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Abstract

This comment �nds an error in Cai, Riley and Ye [2] in presence
of informational externalities between bidders, the correction of which
gives a broader view on their comparative statics results with respect
to n, the number of bidders. A linear speci�cation of the informational
externalities between bidders is analyzed. In contrast to their claim,
the reserve price of the lowest type sellers is shown to be decreasing in
n. We establish that the participation threshold is still increasing in n
for high type sellers con�rming their main insight. Nevertheless, it is
the opposite comparative statics that holds for the reserve price.

Keywords: Auctions, Reserve price, Signaling
JEL classi�cation: D44, D80, D82

Abstract

Ce commentaire souligne une erreur dans l'article de Cai, Riley and
Ye [2] en présence d'externalités informationelles entre les enchéris-
seurs. La correction donne une perspective plus large sur les questions
de statique comparative du prix de réserve par rapport au nombre
d'enchérisseurs n. Une spéci�cation linéaire est analysée. Contraire-
ment à leurs résultats, le prix de réserve d'équilibre d'un vendeur d'un
bien de basse qualité est décroissant avec n.

Mots-clés: Enchères, prix de réserve, Signaling
Classi�cation: D44, D80, D82
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1 Introduction

In the symmetric independent private value framework without exter-
nalities, it is well-known from Riley and Samuelson [13] and Myerson [11]
that the optimal reserve price is independent of the number of bidders. Few
papers attempt such comparative statics beyond this framework. Samuelson
[14] and Levin and Smith [7] show, respectively in the �rst price auction with
entry costs and in the second price auction with a�liation, that the optimal
reserve price is decreasing in the number of bidders. Moreover, unless the
number of bidders is small, the role of the reserve price policy perceived
by the literature is limited: the extra pro�t from the reserve price and the
probability that it sets the winning price goes to zero when the number of
bidders goes to in�nity. On the contrary, in a model where the seller has a
private signal that both a�ects her reservation value and bidders' valuations,
Cai, Riley and Ye [2] (henceforth CR&Y) show that the optimal reserve price
is increasing in the number of bidders under fairly general speci�cations of
bidders' valuations. In such a framework, the reserve price does not solely
a�ect the winning price but also bidders' priors about the seller's private in-
formation. From this signaling channel, the extra pro�t captured by setting
an adequate reserve price remains �rst order even if the number of bidders
goes large.

However, the degree of validity of CR&Y's analysis of the unique sep-
arating equilibrium is much weaker than they have claimed: it is con�ned
to the case without informational externalities between bidders as in their
initial working paper [1] and in the closely related work of Jullien and Mari-
otti [5]. Those papers both exclude such informational externalities and are
thus not subject to the errors we point out in the derivation of the equi-
librium of the second price auction and in the proof of their comparative
statics results. With such externalities, even if bidders' signals are assumed
to be independent, the comparative statics analysis of the optimal reserve
price with respect to the number of bidders is untractable without additional
structure. Nevertheless, under a linear speci�cation, we are able to separate
the di�erent channels for the comparative statics for low and high type sellers
as it is done in Proposition [3.1], the main result of this comment, without
imposing any additional structure on the underlying distributions of private
signals. First, if the signal of the seller were publicly observable, i.e. exempt
of any signaling incentives, then the optimal reserve price is shown to be
nonincreasing in n, the number of bidders. At the unique separating equilib-
rium, the lowest type seller chooses this optimal reserve price which is thus
nonincreasing in n. Second, if the seller's type is high enough, i.e. when the
signaling e�ect is important, then we establish that CR&Y's comparative
statics on the minimum type that bids still hold. Nevertheless, it does not
imply that the reserve price is increasing in n for high type sellers. On the
contrary we show that the reserve price is strictly decreasing in n for high
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type sellers.
Numerical simulations illustrate those asymptotic patterns. In a nutshell,

they show that the signaling e�ect in CR&Y becomes rapidly prominent
insofar as the minimum type that bids is decreasing in n except when the
signal of the seller is extremely low. Nevertheless, their insight that the
reserve price is increasing in n is not robust to informational externalities
between bidders and it is rather the opposite result that seems to hold for
intermediate values of the seller's signal.

The rest of this paper is organized as follows. In section 2, we summarize
the model, point out its errors when there are informational externalities
between bidders and show how the characterization of the unique separat-
ing equilibrium should be adapted. Section 3, the constructive part of this
comment, discusses the comparative statics of the optimal reserve price with
respect to the number of bidders under a linear speci�cation for bidders'
valuations. Section 4 concludes.

