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Abstract

Structural econometric studies on auctions have mainly focused on the indepen-

dent private value paradigm. In this paper, we are interested in the “opposite” case

known as the pure common value model. More precisely, we restrict our attention

to a common value model defined by two functions : the density of the true value

of the auctioned good and a unique function that appears in the definition of the

conditional densities of the signals. We establish that this common value model is

nonparametrically identified without any further restrictions. We then propose a

one-step nonparametric estimation method and prove the uniform consistency of our

estimators. We apply our method on simulated data and show that the technique we

propose is adequate to recover the distribution functions of interest.

Keywords: Common Value; Auctions; Non Parametric Estimation.

JEL Classification: C14;D44.

Résumé

Les études structurelle sur les enchères ont principalement porté sur le modèle à

valeurs privées. Dans ce papier, nous nous intéressons au contraire au modèle à valeur

commune. Plus précisément, nous étudions un modèle défini par deux fonctions: la

densité de la valeur du bien mis aux enchères et une unique fonction qui apparaît

dans la définition de la densité conditionnelle des signaux. Nous montrons que ce

modèle est identifié non-paramétriquement sans restriction supplémentaire. Nous

proposons alors une méthode d’estimation et prouvons la convergence uniforme de

nos estimateurs. Finalement, nous utilisons cette méthode sur des données simulées et

montrons que notre technique permet de retrouver convenablement les distributions

d’intérêt.

Mots Clés: Valeur Commune; Enchère; Estimation Non-paramétrique.
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1 Introduction

Structural econometric approaches have been successfully applied during the last decade
to study auction data. The aim of such analyzes is to recover the structural parameters
of a theoretical model from the data using econometric methods. In the case of auctions,
the econometrician is interested in estimating the distribution of the value of the good for
each participant from the observed bids. It relies on the equilibrium that defines how bids
depend on this distribution.

Previous studies mostly focused on the private value paradigm (PV) (Laffont et al.
(1995), Donald and Paarsch (1996), Elyakime et al. (1994, 1997), Guerre et al. (2000)).
In these models, each bidder knows his own private value for the auctioned good but does
not know others’ valuations.

The “opposite” case is known as the pure common value paradigm (CV). In this model,
the value of the auctioned good is unknown but the same for each bidder. The participants
receive a signal correlated with this value. It turns out that identification and estimation
for CV models are more complicated than for PV models. The main reason behind these
difficulties comes from the nonparametric identification of the CV model from observed bids
(Laffont and Vuong (1996)). As a consequence, one has to impose some further restrictions
to obtain identification results. Paarsch (1992) proposes a parametric approach, whereas
Li et al. (2000) develop a nonparametric one to analyze the CV model. In their paper, the
authors assume a multiplicative decomposition of the signals into a common component
(the value of the good) and an indiosyncratic one (a specific signal) for each bidder. Adding
some further restrictions, Li et al. show that the CV model is identifiable and propose a
two-step nonparametric procedure to estimate the densities of both components.

In this paper, we analyze a CV model in which the knowledge of all densities of the
signals conditionally on the value of the good reduces to the knowledge of a unique function.
In this context, the CV model is defined by two functions only : the density of the true
value and the unique function that enters in the conditional density of the signals. This
model belongs to the class of CV models studied by Fevrier (2006) for which nonparametric
identification is obtained without any further restrictions. Unfortunately, his proof does
not allow us to derive a simple estimation method. Hence, we propose another way to prove
identification on which our nonparametric estimation method will be based. Contrary to
most of the studies, we show that it is possible to use directly the observed bids instead of
using a two-step method as in Guerre et al. (2000). We prove the uniform consistency of
our one-step nonparametric estimator and apply our method on simulated data. We show
that this method is feasible and recovers correctly the distribution functions of interest.

