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Abstract

The adverse selection model is a principal-agent model defined by the objective function
of the principal, the agents’ utility function and the distribution of agents’ types. We prove
that the nonparametric identification of this model requires the knowledge of at least one of
the three functions. We also show that some exogenous changes in the objective function of
the principal are sufficient to obtain partial or full nonparametric identification of the model.
A nonparametric estimation procedure based on these results is proposed. We apply this
method to test if firms provide the right incentives to their workers. Using contract data
between the French National Institute of Statistics and its interviewers, we test and reject
the contracts’ optimality. We estimate, however, the loss of using linear contracts instead
of optimal ones to be less than 10%, which may explain why these simple contracts are so
popular.
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Asymmetric Information, Incentives, Optimal Contracts.
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Résumé

Le modèle de sélection adverse est définie par la fonction objectif du principal, l’utilité
des agents et la distribution de leur type. Nous prouvons que l’identification de ce modèle
nécessite la connaissance d’au moins l’une de ces trois fonctions. Nous montrons également
que des changements exogènes dans la fonction objectif du principal sont suffisants pour
obtenir une identification partielle ou totale. Une méthode d’estimation nonparamétrique
est proposée et utilisée pour tester si les entreprises offrent les bonnes incitations à leurs
travailleurs. Utilisant des données entre l’Insee et ses enquêteurs, nous testons et rejetons
l’optimalité des contrats. La perte liée à l’utilisation de contrats linéaires au lieu de contrats
optimaux ne dépasse néanmoins pas 10%. Ceci peut expliquer pourquoi ces formes simples
de contrat sont très répandues.
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1 Introduction

Since the seminal work of Akerlof (1970), extensive attention has been devoted to asymme-
tries of information and their consequences in economics. A canonical example where these
asymmetries play a fundamental role is the adverse selection model. This model is helpful,
for instance, to better understand nonlinear pricing, regulation, financial contracts or tax-
ation theory (Wilson, 1993; Laffont and Tirole, 1993; Freixas and Rochet, 1997; Diamond,
1998). However, and as pointed out by Chiappori and Salanié (2002), few econometric
work has been done to estimate structurally these models. Regulatory contracts have been
studied by Wolak (1994), Gagnepain and Ivaldi (2002) and Perrigne (2002), while Ivaldi
and Martimort (1994) and Miravette (2002) estimated nonlinear pricing models. All these
papers adopt a parametric framework. Lavergne and Thomas (2005) are more flexible
and specify a semiparametric model to study regulation. Perrigne and Vuong (2004) are
the only ones who follow a nonparametric approach. They study the Laffont and Tirole
(1986) regulation model in which ex-post costs are observed, and show that such a model
is nonparametrically identified.

In this paper, we study the empirical content of the canonical adverse selection model
(Laffont and Martimort (2002), Salanie (2005a)). This model is characterized by the ob-
jective function of the principal, the distribution of agents’ types and the utility function
of the agents. The econometrician is supposed to observe the contract and the associ-
ated trades. In the most general setting, the model is not identified. However, under a
separability assumption on the utility of the agents, we prove that the knowledge of one
of the structural functions is sufficient to obtain full identification. Hence, in a regulation
context for instance, if ex-post costs are observed, the utility function can be recovered and
full identification is achieved. Similarly, if the regulatory maximizes the sum of the firms’
profits and of the consumers’ surplus, the objective function of the principal is known and
the model is nonparametrically identified.

The identification of the model can also be achieved by observing a change in the contracts
between the principal and the agents, under the exclusion restriction that the utility func-
tion and the types of the agents are not affected by this change. As described by Chiappori
and Salanié (2002) such exclusion restrictions arise naturally in experiments or natural ex-
periments (see e.g. Manning et al., 1987, Ausubel, 1999, Lazear, 2000, or Shearer, 2004).
We characterize what is identified under these conditions. If the marginal transfer func-
tions defined in the two contracts cross, the model is fully identified. If not, nonparametric
bounds can be recovered on the utility function and the distribution of the types. Fur-
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thermore, two changes can be sufficient to obtain full nonparametric identification of the
model.

To prove these results, we extensively use the first order condition which defines the optimal
choices of the agents, and the observed distribution of the trades. The first equation allows
us to define what we call horizontal transformations whereas the second one yields to
vertical transformations. These transformations are identified in the data and are combined
to define recursively the functions of interest. An important feature of our identification
procedure is that the utility function and the distribution of the agents’ types are recovered
using the agent’s program solely. This is convenient when the optimality of the principal is
questionable. For instance, the common knowledge assumption on the distribution function
of the agents’ types or their cost function may fail to hold, the principal may also be risk
averse (see Lewis and Sappington, 1995, Gence-Creux, 2000) and the costs of implementing
nonlinear contracts may modify significantly his program (see Ferrall and Shearer, 1999).
Our results are not affected by these problems.