2 The separating equilibrium: errata

CR&Y considers the sale of a single indivisible item to n bidders in the
general symmetric interdependent value model introduced by Milgrom and
Weber [10] and analyses the second price auction. Each bidder receives a
one-dimensional signal Xi such that X1, . . . , Xn are a�liated and distributed
according to a symmetric continuous density f which is assumed to be strictly
positive on Xn, where X = [x, x] ⊂ R+. The seller also privately observes a
one-dimensional signal S with support S = [s, s] ⊂ R+ and which is drawn
independently of X1, . . . , Xn. Bidder i's valuation for the item is given by
Vi = u(s, xi, x−i): it depends on s, on his own signal's realization xi and
symmetrically on the other bidders' signals X−i = x−i. The function u
is assumed to be non-negative, continuous and nondecreasing in all its ar-
guments and strictly increasing in its two �rst arguments. Two functions
are playing a central role in the analysis of the second price auction with
informational externalities. Let us de�ne the function v : S × X → R+

(respectively w : S × X → R+) by v(s, x) = E[Vi|S = s,Xi = x, Yi = x]
(respectively w(s, x) = E[Vi|S = s,Xi = x, Yi ≤ x]), where Yi denotes the
�rst order statistic of the signals received by bidder i's opponents. From
the monotonicity of u and a�liation, v and w are strictly increasing in both
arguments. Di�erently from Milgrom and Weber [10], CR&Y also considers
that the reservation value of the seller is given by ξ(s), which is strictly in-
creasing in s. It is this dependence that leaves some scope for signaling by
means of a binding reserve price.

The �rst step of the analysis of the whole signaling game is the derivation
of the equilibrium of the second price auction after the seller's move, i.e. the
choice of the reserve price r, and given that bidders believe that the seller's
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signal is ŝ. The symmetric Bayesian Nash Equilibrium has been derived by
Milgrom and Weber [10]. It is characterized by the participation threshold
m(ŝ) such that w(ŝ,m(ŝ)) = r, which is also referred to as the minimum
type that bids. Then the equilibrium bidding strategy is b(x) = v(ŝ, x) for
x ≥ m(ŝ) and not to participate (equivalently b(x) < r) for x < m(ŝ).
The proposed strategy in CR&Y does not correspond in general to this
(unique) symmetric equilibrium. They wrongly state that �in equilibrium,
the minimum bid must be equal to the reserve price� which corresponds to
consider the above strategy with the participation threshold m(ŝ) such that
v(ŝ,m(ŝ)) = r. Without informational externalities between bidders, i.e. if
u does not depend on its third argument, the two functions v and w coincide
and do not depend on the number of bidders and then CR&Y's analysis
remains valid, e.g. for their linear independent valuation model which gives
striking numerical results or for the two classes of value function (a) and (c).
Nevertheless, in the general case with informational externalities between
bidders, e.g. in the class of value function (b) listed in CR&Y, we have
v(x) > w(x) for x > x and the analysis is modi�ed.1

Going from the model without informational externalities analyzed in the
working paper version [1] to the full model, CRY made two additional errors
in their analysis. Those errors are irrelevant when there are no informational
externalities between bidders, more precisely when v and w do not depend
on the number of bidders. Nevertheless, it matters when we want to adapt
their results to a more general framework with informational externalities
between bidders as it will be considered here. In their theorem 2, they
claim that �In the separating equilibrium, the minimum type that bid m(s),
and hence the reserve price r(s) = v(s,m(s)) is higher for larger n�. We
claim that the argument is �awed. If the signal of the seller s is �xed, then
dr(s)
dn = ∂v

∂x ·
dm(s)

dn + ∂v
∂n . CR&Y implicitly argues that dm(s)

dn ≥ 0 implies
that dr(s)

dn ≥ 0 as it would be if the function v were not to depend on n as
in the case without informational externalities. Unfortunately, the natural
assumption on the dependence with respect to n is that ∂v

∂n ≤ 0 as it is also
assumed by CR&Y in their analysis. Indeed, the hence argument would be
true in the above sentence only if �higher for larger n� is replaced by �lower
for larger n�, an argument that we use in the �rst part of Proposition [3.1].
In general, the comparative statics of the participation threshold and the
reserve price may be opposite as it is the case for high type sellers in the
second part of Proposition [3.1].

CR&Y drops the dependence with respect to n in their notation, which is
a source of confusion in their comparative statics analysis. The second error

1The gap between the reserve price r and the lowest possible active bid v(ŝ, m(ŝ)) is
a counterintuitive feature of the equilibrium when there are informational externalities
between bidders. See Lamy [6] for a survey of auction environments where this gap is
present and for an analysis of its consequences when the seller can bid strategically in the
auction as any other bidder.
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that appears in the proof of theorem 2 will be detailed after the presentation
of the virtual surplus mapping. To avoid any confusion and at the expense
of cumbersome notation, we always restore this dependence in the following
notation, e.g. we note w(s, x, n) and m(s, n) instead of w(s, x) and m(s).

The rest of this section is devoted to the correction of the character-
ization of the unique separating equilibrium when there are informational
externalities between bidders. General formulas that will be useful in the
following section are given without proof. It is left to the reader to check
that it corresponds to a straightforward adaption of CR&Y's analysis.

The expected payo� of a seller with type s, which is perceived to be type
ŝ and that induces the participation threshold m by announcing a reserve
price w(ŝ,m, n), can be written as follows:

U(s, ŝ,m, n) = ξ(s)F(1:n)(m)+w(ŝ,m, n)[F(2:n)(m)−F(1:n)(m)]+
∫ x

m

v(ŝ, x, n)f(2:n)(x)dx,

(1)
where F(1:n) and F(2:n) (f(1:n) and f(2:n)) denote respectively the distri-

bution (density) functions of the �rst and second highest signal statistics
among the n potential buyers. The di�erence with the original expression
in CR&Y is the second term, which corresponds to the event where only
the highest bid is above the reserve price and hence the good is sold at the
reserve price: in this term, v(ŝ,m, n) has been replaced by w(ŝ,m, n), the
reserve price.