The paper is organized as follows. Section 2 presents the CV model and our nonpara-
metric identification results. Section 3 describes the estimation method we propose. Monte
Carlo experiments are conducted in Section 4. Section 5 concludes.
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2 The CV model and the Structural Approach

2.1 The Pure CV model

The general case

In the Pure Common Value model (Rothkopf (1969), Wilson (1977)), a single and indivis-
ible good is auctioned to n bidders. The value V of the good, unknown to the bidders,
is distributed following a distribution function FV (.) and a density function fV (.) on the
support [V , V ] with (V , V ) ∈ R

+2

.
Each bidder i receives a private signal Si. The signals are conditionally independent

given the common value V . We note FS|V (.|.) the distribution function of the signal given
V and fS|V (.|.) the associated density function. We suppose that fS|V (.|.) satisfies the

monotone likelihood ratio property.1 Its support is denoted [TV , T V ] with (TV , T V ) ∈ R
+2

.
Each player knows his private signal as well as the distribution functions. He does not

know however the private signal of other bidders.

We study first price auctions. Each bidder submits a bid and the winner is the one
who submits the highest bid. He obtains the object and pays his bid. Hence, a strategy
for a player i is a function bi(.) that associates to each signal Si the amount bi(Si) that
player i wants to bid. As shown by Milgrom and Weber (1982), a symmetric equilibrium
exists in first price common value auctions. To describe this equilibrium, it is useful to
introduce the following functions. We note Yi = maxj 6=i Sj and FYi|Si

(.|.) (resp. fYi|Si
(.|.))

the distribution function (resp. density function) of Yi conditionally on the signal Si of
player i. We also introduce the function V (s, y) = E[V |Si = s, Yi = y] that is the expected
value of the good conditionally on the signal Si of player i and the highest signal Yi of the
other players.

Proposition 2.1 (Milgrom and Weber, 1982) In a common value first price auction, a
symmetric equilibrium strategy exists and is given by:

b(s) = V (s, s) −

∫ s

TV

L(α|s)dV (α, α) (2.1)

where L(α|s) = exp[−
∫ s

α
fYi|Si

(u|u)/FYi|Si
(u|u)du].

Our model

We consider a pure CV model with n bidders (n ≥ 2) and assume that the density of the
signals conditionally on the value V = v takes the form:

∀s ∈ [T (V ), T (v)], fS|V (s|v) =
h(s)

H(T (v))

1The density fS|V has the monotone likelihood ratio property if for all s′ > s and v′ > v,
fS|V (s|v)/fS|V (s|v′) ≥ fS|V (s′|v)/fS|V (s′|v′).
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This function is defined on an interval [T (V ), T (v)]. h(.) is the derivative of H(.) and
H(T (V )) = 0.

In this model, no restriction is imposed on the density of the value V whereas the
distributions of the signals conditionally on the value V are supposed to be representable
by a unique function h(.). A natural example is a model in which the value of the good
is distributed uniformly on [V , V ] and the signals are distributed uniformly on [V , 2v − V ]
conditionally on V = v. This is the case if h = 1 and T (v) = 2v − V . More generally,
the function h(.) and the interval [T (V ), T (v)] define the amount of information that the
signals carry over the value and play therefore a key role in the analysis.

We will need the following assumption.

Assumption 1 1. for all s ∈ [T (V ), T (V )], h(s) > 0 and for all v ∈ [V , V ], fV (v) > 0;

2. h(.) is continuously differentiable.

3. T (.) is strictly increasing and continuously differentiable.

Assumption 1 is a standard assumption in nonparametric literature. It imposes some
smoothness on the densities and insures that these densities are bounded away from zero.
Furthermore, T (.) is supposed to be increasing for fS|V (.|.) to satisfy the monotone likeli-
hood property.

2.2 Nonparametric Identification

A fundamental issue is to study if the model is identified nonparametrically i.e. to analyze
if the observation of the bids determines uniquely the functions FV (.), h(.) and T (.). Of
course, what is observed is important and we will suppose that, in every auction, all bids
are available.

In the general case, Laffont and Vuong (1996) (see also Athey and Haile (2002)) have
shown that the CV model is not identifiable. Fevrier (2006) proved however that the
pure CV model is identified if there are some variations in the bounds of the conditional
distribution functions of the signals. Under our specifications, proposition 2 of Fevrier
(2006) applies and our model is nonparametrically identified.