Beyond identification, we also examine some tests of the model. First, our identification
results can be used to test in a structural and nonparametric way the optimality of the
observed contracts. This question has received considerable attention in the empirical lit-
erature (see Prendergast, 1999, for a survey) and the results are rather mixed, the authors
finding few evidence that contracts vary with the relevant parameters. However, no non-
parametric structural test of the model has been proposed so far.1 Second, we examine
the possibility of testing the asymmetric model versus the symmetric one. We show that
implementing such a test is difficult. Without prior knowledge on the structural functions,
both models cannot be distinguished nonparametrically, even with exogenous variations in
the contracts. This result contrats with previous papers on the topic (see e. g. Puelz and
Snow, 1994, Chiappori and Salanié, 2000) in which auxiliary variables are used.

We also develop a nonparametric estimation procedure based on our recursive identifica-
tion method and prove that the estimators are consistent. This method is implemented on
contract data between the French National Institute of Economics and Statistics (Insee)
and its interviewers2 to study incentives in firms in the spirit of Ferrall and Shearer (1999)
and Paarsch and Shearer (2000). Thanks to a change in the bonus paid to interviewers,
we recover bounds on the utility function of the agents and the distribution of their type.
Then, using the objective function of the principal, we are able to perform a nonparamet-
ric test of the contracts’ optimality. We reject that Insee’s linear contracts are optimal

1Ferrall and Shearer (1999) implement a structural but parametric test.
2Insee hires interviewers for its household surveys.
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and concludes that it does not fully take into account agents’ responses when writing his
contracts. However, when estimating the cost of using linear contracts instead of the op-
timal ones, we find that Insee’s loss is about 9%. This result contrasts with the previous
literature in which linear contracts were thought to be quite inefficient but simple and easy
to implement (Ferrall and Shearer, 1999). Our application points out on the contrary that
the loss is quite small, which may explain the wide use of linear contracts. We also recover
what Insee’s surplus would have been under complete information and find that the esti-
mated expected surplus under incomplete information are 84% of full information surplus.
Overall, the cost due to the asymmetry of information are twice the costs associated with
the bonus system. Our last results are obtained using parametric specifications in line with
our nonparametric results.

The paper is organized as follows. Section 2 recalls the main theoretical results for a
principal-agent model with adverse selection. Section 3 is devoted to the nonparametric
identification of this model. Our nonparametric estimation method and its application are
presented in section 4, and section 5 concludes.

2 Adverse selection model

Following Laffont and Martimort (2002) and Salanié (2005a), we consider a basic ad-
verse selection model where a principal trades y with some agents and provides them
with a monetary transfer t. Agents are heterogeneous with a quasi-linear utility function
U(t, y, θ) = t − C(y, θ).3 The monetary cost C(y, θ) of implementing y depends on their
type θ which is unobserved by the principal. We suppose that θ is real and nonnegative,
θ ∈ Θ = [θ, θ], so that we can interpret it as a measure of the agent’s intrinsic efficiency. θ

is the most efficient agent’s type whereas θ is the least efficient. We denote by Fθ(.) (resp.
fθ(.)) the distribution function (resp. density function) of θ and suppose it to be common
knowledge. Lastly, the principal is assumed to be risk neutral. His objective function is
quasi linear and takes the form W (t, y, θ) = S(y, θ)− t. The following regularity conditions
are imposed.

Assumption 1 (regularity conditions) fθ(.) > 0; ∂S/∂y(., .) > 0 and ∂2S/∂y2(., .) < 0;
∂C/∂θ(., .) > 0, ∂C/∂y(., .) > 0, ∂2C/∂y2(., .) > 0 and ∂2C/∂θ∂y(., .) > 0.

3The convention, here, is that y is produced by the agents as in the regulatory model. Equivalently, we
could assume that the agents consume y and that the utility function takes the form U(t, y, θ) = U(y, θ)−t

as in the price discrimination model.
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The objective function of the principal is increasing and concave. The cost increases with
inefficiency and with the level of y. Moreover, it is convex as a function of y. Lastly, the
positivity of its cross derivative is the Spence-Mirrlees condition, which indicates that a
more efficient type is also more efficient at the margin.

The firm proposes to the agent a set of contracts of the form [(y, t); y ∈ R+, t ∈ R+].
The agent of type θ can either refuse all contracts or accept one of them. If he accepts a
contract (y, t), the agent delivers y and receives a transfer t. If he refuses, he obtains his
outside opportunity utility level normalized to zero.

Without asymmetry of information between the principal and the agent, the firm makes a
take it or leave it offer to the agent of type θ that implements first-best trade levels. More
precisely, the firm proposes to an agent of type θ a contract (y∗θ , t

∗
θ) defined by :

∂S

∂y
(y∗θ , θ) =

∂C

∂y
(y∗θ , θ) (2.1)

t∗θ = C(y∗θ , θ) (2.2)

The optimal trade level is the quantity that equalizes marginal gain and marginal cost.
The transfer function is such that the agent accepts the offer but makes zero profit.

