition of
identi�ability to a framework with anonymous bids and we explore the
extent to which anonymity reduces the possibility to identify private
value auction models. Second, in the asymmetric independent private
value model which is nonparametrically identi�ed, we adapt Guerre,
Perrigne and Vuong [10]'s two-stage estimation procedure. Our multi-
stage kernel-based estimator achieves the optimal uniform convergence
rate when identities are observed.

Keywords: Auctions, asymmetric, nonparametric identi�cation, non-
parametric estimation, anonymous bids, uniform convergence rate
JEL classi�cation: D44, C14

Abstract

Nous considérons les modèles classiques d'enchères lorsque les iden-
tités des enchérisseurs ne sont pas observées par l'économètre. D'une
part, nous adaptons la notion d'identi�abilité à un cadre avec des
enchères anonymes et nous explorons dans quelle mesure l'anonymat
réduit les possibilités d'identi�cation des modèles à valeurs privées.
D'autre part, dans le modèle asymétrique à valeurs privées et indépen-
dentes, qui est identi�able nonparamétriquement, nous adaptons la
procedure dévelopée par Guerre, Perrigne and Vuong [10]. Notre pro-
cedure d'estimation en plusieurs étapes est optimale au regard du taux
de convergence suivant la norme uniforme.

Mots-clés: Enchères, Asymétries, Identi�cation nonparamétrique,
Estimation nonparamétrique, anonymat, taux de convergence uniforme
Classi�cation JEL: D44, C14
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1 Introduction

Motivated by the fact that the identities of the bidders are lacking to
the econometrician in some auction data either because this information is
con�dential or have been lost, or because submissions are structurally anony-
mous as in internet auctions, we consider a setup where bidders' identities
are not observed by the econometrician.1 At �rst glance, anonymity reduces
considerably the scope of the economic analysis and invites the econometri-
cian to assume that bidders are ex ante symmetric.2 On the other hand,
the presence of asymmetries has been the key determinant of many empir-
ical studies of auction data. In Porter and Zona [23, 24] and Pesendorfer
[22], the bidding behavior of alleged cartel participants is compared to the
ones of non-cartel bidders through reduced form approaches. In Hendricks
and Porter [11], neighbor �rms are shown to be better informed in auctions
for drainage leases. The aim of this paper is to lay the foundations of the
econometric of auctions under anonymous data and to show how we can deal
with asymmetric models. We adopt the so-called structural approach (see
Paarsch and Hong [21]) and focus on the private value single-unit auction
model.

First, we adapt the de�nition of identi�ability to a framework with anony-
mous bids by requiring the unique characterization of bidders' primitives up
to a permutation of bidders' identities. Then, in the spirit of La�ont and
Vuong [13] we explore the extent to which anonymity reduces the possibil-
ity to identify private value models in standard auctions with risk neutral
buyers.3 We show in Proposition 3.1 that anonymity prevents the identi�-
cation of the asymmetric a�liated private value model, contrary to Campo,
Perrigne and Vuong [7]'s analysis when bidders' identities are observed by
the econometrician. When the identities of the bidders are not observed, the
method that is currently implemented is to assume symmetry as an identify-
ing restriction and to develop Guerre, Perrigne and Vuong [10]'s nonparamet-
ric methodology (henceforth GPV), which reaches the best rate of uniform
convergence for the symmetric independent private value model. However,
the validity of this method relies on the assumption that bidders are sym-
metric, an assumption that can not be rejected on any testable restriction
without further restrictions if bids are anonymous. Furthermore, for auction
models that explicitly involve asymmetry, e.g. models with collusion, with
shill bidding or if the underlying market is intrinsically asymmetric, this

1The same motivation is the starting point of Yokoo et al. [30]'s analysis of combina-
torial auctions when bidders have the possibility to submit false-name bids.

2See Song [27] and Sailer [26] for eBay auction models with symmetric bidders. Thus
those models exclude any shill bidding activity from the seller, a pervasive phenomenon
that is analyzed in Lamy [14].

3Risk aversion adds new caveats in the �rst price auction. See Campo, Guerre, Perrigne
and Vuong [6].
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identi�cation route is not appropriate. We propose another identi�cation
route. We show in Proposition 3.1 that the asymmetric independent private
value (IPV) model is identi�ed. One crucial step in the resolution of this in-
verse problem is to recover the underlying cumulative distribution functions
(CDFs) (FB∗

i
)i=1,··· ,N of each buyers' bids from the CDFs (FBp)p=1,··· ,N of

the order statistics of the anonymous bids. By exploiting independence, the
vector of the N bidders CDFs (FB∗

i
)i=1,··· ,N corresponds to the roots of a

polynomial of degree N whose coe�cients are linear combinations of the
CDFs (FBp)p=1,··· ,N .

Second, we propose a multi-stage kernel-based estimation procedure to
recover the underlying distributions of bidders' private values. We mainly
adapt GPV's two-stage estimation procedure. We establish the uniform con-
sistency of our estimator and show that it attains the best uniform conver-
gence rate for estimating the latent density of private values from observed
bids. Indeed, we obtain the same rate as with nonanonymous bids. Our es-
timation procedure also �ts the setup where the econometrician may bene�t
from some additional information as the identity of the winner, e.g. in Li
and Perrigne [17], or the identities of the second-highest and highest bid-
ders, e.g. in Baldwin et al [3]. In those latter cases, we know from Athey
and Haile [2] that the asymmetric IPV model is identi�ed. Nevertheless,
in this framework, the existing nonparametric methodology from GPV may
not perform very well in small data sets because it only uses the highest
bidding statistics. In particular, in the second stage of GPV's estimation
procedure, the pseudo-values are computed only for those bids that are not
anonymous. On the contrary, our estimation procedure uses the complete
vector of bids at both stages. In particular, we obtain for each bid a pseudo
private value according to each possible identities of the bidder. Then, to
estimate the distribution of private values, we should estimate for each bid
the probability that it comes from a given bidder.

In a nutshell, we face two identi�cation routes with anonymous bids: ei-
ther to assume symmetry and to apply GPV's method allowing for correlated
signals as in Li, Perrigne and Vuong [18] or to assume independence but not
symmetric and to apply ours. Furthermore, with partially anonymous data,
our estimation procedure may be more suitable for small data sets since it
exploits all bids.

The paper is organized as follows. In Section 2, we introduce the model
and the de�nition of identi�cation under anonymity. In Section 3, we con-
sider nonparametric identi�cation of private value models under anonymity.
In section 4, for the asymmetric independent private value model which is
identi�ed, we propose a multi-stage kernel-based estimator that corresponds
to the natural extension of GPV's procedure. We establish its asymptotic
properties allowing for heterogeneity across auctions and variations in the
set of participants. In section 5, we conclude by indicating some future lines
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of research. Two Appendices contain the proofs of our results.

2 The Model

Consider an auction of a single indivisible good with n ≥ 2 risk-neutral
bidders. We consider the �rst price and second price sealed-bid auctions with
no reserve price and when all bids are collected by the econometrician. We
mention in section 5 how to extend our methodology with bidding reserve
prices and with incomplete sets of bids. Nevertheless, if the econometrician
can observe the amounts submitted by all bidders, we assume that bids are
anonymous, i.e. she can not observe their corresponding identities. Hence,
she observes the ordered vector of bids B = (B1, · · · , Bp, · · · , Bn), where Bp

denotes the pth order statistic of the vector of bids B. But she does not ob-
serve B∗ = (B∗

1 , · · · , B∗
i , · · · , B∗

n), where B∗
i denotes the amount submitted

by bidder i. Subsequently, we use the indices i, j for bidders' identities and
p, r for bidding order statistics.

We consider the private value paradigm: each participant i = 1, · · · , n is
assumed to have a private value xi for the auctioned object. Hence, bidder
i would receive utility xi − p from winning the object at price p. In the �rst
price and second price auctions, the price p is equal to Bn and Bn−1, respec-
tively. Let FXi

(.) and FX(.) denote the cumulative distribution functions of
Xi and X = (X1, · · · , Xn), respectively, which are assumed to be absolutely
continuous with probability density functions (PDF) fXi

(.) and fX(.) and
compact support [x, x] and [x, x]n, respectively.4'5 Each bidder is privately
informed about xi, whereas the common distribution FX(.) is assumed to
be common knowledge among bidders. When we refer to models with sym-
metric bidders we assume that the joint distribution of X is exchangeable
with respect to buyers' indices. On the other hand, when we treat models
allowing asymmetric bidders we drop the exchangeability assumption. For
a generic random variable S and a class of events E, we denote respectively
FS|E(.|e) and fS|E(.|e) the CDF and PDF of S conditionally on an event e
in E.

Our analysis falls into two classes of models:
Independent Private Values (IPV): FX(x) =

∏n
i=1 FXi

(xi).
Strictly A�liated Private Value (APV): ∂2 log fX

∂xi∂xj
> 0 for i 6= j

4Throughout, uppercase letters are used for distributions, while lowercase letters are
used for densities. We also follow the standard notation by using an uppercase letter for
a statistic and the corresponding lowercase letter for its realization.

5We restrict ourselves to the common-support case that guarantees that almost all bids
are `serious' bids, i.e. win with a strictly positive probability. Otherwise identi�cation is
obtained only for `serious' types. See Lebrun [16] for the analysis of the �rst-price auction
with di�erent supports.
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Assumption A 1 The joint density fX is bounded, atomless and strictly
positive on [x, x]n.

We restrict attention to Bayesian Nash Equilibrium in weakly undomi-
nated pure strategies, denoted by (β1(.), · · · , βn(.)), where βi(.) is the bid-
ding function of bidder i. In the equilibrium of the second price auction,
buyers are thus bidding their private value. Hence, the link between bids
and private types is straightforward:

xi = bi ≡ ξnd
i (bi, FB) (1)

In the �rst price auction, under assumption (1), Athey [1] guarantees the
existence of an increasing pure strategy equilibrium if private values are
a�liated and thus in the IPV and APV models. The link between bids and
types for each bidder i is made by a standard rewriting of the �rst order
di�erential equation derived from bidder i's optimization program:

xi = bi +
FB∗

−i|B∗
i
(bi|bi)

fB∗
−i|B∗

i
(bi|bi)

≡ ξrst
i (bi, FB), (2)

where, for bidder i, B∗
−i denotes the maximum of the bids from bidder

i's opponents.