Unfortunately, it is difficult to estimate the distribution functions based on Fevrier’s
identification proof. For this reason, we propose another way to prove identification upon
which our estimation method will be based. We proceed in three steps.

• We first prove that for each s′ ∈ [T (V ), T (V )] and each s ∈ [T (V ), s′], FS|V (s|T−1(s′))
is identified.

• We then show that for each s ∈ [T (V ), T (V )], FV (T−1(s)) is identified

• Finally, using the first order condition, we prove that T−1(.) is identified over its
support [T (V ), T (V )].
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The identification of FV (.) and FS|V (.|.) is proved by combining these results for n ≥ 2.

We will note, for each k ≤ n, fS(s1, ..., sk) the joint density of (s1, ..., sk), FS(s1, ..., sk)

the joint distribution function, and ∂FS

∂s1

(s1, ..., sk) and ∂2FS

∂s2

1

(s1, ..., sk) the first and second

partial derivatives of FS(s1, ..., sk) in s1.

Identification of FS|V (.|T−1(.))

First, one has to remark that the model is defined up to a transformation of the signals.
Indeed, observing φ(s) instead of s is equivalent in the model to replace H(.) by H ◦φ−1(.)
defined over the segment [φ ◦ T (V ), φ ◦ T (V )]. We have to normalize the signals and a
natural normalization is b(s) = s. Hence, we observe the signals and identify the bounds
T (V ) and T (V ) by respectively the minimum and the maximum of the signals..

Given s′ ≥ s, we identify the distribution function

FS(s′, s) = P (S1 ≤ s′, S2 ≤ s, V ≤ T−1(s)) + P (S1 ≤ s′, S2 ≤ s, T−1(s) ≤ V ≤ T−1(s′))

+ P (S1 ≤ s′, S2 ≤ s, T−1(s′) ≤ V )

= FV (T−1(s)) + H(s)

∫ T−1(s′)

T−1(s)

fV (v)

H(T (v))
dv + H(s′)H(s)

∫ V

T−1(s′)

fV (v)

H2(T (v))
dv

and its partial derivative :

∂FS

∂s1
(s′, s) = h(s′)H(s)

∫ V

T−1(s′)

fV (v)

H2(T (v))
dv

Hence, for all s′ ∈ [T (V ), T (V )] and all s ∈ [T (V ), s′], we identify

FS|V (s|T−1(s′)) =
H(s)

H(s′)
=

∂FS

∂s1

(s′, s)
∂FS

∂s1

(s′, s′)
(2.2)

Identification of FV (T−1(.))

The distribution function and the density of a signal s ∈ [T (V ), T (V )] are given, respec-
tively, by

FS(s) = FV (T−1(s)) + H(s)

∫ V

T−1(s)

fV (v)

H(T (v))
dv

and

fS(s) = h(s)

∫ V

T−1(s)

fV (v)

H(T (v))
dv

Rewriting the first equation and using the second one, we have

4



FV (T−1(s)) = FS(s) −
H(s)

h(s)
fS(s)

that is, using fS(s, s) = h(s)2
∫ V

T−1(s)
fV (v)

H2(T (v))
dv = h(s)

H(s)
∂FS

∂s1

(s, s)

FV (T−1(s)) = FS(s) −
∂FS

∂s1

(s, s)

fS(s, s)
fS(s) (2.3)

The right hand side of equation (2.3) is identified. Hence FV (T−1(.)) also is.

Identification of T−1(.)

We prove in appendix A that the first order condition can be rewritten for all s ∈
[T (V ), T (V )] as

T−1(s) =s +
∂FS

∂s1

(s, s)

(n − 1)fS(s, s)
+

[
FSmax

(s) − FV (T−1(s))

n − 1

]
×

∂2FS

∂s2

1

(s, s) − f ′
S(s) − nfS(s) + nfS(s)fS(s,s)

∂FS

∂s1
(s,s)

fS(s)∂2FS

∂s2

1

(s, s) − f ′
S(s)∂FS

∂s1

(s, s)
(2.4)

where FSmax)(.) is the distribution of the highest signal.
The functions that appear in the right hand side of equation (2.4) are identified. Hence,

T−1(.), and T (.), also are.