Di�erentiating (1) we have

∂U

∂m
= f(1:n)(m)[ξ(s)− J(ŝ,m, n)] (2a)

∂U

∂ŝ
=
∂w(ŝ,m, n)

∂ŝ
[F(2:n)(m)− F(1:n)(m)] +

∫ x

m

∂v(ŝ, x, n)
∂ŝ

f(2:n)(x)dx, (2b)

where the map J(s,m, n), which corresponds to a generalization of the
�virtual surplus� of Myerson [11], is given by the following expression:

J(s, x, n) = w(s, x, n)−∂w(s, x, n)
∂x

·
F(2:n)(x)− F(1:n)(x)

f(1:n)(x)
+(v(s, x, n)−w(s, x, n))·

f(2:n)(x)
f(1:n)(x)
(3)

Compared to the related expression in CR&Y, a third term emerges with
informational externalities: (v(s, x, n) − w(s, x, n)) · f(2:n)(x)

f(1:n)(x) . As in CR&Y,
a generalization of Myerson [11]'s regularity assumption is required.

Assumption 2.1 For any s, the �generalized virtual surplus� J(s, x, n) is
strictly increasing in x.

With this regularity assumption, we can compute the optimal reserve
price or equivalently the optimal participation threshold m∗(s, n) directly
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from equation (11a) in the case where the signal S is directly observable to
the bidders. If the equation J(s,m, n) = ξ(s) has a solution for m ∈ [x, x],
then it corresponds to the optimal participation threshold. On the other
hand, if J(s,m, n) > ξ(s) (respectively J(s,m, n) < ξ(s)) on the range [x, x],
then the optimal reserve price is non-binding and induces full participation,
m∗(s, n) = x (resp. the seller prefers not to sell, i.e. m∗(s, n) = x).

CR&Y's basic existence theorem is una�ected. It is generalized in the
following proposition.

Proposition 2.1 The di�erential equation (4),

∂s(m,n)
∂m

=
f(1:n)(m)[J(s,m, n)− ξ(s)]

∂w(s,m,n)
∂s [F(2:n)(m)− F(1:n)(m)] +

∫ x

m
∂v(s,x,n)

∂s f(2:n)(x)dx
, (4)

with initial condition (s,m∗(s, n)) for the lowest type s characterizes the
unique separating equilibrium for a given number of bidders n.

The main focus of CR&Y is then the comparative statics analysis of the
participation thresholdm(s, n) and the corresponding reserve price r(s, n) in
this separating equilibrium. As it is clear from the di�erential equation (4)
and the initial condition, an important step in order to prove that m(s, n)
is increasing in n (or equivalently that s(m,n) is decreasing in n) is the
condition that J(s,m, n) is nonincreasing in n. If signals are independent and
distributed according to the CDF F (the corresponding density is denoted
by f), then the expression of J is:

J(s, x, n) = w(s, x, n)−∂w(s, x, n)
∂x

·1− F (x)
f(x)

+(n−1)(v(s, x, n)−w(s, x, n))·1− F (x)
F (x)

(5)
This step appears in CR&Y where the third term is absent and w should

be replaced by v in the above expression. CR&Y states in the beginning of
the proof of Theorem 2 that �J(s, x) is nonincreasing in n as v(s, x) is non-
increasing in n and ∂v

∂s is nondecreasing in n�. Indeed, what would be right
is that J(s, x) is nonincreasing in n provided that v(s, x) is nondecreasing
in n and ∂v

∂x is nondecreasing in n. Thus, the extra assumption that ∂v
∂x is

nondecreasing in n should have appeared in CR&Y's Theorem 2. Neverthe-
less, without informational externalities between bidders it is automatically
satis�ed. Indeed, more generally, CR&Y's whole analysis remains valid if
J(s, x, n) is nonincreasing in n. However, this assumption is unrealistic with
externalities as emphasized in next section by means of a linear speci�cation
of the informational externalities.

Let us return to expression (5) to sketch the main forces that drive the
comparative statics of the map J(s, x, n) with respect to n and which thus
plays a key role in the comparative statics of our variables of interest. It is
natural to consider that the �rst term w(s, x, n) is strictly decreasing in n for
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x > x as it is assumed in CR&Y and satis�ed in the linear independent model
developed next section.2 In particular, it means that if x is su�ciently close
to x such that the second and third terms become negligible, then J(s, x, n)
is strictly decreasing in n. On the contrary, the natural assumptions for −∂w

∂x
and (n− 1)[v(s, x, n)−w(s, x, n)] is that those terms are nondecreasing in n
for x > x. Consequently, those terms exert an opposite force that may make
the function J(s, x, n) to be increasing in n. This broad pattern is illustrated
in the left panel of Figure 1 where the map J in depicted for n = 2, 3, 4, 10
for a model that is speci�ed in next section: we see here that J(s, x, n) is
increasing in n below a given threshold (around x = 0.6) and decreasing in
n above.