Following La�ont and Vuong [13], we extend the literature on identi�-
cation of private value models to the case where bids are anonymous. On
the one hand, if bidders' identities are observed, then identi�ability corre-
sponds to the condition that, if two possible underlying distributions FX(.)
and F ′

X(.) of private signals lead to the same distribution of bids FB∗(.),
then it follows that FX(.) and F ′

X(.) are equal. On the other hand, the
following de�nition introduces the notion of identi�ability that makes sense
under anonymity.

De�nition 1 (Identi�ability under anonymity) Under anonymous bid-
ding, an auction model is said to be identi�able if for two possible under-
lying distributions FX(.) and F ′

X(.) of private values leading to the same
distribution of bids FB(.), then it follows that FX(.) and F ′

X(.) are equal
up to a permutation of the potential buyers, i.e. there exists a permutation
π : [1, n] → [1, n] such that FX(x1, · · · , xn) = F ′

X(xπ(1), · · · , xπ(n)) for almost
any vector of types X.

Our de�nition of identi�ability corresponds to the possibility of recover-
ing an anonymous joint distribution of buyers' private values. Note that this
information is not su�cient with asymmetric PV models for the computa-
tion of the optimal mechanism à la Myerson [20] that requires the knowledge
of bidders' identities. Nevertheless, it is su�cient for the computation of the
optimal anonymous mechanism or the optimal reserve price in a standard
auction.
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3 Nonparametric Identi�cation

Anonymity restricts the degree of information of the data and thus it can
only reduce the identi�cation possibilities. In particular we show that asym-
metric a�liated private value models are not indenti�ed on the contrary to
Campo, Perrigne and Vuong [7]'s identi�cation result in a framework where
bidders' identities are observed. Nevertheless, we show in Proposition [3.1]
that, for a complete set of bids, either symmetry or independence restores
identi�cation. The surprising result is that anonymity does not prevent the
identi�cation of asymmetric IPV models. Our proof is constructive as it gives
FX(.) as a function of FB(.). The empirical counterparts of this construction
will then be used in the section devoted to nonparametric estimation. The
proof of this result is thus given in the body of the text. The solution of
this inverse problem contains two steps. First we derive bidder's distribu-
tion from the distribution of B, the vector of the bidding order statistics.
It is the innovative step which relies on the root-�nding of a well chosen
polynomial. The second step is the identi�cation of bidders' signals and is
well-known: it is straightforward in the second price auction, whereas the
�rst price auction has been treated by GPV. Note that identi�cation under
anonymity can not be proved directly from local arguments as in Roehring
[25] (see also Benkard and Berry [4]) as was the case with nonanonymous
bids as in GPV. The reason is that anonymity breaks di�erentiability at
some points: the function that maps the vector of bidders' private values X
into the bidding order statistics B is not di�erentiable at any point x such
that βi(xi) = βj(xj) for i 6= j.

Proposition 3.1 Under the full observation of any submitted bids and under
anonymous bids, in the �rst price and second price auctions and for n ≥ 2:

• The asymmetric APV model is not identi�ed. For any distribution
FX(.) from the asymmetric APV model, there exists a continuum of
local perturbations of FX(.) that stay in the asymmetric APV model
and that are observationally equivalent to FX(.), i.e. that lead to the
same distribution of bids.

• The symmetric APV model is identi�ed.

• The asymmetric IPV model is identi�ed.

The second point is immediate since the identi�cation result in Li, Per-
rigne and Vuong [18] does not rely on the observability of bidders' identities.
For the �rst point, we can construct, as is done in the appendix, a continuum
of local perturbations of the primitives that are observationally equivalent.
For any IPV model, the local perturbations constructed in the proof of the
�rst point of Proposition 3.1 break independence, which illustrates, in this
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framework, the more general point that any unordered (i.e. observable up to
a permutation) vector of independent components is observationally equiv-
alent to a model where the components are correlated. In other words, the
econometrician has to assume independence in order to identify asymmetry.
Independence can not be fully tested under anonymity.6 Nevertheless, in-
dependence involves some testable restrictions under anonymity and some
partial tests could be built. Such developments are left for further research.7

The rest of this section is devoted to the proof of the third point which
will guide our estimation procedure. We observe the distributions FBp for
any p = 1, · · · , n. Independence implies exchangeability, then we can identify
the CDF F (r:m)

B (u), r ≤ m, that corresponds to the rth order statistic among
m bidders that would result by exogenous variation of the number of bidders,
by recursive use of the formula (see Athey and Haile [2] p.2128)
m− r

m
F

(r:m)
B (u)+

r

m
F

(r+1:m)
B (u) = F

(r:m−1)
B (u), ∀u, r,m, r ≤ m−1,m ≤ n. (3)

Remark that the corresponding induction is initialized by noting that
F

(p:n)
B = FBp . In particular, it implies the identi�cation of the CDFs F (r:r)

B

for any r ∈ [1, n]. Indeed, the expression of F (r:r)
B corresponds to a linear

combination of the CDFs FBp , for p = 1, · · · , n. Moreover, independence

allows us to express F (r:r)
B (b) as a function of the distributions FB∗

i
(b), i =

1, · · · , n in the following way.

F
(1:1)
B (b) =

1
n
·

n∑
i=1

FB∗
i
(b)

F
(2:2)
B (b) =

1
n(n− 1)

·
∑

i1,i2,i1 6=i2

FB∗
i1

(b) · FB∗
i2

(b)

.. .

.. .

F
(r:r)
B (b) =

1
n(n− 1) · · · (n− r + 1)

·
∑

i1,·,ir,ik 6=ik′

∏
ik∈{i1,·,in}

FB∗
ik

(b)

.. .

.. .

F
(n:n)
B (b) =

1
n!
·

∑
i1,·,in,ik 6=ik′

∏
ik∈{i1,·,in}

FB∗
ik

(b)

(4)

6The nonparametric approaches in the literature that test whether the di�erent com-
ponents of a vector X = (x1, · · · , xm) ∈ Rm are independent, e.g. the Blum, Kiefer and
Rosenblatt [5] test, consider that the statistician observes ordered vectors, i.e. she can
distinguish X = (x1, · · · , xm) from X ′ = (xπ(1), · · · , xπ(m)) where π is a permutation of
bidders' indices. With respect to our setup, those tests are requiring nonanonymous bids.

7If the alternative to independence is not strict correlation but rather a�liation, then
it is an open question whether independence can be tested.
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The CDFs (FB∗
i
(b))i=1,··· ,n in the above system of equations correspond

exactly to the n roots of the polynomial of degree n: u→
∑n

i=0 ai(b) · (−1)n−i · ui,
where an(b) = 1 and ai(b) = n(n−1)···(i+1)

(n−i)! · F (n−i:n−i)
B (b), for i < n. When

b is �xed, such a solution is unique. By continuity of the coe�cients of
the polynomial as a function of b and since the roots of a polynomial de-
pends continuously on its coe�cients (see [29]), there exists a continuous
function b → (P1(b), · · · , Pn(b)) mapping the vector of solutions. What
remains to show is the more restrictive condition that the CDFs FB∗

i
(b),

i = 1, · · · , n, are unique up to a permutation. If the n roots of the above
polynomial were always distinct for any b in the interior of the bidding sup-
port (b, b), then by continuity of FB∗(.) the only candidate solution would
be (FB∗

1
(.), · · · , FB∗

n
(.)) = (P1(.), · · · , Pn(.)) (up to a permutation). On the

contrary, if the maps Pi(b) cross then the way we construct the continuous
selection of the roots (P1(.), · · · , Pn(.)) is no more unique as it is illustrated
in Figure 1 where two candidate solutions are depicted for n = 2 and when
the roots cross at least once.

0
bbb1 b∗ b2b

1
(P1(.), P2(.))

P2(b1)

P1(b1)

P1(b2)

P2(b2)

Figure 1: Identi�cation of the asymmetric IPV model, n = 2

Legend:
Solution 1

FB∗
1

= P1

FB∗
2

= P2

Solution 2
FB∗

1

FB∗
2

Indeed, the sole knowledge of the CDFs F (p:m)
B for any p,m such that

p ≤ m ≤ n can not discriminate between these two possible solutions. Nev-
ertheless, the knowledge of the joint distribution FB of all order statistics
selects a unique solution. For example, consider the case n = 2 and a point
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b∗ where P1(.) and P2(.) strictly cross as in Figure 1. We consider a point
b2 at the right of the intersection (respectively b1 at the left of the intersec-
tion) such that the derivative of the upper root as a function of b, P ′

2(b2)
(resp. P ′

1(b1)), is strictly bigger (resp. strictly smaller) than the derivative
of the lower root, P ′

1(b2) (resp. P ′
2(b1)). Such a point exists in the right

(resp. left) neighborhood of b∗ since the intersection is strict. Then the two
candidate solutions lead to di�erent predictions in term of the joint density
of the order statistics: fB(b1, b2) = fB∗

1
(b1) · fB∗

2
(b2) + fB∗

1
(b2) · fB∗

2
(b1).

The di�erence of the density fB(b1, b2) between the two depicted solutions
is equal to (P ′

2(b2)− P ′
1(b2)) · (P ′

2(b1)− P ′
1(b1)) 6= 0. The argument remains

valid for any number of bidders and also for more general intersections where
the roots may coincide on an interval.

4 Nonparametric Estimation

In practice the auctioned objects can be heterogeneous and the number
and the identities of the participants can vary across auctions. Consider a
set of potential bidders, denoted I, among which a subset I participates in
an auction for a single and indivisible object. We assume that the number
of participants, denoted by nI, and their identities are common knowledge
among bidders and are also observed by the econometrician.8

In this section, we adapt GPV's two step estimation procedure to re-
cover the densities of bidders' private values in the �rst price auction.9 Two
caveats arise. First we can not directly estimate with kernel techniques the
ratio FB∗

−i|bi
(.|.)/fB∗

−i|bi
(.|.) since identities are not observed. An indirect

procedure leading to the same uniform convergence rate in any inner closed
subset of the bidding support is obtained. Second, if FB∗

−i|bi
(.|.)/fB∗

−i|bi
(.|.)

is suitably estimated, we can apply (2) to de�ne pseudo private values in
the �rst price auction. For each bid, a vector of pseudo private values, i.e.
for each possible identities of the bidder. With anonymity, an additional
step is needed: for a given vector of bid b = (b1, · · · , bp, · · · , bn), we have to
estimate the probability that buyer i's bid b∗i is equal to bp for any k ∈ [1, n].
Then instead of a unique pseudo private value for a given bidder, we obtain
a weighted vector of n pseudo private values that is used to estimated non-
parametrically buyers' private values densities. When buyers' CDFs FXi

(.|Z)

8The observation of the identities of the participants by the econometrician may ap-
pear in contradiction with our paradigm of anonymous bids. If we could not observe
participants identities, as on eBay, we can adapt our method if we are prepared to make
speci�c assumptions about the identities of the �uctuating bidders (real bidder versus shill
bidder). Anyway, in an asymmetric framework, the exogenous participation assumption
that is often made for identi�cation as in Athey and Haile [2] may not be suitable since
the expected payo�s in the auction di�er across bidders.