Identification of FV (.) and FS|V (.|.)

Combining the previous results, we conclude that the distribution function of the value
FV (.) = FV (T−1(T (.))) and the conditional distributions of the signals FS|V (.|.) = FS|V (.|T−1(T (.)))
are identified.

Proposition 2.2 The model is nonparametrically identified.

This identification result is important and gives with Li et al. (2000) another nonpara-
metric identification result for pure CV auctions upon which an estimation method can
be based. The model estimated by Li et al. may be seen as more natural, but our model
has some nice properties. First, the knowledge of the joint density function of the signals
and the value is reduced to the knowledge of three functions of one variable h(.), T (.) and
FV (.). No other restriction is needed and full nonparametric identification is achieved.
Moreover, we will show in the next part that it can be easily estimated. Finally, the model
is overidentified. It imposes several restrictions on the distributions of the bids that can
be tested.
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3 Estimation

The estimation method is based on our identification result and will follow the same logic.
It consists in estimating some distribution functions of the bids and to use them to construct
estimates for FS|V (.|T−1(.)), FV (T−1(.)) and T−1(.).

Let n ≥ 2 be a given number of bidders.2 Let L be the number of auctions with n
bidders indexed by l. We note {sil; i = 1, ..., n; l = 1, ..., L} the observed signals.

3.1 Estimation of FS|V (.|T−1(.))

Given s1 ≥ s2, we first apply kernel techniques to estimate nonparametrically ∂FS

∂s1

(s1, s2)
from the observations sil:

∂̂FS

∂s1
(s1, s2) =

1

Lh1

L∑

l=1

1

n(n − 1)

∑

1≤i6=j≤n

K

(
s1 − sil

h1

)
1 (s2 ≥ sjl)

where h1 is some bandwidth and K(.) a kernel.

We note Smin = mini,l sil and Smax = maxi,l sil. Then, using equation (2.2), for all
s′ ∈ [Smin, Smax] and all s ∈ [Smin, s

′], we estimate Φ(.|.) = FS|V (.|T−1(.)) as the ratio:

Φ̂(s|s′) =

∂̂FS

∂s1

(s′, s)

∂̂FS

∂s1

(s′, s′)

3.2 Estimation of FV (T−1(.))

In a first step, we estimate nonparametrically fS(.), fS(., .) and FS(.) by the kernel density
estimators and the empirical distribution, i.e., by

f̂S(s1) =
1

Lh1

L∑

l=1

1

n

∑

1≤i≤n

K

(
s1 − sil

h1

)

f̂S(s1, s2) =
1

Lh2
2

L∑

l=1

1

n(n − 1)

∑

1≤i6=j≤n

K

(
s1 − sil

h2

)
K

(
s2 − sjl

h2

)

F̂S(s1) =
1

L

L∑

l=1

1

n

∑

1≤i≤n

1 (s1 ≥ sil)

Then, using equation (2.3), we estimate nonparametrically the function Ψ(.) = FV (T−1(.))
over the support [Smin, Smax] by

2We suppose that the number of bidders is constant in all auctions. If the number of bidders varies in
the dataset, it is possible to apply kernel techniques to the discrete variable n (see Guerre et al. (2000)).
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Ψ̂(s) = F̂S(s) −

∂̂FS

∂s1

(s, s)

f̂S(s, s)
f̂S(s)

Several kernels and bandwidths can be used. However, to simplify, we will always refer
to the same kernel K(.) in each estimation. h1 and h2 are some bandwidths used for
univariate and bivariate densities.

3.3 Estimation of T−1(.)

The estimation of T−1(.) requires to first estimate the distribution function FSmax
(.), as

well as the derivatives f ′
S(.) and ∂2F

∂s2

1

(., .). These functions are nonparametrically estimated

by the empirical distribution of Smax and by the derivatives of the kernel estimators of
fS(.) and F1,S(., .), respectively.