If θ is the agent’s private information, the complete information optimal contracts can no
longer be implemented. The problem arises because of the asymmetric information. In
particular, efficient agents mimic inefficient ones and prefer to trade less to have a positive
utility.

The optimal menu of contracts is more complex in this case. It may be the case, for
example, that the contracts targeted for different types coincide. For those contracts, we
say that there is bunching of types. The general theory can be found in Laffont and
Martimort (2002) but we only describe the optimal menu of contracts without bunching.

Proposition 2.1 Laffont-Martimort (2002)
Under assumption 1 and if there is no bunching at equilibrium, the optimal menu of con-
tracts, of the form (y(θ), t(θ); θ ∈ Θ), entails:

• A downward output distortion for all types except the most efficient:

∂S

∂y
(y(θ), θ) =

∂C

∂y
(y(θ), θ) +

Fθ(θ)

fθ(θ)

∂2C

∂θ∂y
(y(θ), θ) (2.3)

• A positive information rent for all types except the less efficient:
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t(θ) = C(y(θ), θ) +

∫ θ

θ

∂C

∂θ
(y(τ), τ)dτ (2.4)

The firm has to leave a positive information rent to the agents for them to reveal their
types (the term

∫ θ

θ
∂C/∂θ(y(τ), τ)dτ in equation (2.4)). This information rent increases

with the efficiency of the agent and creates inefficiencies in production (the term
Fθ(θ)/fθ(θ)× ∂2C/∂θ∂y(y(θ), θ) in equation (2.3)).

3 Nonparametric identification

3.1 The general case

We now discuss the empirical content of the model. In the sequel, we suppose that the
econometrician observes the trades at equilibrium (y(θi))i∈N for an infinite sample of agents
indexed by i (the types θi being independently drawn from Fθ). Agents are supposed to be
homogenous except for their unknown types; if they differ by observed characteristics, our
results below must be understood conditionally on these characteristics. We also suppose
that the corresponding transfers t(y(θi)) are observable.4 The trades and transfers enable
one to identify the cumulative distribution function of y, Fy(.) and the transfer function
t(.) on the support Y of y(.). The question is whether C(., .), Fθ(.) and S(., .) can be
recovered from these functions and the model.

Without further assumption, we can always replace θ by Fθ(θ) and change C(., .), Fθ and
S(., .) accordingly. Consequently, Fθ is not identified and we can suppose θ to be uniformly
distributed on [0, 1]. Hence, we focus on C(., .) and S(., .) only.

Furthermore, we analyse in this section the case where there is no bunching at equilibrium.
Under assumption 1, the existence of bunching is equivalent to Fy admitting at least one
mass point. Hence, it is easily testable in the data, by checking whether at least two
observed trades are identical or not. The analysis of bunching is deferred to subsection 3.4.

Assumption 2 There is no bunching at the equilibrium.

Our identification results are based on three equations.
4This assumption may be strong (see Wolak, 1994, and Ferrall and Shearer, 1999, for examples where

the transfers are unknown).

5



First, by the Spence-Mirrlees condition and assumption 2, y(.) is strictly decreasing. Thus
it admits an inverse θ(.) which satisfies, for all y ∈ Y ,

Fy(y) = P(y(θ) < y) = P(θ > θ(y)) = 1− θ(y) (3.1)

The first equality stems from the fact that the distribution of y is atomless and the second
from θ(.) being strictly decreasing. Because Fy(.) is observed, this equation shows that θ(.)

is identified .

Secondly, the agent chooses his production according to the first order condition, which
writes as

∂C

∂y
(y, θ(y)) = t′(y) (3.2)

In other terms, ∂C/∂y is identified on L = {(y, θ(y)), y ∈ Y}. Note also that ∂C/∂y is
not identified elsewhere because no (y, θ) is observed outside equilibrium. Given the price
schedule, we can only recover for each agent’s type θ, the marginal utility at his optimal
choice of production.

Lastly, the third equation is the first order condition of the principal (2.3), which can also
be written as:

S̃(y) =
∂C

∂y
(y, θ(y)) + θ(y)

∂2C

∂θ∂y
(y, θ(y)) (3.3)

where S̃(y) = ∂S/∂y(y, θ(y)). From an identification point of view, this equation does not
impose conditions on S(., .) directly, but rather on S̃(.), and we thus focus on this function
hereafter.5 Because no (y, θ) is observed outside equilibrium, ∂2C/∂θ∂y is not identified.
Thus, S̃(.) is not identified either.

Note that even if S̃(.) is known by the theory, we cannot recover ∂C/∂y(., .) outside L and
predict for instance what would be the optimal contract under another objective function
of the principal.