9See Flambard and Perrigne [9] for the the implementation of this procedure in the
asymmetric private value model with nonanonymous bids.
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have R bounded continuous derivatives and if d denotes the dimension of
the (continuous) covariates Z, we obtain the same optimal uniform rate as
in GPV: (L/ logL)R/(2R+d+3).

We also lead in parallel the analysis for the second price auction which is
not straightforward as it was with nonanonymous bids. If bidders' identities
were observed, private values would be directly observed by applying (1)
and the optimal uniform rate of convergence for estimating private values
densities is (L/ logL)R/(2R+d+1) (see Stone [28]). Under anonymous bids,
our procedure for the second price auction reaches this optimal rate.

Denote ΣI the set of the nI! permutations between participants' identities
and the order statistics of the bids. Such an assignment of the bids to the
participants is denoted π : I → [1, nI] where π(i) = p means that the pth
order statistic of the bids corresponds to bidder i, i.e. b∗i = bp. To cover
both the case when bidders' identities remain fully anonymous with the
common case when only the identity of the winner is disclosed, we consider
the most general case when the econometrician may have some information
linking some submitted bids with the identities of some participants. This
information is modelled as a subset σI ⊂ ΣI, e.g. σI = ΣI corresponds to the
case when bids are fully anonymous. The opposite case when σI always is a
singleton corresponds to nonanonymous bids, then GPV's procedure should
be preferred. Our estimation procedure is �exible and imposes no restriction
on the way σI varies across auctions.

4.1 Regularity Assumptions and Key Properties

Let Zl denote the vector of relevant continuous characteristics for the lth
auctioned object and Il the set of participants in the lth auction. The vector
(Zl, Il) is assumed to be common knowledge among bidders and is observed
by the econometrician. Relative to our previous notation, in this section,
we will work with conditional distributions and densities of private values
and bids given (Zl, Il). E.g., FXi|Z,I(.|Zl, Il) denotes the CDF of bidder i's
private value Xil for the lth auction. Thus (1) and (2) for the �rst and
second price auction become respectively:

Xil = B∗
il +

FB∗
−i|B∗

i ,Z,I(B∗
il|B∗

il, Zl, Il)

fB∗
−i|B∗

i Z,I(B∗
il|B∗

il, Zl, Il)
, (5)

and
Xil = B∗

il. (6)

The next assumptions concern the underlying generating process as well
as the smoothness of the latent joint distribution of (Xil, Zl, Il) for any i ∈ Il.
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Assumption A 2 (i) The (d+1)-dimensional vectors (Zl, Il), l = 1, 2, · · · ,
are independently and identically distributed as FZ,I(., .) with density
fZ,I(., .).

(ii) For each l the variables Xil, i ∈ Il are independently distributed con-
ditionally upon (Zl, Il) as FXi|Z,I(.|., .) with density fXi|Z,I(.|., .), for
i ∈ Il.

As in Campo et al. [6], we consider here that the support of buyers'
private values does not depend on the (Z, I) to simplify the presentation,
while the general case can be fully treated as in GPV. It implies that the
lower bound of the support of buyers' bids does not depend on the variables
I and Z. Throughout we denote by S(∗) and So(∗) the support of ∗ and its
interior, respectively. Let I ⊂ I be the set of possible values for Il. Note
that I is �nite.

Assumption A 3 For each bidder i ∈ I ⊂ I,

(i) S(FXi,Z,I) = {(x, z, I) : z ∈ [z, z], x ∈ [x, x], I ⊂ I}; with z < z;

(ii) for (x, z, I) ∈ S(FXi,Z,I), fXi|Z,I(x|z, I) ≥ cf > 0, and for (z, I) ∈
S(FZ,I), fZ,I(z, I) ≥ cf > 0;

(iii) for each I ⊂ I, FXi|Z,I(.|., I) and fZ,I(., I) admit up to R+1 continuous
bounded partial derivatives on S(FXi,Z,I) and S(FZ,I), with R ≥ 1.

The next assumption is not necessary for identi�cation as established
in Proposition 3.1 without heterogeneity across objects. Nevertheless, het-
erogeneity requires an additional structure to identify the model. Similar
intersections as the one in Figure 1 when b varies may arise when the vari-
able capturing heterogeneity Z varies. But the di�erent solutions are ob-
servationally equivalent without some mild additional assumptions. Here to
preserve identi�cation, we make the (strong) assumption that bidding distri-
butions can be ordered according to �rst order stochastic dominance. With
two classes of bidders, Maskin and Riley [19] show that �rst order stochastic
dominance for private values is su�cient for �rst order stochastic dominance
for equilibrium bids.10 Moreover, to simplify our estimation procedure, we
also assume that the dominance is strict in the interior of the bidding sup-
port.

Assumption A 4 (Strict Stochastic Dominance) The bid densities FB∗
i |Z,I(.|z, I)

are strictly ordered according to �rst order stochastic dominance:

10An alternative identi�cation strategy with two classes of bidders is to make assump-
tions on the comparative statics of the bidding distribution according to Z. Another
strategy would rely on the point that, generically, at an intersection, only one candidate
solution is di�erentiable at this point.
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FB∗
i |Z,I(b|z, I) > FB∗

i+1|Z,I(b|z, I), if b ∈ S0(fB∗
i |Z,I)

for any i ∈ I and any z, I.

A crucial step in deriving uniform rates of convergence in some inverse
problem is to study the smoothness of the observables that is implied by the
smoothness of the latent distributions of the primitives of the model. Here,
relative to GPV, we do not observe the vector of bids B∗ but only the vector
of bidding order statistic B. Thus we are interested in the smoothness of
the densities fBp|Z,I(.|., I) for any p ∈ I. This is the purpose of the next
proposition. It is the analog of proposition 1 in GPV which derives similar
results for the bid densities fB∗

i |Z,I(.|., .).

Proposition 4.1 Given A3, the conditional distribution FBp|Z,I(.|., I), p ∈
I and I ⊂ I, satis�es for both the �rst and second price auctions (if not
speci�ed):

(i) its support S(FBp|Z,I) is such that S(FBp|Z,I) = {(b, z, I) : z ∈ [z, z], b ∈
[b(z, I, p), b(z, I, p)], I ⊂ I} with b(z, I, p) > b(z, I, p) for any I, p.
Moreover, (b(., I, p), b(., I, p)) admit up to R + 1 continuous bounded
derivatives on [z, z] for each I ⊂ I and p = 1, · · · , nI . We have
b(z, I, p) = x. In the second price auction, b(z, I, p) = x. In the �rst
price auction b(z, I, nI) = b(z, I, nI − 1).

(ii) for (b, z, I) ∈ C(Bn), fBp|Z,I(b, z, I) ≥ cBp|Z,I > 0, where C(Bn) is a
closed subset of S0(FBn|Z,I);

(iii) for each (I, p), p = 1, · · · , nI , FBp|Z,I(.|., I) admits up to R+1 continu-

ous bounded partial derivatives on S(FBp|Z,I) \ ({b(z, I, p)}p=1,··· ,nI−1);

(iv) in the �rst price auction, for each (I, p), p = 1, · · · , nI , if C(Bp) is a
closed subset of So(FBp|Z,I) \ ({b(z, I, p)}p=1,··· ,nI ), then fBp|Z,I(.|., I)
admits up to R+ 1 continuous bounded partial derivatives on C(Bp);

(v) in the second price auction, for each (I, p), p = 1, · · · , nI , fBp|Z,I(.|., I)
admits up to R continuous bounded partial derivatives on S(FBp|Z,I) \
({b(z, I, p)}p=1,··· ,nI−1).

Note that by comparing (iv) and (v), the bid densities in the �rst price
auction are smoother than for the second price auction. Thus fBp|Z,I(.|., I)
can be estimated uniformly at a faster rate, namely (L/ logL)(R+1)/(2R+d+3),
in the �rst price than in the second price auction, namely (L/ logL)R/(2R+d+1).
In particular, the optimal bandwidths -that we specify later in assumption
A6- are asymptotically smaller for the second price auction than for the �rst
price auction. Nevertheless the optimal uniform convergence rate will be
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smaller in the �rst price auction than in the second price auction. This is
due to the more indirect nature of the link between observables and latent
distributions in the �rst price auction, see equation (5) versus (6).

Proposition 4.1 di�ers from the one appearing in GPV as irregularities
of the CDF of the observed variables may appear in the interior of their
support, more precisely at the upper bound of the bidding support of the
(at most nI − 2) bidders such that b(z, I, p) < b(z, I, n). In the following, to
alleviate notation, we make the simplifying assumption A5 that the bidding
supports of all bidders coincide, i.e. b(z, I, p) does not depend on p. Our
uniform consistency results extend provided that the neighborhood of the
bidders' signals than make them bid b(z, I, p) are removed. In the same way
as the support of bidders' private values is consistently estimated in GPV
and that the neighborhoods of the lower and upper bounds of the support are
removed with an suitable trimming, we can trim those inner neighborhoods.

Assumption A 5 (Common bidding support) All bidders have the same
bidding support: b(z, I, p) does not depend on p.

4.2 Optimal Uniform Convergence Rate

In this section, we adopt a minmax approach to obtain bounds for the
rate at which the latent density of private values can be estimated uniformly
from observed bids. The next proposition gives an upper bound for the
optimal uniform convergence rate for estimating fX|Z,I(.|., .) from observed
(anonymous) bids. GPV derives the same bound for the symmetric IPV
model and nonanonymous bids. Here we extend their result to the asym-
metric IPV model. In the following, for a given density function f , denote
by ||f ||r (resp. ||f ||r,C) the maximum of f and all its derivatives up to the
rth order on S(F ) (resp. on C).