F̂Smax
(s1) =

1

L

L∑

l=1

1 (s1 ≥ max(sil))

f̂ ′
S(s1) =

1

Lh′2
1

L∑

l=1

1

n

∑

1≤i≤n

k

(
s1 − sil

h′
1

)

∂̂2FS

∂s2
1

(s1, s2) =
1

Lh′2
1

L∑

l=1

1

n(n − 1)

∑

1≤i6=j≤n

k

(
s1 − sil

h′
1

)
1 (s2 ≥ sjl)

where k(.) is the derivative of the kernel K(.) and h′
1 a bandwidth.

Hence, it is possible to estimate T−1(.) over the support [Smin, Smax] using equation
(2.4):

T̂−1(s) =s +

∂̂FS

∂s1

(s, s)

(n − 1)f̂S(s, s)
+

[
F̂Smax

(s) − Ψ̂(s)

n − 1

]
×

∂̂2FS

∂s2

1

(s, s) − f̂ ′
S(s) − nf̂S(s) + n

bfS(s) bfS(s,s)d∂FS

∂s1
(s,s)

f̂S(s) ∂̂2FS

∂s2

1

(s, s) − f̂ ′
S(s) ∂̂FS

∂s1

(s, s)

3.4 Estimation of FV (.) and FS|V (.|.)

To estimate the distribution function of the value and the conditional distribution function
of the signals, we first have to estimate T (.). The main difficulty arises because T̂−1(.) may
not be invertible. However, one can always define:
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T̂ (v) = inf{s/T̂−1(s) = v}

over the support
[
mins∈[Smin,Smax] T̂−1(s), maxs∈[Smin,Smax] T̂−1(s)

]
.

We estimate nonparametrically the distribution function of the values FV (.) by

F̂V (v) = Ψ̂
(
T̂ (v)

)

and the conditional distribution function of the signals FS|V (.|.) by

F̂S|V (s|v) = Φ̂
(
s|T̂ (v)

)

3.5 Consistency of the estimators

As in Guerre et al. (2000), our estimation method relies heavily on the distributions of the
bids that are observed in the data. However, because we observe the signals, our method is
a one step nonparametric estimation method. In that sense, it is easier than the estimation
procedure proposed by Li et al. (2000).

A consequence is that the asymptotic properties and in particular the uniform consis-
tency of our estimators are easily obtained under standard assumptions.

Assumption 2 The vectors (s1l, ..., snl), l = 1, ..., L, are independently and identically
distributed.

This hypothesis insures that the signals are independent across auctions. If this was
not the case, the equilibrium strategy derived by Milgrom and Weber (1982) would not
longer apply and dynamic considerations should be taken into account.

To prove the consistency, some hypotheses have to be made on the smoothness of the
kernel and on the bandwidths used in the estimation procedure.

Assumption 3 K(.) is a symmetric kernel with a bounded support and twice continuous
derivatives.

Assumption 4 The bandwidths h1, h′
1 and h2 are of the form :

h1 = λ1

(
log L

L

)1/5
, h′

1 = λ′
1

(
log L

L

)1/7
, h2 = λ2

(
log L

L

)1/6

where the λ’s are strictly positive constants.

Assumption 3 is standard. Assumption 4 deals with the choice of the bandwidths and

requires more attention. h1, h′
1 and h2 are chosen such that our kernel estimators ∂̂FS

∂s1

(., .),

f̂S(.), f̂S(., .), f̂ ′
S(.) and ∂̂2FS

∂s2

1

(., .) converge uniformly at the best possible rate (see Scott,

1992). The log L appears because we deal with uniform consistency. A larger bandwidth
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is required for multivariate densities (h2 > h1). A larger smoothing parameter h′
1 is also

required as the derivative of a function is noisier than the function itself.

Under our assumptions, we prove that F̂V (.) and F̂S|V (.|.) are uniformly consistent
estimators for FV (.) and FS|V (.|.).

Proposition 3.1 Under assumptions 1-4, for any closed inner subset C(V ) of [V , V ]),

lim
n→+∞

sup
v∈C(V )

|F̂V (v) − FV (v)| = 0

with probability one.
Under assumptions 1-4, for any v ∈ [V , V ] and any closed inner subset Cv(S) of

[T (V ), T (v)]),

lim
n→+∞

sup
s∈Cv(S)

|F̂S|V (s|v) − FS|V (s|v)| = 0

with probability one.