3 Comparative Statics: the linear independent model

In this section, we consider a more speci�c valuation model referred to
as the linear independent model. As in CR&Y, we �rst consider the case
in which bidders' signals are independent and distributed according to the
CDF F . Second, we consider the linear speci�cation:

u(s, xi, x−i) = s+ α(n) · xi + (1− α(n)) ·
∑

j 6=i xj

n− 1
(6a)

ξ(s) = s, (6b)

where α(1) = 1 and α(n) ≥ 1
n is assumed to be a strictly decreasing

function of n, which �ts with the intuition that the relative weight of a
bidder's signal in the estimation of his own valuation decreases with respect
to the number of bidders. We conjecture that the di�erent channels that
matters for the comparative statics goes much beyond this speci�cation,
whose credit is tractability. In particular, thanks to the choices ξ(s) = s and
u(s, xi, x−i) = s + ψ(xi, x−i), the right term of the di�erential equation (4)
does not depend on s and it is thus a standard linear �rst-order di�erential
equation. Note also that our framework is then invariant to any translation
of the seller's signal. Then the terminology `low type sellers' refer to as the
signals in the neighborhood of s, independently of the speci�c value of s.
On the other hand, `high type sellers' will refer to types that are su�ciently
higher than s. Note that if s is too close to s, then `high type sellers' may
not exist.

Then we obtain the following expressions for w, v and ∂s(m,n)
∂m :

w(s, x, n) = s+ α(n) · x+ (1− α(n)) · E[X|X ≤ x] (7a)
2In Wilson [15]'s model, where bidders' signals Xi are identically and independently

distributed conditional on an exogenous variable Z, Levin and Smith [7] show also that
w(s, x, n) and v(s, x, n) are nonincreasing in n.
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v(s, x, n) = s+(α(n)+
1− α(n)
n− 1

) ·x+(1−α(n)) · n− 2
n− 1

·E[X|X ≤ x] (7b)

∂s(m,n)
∂m

=
n · f(m) · Fn−1(m)

1− Fn(m)
[J(s,m, n)− ξ(s)] (7c)

Added to the regularity assumption (2.1), we make two additional mild
assumptions on the CDF F .

Assumption 3.1 The reverse hazard rate f(x)
F (x) is nonincreasing in x.

Assumption 3.2 Under public information of the seller's signal, the opti-
mal participation threshold of the lowest type seller facing one bidder involves
a probability of sale superior to one half: F (m∗(s, 1)) ≤ 1

2 .

Assumption [A.3] is the only one that is not standard in the literature: it
is always satis�ed if x is high enough relative to s.3 We perform our numerical
computations with the family F (x) = xφ (φ > 0) on the support X = [0, 1]
and with α(n) = 1

n .
4 The speci�cation α(n) = 1

n is not innocent: it is an
upper bound for the informational externalities between bidders and thus we
take the opposite case relative to CR&Y's computation where α(n) = 1 for
any n which corresponds to exclude any informational externalities between
bidders.

Our following comparative statics results concern low and high type sell-
ers. On the one hand, we obtain the exact opposite of CR&Y's results for
low type sellers: the participation threshold and the reserve price are both
nonincreasing in n. On the other hand, for high type sellers, we obtain
CR&Y's results for the participation threshold but not for the reserve price:
the participation threshold is actually strictly increasing in n but surpris-
ingly the reserve price is strictly decreasing in n. The proof is relegated in
the appendix.

Proposition 3.1 (Comparative Statics with respect to the number of bidders)
[Low type sellers]

In the separating equilibrium of the linear independent model, the mini-
mum type that bids, m∗(s, n), and hence the reserve price, r(s, n) = w(s,m(s, n), n),
is nonincreasing in n for the lowest type seller, i.e. for s = s. By continuity,
the monotonicity of the minimum type and hence the reserve price between
n and n′ > n is strict for low type sellers if m∗(s, n) > x.

[High type sellers]

3In particular, it is satis�ed if x ≥ 1
f(x)

such that m∗(s, 1) = x. Anyway, even for
x = s, it is satis�ed for many standard distributions.

4Assumption (2.1) does not hold for 0 < φ < 1. Nevertheless, a weaker assumption is
indeed su�cient to avoid bunching phenomena in our analysis: it is that x → (J(s, x, n)−
ξ(s)) is quasimonotone. This weaker assumption is satis�ed as depicted in the left panels
of Figure 1.
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In the separating equilibrium of the linear independent model, the mini-
mum type that bids, m(s, n), is strictly increasing in the number of bidders
for high-type sellers, i.e. if the signal of the seller is above a given thresh-
old s∗. Nevertheless, the reserve price, r(s, n) = w(s,m(s, n), n), is strictly
decreasing in the number of bidders for su�ciently high types.

In the supplementary material of this comment, we show that Proposition
[3.1] extends to the Conditionally Independent Private Information (CIPI)
model studied by Li, Perrigne and Vuong [8] where bidders' private signalsXi

are conditionally independent given a common component z and where the
conditional distribution function H(x|z) satis�es the Monotone Likelihood
Ratio Property (MLRP) which implies that (X1, · · · , Xn) are a�liated. The
result for the lowest type sellers corresponds to an extension of Proposition
5 in Levin and Smith [7] with interdependent values. As the signal of the
seller, s, becomes large, ∂r(s,n)

∂n is still approximately equal to ∂w(s,x,n)
∂n which

is strictly positive. Therefore, the reserve price eventually decreases with n
for high type sellers.