Proposition 4.2 Assume A2-A5 and ||fo
X,Z,I(x, z, I)||R < M . Let C(X) be

an inner compact subset of S(fo
X|Z,I) with nonempty interior. There exists a

constant κ > 0 such that

lim
ε→0

lim
L→+∞

inf
f̂L

sup
f∈Uε(fo

X|Z,I
)
Probf

[
(

L

log L
)

R
(2R+d+3) sup

(x,z,I)∈C(X)
||f̂X|Z,I(x|z, I)− fX|Z,I(x|z, I)||0 > κ

]
> 0

in the �rst price auction, and

lim
ε→0

lim
L→+∞

inf
f̂L

sup
f∈Uε(fo

X|Z,I
)
Probf

[
(

L

log L
)

R
(2R+d+1) sup

(x,z,I)∈C(X)
||f̂X|Z,I(x|z, I)− fX|Z,I(x|z, I)||0 > κ

]
> 0

in the second price auction, where the in�mums are taken over all possible
estimators f̂L of fX|Z,I(.|., .) based upon (Bpl, Zl, Il) for any p = 1, · · · , nIl

and l = 1, · · · , L and where Uε(fo
X|Z,I) is a neighborhood of fo

X|Z,I de�ned as

Uε(fo
X|Z,I) ≡

{
f ; sup

(x,z,i)∈S(F o
X|Z,I

)

||f(x, z, I)− fo
X|Z,I(x, z, I)||0 < ε, ||f(., ., .)||R < M

}
,
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where M > 0.

The set of possible estimators based upon anonymous bids is tautolog-
ically smaller than those based upon (B∗

il, Zl, Il) for any i ∈ Il and l =
1, · · · , L. Thus it is su�cient to prove the above proposition with this richer
set of estimators. In this latter case, for the second price auction where
observed bids correspond exactly to private values, the above result follows
from Khas'minskii [12]. In the �rst price auction, the above proposition has
been proved when the model is restricted to be symmetric among bidders
by GPV who adapts Khas'minskii [12]'s arguments. It is intuitive that a
faster local rate of uniform convergence is not available in the general case
with asymmetric bidders. Nevertheless, due to the local nature of the above
result, the argument is not tautologic. Indeed, since a general asymmetric
model with n bidders involves n overlapped di�erential equations for bid-
ders' distributions, the asymmetric structure may `smooth' the link between
observables and the latent private values. We show in the appendix how
GPV's proof has to be adapted.

4.3 De�nition of the Estimator

The purpose of this section is to adapt GPV's two step procedure to
asymmetric auctions with anonymous bids. Using independence, (5) and (6)
can be rewritten as

Xil = B∗
il + ψi(B∗

il, Zl, Il), (7)

where ψi(., ., .) is de�ned as

ψi(b, z, I) =


[∑

j∈Il,j 6=i

fB∗
j
|Z,I(B

∗
il|Zl,Il)

FB∗
j
|Z,I(B

∗
il|Zl,Il)

]−1

, in the �rst price auction

0, in the second price auction
(8)

The �rst step in GPV's approach consists in estimating the maps ψi(., ., .).
The main caveat is that we do not observe the variables B∗

il but only the
order statistics Bpl. Thus we need to convert our estimations of the CDFs
and PDFs of Bpl, that can be done with the standard kernel estimation
techniques, into estimations for the CDFs and PDFs of B∗

il.
Using the observations {(Bpl, Zl, Il); p ∈ Il, l = 1, · · · , L}, our �rst step

consists in estimating the CDFs and the PDFs of the pth ordered statistics
of the bids for p ∈ [1, nI ].

F̂Bp,Z,I(b, z, I) = min

{
1

Lhd
FBp|Z

L∑
l=1

1(Bpl ≤ b)KFBp|Z

(
z − Zl

hFBp|Z

)
1(Il = I), 1

}
(9)
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f̂Bp,Z,I(b, z, I) =
1

Lhd
fBp|Z

L∑
l=1

1(Bpl ≤ b)KfBp|Z

(
b−Bpl

hfBp|Z

,
z − Zl

hfBp|Z

)
1(Il = I) (10)

Here hFBp|Z
, hfBp|Z

are some bandwidths, and KFBp|Z
(.) and KFBp|Z

(., .)
are kernels with bounded supports. By recursive use of the empirical coun-
terpart of the formula (3), we estimate F̂ (r:r)

B,Z,I(b, z, I) and f̂ (r:r)
B,Z,I(b, z, I) for

r = 1, · · · , n, which respectively corresponds (up to a known multiplicative
coe�cient) to the coe�cients and their derivatives of the polynomial whose
roots is the vector of bidders' bidding distribution {FB∗

i ,Z,I}1≤i≤n.

For r ≤ m ≤ n, we de�ne F̂ (r:m)
B,Z,I(b, z, I) and f̂ (r:m)

B,Z,I(b, z, I) by recursive
use of the formulas:
m− r

m
F̂

(r:m)
B,Z,I (b, z, I)+

r

m
F̂

(r+1:m)
B,Z,I (b, z, I) = F̂

(r:m−1)
B,Z,I (b, z, I),∀b, z, r ≤ m− 1 (11)

m− r

m
f̂

(r:m)
B,Z,I(b, z, I) +

r

m
f̂

(r+1:m)
B,Z,I (b, z, I) = f̂

(r:m−1)
B,Z,I (b, z, I),∀b, z, r ≤ m− 1 (12)

As a weighted sum of the estimators F̂Bp,Z,I which are con�ned in the

interval [0, 1], the estimators F̂ (r:m)
B,Z,I(b, z, I) are con�ned in the interval [0, 1].

Let Υ : [0, 1]n → Zn be the function such that (ω1, · · · , ωn) = Υ(a0, · · · , an−1)
(where ω1 ≥ · · · ≥ ωn) is the ordered vector of the roots (possibly com-
plex number) counted with their order of multiplicity of the polynomial
Q(u) = un +

∑n−1
i=0 ai · (−1)n−iui, i.e. Q(u) =

∏n
i=1 (u− ωi). Uherka and

Sergott [29] show that Υ is continuous and hence uniformly continuous on
the compact [0, 1]n.

In a second step, in view of (4), it would be natural to estimate the CDFs
F̂B∗

i ,Z,I(., .), i ∈ I by

(F̂B∗
j1

,Z,I(b, z, I), · · · , F̂B∗
jnI

,Z,I(b, z, I)) = R[Υ(F̂ (n:n)
B,Z,I(b, z, I), · · · , F̂

(1:1)
B,Z,I(b, z, I))],

(13)
where R[z] denotes the real part of the complex vector z and I =

(j1, · · · , jnI ), where j1 < · · · < jnI .
The derivation of the polynomial relation with respect to b leads to:

∂Q(u)
∂b

=
nI−1∑
i=0

f
(n−i:n−i)
B,Z,I (b, z, I) · (−1)n−i · ui

= −
∑
i∈I

∏
j∈I, j 6=i

(
u− FB∗

j ,Z,I(b, z, I)
)
· fB∗

i ,Z,I(b, z, I),∀u, b, z, I

Thus under assumption (4) that there are no multiple roots, we have a
natural estimator for bidders' densities.

f̂B∗
i ,Z,I(b, z, I) =

∑nI−1
k=0 f̂

(n−k:n−k)
B,Z,I (b, z, I) · (−1)nI−k+1 ·

[
F̂B∗

i ,Z,I(b, z, I)
]k

∏
j∈I, j 6=i

(
F̂B∗

i ,Z,I(b, z, I)− F̂B∗
j ,Z,I(b, z, I)

) (14)
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Note that we have assumed strict asymmetry to avoid singularity points
in the estimation of fB∗

i ,Z,I in any closed subset of So(FB∗
i ,Z,I). Now we have

all the elements to estimate the function ψi(., ., .) in the �rst price auction.11

In view of (7) and similarly to GPV, it would be natural to construct
pseudo private values for each order statistic p = 1, · · · , nI and for each
potential bidder i ∈ Il:

X̃ipl = B∗
pl + ψ̃i(B∗

pl, Zl, Il), (15)

Unfortunately, as has been emphasized by GPV, the estimator of ψi(., ., .)
in the �rst price auction is asymptotically biased at the boundaries of the
support and trimming is recquired. The same trimming is also needed in the
second price auction.

In this aim we �rst estimate the boundary of the support of the joint
distribution of (B,Z, I), which is unknown. Since the support of (Z, I)
can be assumed to be known, we focus on the estimation of the support
[b(z, I), b(z, I)] of the conditional distribution of B given (Z, I). By our
simplifying assumption b(z, I) does not depend on (z, I) and is estimated by
the minimum of all submitted bids. On the other hand, b(z, I) should be
estimated as in GPV. Let hδ > 0. We consider the following partition of Rd

with a generic hypercube of side hδ:

ϑk1,··· ,kd
= [k1hδ, (k1 + 1)hδ)× · · · × [kdhδ, (kd + 1)hδ),

where k1, · · · , kd runs over Zd. This induces a partition of [z, z]. Given a set
of participants I and a value z, the estimate of the upper boundary b(z, I) is
the maximum of those bids for which Il = I and the corresponding value of
Xl falls in the hypercube ϑk1,··· ,kd

(z) containing z. Formally, our estimators
for the lower and upper boundaries are respectively given by:

b̂(z, I) = sup {BnI l, l = 1, · · · , L;Xl ∈ ϑk1,··· ,kd
(z), Il = I} (16)

b̂ = inf {B1l, l = 1, · · · , L} (17)

Our estimator for S(FBp,Z,I) is Ŝ(FBp,Z,I) = {(b, z, I) : b ∈ [̂b, b̂(z, I)], z ∈
[z, z], I ∈ I}.

We now turn to the trimming. It is well known that kernel estimators are
asymptotically biased at the boundaries of the support. Following GPV, we
have to trim out observations that are close to the boundaries of the support.
Because b ≤ b̂ ≤ b̂(z, I) ≤ b, f̂Bp,Z,I(Bpl, Zl, I)(., ., .) and thus f̂B∗

j ,Z,I(., ., .)

are asymptotically unbiased on [̂b +
ρfBp|Z

·hfBp|Z
2 , b̂(z, I) −

ρfBp|Z
·hfBp|Z
2 ].