Proof See appendix A.

4 Monte Carlo experiment

In this section, we conduct a Monte Carlo experiment to evaluate our nonparametric
procedure. To illustrate our method, we suppose that the value of the good is uniformly
distributed on [0, 2] and that the signals are uniformly distributed on [0, 2v] conditionally
on v. The equilibrium strategy is given by proposition (2.1) and can be rewritten in our
case as (see Appendix A):

b(s) = 4 −
32

s
+

128

s2
ln

(
1 +

s

4

)
(4.1)

However, normalizing the bids by b(s) = s is equivalent to consider a model in which
V is distributed uniformly on [0, 2] and the density of the signals conditionally on V = v
is fS|V (s|v) = 1

2v
(b−1)′(s) defined on the interval [0, b(2v)].

Our Monte Carlo study consists in R = 400 replications. For each replication, we
simulate L = 500 auctions with n = 3 bidders.3 The bids br

il = sr
il are computed numerically

for l = 1, ..., 500, i = 1, 2, 3 and r = 1, ..., 500. For each replication r, we estimate Ψ̂r(.),

Φ̂r(.|b(3.6)), T̂−1
r
(.), T̂ r(.), F̂ r

V (.) and F̂ r
S|V (.|1.8).

To apply our nonparametric procedure, we need to address the choice of the kernel
function and of the bandwidths. We choose a kernel that satisfies assumption 3. This
is the case for the Epanechnikov kernel defined as K(u) = 3

4
(1 − u)21(|u| ≤ 1). We

define the bandwidths according to assumption 4 and use the so-called rule of thumb

3Such a dataset is similar to real data used to estimate auction models.
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(Scott, 1992) to define the λs. Hence, h1 = 1.06σ̂S( log(L)
L

)1/5, h′
1 = 1.06σ̂S( log(L)

L
)1/7 and

h2 = 1.06σ̂S( log(L)
L

)1/6 where σ̂S is the standard deviation of the signals.

The results are summarized in Figures 1-6 in Appendix B. Each figure displays the true
function in plain line and the mean of the 400 estimates in dotted line. We also display
in each figure the pointwise 90% confidence interval and represent in dashed lines the 5%
and 95% percentiles of the estimates when L = 500.

Figure 1 depicts the estimation of Φ(.|b(3.6)). This function is well estimated as the
estimated function confounds with the true function. Figures 2 and 3 show, however,
that the finite sample bias is not negligible in the estimation of Ψ(.) and T−1(.). In
nonparametric estimation, the curse of dimensionality is a problem and this bias is mainly
due to the estimation of bivariate densities that appear in the estimation of these functions.
Asymptotically, when L increases, the bias disappears. One can also remark that the bias
is more important near the bounds of the interval. This effect corresponds to the boundary
effect of kernel estimators near the extremities of the density’s supports.

As depicted in figure 4, the inverse procedure we use allows us to recover correctly
the function T (.). Finally, figures 5 and 6 prove that our estimation method gives rather
good estimators of the distribution functions of interest FV (.) and FS|V (.|1.8). Because we
estimate distribution functions, it would be possible to improve our estimates by imposing

that F̂V (.) and F̂S|V (.|1.8) are increasing functions that satisfy F̂V (T̂−1(max sil)) = 1 and

F̂S|V (T̂ (1.8)|1.8) = 1.

5 Conclusion

In this paper, we studied a pure common value model defined by two functions: the distri-
bution function of the value of the good and a unique function that enters in the definition
of the conditional densities of the signals. We proved that this model is nonparametrically
identified without any further restriction. We then proposed a one-step nonparametric
estimation method and prove that the estimators are uniformly convergent. We finally
apply our estimation procedure to simulated data. Our method is easy to implement and
our estimators predict correctly the true densities.

10



References

Athey, S., Haile, P., 2002. Identification in Standard Auction Models. Econometrica, 70,
2107-2140.

Donald, S., Paarsch, H., 1996. Identification, estimation and testing in parametric empir-
ical models of auctions within the independent private values paradigm. Econometric
Theory, 12, 517-567.