Under the assumption of independent signals, the Revenue Equivalence
Theorem still applies with interdependent values (Theorem 3.5 in Milgrom
[9]). Hence Proposition [3.1] still applies to any auction format, e.g. the
�rst price auction, that puts the object in the hands of the highest type
and induces the same participation threshold. Nevertheless, in the CIPI
model, such an equivalence does not hold anymore. In �rst price auctions
with a�liated values, Pinkse and Tan [12] derive a countervailing force to
the competition e�ect that reduces the incentive to raise higher bids when
the number of opponents increases. Therefore, we conjecture that a higher
reserve price is more valuable in the �rst price auction and thus that the
seller needs an even higher reserve price to signal her type.

Informational externalities and a�liation between bidders exert a coun-
tervailing force to the signalling e�ect �ngered by CR&Y. First, the partici-
pation threshold and the reserve price for the lowest type seller s correspond
exactly to the ones prevailing if it were common knowledge that the seller
is of type s. We are not aware of any similar formalization of the insight
that the reserve price is decreasing in the number of bidders when there are
informational externalities. Nevertheless, in the second price auction with
negative allocative externalities (whose analysis is very closed related to the
second price auction with positive informational externalities), Jehiel and
Moldovanu [4] emphasize that the optimal reserve price does, in general,
depend on the number of bidders n. Moreover, in their simple illustration
where the intrinsic value of the item is the private signal x and the payo� is
α < 0 if the item goes in the hands of another bidder, they derive a similar
expression for what is here referred to as the map J(s, x, n): it is equal to
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x − 1−F (x)
f(x) − (n − 1)α · 1−F (x)

F (x) .5 If (n − 1)α is increasing in the number of
bidders, i.e. if the total externality su�ered by non-purchasers is increasing
in n, then we obtain that the optimal reserve price is decreasing in n.

Nevertheless, our numerical investigation suggests that this countervail-
ing e�ect to CR&Y's signalling e�ect do matter only for extremely low
signals. From our numerical simulations for φ = 1.5, 1, 0.5 and for n =
2, 3, 4, 10, we see in the middle panel of Figure 1 that the participation thresh-
old is higher for larger n provided that s− s > 0.04, a small �gure compared
to the variation of bidders' private signal from 0 to 1. Note that the fact
that, in our graphs, the curses m(s, n) cross in the middle of the �gure is a
framing e�ect since we focus the graph on very low types for the seller. Thus
our numerical investigation suggests that it is the signalling e�ect, CR&Y's
main insight, that is quickly prominent insofar as the participation threshold
is increasing in n.

Unlike the participation threshold, the comparative statics of the reserve
price goes in the same sense at both extreme of the seller's range: it is de-
creasing in n, a result which inverts CR&Y's original result which is true
only without externalities between bidders. Our numerical simulations, de-
picted in the right panel of Figure 1, show that this e�ect may be valid on
most of the range of the seller's intermediate signals. For signals such that
s− s > 0.1, the reserve price is increasing in n in Figure 1.

4 Conclusion

Though we challenge CR&Y's results, our comment concerns mainly the
comparative statics of the reserve price absent of any signalling incentives
and in presence of informational externalities. We emphasize that CR&Y's
signalling incentives in �xing the reserve price are still �rst order even with
a large number of bidders. Similarly, reserve prices or other instruments
could be used to signal other aspects of the seller's information, e.g. a better
knowledge of the number of potential bidders. Signalling by an informed
seller is a promising avenue of research. In this vain, Chakraborty et al. [3]
analyses the strategic choice of the order of sale in sequential auctions for
similar items of di�erent quality.

Appendix
5See expression (40) in Jehiel and Moldovanu [4]. Indeed, when they went from equation

(39) to equation (40), they assign the wrong sign to the additional term resulting from the
allocative externalities and their �nal expression would imply the opposite comparative
statics result. We correct here the error.
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A Proof of Proposition [3.1]

In the linear independent model, the expression of the derivative of the
map J with respect to the number of bidders is given by:

∂J(s, x, n)
∂n

= α′(n)
[
(2− 1

F (x)
) · [x− E[X|X ≤ x]]− ∂(x− E[X|X ≤ x])

∂x
· 1− F (x)

f(x)

]
(8)

The derivative α′(n) is strictly negative as it has been assumed. Then,
it remains to analyse the sign of the term in the brackets.

A preliminary lemma shows that the second term in the brackets is pos-
itive.

Lemma A.1 If the reverse hazard rate f(x)
F (x) is nonincreasing, then the func-

tion x− E[X|X ≤ x] is nondecreasing in x.

Proof 1

x− E[X|X ≤ x] = x−
∫ x

x
u
f(u)
F (x)

du

Di�erentiating the above expression and after an integration by parts, we
obtain:

∂(x− E[X|X ≤ x])
∂x

= 1−
f(x)

∫ x
x F (u)du

(F (x))2

The assumption that the reverse hazard rate f(x)
F (x) is nonincreasing implies

that:

F (x)
f(x)

≥

∫ x
x F (u)du∫ x
x f(u)du

Finally, we have that ∂(x−E[X|X≤x])
∂x ≥ 0

Let us return to expression (13). The �rst term in the brackets has the
same sign as (2− 1

F (x)). From assumption [A.3], we obtain that J(s, x, n) is
strictly increasing in n if x is in the range [x,m∗(s, 1)]. Thus we obtain that
m∗(s, n) and hence the corresponding reserve price are nonincreasing in n.
It is strictly decreasing until m∗(s, n) > x and then is stuck to m∗(s, n) = x.
By continuity, if the monotonicity is strict for the lowest type seller, it is
valid in the neighborhood of s, i.e. for low type sellers. Thus we have proved
the �rst part of proposition [3.1].