This leads to de�ning the sample of pseudo private values {X̂ipl, i ∈ Il; p =

11Our procedure easily adapts if the multiplicity of the root FB∗
j

,Z,I is k > 1 by consid-
ering the polynomial u → ∂kQ(u)

∂b(∂u)k−1 evaluated at u = FB∗
j

,Z,I(b, z, I).
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1, · · · , n; l = 1, · · · , L} where X̂ipl, the estimate of the private value of bidder
i would it be the bidder of the pth order statistic of the vector of bids Bl, is
de�ned by

X̂ipl =


Bpl+

[∑
j 6=i

f̂B∗
j
(Bpl,Zl)

F̂B∗
j
(Bpl,Zl)

]−1

if b̂+ hfBp|Z
≤ Bpl ≤ b̂(Zl, Il),

+∞ otherwise

(18)

in the �rst price auction and

X̂ipl =

{
Bpl if b̂+ hfBp|Z

≤ Bpl ≤ b̂(Zl, Il),

+∞ otherwise
(19)

in the second price auction.
Contrary to GPV, we should not use directly this pseudo sample of pri-

vate values in a standard kernel estimation to estimate fXi,Z,I(x, z, I). Each
pseudo values do not have the same weighted since for a given order statis-
tic Bp the probability that it results from a given bidder i depends on the
identity of this bidder. Thus we have to estimate the corresponding prob-
ability weights. Under anonymity, there are at most nI ! vectors of private
values that can rationalize a given vector of bids (B1l, · · · , BnI l). Denote
by π̃ ∈ ΣI the permutation that matches a given vector of bidding order
statistics (B1l, · · · , BnI l) with the unobserved vector of bids (B∗

1l, · · · , B∗
nl).

The following expression gives the theoretical probability, denoted by
Prob(π̃ = π|(b1, · · · , bnI , z, I)), that the assignment of bidders to the ob-
served order statistics corresponds to the permutation π:

Prob(π̃ = π|(b1, · · · , bnI , z, I)) =

∏
i∈I fB∗

i ,Z,I(bπ(i)|z, I)∑
π′∈σI

∏
i∈I fB∗

i ,Z,I(bπ′(i)|z, I)
·1{π ∈ σI}.

(20)
Note that we use the information set σI to re�ne our beliefs on π̃. Then

the probability, denoted by Pip, that the pth order statistic results from
bidder i equals to the sum of the above probabilities for all the permutations
that assign i to the pth order statistic, i.e.

Pip =
∑

π∈σI s.t. π(i)=p

Prob(π̃ = π|(b1, · · · , bn, z, I)). (21)

Their empirical counterparts, P̂l(π) and P̂ipl are given straightforwardly
by means of our previous estimators and are thus asymptotically unbiased if
order statistics belong to the interval S0(FBp,Z,I).
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P̂ rob(π̃ = π|(Bl, Zl, Il)) =

∏
i∈Il

f̂B∗
i ,Z,I(Bπ(i)l|Zl, Il)∑

π′∈σIl

∏
i∈Il

f̂B∗
i ,Z,I(Bπ′(i)l|Zl, Il)

· 1{π ∈ σIl
}

(22)

P̂ipl =
∑

π∈σIl
s.t. π(i)=p

P̂ rob(π̃ = π|(Bl, Zl, Il)) (23)

In the �nal step we use the pseudo sample {(X̂ipl, P̂ipl, Zl), i = 1, · · · , n, p =
1, · · · , n, l = 1, · · · , L} to estimate nonparametrically the densities fXi|Z,I(x|z, I)
by f̂Xi|Z,I(x|z, I) = f̂Xi|Z,I(x, z, I)/f̂Z,I(z, I), where

f̂Xi,Z,I(x, z, I) =
1

Lhd+1
fXi,Z

L∑
l=1

∑
p∈Il

P̂ipl ·KfXi,Z
(
x− X̂ipl

hfXi,Z

,
z − Zl

hfXi,Z

) · 1(Il = I), (24)

f̂Z,I(z, I) =
1

Lhd
Z

L∑
l=1

n∑
p=1

KfZ
(
z − Zl

hfZ

) · 1(Il = I), (25)

hfXi,Z
and hfZ are bandwidths, and KfXi,Z

and KfZ are kernels.
We now turn to the choice of kernels and bandwidths de�ning our multi-

step estimators.

Assumption A 6 • KERNELS

(i) The kernels KFBp|Z
(.), KfBp|Z

(., .), KfXi,Z
(., .) and KfZ(.) are

symmetric with bounded hypercube supports of length equal to 2
and continuous bounded �rst derivatives with respect to their con-
tinuous argument.

(ii)
∫
KFBp|Z

(z)dz = 1,
∫
KfBp|Z

(b, z)dbdz = 1, for any p = 1, · · · , n,∫
KfXi,Z

(x, z)dxdz = 1 for any i = 1, · · · , n and
∫
KfZ(z)dz = 1.

(iii) KFBp|Z
(.), KfBp|Z

(., .), KfXi,Z
(., .) and KfZ(.) are of order R+1,

R + 1,R and R + 1 respectively, i.e. moments of order strictly
smaller than the given order vanish.

• BANDWIDTHS

(i) In the �rst price auction, the bandwidths hFBp|Z
, hfBp|Z

, for p =
1, · · · , n, hfXi,Z

for i = 1, · · · , n and hfZ are of the form:

hFBp|Z
= λFBp|Z

(
logL
L

)
1

(2R+d+2) , hfBp|Z
= λfBp|Z

(
logL
L

)
1

(2R+d+3) ,
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hfXi,Z
= λfXi,Z

(
logL
L

)
1

(2R+d+3) , hfZ = λfZ(
logL
L

)
1

(2R+d+2) ,

where the λ's are strictly positive constants.

(ii) In the second price auction, the bandwidths hFBp|Z
, hfBp|Z

, for
p = 1, · · · , n, hfXi,Z

for i = 1, · · · , n and hfZ are of the form:

hFBp|Z
= λFBp|Z

(
logL
L

)
1

(2R+d) , hfBp|Z
= λfBp|Z

(
logL
L

)
1

(2R+d+1) ,

hfXi,Z
= λfXi,Z

(
logL
L

)
1

(2R+d+1) , hfZ = λfZ(
logL
L

)
1

(2R+d+2) ,

(iii) The �boundary� bandwidth is of the form hδ = λδ(
log L

L )
1

d+1 if
d > 0
where the λ's are strictly positive constants.

4.4 Uniform Consistency

Our main result establishes the uniform consistency of our multistage
kernel-based estimators for the �rst and second price auctions and with their
rates of convergence. As a preliminary step, next proposition, the analog of
propositions 2 and 3 in GPV, establishes the uniform consistency with their
rates of convergence of our nonparametric estimators of the upper and lower
boundaries b(z, I) and b and also the rates at which the pseudo private values
X̂ipl and the pseudo probabilities P̂ipl converge uniformly to their true values.

Proposition 4.3 Under A1-A6, for any closed subset C of So(FX,Z,I), we
have almost surely:

sup
(z,I)∈[z,z]×I

|̂b(z, I)− b(z, I)| = O(
logL
L

)
1

d+1 ,

|̂b− b| = O(
logL
L

)
1

d+1

for both the �rst and second price auctions.
The pseudo values and pseudo probabilities satisfy almost surely:

(i)

sup
i,p,l

1C(Xipl, Zl, Il)|X̂ipl −Xipl| = O

(
(
logL
L

)
R+1

(2R+d+3)

)
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(ii)

sup
i,p,l

1C(Xipl, Zl, Il)|P̂ipl − Pipl| = O

(
(
logL
L

)
R+1

(2R+d+3)

)
in the �rst price auction and

(i)
sup
i,p,l

1C(Xipl, Zl, Il)|X̂ipl −Xipl| = 0

(ii)

sup
i,p,l

1C(Xipl, Zl, Il)|P̂ipl − Pipl| = O

(
(
logL
L

)
R

(2R+d+1)

)
in the second price auction.

In the same way as the vector of pseudo private values are not su�cient to
estimate the CDFs of each bidders private values (on the contrary to GPV),
the estimation of conditional mean, variance or quantiles of a given bidder's
private values requires the joint use of the pseudo private values with the
associated vector of pseudo probabilities.

We now state our main result. The study of uniform convergence is
restricted to inner closed subset of the support to avoid boundary e�ects.

Proposition 4.4 Suppose that A1-A6 hold, then (f̂X1|Z,I(.|., .), · · · , f̂Xn|Z,I(.|., .))
is uniformly consistent as L→∞ with rate (L/ logL)R/(2R+d+3) on any in-
ner compact subset of the support of (fX1|Z,I(.|., .), · · · , fXn|Z,I(.|., .)) in the

�rst price auction and respectively the rate (L/ logL)R/(2R+d+1) in the second
price auction.

In addition to establishing the uniform consistency of our multistep es-
timator, Proposition 4.4 implies that the upper bounds that have been de-
rived for the �rst and second price auctions in Proposition 4.2 are in fact the
optimal uniform convergence rates for estimators of the conditional density
FX|Z,I(.|., .) from observed anonymous bids and that our procedure is asymp-
totically optimal. On the contrary, if the interest of the econometrician lies
only in the estimation of the distributions FB∗|Z,I(.|., .), then, in the �rst
price auction, our bandwidths are suboptimal and the same bandwidths as
those for the second price auction should be used.

We present the proof of Proposition 4.4 as it helps identify the additional
points relative to GPV's two step procedure and why it does not change the
asymptotical rates of convergence.

Proof 1 We have f̂Xi|Z,I(x|z, I) = f̂Xi,Z,I(x, z, I)/f̂Z,I(z, I). Given the op-

timal bandwidth choice for hfZ in assumption A(6), we know that f̂Z,I(z, I)
converges uniformly to fZ,I(z, I) at the rate (L/ logL)(R+1)/(2R+d+1) on any
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inner compact of its support. Because this rate is faster than that of the the-
orem (for both the �rst and second price auction) and fZ,I(z, I) is bounded

away from 0 by assumption A3-(ii), it su�ces to show that f̂Xi,Z,I(x, z, I)
converges at the rate ( log L

L )R/(2R+d+3) and ( log L
L )R/(2R+d+1) in the �rst and

second price auctions respectively.