To circumvent this nonidentification result, we impose a restriction on the utility function
by supposing that the cost function is separable. This hypothesis is often made in the
theoretical adverse selection literature (see Wilson, 1993 or Laffont and Tirole, 1993). It is
also assumed in empirical research (see Wolak, 1994, Ferrall and Shearer, 1999, Lavergne
and Thomas, 2005) and in the nonparametric analysis of Perrigne and Vuong (2004). Other
functional restrictions on C(., .) are possible. We present one of them, which stems from
the false moral hazard model, in subsection 3.4.

5In general, the knowledge of S̃(.) does not enable to recover S(., .). However, it will (up to an additive
constant) in some applications where S(., .) does not actually depend on θ.
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Assumption 3 (cost separability) C(y, θ) = θC(y).

Under assumption 3, the uniform normalization of Fθ is not possible anymore. On the other
hand, we can replace (θ, C(.)) by (αθ, C(.)/α) and leave the model unchanged. Thus,
another normalization is necessary and for a given y0 ∈ Y , we can choose θ0 such that
θ(y0) = θ0. In other words, assumption 3 reduces the dimensionality of the problem by
replacing a function of two variables C(., .) by two functions of one variable C(.) and Fθ(.)

and the structural parameters are now (C ′, Fθ, S̃). Identification is based on the same
equations than previously, and the proof of proposition 3.1 is deferred to appendix A.

Proposition 3.1 Under assumptions 1, 2 and 3, (C ′, Fθ, S̃) are not identified jointly. On
the other hand, if one of these three functions is known, the other two can be identified.

This result states that even under the separability assumption, the model remains unidenti-
fied. Basically, only three equations are available whereas we seek to recover four functions:
(C ′(.), Fθ(.), S̃(.), θ(.)). Hence, we can fix one of the four functions and deduce the others
from the data and the model. Actually, this function cannot be chosen completely arbitrar-
ily. Indeed, the three structural functions (C ′(.), Fθ(.), S̃(.)) must satisfy assumption 1 and
be such that the second order conditions of the principal’s and the agent’s programs hold.
Some choices can be discarded according to these criterions and bounds on parameters of
interest may be obtained through these constraints (see Salanié, 2005b, for an approach of
this kind).

On the other hand, if one of the three structural functions is known, we can recover the
other functions of interest. In particular, and contrarily to the previous general case, the
knowledge of S̃(.) enables to recover the cost function everywhere. Another application
of our result is regulation with ex-post observable costs. Suppose indeed that θ(y)C(y) is
observed. Because θ(y)C ′(y) = t′(y) is also identified, C ′/C(.) is identified. Then C can be
recovered up to a multiplicative constant, which is given by the normalization θ(y0) = θ0.
As a consequence, Fθ and S̃ are identified. This result is in line with Perrigne and Vuong
(2004)’s one.6

We review in the following several classical settings where this model is useful and show
how identification can be obtained.

6Actually, the problem of Perrigne and Vuong (2004) is more involved because they consider the reg-
ulation model of Laffont and Tirole (1986) where the regulated firm can make a costly and unobserved
effort to reduce its cost. Thus, they have to deal both with adverse selection and moral hazard.
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3.1.1 Quality and Price Discrimination

In Mussa and Rosen (1978), the principal is a firm that produces a good of quality q at a
cost H(q). Agents have heterogenous preferences for quality θ (distributed following Fθ)
and have a utility U = θq − t if they pay t for a good of quality q.

In this setting, the objective function of the principal is unknown and depends on H(.)

(S(q, θ) = H(q) in the previous notation) whereas the utility of the agents is specified
(C(q) = q). Our proposition implies that this model is identified nonparametrically.7

The same model can be used to study nonlinear pricing by a monopoly (Maskin and Riley,
1984). Our result shows that if the utility function of agents is specified, the model is
identified.

3.1.2 Financial contracts

In Freixas and Laffont (1990) framework, the principal is a lender who provides a loan y

to a borrower and has a utility S(y) = t−Ry where R is the risk-free interest rate. Agents
are firms with profit U = θf(y) − t. θf(y) is the production of the firm, y represents the
units of capital and θ is a productivity index.

Here, the objective function of the principal is known because R, the risk-free interest rate
is observed. Our proposition implies that the production function f(.) and the distribution
of the types Fθ(.) are identified.

3.1.3 Regulation

In the Baron and Myerson (1982) model, the regulator maximizes a weighted sum of the
consumers’ surplus and the regulated firms defined by heterogenous cost functions of the
form θC(y). In our notation, we have:

S(y, θ)− t(y) = (1− α)

[∫ y

0

p(u)du− t(y)

]
+ α [t(y)− θC(y)] (3.4)

From this equation, we derive S̃(y) = (1−α)p(y)+αt′(y) . Hence, when the price function
p(y) is observed (which is usually the case in the empirical literature), S̃(.) is known up to
the parameter α and our proposition proves that C(.) and Fθ(.) are identified up to this
parameter.