Now consider the case of high type sellers. Di�erentiating the right hand
of equation (7c), we have:

∂2s(m,n)
∂m∂n

=
nf(m)F 2n−1(m) log(F (m))

(1− Fn(m))2
· [J(s,m, n)− ξ(s)]

12



+[1+n log(F (m))]· f(m)Fn−1(m)
(1− Fn(m))

·[J(s,m, n)−ξ(s)]+nf(m)Fn−1(m)
(1− Fn(m))

· ∂J(s,m, n)
∂n

Then note that 1 − F (x) = (x − x) · f(x) + o(x − x) where f(x) > 0
and o(x−x)

(x−x) is a bounded function, limx→x
∂J(s,x,n)

∂n = α′(n) · [x − E[X|X ≤
x]] < 0 and limx→x J(s, x, n) = α(n) · x+ (1− α(n))E[X|X ≤ x] > 0. Then
we make the asymptotic development of each term of the above expression
according to the powers of (x − x). The �rst term has the form 1

(x−x) ·
α(n)·x+(1−α(n))E[X|X≤x]

n + O(1), where O(1) represents a bounded residual.
The second term has the form − 1

(x−x) ·
α(n)·x+(1−α(n))E[X|X≤x]

n +O(1). The

third term is equivalent to α′(n)·[x−E[X|X≤x]]
(x−x) . Finally we obtain that ∂2s(x,n)

∂m∂n

is equivalent to K
(x−x) , where the strictly negative constant K is equal to

α′(n) · [x− E[X|X ≤ x]], as x goes to x.
Take x̃ ∈ (m∗(s, n), 1) and x > x̃. We have:

∂s(x, n)
∂n

=
∂s(x̃, n)
∂n

+
∫ x̃

x

∂2s(u, n)
∂m∂n

du −−−→
x→x

−∞

The �rst term ∂s(x̃,n)
∂n is bounded since ∂2s(m,n)

∂m∂n is bounded on the range
[x, x̃]. On the other hand the second term goes to minus in�nity as x goes
to x. Thus we are done with the comparative statics of the minimum type
that bids for high type sellers: m(s, n) is strictly increasing in n if s is high
enough.

Now consider the reserve price: r(s, n) = w(s,m(s, n), n). We have:

∂r(s, n)
∂n

=
∂w

∂x
· ∂m
∂n

+
∂w

∂n

We have seen that ∂s(m,n)
∂n goes to minus in�nity when the minimum type

that bids goes to x or equivalently ∂m(s,n)
∂n goes to zero for high type sellers.

Finally, ∂r(s,n)
∂n is equivalent to ∂w

∂n as s goes large which proves the second
part of proposition [3.1] since w is strictly decreasing in n.

References

[1] H. Cai, J. Riley, and L. Ye. Reserve price signaling. mimeo, UCLA,
2004.

[2] H. Cai, J. Riley, and L. Ye. Reserve price signaling. J. Econ. Theory,
135:253�268, 2007.

[3] A. Chakraborty, N. Gupata, and R. Harbaugh. Best foot forward or
best for last in a sequential auction? RAND J. Econ., 37(1):176�194,
2006.

13



0.
2

0.
4

0.
6

0.
8

1
x

-0
.20.

2

0.
4

0.
6

JH
s,

x,
nL
−
ξ
Hs
L,

ϕ
=

2ê
3

0.
45

0.
5

0.
55

0.
6

0.
65

mH
s,

nL

0.
02

0.
04

0.
06

0.
08s,
ϕ
=

2ê
3

0.
02

0.
04

0.
06

0.
08

s

0.
1

0.
2

0.
3

0.
4

0.
5

rH
s,

nL
,ϕ
=

2ê
3

0.
2

0.
4

0.
6

0.
8

1
x

-0
.4

-0
.20.

2

0.
4

0.
6

JH
s,

x,
nL
−
ξ
Hs
L,

ϕ
=

1

0.
45

0.
5

0.
55

0.
6

0.
65

mH
s,

nL
0.

01

0.
02

0.
03

0.
04

0.
05

0.
06s,

ϕ
=

1

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

s

0.
2

0.
4

0.
6

0.
8

rH
s,

nL
,ϕ
=

1

0.
2

0.
4

0.
6

0.
8

1
x

-1

-0
.50.

5

JH
s,

x,
nL
−
ξ
Hs
L,

ϕ
=

1.
5

n=
2

n=
3

n=
4

n=
10

vi
rt

ua
l

su
rp

lu
s

0.
45

0.
55

0.
6

0.
65

mH
s,

nL

0.
01

0.
02

0.
03

0.
04s,
ϕ
=

1.
5

n=
2

n=
3

n=
4

n=
10

mi
ni

mu
m

ty
pe

m H
s,

nL
wh

o
en

te
rs

th
e

au
ct

io
n

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

s

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

rH
s,

nL
,ϕ
=

1.
5

n=
2

n=
3

n=
4

n=
10

op
ti

ma
l

re
se

rv
e

pr
ic

e

Figure 1: Numerical Example

[4] P. Jehiel and B. Moldovanu. Auctions with downstreams interaction
among buyers. RAND J. Econ., 31(4):768�791, 2000.