We decompose the di�erence f̂Xi,Z,I(x, z, I) − fXi,Z,I(x|z, I) into three
terms.

f̂Xi,Z,I(x, z, I)− fXi,Z,I(x, z, I)

=
1

Lhd+1
fXi,Z

L∑
l=1

∑
p∈Il

(P̂ipl − Pipl) ·KfXi,Z
(
x−Xipl

hfXi,Z

,
z − Zl

hfXi,Z

) · 1(Il = I)

+
1

Lhd+1
fXi,Z

L∑
l=1

∑
p∈Il

P̂ipl · 1(Il = I)

×

(
KfXi,Z

(
x− X̂ipl

hfXi,Z

,
z − Zl

hfXi,Z

)−KfXi,Z
(
x−Xipl

hfXi,Z

,
z − Zl

hfXi,Z

)

)
+f̃Xi,Z,I(x, z, I)− fXi,Z,I(x, z, I),

(26)
where f̃Xi,Z,I is the (infeasible) nonparametric estimator of the density of

(Xi, Z, I) using the unobserved values Xipl and the unobserved probabilities
Pipl:

f̃Xi,Z,I(x, z, I) =
1

Lhd+1
fXi,Z

L∑
l=1

∑
p∈Il

Pipl ·KfXi,Z
(
x−Xipl

hfXi,Z

,
z − Zl

hfXi,Z

) · 1(Il = I).

In the second price auction, the bandwidth hfXi,Z
is optimal and thus

leads to a uniform convergence of f̃Xi,Z,I(x, z, I) to fXi,Z,I(x, z, I) at the rate
(L/ logL)R/(2R+d+1) in any inner compact of its support. In the �rst price
auction, the suboptimal bandwidth leads to the rate (L/ logL)R/(2R+d+3) as
in GPV. Thus we are left with the �rst two terms, the �rst one resulting
explicitly from the anonymous nature of the bids is new, whereas the second
term appears already in GPV.

First consider the second price auction. Since X̂ipl = Xipl, the second
term vanishes and we are left with the �rst term which is bounded by:

sup
p,l

1C(Xipl, Zl, Il)|P̂ipl−Pipl|·

 1
Lhd+1

fXi,Z

L∑
l=1

∑
p∈Il

KfXi,Z
(
x−Xipl

hfXi,Z

,
z − Zl

hfXi,Z

) · 1(Il = I)


The above term appearing in the bracket may be viewed as a kernel esti-

mator, and hence converges uniformly on C to
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∑
p∈I

fXip,Z,I(x, z, I) ·
∫
fXi,Z,I(x, z, I)dxdz

Thus this term stays bounded almost surely. Finally the di�erence f̂Xi,Z,I(x, z, I)−
fXi,Z,I(x, z, I) = O(logL/L)R/(2R+d+1).

In the �rst price auction, similarly to GPV, a �rst-order Taylor expansion
establishes that the second term has the order O(logL/L)R/(2R+d+3), whereas
the same argument as above establishes that the �rst term has the order
O(logL/L)(R+1)/(2R+d+3). Thus with anonymity, it is still the second term
that results from the gap between estimated and real private values that is the
`binding' term relative to the uniform convergence rate.

5 Conclusion

Our identi�cation methodology has been limited to the independent pri-
vate value framework with risk neutral bidders, no reserve price and a com-
plete set of bids. For the second price auction, we can be reluctant to propose
identi�cation and estimation methods that are relying on the observation of
the complete set of bids, in particular on the observation of the highest bid
which may remain unobserved. Moreover, this excludes any direct applica-
tion for the ascending (English) auction.

All our analysis of the �rst-price auction can be adapted to risk averse
bidders under a conditional quantile restriction and a parametrization of bid-
ders' utility function following Campo et al. [6]. As in GPV, our analysis can
also be adapted to a binding reserve price provided that we are prepared to
assume that the number of potential bidders is constant. Naturally, identi�-
cation is obtained only for the truncated distribution of types that are above
the reserve price. More involved is the extension of our methodology with
incomplete sets of bids, whose developments are left for further research.
Let us brie�y precise the issues. Each ordered statistic leads to an equa-
tion leading thus to an n equations system, whereas we face n unknowns.
Thus the least unobserved bidding statistic leads to unidenti�cation. There
are two routes to restore identi�cation. First, to impose more symmetry by
assuming that some bidders are symmetric: it corresponds to a reduction
of the number of unknowns. Second, to exploit some exogenous variations
in the number of bidders: it corresponds to an expansion of the number of
equations.

Note that the symmetric APV model is not identi�ed if we do not observe
the highest bid (Theorem 4 in Athey and Haile [2]) and that identi�cation
could not be tackled even if we do observe some exogenous variation in
the number of bidders. Thus the way we exploit independence could be
developed in further research to obtain identi�cation with an incomplete set
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of anonymous bids and which goes beyond the symmetric IPV framework
that is currently used in such a case.

Our approach can also be used for alternative asymmetric auction mod-
els with independent private signals as the one developed by Landsberger et
al. [15] where the ranking of bidders' private valuations is common knowl-
edge among bidders, but not to the econometrician. A promising avenue
for research, which was the initial motivation of this work, is the structural
analysis of models with shill bidding as developed by Lamy [14]. In a pri-
vate value framework, models with shill bidding are strategically equivalent
to models with a secret reserve price. It di�ers only from the econometri-
cian point of view: in the latter, she distinguishes a submitted bid from the
reserve price which facilitates the estimation as in [8, 17], whereas, in the
former, the strategic bidding activity of the seller is indistinguishable from
any other bid. Nevertheless, our methodology can be adapted.

References

[1] S. Athey. Single crossing properties and the existence of pure strategy
equilibria in games of incomplete information. Econometrica, 69(4):861�
890, 2001.

[2] S. Athey and P. Haile. Identi�cation of standard auction models. Econo-
metrica, 70(6):2107�2140, 2002.

[3] L. H. Baldwin, R. C. Marshall, and J.-F. Richard. Bidder collusion at
forest service timber sales. J. Polit. Economy, 105:657�699, 1997.

[4] C. L. Benkard and S. Berry. On the nonparametric identi�cation of
nonlinear simultaneous equations models: Comment on brown (1983)
and roehrig (1988). Econometrica, 74(5):1429�1440, 2006.

[5] J. Blum, J. Kiefer, and M. Rosenblatt. Distribution free tests of in-
denpendence based on the sample distributions functions. Annals of
Mathematical Statistics, 32:485�498, 1961.

[6] S. Campo, E. Guerre, I. Perrigne, and Q. Vuong. Semiparametric esti-
mation of �rst-price auctions with risk averse bidders. mimeo, 2002.

[7] S. Campo, I. Perrigne, and Q. Vuong. Asymmetry in �rst-price auctions
with a�liated private values. J. Appl. Econ., 18:179�207, 2003.

[8] B. Elyakime, J.-J. La�ont, P. Loisel, and Q. Vuong. First-price sealed-
bid auctions with secret reservation prices. Annales d'Economie et de
Statistique, 34:115�141, 1994.

24



[9] V. Flambard and I. Perrigne. Asymmetry in procurement auctions: Ev-
idence from snow removal contracts. The Economic Journal, 116:1014�
1036, 2006.

[10] E. Guerre, I. Perrigne, and Q. Vuong. Optimal nonparametric estima-
tion of �rst price auctions. Econometrica, 68:525�574, 2000.

[11] K. Hendricks and R. H. Porter. An empirical study of an auction with
asymmetric information. Amer. Econ. Rev., 78:865�83, 1988.

[12] R. Khas'minskii. A lower bound on the risks of nonparametric estimates
of densities. Theory of Probability and its Applications, 23:794�798,
1978.

[13] J.-J. La�ont and Q. Vuong. Structural analysis of auction data.
Amer.Econ. Rev. Papers and Proceeding, 86(2):414�420, 1996.

[14] L. Lamy. The shill bidding e�ect versus the linkage principle. mimeo
CREST-INSEE, 2006.

[15] M. Landsberger, J. Rubinstein, E. Wolfstetter, and S. Zamir. First price
auctions when the ranking of valuations is common knowledge. Review
of Economic Design, 3(4):461�480, 2001.

[16] B. Lebrun. Uniqueness of the equilibrium in �rst-price auctions. Games
Econ. Behav., 55:131�151, 2006.

[17] T. Li and I. Perrigne. Timber sale auctions with random reserve price.
Rev. Econ. Statist., 85:189�200, 2003.

[18] T. Li, I. Perrigne, and Q. Vuong. Structural estimation of the a�liated
private value auction model. RAND J. Econ., 33:171�193, 2002.

[19] E. Maskin and J. Riley. Asymmetric auctions. Rev. Econ. Stud.,
67(3):413�438, 2000.

[20] R. B. Myerson. Optimal auction design. Mathematics of Operation
Research, 6(1):58�73, 1981.

[21] H. Paarsch and H. Hong. An Introduction to the Structural Econometrics
of Auction Data. The MIT Press, Cambridge, Massachusetts, 2006.

[22] M. Pesendorfer. A study of collusion in �rst-price auctions. Rev. Econ.
Stud., 67(3):381�411, 2000.

[23] R. H. Porter and D. J. Zona. Detection of bid rigging in procurement
auctions. J. Polit. Economy, 101:518�538, 1993.

[24] R. H. Porter and D. J. Zona. Ohio school milk markets: an analysis of
bidding. RAND J. Econ., 30:263�288, 1999.

25



[25] C. Roehring. Conditions for identi�cation in nonparametric and para-
metric models. Econometrica, 56(2):433�447, 1988.

[26] K. Sailer. Searching the ebay marketplace. CESifo Working Paper,
2006.

[27] U. Song. Nonparametric estimation of an ebay auction model with an
unknown number of bidders. mimeo, 2004.

[28] C. Stone. Optimal global rates of convergence for nonparametric esti-
mators. Annals of Statistics, 10:1040�53, 1982.

[29] D. Uherka and A. M. Sergott. On the continuous dependence of the
roots of a polynomial on its coe�cients. The American Mathematical
Monthly, 84(5):368�370, 1977.

[30] M. Yokoo, Y. Sakurai, and S. Matsubara. The e�ect of false-name bids
in combinatorial auctions: new fraud in internet auctions. Games and
Economic Behavior, 46:174�188, 2004.