7In this example, the principal minimizes his objective function instead of maximizing it.
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3.2 Identification under exclusion restrictions

3.2.1 The setting

Proposition 3.1 states that the model is identified provided that one of the three structural
functions is known. This condition may however be restrictive in certain settings. In the
regulation problem, one has to assume that the weighting parameter α is known. In the
price discrimination case, identification is based on the assumption of linearity of U in q.
Moreover, one of the major empirical question in contract theory is whether the observed
contracts are optimal compared to the theoretical ones (Chiappori and Salanié, 2002).
Answering this question implies estimating S̃ and compare it with the theoretical one. In
this case, one can obviously not rely on the theoretical S̃ to identify the model.

In this subsection, we examine the identification of the model when several menus of
contracts are available but none of the functions (Fθ, C

′, S̃) is known. More precisely, we
suppose that we observe variations in the menus of contracts under the exclusion restriction
that the utility function and the distribution function of θ are not affected by these changes.
We suppose in particular that there is no selection effect (see the discussion on this issue
in subsection 3.4).

Exogenous variations in the menus can be observed for different reasons. The first and ideal
case is experiments: if different contracts are proposed to people in a random way, then
endogenous changes or selection problems are not a concern. For instance, the Rand Health
Insurance experiment (see Manning et al., 1987) randomly assigned families who participate
in the experiment to 14 different insurance plans. Similarly, Ausubel (1999) analyses the
market for bank credit by using randomized mailed solicitations. The propositions vary in
the interest rates and the duration of the loan. The econometrician may also use natural
experiments where the objective function S of the principal changes for an exogenous
reason.8 Laws modifications are often good candidates for this purpose. Many examples
have been already studied in the literature, especially in moral hazard situations (see e.g.
Dionne and Vanasse, 1996; Chiappori et al., 1998; Chiappori et al., 1998; Banerjee et al.,
2002). In the regulation context, one could also use changes in the government, which
may induce variation of the parameter α, while the structural parameters (Fθ, C

′) remain
constant (Gagnepain and Ivaldi, 2007). In a monopoly price discrimination model, the
price of one input may increase, inducing a change in the cost function of the monopoly

8Our analysis could be adapted to the case where C ′ (resp. Fθ) alone varies, (S̃, Fθ) (resp. (S̃, C ′))
remaining constant. We focus on the variations of the principal’s objective function because we believe it
to be the most common situation.
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and thus in S. However, in a partial equilibrium framework, this increase does not affect
the utility function of the customer. In the delegation of production to agents, the firm may
restructure their wage schedule for an exogenous reason such as, for instance, a managerial
change. Another example on the French National Institute will be developed in section
four (see also Lazear, 2000).

In the sequel, we denote by λ the index of these different menus. We suppose that there are
K different indices and we denote their set by Λ = {λ1, ..., λK}. t(., λ) (resp. S̃(., λ)) is the
transfer function (resp. the marginal objective function at the optimum) corresponding to
λ. The production chosen at equilibrium also depends on λ and we denote it by y(θ, λ), its
distribution function being Fy(., λ). Its inverse function is θ(y, λ). We now suppose that
the econometrician has access to data of the form (t(yi, λi), yi, λi), i ∈ {1, ..., N}. Here, λi

does not necessarily have an economic meaning: observing λi only indicates that the type
of contract of individual i is known. As previously, t(., λ) and Fy(., λ) are identified for all
λ ∈ Λ, and our aim is to recover the structural parameters

(
C ′, Fθ, (S̃(., λ))λ∈Λ

)
.

We start from the first order condition and the monotonicity condition:

∂t

∂y
(y, λ) = θ(y, λ)C ′(y) (3.5)

Fy(y(θ, λ), λ) = 1− Fθ(θ) (3.6)

These two equations, together with (2.3), show that it suffices to identify (y(., λ))λ∈Λ or
equivalently (θ(., λ))λ∈Λ to recover the structural parameters. The idea is thus to focus
on these functions in order to derive our identification results. To do so, we first need to
introduce two types of transforms that will be at the basis of our identification method.

3.2.2 The horizontal and vertical transforms

Equation (3.6) implies that for all θ ∈ Θ,

Fy(y(θ, λi), λi) = Fy(y(θ, λj), λj).

The ranks of y(θ, λi) and y(θ, λj) are identical in their respective distribution. Hence,
letting Hij(y) = F−1

y [Fy(y, λi), λj] denote the quantile-quantile transformation between
the distribution of y(θ, λj) and y(θ, λi), we get

y(θ, λj) = Hij(y(θ, λi)) (3.7)

The horizontal transforms on figure 1 are identified and we can recover point (1) for instance
if we know point (0).
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Besides, let Yi be the support of y(θ, λi). For i 6= j, suppose that Yi ∩ Yj 6= ∅ and let
y ∈ Yi ∩ Yj. The first order condition implies that

∂t
∂y

(y, λi)

θ(y, λi)
=

∂t
∂y

(y, λj)

θ(y, λj)
.