14



[5] B. Jullien and T. Mariotti. Auction and the informed seller problem.
Games Econ. Behav., 56(2):225�258, 2006.

[6] L. Lamy. The shill bidding e�ect versus the linkage principle. mimeo
CREST-INSEE, 2006.

[7] D. Levin and J. Smith. Optimal reservation prices in auctions. Econ.
J., 106(438):1271�1283, 1996.

[8] T. Li, I. Perrigne, and Q. Vuong. Conditionally independent private
information in ocs wildcat auctions. J. Econometrics, 98:129�161, 2000.

[9] P. Milgrom. Putting Auction Theory to Work. Cambridge Univ. Press,
Cambridge, 2004.

[10] P. Milgrom and R. Weber. A theory of auctions and competitive bidding.
Econometrica, 50:1089�1122, 1982.

[11] R. B. Myerson. Optimal auction design. Mathematics of Operation
Research, 6(1):58�73, 1981.

[12] J. Pinkse and G. Tan. The a�liation e�ect in �rst-price auctions. Econo-
metrica, 73(1):263�277, 2005.

[13] J. Riley and W. Samuelson. Optimal auctions. Amer. Econ. Rev.,
71(3):381�392, 1981.

[14] W. Samuelson. Competitive bidding with entry costs. Econ. Letters,
17:53�57, 1985.

[15] R. Wilson. A bidding model of perfect competition. Rev. Econ. Stud.,
44(3):511�518, 1977.

15



A On the Comparative Statics of the Optimal Re-
serve Price: a comment on �Reserve price sig-
naling�: Supplementary Material

A.1 Introduction and notation

The aim of this supplementary material is to extend Proposition 3.1
under a quite general form of a�liation.6 We consider the Conditionally
Independent Private Information (CIPI) model studied by Li, Perrigne and
Vuong [8] where bidders' private signals Xi are conditionally independent
given a common component z distributed according to the density g with
support [z, z]. Denote the conditional distribution and density functions
by H(x|z) and h(x|z) with support [x, x]. Assume that h(x|z) satis�es the
Monotone Likelihood Ratio Property (MLRP), so that (X1, · · · , Xn) are af-
�liated. We maintain the assumption that the signal observed by the seller
is independent of (Z,X1, · · · , Xn). The following section generalizes Propo-
sition 3.1 to the linear a�liated model.

u(s, xi, x−i) = s+ α(n) · xi + (1− α(n)) ·
∑

j 6=i xj

n− 1
(9a)

ξ(s) = s, (9b)

Additional to the notation in the paper which immediately adapt to
the present framework, we denote by f(1:n)(.|z) and F(2:n)(.|z) (f(1:n)(.|z)
and f(2:n)(.|z)) respectively the distribution (density) functions of the �rst
and second highest signal statistics among all the signals of the n buyers
conditional on the common component z.

A.2 Comparative Statics in the linear a�liated model

The expected payo� of a seller with type s, which is perceived to be type
ŝ and that induces the participation threshold m by announcing a reserve
price w(ŝ,m, n), can be written as follows:

U(s, ŝ, m, n) =

∫ z

z

(
ξ(s)f(1:n)(m|z) + w(ŝ, m, n)[F(2:n)(m|z)− F(1:n)(m|z)] +

∫ x

m

v(ŝ, x, n)dF(2:n)(x|z)

)
· g(z)dz,

(10)
Di�erentiating (10) we have

∂U

∂m
=

∫ z

z

(
f(1:n)(m|z)[ξ(s)− J(ŝ, m, n|z)]

)
· g(z)dz (11a)

6By the de Finetti's Theorem, any a�liated model is a CIPI model under the assump-
tion that (X1, · · · , Xm) is exchangeable and identically distributed for any number of
bidders n ≥ m.
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∂U

∂ŝ
=

∫ z

z

(
∂w(ŝ, m, n)

∂ŝ
[F(2:n)(m|z)− f(1:n)(m|z)] +

∫ x

m

∂v(ŝ, x, n)

∂ŝ
dF(2:n)(x|z)

)
· g(z)dz,

(11b)
where the map J(s,m, n|z), which corresponds to a generalization of the

�virtual surplus� of Myerson [11] conditional on the common component z,
is given by the following expression:

J(s, x, n|z) = w(s, x, n)−∂w(s, x, n)

∂x
·
F(2:n)(x|z)− F(1:n)(x|z)

f(1:n)(x|z)
+(v(s, x, n)−w(s, x, n))·

f(2:n)(x|z)

f(1:n)(x|z)
(12)

As in CRY and our comment, a generalization of Myerson [11]'s regularity
assumption is required.

Assumption A.1 For any s, the map
∫ z
z

(
f(1:n)(m|z)[ξ(s)− J(s, x, n|z)]

)
· g(z)dz

is strictly decreasing in x.