A Proofs of Mathematical Properties

A.1 Proof of Proposition [3.1]

We write the proof for the �rst price auction, the most di�cult case where
the correspondance between bids and private signals is not immediate. In
the second price auction, bids are equal to private values and the following
proof can be easily adapted.

Remind that under observability of bidders' identities, Li, Perrigne and
Vuong [18] show that the symmetric APVmodel is identi�ed whereas Campo,
Perrigne and Vuong [7] extend this result to the asymmetric APV model.
Let us see why [18]'s proof remains valid under anonymity whereas [7]'s proof
does not.

The main step to obtain identi�cation is the equilibrium equation (7)
that allows to express bidder i's private value xi as the function of his bid
bi, the CDF GB−i|bi

(.|.) and the PDF gB−i|bi
(.|.) of his opponents bids con-

ditional on his bid. Under observed identities, it is possible to obtain the
full distribution of the vector of private valuations X since GB−i|bi

(y|x) is
observed. Under anonymity, only 1

n ·
∑n

i=1GB−i|bi
(y|x) is observed, which

prevents the use of the above equation except in the symmetric case where
GB−i|bi

(y|x) = 1
n ·
∑n

i=1GB−i|bi
(y|x). Therefore the symmetric APV model

is identi�ed.

For the asymmetric APV model, for any distribution of bids FB and
a given distribution of signals FX that rationalizes FB, let us construct a
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distribution of signals F ′
X that di�ers from FX (up to any permutation) and

that leads to FB. Consider two bids b and b, b > b, used by all bidders,
take ε < b−b

2 such that bidders are bidding in the intervals [b− ε, b+ ε] and
[b− ε, b+ ε]. For any bidder i, de�ne x−ε

i , xi and x
+ε
i by the equations:

b− ε =βi(x−ε
i )

b =βi(xi)
b+ ε =βi(x+ε

i ).
(27)

We de�ne x−ε
i , xi and x+ε

i in the same way. For a couple of bidders (i, j),
de�ne

c(x1, · · · , xn; ε, i, j) ≡
∏

k 6=i,j

(1{xk ∈ [x, xk]}) · 1{xi ∈ [x−ε
i , xi]}

·
(
1{xj ∈ [xj , x

+ε
j ]} − 1{xj ∈ [x−ε

j , xj ]}
)

−
∏

k 6=i,j

(1{xk ∈ [x, xk]}) · 1{xi ∈ [xi, x
+ε
i ]}

·
(
1{xj ∈ [xj , x

+ε
j ]} − 1{xj ∈ [x−ε

j , xj ]}
)

(28)

For su�ciently small γ > 0, f ′X(.) ≡ fX(.) + γ · (c(.; ε, i, j) − c(.; ε, j, i))
is a PDF with the functions c shifting probability weight from some regions
to others.

In a �rst step, we prove that the �rst order conditions that character-
izes equilibrium bidding functions do not change when the map c(.; ε, i, j)
is added to the original PDF fX(.). It results from the fact that both
GB−s|bs

(x|x) and gB−s|bs
(x|x) do not change. On the one hand, for s 6= j,

it is easy to see that the term 1{xk ≤ xk,∀k 6= i, j} · 1{xi ∈ [x−ε
i , xi]} ·(

1{xj ∈ [xj , x
+ε
j ]} − 1{xj ∈ [x−ε

j , xj ]}
)
does not modify GB−s|bs

(x|x) and
gB−s|bs

(x|x). On the other hand, the second term in expression (28) has
been explicitly added to guarantee that GB−s|bs

(x|x) and gB−s|bs
(x|x) do

not change for s = j. Indeed, if γ is small enough γ < γ1, then the original
equilibrium bid functions still satisfy the global equilibrium conditions.

In a second step, we have to check that the full distribution of the com-
plete set of bids remains the same. To understand our construction, �rst
remark that the perturbation γ · c(.; ε, i, j) alone changes the �nal distribu-
tion of bids. It shifts probability weight from regions where two bids are
respectively in the intervals [b − ε, b] and [b − ε, b] (respectively in the in-
tervals [b, b + ε] and [b, b + ε]) to regions where two bids are respectively in
the intervals [b− ε, b] and [b, b+ ε] (respectively in the intervals [b, b+ ε] and
[b − ε, b]). Subtracting the (symmetric) permutation γ · c(.; ε, j, i) allows to
restore those shifts in the bids joint distribution making it identical to the
original one.
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Finally, we have to check that f ′X(.) and fX(.) do not coincide up to a
permutation. By coincidence, for a given γ, there may exist a permutation π
such that f ′X(x1, · · · , xn) = fX(xπ(1), · · · , xπ(n)). Our construction is valid
for any γ which is su�cient small, thus an in�nite number of γ are potential
candidates. On the other hand, there exists only a �nite number of permu-
tation. Now suppose that for any γ < γ1 there exists a permutation πγ such
that f ′γ,X(x1, · · · , xn) = fX(xπγ(1), · · · , xπγ(n)). Then there exists γa and γb

such that πγa = πγb , which implies that the function (c(.; ε, i, j)− c(.; ε, j, i))
should be null, which raises a contradiction.

For instance, we have only proved that, for any asymmetric PV model,
there exists a local perturbation which corresponds to an asymmetric PV
model and that leads to the same distribution of bids. Indeed the above
perturbation may break a�liation due to the non-smoothness of the indicator
function. Let φ(.) be a smoothed version of the indicator function on the
interval [0, 1]: φ(x) > 0 if and only if x ∈ [0, 1] and

∫
φ = 1. Then in the

above perturbations, replace the expressions of the kind 1{a ∈ [a, a]} by
φ(a−a

a−a). The resulting modi�ed perturbations are still shifting probability
weight from some regions to others for γ su�ciently small. Moreover, by
setting γ su�ciently small, the expressions

∂2log(1 +
γ · (c(x1, · · · , xn; ε, i, j)− c(x1, · · · , xn; ε, j, i))

fX(x1, · · · , xn)
)/∂xi∂xj ,

for any (i, j), i 6= j, can be made arbitrarily small, which guarantees that
strict a�liation is preserved if γ is small enough.

A.2 Proof of Proposition [4.1]

In their proposition 1, GPV obtain the same properties for the CDFs
FB∗

i |Z,I instead of FBp|Z,I. From (3) and (4), we obtain that any CDF
FBp|Z,I(b, z, I) can be expressed as a linear combination of terms which
are product of FB∗

i |Z,I(b, z, I), i.e. as a continuous function of the CDFs
FB∗

i |Z,I. The CDF FB∗
i |Z,I have the desired smoothness properties on the set

S0(FBn|Z,I)\{b(z, I, i)}: on the set S0(FBi|Z,I), it comes from GPV, whereas
FB∗

i |Z,I is equal to 1 above b(z, I, i) and is thus C∞. Thus all the regularity
properties (iii-v) that are valid for FB∗

i |Z,I are still valid for FBp|Z,I if the
points {b(z, I, i)} have been appropriately removed. The image of a closed
interval by a continuous function is a closed interval. Thus (i) holds also
for FBp|Z,I. Finally we are left with (ii). Note the di�erence between the
similar point in GPV which holds for the whole support and not only for a
closed subset of the So(FBp|Z,I) as above. By deriving (4) and (3), we obtain
an another expression of fBp|Z,I(b, z, I) as a function of FB∗

i |Z,I(b, z, I) and
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fB∗
i |Z,I(b, z, I):

fBp|Z,I(b, z, I) =
1

(p− 1)!(NI − p− 1)!

·
∑

π∈ΣI

p−1∏
i=1

FB∗
π(i)|Z,I(b, z, I) · fB∗

π(p)|Z,I(b, z, I) ·
nI∏

i=p+1

(1− FB∗
π(i)|Z,I(b, z, I))


Thus we obtain that fBp|Z,I(b, z, I) is strictly positive on So(FBn|Z,I). Re-
mark that fBp|Z,I(b, z, I) is null at the lower bound b = b(z, I, p) for p > 1
(respectively at the upper bound b = b(z, I, p) for p < n).

B Proofs of Statistical Properties

The proofs of the statistical properties are very closely related to GPV.
The proof for the derivation of the asymptotic uniform rate of convergence
of bidders' private values uses intensively the rates derived previously by
GPV. Less obvious is the adaption of GPV's proof for the upper bound on
the uniform convergence rate. We follow their proof very carefully and focus
only on the new ingredients.

B.1 Optimal Uniform Convergence Rate

We adapt GPV's proof to the asymmetric framework. To ease the expo-
sition, we consider the case where there is a positive probability that nI = 2.
Without loss of generality, this set is {1, 2} and is denoted by I2. The �rst
step is identical to GPV: it is su�cient to prove the proposition by replac-
ing fX|Z,I by fX,Z,I. The set Uε(fo

X,Z,I) can also be replaced by any subset
U ⊂ Uε(fo

X,Z,I). Then the second step consists in the construction of a dis-
crete subset U of the form {fX,Z,I,mk(., ., .), k = 1, · · · ,md+1}, where m is
increasing with the sample size L, that are suitable perturbations of fo

X,Z,I.
We consider a nonconstant and odd C∞-function φ, with support [−1, 1]d+1,

such that ∫
[−1,0]

φ(b, z)db = 0, φ(0, 0) = 0, φ′(0, 0) 6= 0, (29)

where φ′ denotes the derivative of φ according to its �rst component.
Let CI2(B

∗) be the image of C(X) by the function that maps bidders'
types into observed bids and conditionally on I = I2. It is a nonempty inner
compact subset of S(fo

B∗,Z,I). Let (bk, zk), k = 1, · · · ,md+1 be distinct points
in the interior of CI2(B

∗) such that the distance between (bk, zk) and (bj , zj),
j 6= k, and the distance between (bk, zk) and any point outside CI2(B