If we define the vertical transform Vij(., .) by Vij(θ, y) = ∂t/∂y(y, λj)× θ/∂t/∂y(y, λi), we
get

θ(y, λj) = Vij(θ(y, λi), y) (3.8)

Because Vij(., .) is identified on R×Yi∩Yj, the knowledge of θ(y, λi) implies the knowledge
of θ(y, λj). In particular, it suffices to identify θ(., λ1) to recover the other functions
θ(., λk)2≤k≤K . Starting from point (1) for instance on figure 1, we can identify point (2).

To conclude, starting from (y0, θ(y0, λ1)), we can identify (y1, θ(y1, λ1)) where y1 = H12(y0)

and θ(y1, λ1) = V21(θ(y0, λ1), y1). By induction, we identify all the black points in figure 1.

y 0

(0) (1)
(2)

θ (y, λ)

θ 1
θ 0

yy 1

θ (., λ1)
θ (., λ2)

Η12 ( y0 )

V21 (θ0, y1 )

Figure 1: The horizontal and vertical transforms.

3.2.3 Identification results for K = 2.

Figure 1 corresponds to a situation where θ(y, λ1) < θ(y, λ2) for all y ∈ Y1 ∩ Y2. This
does not hold in general, since θ(., λ1) and θ(., λ2) may cross. Actually, because θ(y, λ1) <

θ(y, λ2) is equivalent to ∂t/∂y(y, λ1) < ∂t/∂y(y, λ2), the two cases can be distinguished
by the data. As they lead to different results in terms of identification, we consider them
separately.
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Figure 1 suggests that without crossing, θ(., λ1) can be identified on some points but not
everywhere. This implies partial identification of the model. Theorem 3.2 formalizes this
idea.

Theorem 3.2 Suppose that K = 2, assumptions 1-3 hold and ∂t/∂y(., λ1) < ∂t/∂y(., λ2).
Then C ′(.) and Fθ(.) are identified on two sequences. Upper and lower bounds can be
obtained elsewhere. The functions

(
S̃(., λ)λ∈Λ

)
are not identified.

Bounds on C ′ and Fθ can be recovered when ∂t/∂y(., λ1) < ∂t/∂y(., λ2). Full nonparamet-
ric identification is not achieved but what is recovered can be sufficient to test parametric
restrictions on Fθ or C ′. In contrast with these positive results, the proposition shows
that nothing can be learnt on the principal’s value function when K = 2. Recovering S̃

is indeed more demanding than identifying (C ′, Fθ) on some points, since it requires to
recover fθ (see equation (2.3)). Here, fθ is unidentified because only isolated points of Fθ

can be obtained.9

To recover full nonparametric identification, more structure on the model and on the
functions of interest must be imposed. However, we need not fix or observe entirely one of
the structural functions anymore as in the case K = 1. Usually, a parametric restriction
on one of these functions will be sufficient to identify (and even overidentify) the model.
Consider for instance the case of regulation, where the exogenous change of the transfer
function is due to a modification of the unknown parameter α in (3.4) and let us call α1

(resp. α2) this parameter in the first (resp. second) sample. On the one hand, using
proposition 3.2, C ′(.) is identified on a sequence (yn)n∈Z. On the other hand, fixing α = α′1
is equivalent to specifying the principal objective function. This defines, by proposition
3.1, a unique function C ′

α′1
. In general, the sequences (C ′(yn))n∈Z and (C ′

α′1
(yn))n∈Z are

equal for a unique value α′1, which ensures the identification of this parameter. We identify
similarly α2. By proposition 3.1, the whole model is identified.

We now turn to the case where functions ∂t/∂y(., λ1) and ∂t/∂y(., λ2) cross. In this case,
the model can be fully recovered thanks to the intersection point. The proof is quite differ-
ent from previously and can be explained as follows. By the normalization, an intersection
point (yc, θc) can always be fixed. For any y0, define the sequence (θn)n∈N as in figure
2 from a given θ0. We show that (θn)n∈N converges to θc if and only if θ0 = θ(y0, λ1).
This enables to recover θ0, since θc is known. Hence, θ(., λ1) is fully identified and all the
structural functions can be recovered.

9To obtain partial identification, more structure is needed. For example, if S(y, θ) = S(y), we can show
that bounds can be recovered for S(yn+1) − S(yn), where (yn)n∈N is the sequence of points defined as in
figure 1.
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Figure 2: Identification when ∂t/∂y(., λ1) and ∂t/∂y(., λ2) cross.

Theorem 3.3 Suppose that K = 2, assumptions 1-3 hold and ∂t/∂y(yc, λ1) = ∂t/∂y(yc, λ2)

for a given yc in the interior
◦
Y1 of Y1. Then C ′, Fθ, S̃(., λ1) and S̃(., λ2)) are identified

on their support.