Similarly to assumptions 3.1 and 3.2, we make two additional mild as-
sumptions on the distribution of bidders' signal conditional on z.

Assumption A.2 For any common component z, the reverse hazard rate
h(x|z)
H(x|z) is non-increasing in x.

Assumption A.3 Under public information of the seller's signal and for
any common component z, the optimal participation threshold of the lowest
type seller facing one bidder involves a probability of sale superior to one half
for any z: H(m∗(s, 1)|z) ≤ 1

2 .

As in the proof of proposition 3.1 in the comment, those assumptions
guarantee that J(s, x, n|z) is strictly increasing in n in the range [x,m∗(s, 1)]
for the linear a�liated model where the expression of J(s, x, n|z) is given by:

∂J(s, x, n|z)

∂n
= α′(n)

[
(2− 1

H(x|z)
) · [x− E[X|X ≤ x, X1 = x]]− ∂(x− E[X|X ≤ x, X1 = x])

∂x
· 1−H(x|z)

h(x|z)

]
(13)

In particular, assumption A.2 guarantees that (x − E[X|X ≤ x,X1 =
x]) = EZ|X1=x[x−E[X|X ≤ x,Z = z]] is increasing in x after the inversion
of the expectation and the derivation.

In the separating equilibrium, the lowest type seller equilibrium reserve
price r∗(s, n) (or equivalently the optimal threshold m∗(s, n)) corresponds to
the one that would be optimal were her signal publicly observable. Finally,
m∗(s, n) is characterized by the equation ∂U

∂m(s, s,m∗(s, n), n) = 0.
Consider expression (11a) for s = ŝ = s:

∂U

∂m
(s, s, m, n) =

∫ z

z

(
n ·Hn−1(m|z) · h(m|z)[ξ(s)− J(s, m, n|z)]

)
· g(z)dz (14)
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Lemma A.1 ∂U
∂m(s, s,m∗(s, n), n+ 1) < 0

Proof 2

∂U

∂m
(s, s, m∗(s, n), n + 1) =

∫ z

z
((n + 1) ·Hn(m|z) · h(m|z)[J(s, m, n|z)− J(s, m, n + 1|z)]) · g(z)dz(15)

+
∫ z

z
((n + 1) ·Hn(m|z) · h(m|z)[ξ(s)− J(s, m, n|z)]) · g(z)dz (16)

The �rst term is negative since J(s, x, n|z) is strictly increasing in n in
the range [x,m∗(s, 1)]. To prove that the second term is non-positive, we use
the following lemma whose proof is left to the reader.

Lemma A.2 Let z → A(z) be a quasimonotone function such that
∫ z
z A(z)dz =

0 and z → B(z) be a nonincreasing function, then
∫ z
z B(z) ·A(z)dz ≤ 0

Note �rst that z → J(s, x, n|z) is nonincreasing in z since H(x|z) and H(x|z)
h(x|z)

are both nonincreasing in z from MLRP. Consequently A(z) = ·Hn−1(m|z) ·
h(m|z)[ξ(s)−J(s,m, n|z)]·g(z) is quasimonotone. Let B(z) = H(m|z) which
is nonincreasing and apply lemma A.2 to conclude.

We conclude with assumption (A.1) that m∗(s, n) is nonincreasing in n.

Corollary A.1 The optimal threshold m∗(s, n) is nonincreasing.

The di�erential equation that characterizes the unique separating equi-
librium in the linear a�liated model is:

∂s(m,n)
∂m

=
∫ z

z

n · h(m|z) ·Hn−1(m|z)
1−Hn(m|z)

[J(s,m, n|z)− ξ(s)] · g(z)dz (17)

As in the proof of Proposition 3.1 in our comment, the same kind of anal-
ysis with a Taylor development at the upper bound of the bidders' support
can be lead after inverting the order of integration and di�erentiation.

Finally we obtain that ∂2s(x,n)
∂m∂n is equivalent to K

(x−x) , where the strictly
negative constant K is equal to

∫ z
z α

′(n) · [x− E[X|X ≤ x]]g(z)dz, as x goes
to x.

Then we have:

∂s(x, n)
∂n

−→x→x −∞.

We conclude in the same way as in the proof of Proposition 3.1 that the
minimum type that bids (resp. the reserve price) is increasing (decreasing)
in the number of bidders for high type sellers.

Finally, we have proved that Proposition 3.1 remains true in the linear
a�liated model and we obtain the more general following proposition.
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Proposition A.2 (Comparative Statics with respect to the number of bidders)
[Low type sellers]

In the separating equilibrium of the linear a�liated model, the minimum
type that bids, m∗(s, n), and hence the reserve price, r(s, n) = w(s,m(s, n), n),
is non-increasing in n for the lowest type seller, i.e. for s = s. The mono-
tonicity of the minimum type and hence the reserve price between n and
n′ > n is strict for low type sellers if m∗(s, n) > x.

[High type sellers]
In the separating equilibrium of the linear a�liated model, the mini-

mum type that bids, m(s, n), is strictly increasing in the number of bidders
for high-type sellers, i.e. if the signal of the seller is above a given thresh-
old s∗. Nevertheless, the reserve price,r(s, n) = w(s,m(s, n), n), is strictly
decreasing in the number of bidders for su�ciently high types.
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