∗) are
larger than λ1/m. Thus, one can choose a constant λ2 > 1/λ1 such that the
md+1 functions
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φmk(b, z) =
1

mR+1
φ(mλ2(b− bk),mλ2(z − zk)) (k = 1, · · · ,md+1)

have disjoint hypercube supports. Let C3 be a positive constant (chosen
below), for each k = 1, · · · ,md+1 de�ne:

fB∗
i ,Z,I,mk(b, z, I2) ≡

{
fo
B∗

1,Z,I(b, z, I2) if i = 1

fo
B∗

2,Z,I(b, z, I2)− C3φmk(b, z) if i = 2,
(30)

whereas de�ne fB∗,Z,I,mk(b, z, I) ≡ fo
B∗,Z,I(b, z, I) for I 6= I2. That is

fB∗,Z,I,mk di�ers from fo
B∗,Z,I only for I = I2 and in the neighborhood of

(bk, zk). The function fB∗,Z,I,mk(b, z, I) is a density if C3 is small enough (in-
tegrates to 1 from (29) and is bounded away from 0) with the same support as

fo
B∗,Z,I(b, z, I). Now consider the functions ξi,mk(b, z) = b+

FB∗
3−i

,Z,I,mk(b,z,I2)

fB∗
3−i

,Z,I,mk(b,z,I2)

for i = 1, 2. If C3 is small enough, then ξi,mk(b, z), i = 1, 2 is increasing in
b with a di�erentiable inverse denoted by ξ−1

i,mk(x, z). Then we de�ne for
I = I2 and i = 1, 2

fXi,Z,I,mk(x, z, I2) = fB∗
i ,Z,I,mk(ξ−1

i,mk(x, z), z, I2)/ξ′i,mk(ξ−1
i,mk(x, z), z) (31)

=
fB∗

i ,Z,I,mk(ξ−1
i,mk(x, z), z, I2) · (fB∗

3−i,Z,I,mk(ξ−1
3−i,mk(x, z), z, I2))2

2(fB∗
3−i,Z,I,mk(ξ−1

i,mk(x, z), z, I2))2 − FB∗
3−i,Z,I,mk(ξ−1

i,mk(x, z), z, I2)f ′B∗
3−i,Z,I,mk(ξ−1

i,mk(x, z), z, I2)

For I 6= I2, let fX,Z,I,mk(., ., .) = fo
X,Z,I,mk(., ., .). From the above expres-

sion, fXi,Z,I,mk(x, z, I2) > 0 if and only if fB∗
i ,Z,I,mk(b, z, I2) > 0, where b =

ξ−1
i,mk(x, z). This completes the construction of the densities fX,Z,I,mk(., ., .),
k = 1, · · · ,md+1, which composes the set U . Note that the supports of
fX,Z,I,mk(., ., .) and fB∗,Z,I,mk(., ., .) coincide respectively with the supports
of fo

X,Z,I(., ., .) and f
o
B∗,Z,I(., ., .).

Then to adapt GPV's proof, we need the analog of their lemma B1 where
the notation fmk(., ., .) should be replaced by fX,Z,I,mk(., ., .), where the �rst
argument x is now the vector of bidders' private values instead of a single uni-
dimensional private value. The analog of Lemma B1 gives two points. First,
an appropriate asymptotic lower bound is given for the uniform distance
between two elements, i.e. the norm ||.||0,C(X), in the set U as a function of
λ2, m and R. With this bound we can apply Fano's lemma exactly in the
same way as in GPV: the step 3 in their proof is unchanged. Second, an
asymptotic approximation is given for the distance between fX,Z,I,mk and
f0
X,Z,I in the norm ||.||r,C(X), which guarantees that fX,Z,I,mk belongs to the
set U if m is large enough.
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Lemma B.1 (Analog of lemma B1 in GPV) Given A2-A3, the follow-
ing properties hold for m large enough:

(i) For any k = 1, · · · ,md+1, the supports of fX,Z,I,mk(., ., .) and fB∗,Z,I,mk(., ., .)
are S(fo

X,Z,I(., ., .)) and S(fo
B∗,Z,I(., ., .)).

(ii) There is a positive constant C4 depending upon φ, fo
B∗,Z,I(., ., .) and

C(X) such that for j 6= k,

||fX,Z,I,mk − fX,Z,I,mj ||0,C(X) ≥ C4 ·
C3λ2

mR
.

(iii) Uniformly in k = 1, · · · ,md+1, we have

||fX,Z,I,mk − f0
X,Z,I||r = C3λ

r+1
2 O(

1
mR−r

), r = 0 · · ·R− 1

||fX,Z,I,mk − f0
X,Z,I||R = C3λ

R+1
2 ·O(1) + o(1).

where the big O(.) depends upon φ and f0
B∗,Z,I

Let us detail the proof of (ii) and what has changed relative to GPV's
framework. Remind that (bk, zk) ∈ CI2(B

∗) implies (xk, zk) ∈ C(X). As in
GPV, it then su�ces to prove that |fX,Z,I,mk(xk, zk, I2)−fX,Z,I,mj(xk, zk, I2)| ≥
C4 · C3λ2

mR , where xk = ξ0(bk, zk, I2).
From (29), we have: FB∗

i ,Z,I,mk(xk, zk, I2) = F 0
B∗

i ,Z,I(xk, zk, I2) and fB∗
i ,Z,I,mk(xk, zk, I2) =

f0
B∗

i ,Z,I(xk, zk, I2) for i = 1, 2. The di�erence is for the expression of f ′B∗
i ,Z,I,mk(xk, zk, I2)−

f ′0B∗
i ,Z,I(xk, zk, I2) which equals to 0 for i = 1 and to −C3

λ2

mRφ
′(0, 0) 6=

0 for i = 2. Thus fX2,Z,I,mk(xk, zk, I2) = fX2,Z,I,mj(xk, zk, I2) which is
bounded away from zero and we are left with the term fX1,Z,I,mk(xk, zk, I2)−
fX1,Z,I,mj(xk, zk, I2).

Then, from equation (31), we have:

fX1,Z,I,mk(xk, zk, I2) =
f0
B∗

1,Z,I(bk, zk, I2) · (f0
B∗

2,Z,I(bk, zk, I2))2

2(f0
B∗

2,Z,I
(bk, zk, I2))2 − F 0

B∗
2,Z,I

(bk, zk, I2)(f ′0
B∗

2,Z,I
(bk, zk, I2)− C3λ2φ′(0, 0)/mR)

(32)
and

fX2,Z,I,mj(xk, zk, I2) =
f0
B∗

1,Z,I(bk, zk, I2) · (f0
B∗

2,Z,I(bk, zk, I2))2

2(f0
B∗

2,Z,I
(bk, zk, I2))2 − F 0

B∗
2,Z,I

(bk, zk, I2)(f ′0
B∗

2,Z,I
(bk, zk, I2))

(33)

Now compare (32) and (33). As φ′(0, 0) 6= 0 and F 0
B∗

2,Z,I is bounded away
from zero since (bk, zk) are far enough from the boundaries, the desired result
(ii) follows. The proof of (iii) is more involved and follows GPV's proof with
the same modi�cation as above by carefully separating the cases i = 1 and
i = 2. More precisely, we have ||fX1,Z,I,mk − f0

X1,Z,I||r = C3λ
r+1
2 O( 1

mR−r )
and ||fX2,Z,I,mk − f0

X2,Z,I||r = O(1) and the result follows for the product.
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B.2 Proof of Proposition [4.3]

There are two new points relative to GPV's analysis. First, their proof
is based on the uniform rates of convergence for the CDF, the PDF and
also the boundaries estimators of the variable B∗ that is observed by the
econometrician. Here we do not observe B∗ but only the vector of order
statistics B. Second, the pseudo probabilities are a new ingredient that do
not appear in GPV.

The �rst issue is then to prove that the same uniform rates of convergence
are still valid for B∗ though it is not observed. Nevertheless, the uniform
rates of convergence they obtained for B∗ are still valid under anonymity for
the variable B that is observed and with our similar choices for the kernels
and the bandwidth parameters. On the contrary to GPV, note that the
observed variable B is multidimensional: it does not modify their analysis
which immediately adapts.

First the bidding support of the bidders are coinciding with the support
of the order statistics. Thus all the results for the estimator of the support
of B are immediately converted into results for B∗. From GPV (lemma B2),
we obtain the following uniform rate of convergence for the kernel estimators
of F̂B,Z,I(b, z, I) and f̂B,Z,I(b, z, I) on any inner closed compact subset of the
bidding support C(B).

sup
(b,z,I)⊂C(B)

||F̂B,Z,I(b, z, I)− FB,Z,I(b, z, I)||0 = O(
logL
L

)
R+1

2R+d+2

sup
(b,z,I)⊂C(B)

||f̂B,Z,I(b, z, I)− fB,Z,I(b, z, I)||0 = O(
logL
L

)
R+1

2R+d+3

In GPV, the corresponding uniform rates of convergence are obtained
for the bidding distributions and densities F̂B∗,Z,I(b, z, I) and f̂B∗,Z,I(b, z, I)
since bidders' identities are observed. However, note that the function map-
ping the vector of the order statistics CDF (FBp,Z,I(b, z, I))p=1,··· ,nI into
(FB∗

i ,Z,I(b, z, I))i=1,··· ,nI is uniformly continuous. Thus the uniform rate of
convergence that holds for (FB,Z,I(b, z, I))p=1,··· ,nI remains valid for (FB∗,Z,I(b, z, I))i=1,··· ,nI .

Furthermore, from equation (12) and (14), we have on C(B) where the
terms F̂B∗

i ,Z,I(b, z, I) − F̂B∗
j ,Z,I(b, z, I), j ∈ I \ {i} are bounded away from

zero:

||f̂B∗,Z,I(b, z, I)− fB∗,Z,I(b, z, I)||0 ≤ C1 · ||f̂B,Z,I(b, z, I)− fB,Z,I(b, z, I)||0
+ C2 · ||F̂B∗,Z,I(b, z, I)− FB∗,Z,I(b, z, I)||0

Thus the uniform convergence rate that holds for fB,Z,I(b, z, I) remains
also valid for fB∗,Z,I(b, z, I).
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In any inner compact subset of the support, the pseudo values can be
expressed as a continuous function of fB∗,Z,I and FB∗,Z,I. Furthermore, it is
the rate of convergence of fB∗,Z,I which sets the rate of convergence of X̂ipl

to Xipl in any inner compact subset of the support whereas the estimator
for FB∗,Z,I is converging at a faster rate.

The second issue are the results concerning the uniform rates of conver-
gence of P̂ipl. From equations (22) and (23), the pseudo probabilities can be
expressed as a continuous function of fB∗,Z,I in any inner compact subset of
the support (the denominator stays bounded away from zero). Then uniform
the rate of convergence proved by GPV for X̂ipl also applies for P̂ipl.
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