Theorem 3.3 is reminiscent of the result of Guerre, Perrigne and Vuong (2005) in the
context of first-price auctions with risk averse bidders. They also use exogenous variations
(namely, the variation in the number of bidders) to obtain identification of the model at
the limit, using a converging sequence (see their proposition 1).

3.2.4 Identification results for K ≥ 3.

In this subsection, we study the noncrossing case with two or more exogenous changes.
Here we have in hand not only the transforms H12 and V12, but also (when K = 3) H13,
H23, V13 and V23. As a consequence, the set on which θ(., λ1) is identified is larger. Figure
3 gives an example where starting from (y0, θ0) on the curve θ(., λ1), we can identify θ(., λ1)

on y1 as previously but also between y0 and y1 (on y2 for instance). Proposition 3.4 defines
the precise set where the function θ(., λ1) is point identified.

Proposition 3.4 Suppose that K ≥ 3, assumptions 1-3 hold and ∂t/∂y(., λ1) < ... <

∂t/∂y(., λK). θ(., λ1) is identified on Y∩Y1 where Y is the closure of the set Y defined by:
{

y0 ∈ Y
For all (y, i, j) ∈ Y× {1, ..., K}2, y ∈ Yi implies Hij(y) ∈ Y

13
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Figure 3: Identification with K = 3 different transfer functions.

It seems difficult to characterize Y more precisely without further restrictions. It may
happen that Y ∩ Y1 6= Y1, so that similarly to the case K = 2, only bounds can be
obtained on C ′ and Fθ. However, under the assumptions below, we prove that Y is dense
in ∪i=1,..,KYi and that the model is fully identified.

Assumption 4 (separability in the transfer function) For all (y, λ),

∂t/∂y(y, λ) = l(λ)m(y).

Assumption 5 (non periodicity): there exists 1 ≤ i < j < k ≤ K such as

ln(l(λi)/l(λj))

ln(l(λk)/l(λj))
/∈ Q. (3.9)

Up to ignoring some elements of Λ, we can let without loss of generality i = 1, j = 2 and
k = 3.

Assumption 6 (large support): H21(Y1 ∩ Y3) ∩ Y2 6= ∅ and H23(Y1 ∩ Y3) ∩ Y2 6= ∅.

Assumption 5 is a technical condition which ensures that the identifying sequences are not
periodic. Because almost every real are irrational, this assumption should not be seen as
restrictive. The large support condition ensures that enough horizontal transforms can be
performed to obtain new points where θ(., λ1) is identified. This assumption can be easily
checked in the data. The more restrictive assumption is the separability hypothesis. It

14



includes nevertheless the case of constant marginal transfers and is directly testable in the
data.10 Theorem 3.5 shows that the model is fully nonparametrically identified under these
assumptions.

Theorem 3.5 If K ≥ 3 and assumptions 1-6 hold, C ′(.), Fθ(.) and S̃(., λi), for all i =

1, .., K, are identified on their support.

Theorem 3.5 implies that when K ≥ 4, the model is actually overidentified.11 Indeed, we
can recover (under suitable adaptations of the assumptions) Fθ and C ′ by using different
subsets of Λ. If the different corresponding functions do not coincide, the model is rejected.

3.2.5 Identification results with continuous variations.

It may happen that there is actually a continuum of exogenous variations. In the case
of price discrimination for instance, the prices of the input of the monopoly may take
any value in an interval, implying also that the value function of the principal changes
continuously. As mentioned above, the model with cost separability is now overidentified.
Actually, identification can be obtained without this assumption.

Proposition 3.6 Suppose that Λ = [λ, λ], assumption 1 and 2 hold, θ is uniformly dis-
tributed on [0, 1] (without loss of generality) and ∂2t/∂y∂λ(y, λ) > 0. Then

• ∂C/∂y(., .) is identified on {(y, θ)/θ ∈ Θ, ∃λ ∈ Λ/θ(y, λ) = θ}

• S̃(., λ) is identified on {y/∃(θ, λ) ∈ Θ× Λ/θ(y, λ) = θ}.

3.3 Testing the model

The empirical foundations of theoretical models from contract theory have been much
debated in the literature. In this subsection, we identify three tests of our model, which
correspond to well defined economic questions.

3.3.1 Do people react to incentives ?

Incentives are at the core of economic reasoning and many papers have sought evidence on
the reactions to these incentives (see Prendergast, 1999, and Chiappori and Salanié, 2002,

10Note that it automatically implies ∂t/∂y(., λ1) < ... < ∂t/∂y(., λK), up to a reindexation.
11Whether the model is just identified or overidentified when K = 3 is unclear to us.
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for surveys on this issue).12 In our model and with K ≥ 2, we can test such reactions by
checking if

∂t/∂y(y, λ1) < ∂t/∂y(y, λ2) ⇐⇒ θ(y, λ1) < θ(y, λ2)

holds for all y ∈ Y1 ∩ Y2. Using (3.6), this condition may be written as
{

y/
∂t

∂y
(y, λ1) <

∂t

∂y
(y, λ2)

}
=

{
y/Fy(y, λ1) > Fy(y, λ2)

}
. (3.10)

In particular, when ∂t/∂y(., λ1) < ∂t/∂y(., λ2), the model implies that Fy(., λ1) is stochas-
tically dominated at the first order by Fy(., λ2). This implication can be straightforwardly
tested by the data, for instance through a one-sided Kolmogorov-Smirnov test.