Elyakime, B., Laffont, J-J., Loisel, P., Vuong, Q., 1997. First-Price Sealed-Bid Auctions
With Secret Reservation Prices. Annales d’Economie et de Statistique, 34, 115-141.

Elyakime, B., Laffont, J-J., Loisel, P., Vuong, Q., 1997. Auctioning and Bargaining: An
Econometric Study of Timber Auctions With Secret Reservation Prices. Journal of
Business and Economic Statistics, 15, 209-220.

Fevrier, P., 2006, The mineral rights model is nonparametrically identified. Mimeo Crest.

Guerre, E., Perrigne, I., Vuong, Q., 2000. Optimal Nonparametric Estimation of First
Price Auctions. Econometrica, 68, 525-574.

Hardle, W., 1991. Smoothing techniques with implementation in S. New-York: Springer
Verlag.

Laffont, J-J., Ossard, H., Vuong Q., 1995. Econometrics of First-Price Auctions. Econo-
metrica, 63, 953-980.

Laffont, J-J., Vuong Q., 1996. Structural Analysis of Auction Data. American Economic
Review, Proceedings, 36, 414-420.

Li T., Perrigne, I., Vuong, Q., 2000. Conditionally Independent Private Information in
OCS Wildcat Auctions. Journal of Econometrics, 98, 129-161.

Milgrom, P.R., Weber, R.J., 1982. A theory of auctions and competitive bidding. Econo-
metrica, 50, 1089-1122.

Paarsch, H., 1992. Deciding between the common and private value paradigms in empir-
ical models of auctions. Journal of Econometrics, 51, 191-215.

Porter, R.H., 1995. The role of information in U.S. offshore oil and gas lease auctions.
Econometrica, 63, 1-27.

Rothkopf, M., 1969. A model of rational competitive bidding. Management Science, 15,
774-777.

Scott, D., 1992. Multivariate density estimation. John Wiley & Sons, Inc.

11



Schuster, E.F., 1969. Estimation of a probability density function and its derivatives.
The Annals of Mathematical Statistics, 40, 1187-1195.

Wilson, R., 1977. A bidding model of perfect competition. Review of Economic Studies,
44, 511-518.

12



Appendix A

Derivation of equation (2.4)

Deriving the first order condition given in equation (2.1) and using b(s) = s, we have

1 =
fY |S

FY |S

(s, s)

∫ s

T (V )

L(α|s)dV (α, α) =
fY |S

FY |S

(s, s)(V (s, s) − s)

Hence, with obvious notations,

fY,S(s, s)V (s, s) = sfY,S(s, s) + FY |S(s, s)

i.e.

(n − 1)h2(s)Hn−2(s)

∫ V

T−1(s)

v
fV (v)

Hn(T (v))
dv =(n − 1)sh2(s)Hn−2(s)

∫ V

T−1(s)

fV (v)

Hn(T (v))
dv

+ h(s)Hn−1(s)

∫ V

T−1(s)

fV (v)

Hn(T (v))
dv

or equivalently

[
s +

H(s)

(n − 1)h(s)

] ∫ V

T−1(s)

fV (v)

Hn(T (v))
dv =

∫ V

T−1(s)

vfV (v)

Hn(T (v))
dv

Deriving this equation in s and rearranging the terms allow us to find T−1(.):

T−1(s) =s +
H(s)

(n − 1)h(s)

−

[
n

n − 1
−

H(s)h′(s)

(n − 1)h2(s)

]
Hn(s)

∫ V

T−1(s)
fV (v)

Hn(T (v))
dv

(T−1)′(s)fV (T−1(s))

Replacing in this equation (T−1)′(s)fV (T−1(s)) by H(s)h′(s)
h2(s)

fS(s) − H(s)
h(s)

f ′
S(s) and h′(s)

h(s)

by

∂
2

FS

∂s2
1

(s,s)−f ′

S
(s)

∂FS

∂s1
(s,s)−fS(s)

, we obtain after some straightforward calculus:

T−1(s) =s +

∂FS

∂s1

(s, s)

(n − 1)fS(s, s)
+

[
FSmax

(s) − FV (T−1(s))

n − 1

]
×

∂2FS

∂s2

1

(s, s) − f ′
S(s) − nfS(s) + nfS(s)fS(s,s)

∂FS

∂s1
(s,s)

fS(s)∂2FS

∂s2

1

(s, s) − f ′
S(s)∂FS

∂s1

(s, s)
(5.1)
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Proof of proposition 3.1

Under our assumptions (Hardle 1991, Schuster 1969), the nonparametric estimators ∂̂FS

∂s1

(., .),

f̂S(.), f̂S(., .), F̂S(.), F̂Smax
(.), f̂ ′

S(.) and ∂̂2FS

∂s2

1

(., .) are uniformly consistent estimators for
∂FS

∂s1

(., .), fS(.), fS(., .), FS(.), FSmax
(.) f ′

S(.) and ∂2FS

∂s2

1

(., .).

Hence, because Ψ̂(.) and Φ̂(.|.) and T̂−1(.) are simple transformations of the previous
functions (see equations (2.2), (2.3) and (2.4)), we conclude that these estimators are
uniformly consistent estimators for FV (T−1(.)), FS|V (.|T−1(.)) and T−1(.).

The main difficulty comes from the inversion of T̂−1(.) and we have to establish the

uniform strong convergence of T̂ (.).

Let C(V ) be an inner subset of [V , V ]. Because T̂−1(.) converges uniformly, C(V ) is included

in
[
mins∈[Smin,Smax] T̂−1(s), maxs∈[Smin,Smax] T̂−1(s)

]
almost surely when L is large enough.

Hence, T̂ (.) is well defined on C(V ).

By definition, for any v ∈ C(V ), it exists sv = T̂ (v) such that

|T (v) − T̂ (v)| = |T (T̂−1(sv)) − sv|

= |T (T̂−1(sv)) − T (T−1(sv))|

= |T ′(ṽ)(T̂−1(sv) − T−1(sv))| where ṽ ∈ [min(v, T−1(sv)), max(v, T−1(sv))]

≤ C sup
s∈C(S)

|T̂−1(s) − T−1(s)|

where C is an upper bound of the derivative T ′(.) (which exists by assumption 1) and C(S)
is an inner subset of [T (V ), T (V )] that contains {sv, v ∈ C(V )} with probability one.
Hence,

sup
v∈C(V )

|T (v) − T̂ (v)| ≤ C sup
s∈C(S)

|T̂−1(s) − T−1(s)|

and the uniform strong convergence of T̂ (.) is proved.

The uniform consistency of F̂V (v) = Ψ̂
(
T̂ (v)

)
and F̂S|V (s|v) = Φ̂

(
s|T̂ (v)

)
falls out

naturally from the previous results.
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Derivation of equation (4.1)

By proposition (2.1),

b(s) = V (s, s) −

∫ s

SV

L(α|s)dV (α, α)

When V is uniformly distributed on [0, 2] and when the signals conditionally on V = v
are uniformly distributed on [0, 2v], straightforward calculus lead to

V (s, s) =

∫ 2

s/2
2v( 1

2v
)2 s

2v
1
2
dv

∫ 2

s/2
2( 1

2v
)2 s

2v
1
2
dv

=
4s

4 + s

Similarly,

L(α, s) = exp


−

∫ s

α

∫ 2

s/2
2( 1

2v
)2 s

2v
1
2
dv

∫ 2

s/2
1
2v

(
s
2v

)2 1
2
dv

ds




= exp

[
−

∫ s

α

2

s
ds

]
=

(α

s

)2

Combining both results, we have

b(s) =

∫ s

0

4α

4 + α

2α

s2
dα

= 4 −
32

s
+

128

s2
ln

(
1 +

s

4

)
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Appendix B
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Figure 1: The true function Φ(.|b(3.6)) and its estimation
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Figure 2: The true function Ψ(.) and its estimation
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Figure 3: The true function T−1(.) and its estimation
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Figure 4: The true function T (.) and its estimation
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Figure 5: The true function FV (.) and its estimation
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Figure 6: The true function FS|V (.|1.8) and its estimation
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