3.3.2 Are contracts optimal ?

Another important empirical issue of contract theory is the optimality of observed con-
tracts. Nonstructural approaches can only bring limited clues on this issue and the struc-
tural papers have relied so far on parametric forms (see e.g. Ferrall and Shearer, 1999). In
such a framework, the rejection of the model can either discard the parametric hypotheses
or the theoretical framework. On the contrary, our nonparametric approach enables to test
the theory solely.

The previous results imply that the model is fully or partially identified when K ≥ 2 and
without the knowledge of the theoretical value function of the principal. Hence, with such
an extra assumption, the model is generally overidentified, and we can test whether this
theoretical form is coherent with the data.

3.3.3 Does asymmetric information really matter ?

Lastly, a large literature has dealt with the empirical relevance of asymmetries of infor-
mation (see Chiappori and Salanié, 2002, for a review). Generally speaking, the results of
this literature throw doubts on the importance of such asymmetries. In this subsection,
we question the possibility of testing nonparametrically the complete information model
described in section 2.1 versus the asymmetric information model, when the information
set of the principal is unknown. Proposition 3.7 sums up our findings.

Proposition 3.7 Suppose that assumption 1, 2 and 3 hold. In general, no test of complete
versus asymmetric information can be done if K = 1, even if one of the structural functions
is known. When K ≥ 2, a test can be implemented under one of the following conditions:

12Overall, the conclusion of this research is rather positive.
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•
{

y/
∂t

∂y
(y, λ1) <

∂t

∂y
(y, λ2)

}
6=

{
y/t(y, λ1) < t(y, λ2)

}
(3.11)

• assumption 4 holds and C ′ is known ;

• assumption 4 holds, one function S̃(., λ0) is known and y 7→ t(y, λ0)× (1−Fy(y, λ0))

is not constant.

Hence, the possibilities of testing for asymmetric information are rather limited. In par-
ticular, the two models cannot be distinguished under assumption 4 without auxiliary
information, even when K ≥ 2. This stems from the fact that under this assumption, the
two models lead to the same function θ(., λ1).13 This result contrasts with the previous
literature on insurance in which nonstructural tests are performed using auxiliary variables
(Puelz and Snow, 1994; Chiappori and Salanié, 2000).

3.4 Discussion and extensions

In this subsection, we come back on assumptions 2 and 3. We also discuss the issue of
selection effects.

3.4.1 Bunching

We have maintained up to now the assumption that no bunching occurs at the equilibrium.
As mentioned previously, this assumption is testable, by checking if Fy admits a mass
point. Bunching is also equivalent to t(.) being continuously differentiable. Many observed
contracts do not fulfill this requirement. For instance many production contracts exhibit
kinks (see e.g. Ferrall and Shearer, 1999). In this case, bunching provides more information
on the model. Figure 4 gives the intuition for this result. Fixing (θ0, y0) at one extremity
of the bunching, it is possible to identify θ1 = (∂t/∂y−(y0, λ1))/(∂t/∂y+(y0, λ1))θ0 i.e.
the interval [θ0, θ1]. The horizontal and vertical transformations of this interval allows
the econometrician to identify θ(., λ1) and consequently C ′(.), Fθ(.) and the functions
(S̃(., λ))λ∈Λ on several segments, even when K = 2.

3.4.2 The false moral hazard model

Our results are based on the cost separability assumption C(θ, y) = θC(y). Other restric-
tions are however possible. One example is given by the “false moral hazard” model (see

13The overidentification restrictions on (θ(., λ))λ∈Λ (when K ≥ 4) are useless to test between the two
models because if they fail to hold, both models are rejected.
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Figure 4: Identification with bunching. Thick lines (resp. black points)
correspond to the identified intervals (resp. points) of θ(., λ1) and θ(., λ2).

Laffont and Martimort, 2002, p. 287). In this framework, we suppose that the production
of the agent depends on θ but also on the level of his effort e, so that y = g(θ, e). The
cost C(e) depends only on the effort e. The agent observes the random term θ before he
chooses his effort so that he maximizes t(g(θ, e), λ) − C(e). Though apparently close to
the moral hazard model, this model does not share its properties (the trade-off between
efficiency and risk insurance especially) and is rather an adverse selection model.

From an econometric point of view, the identification of the false moral hazard model is very
close to the previous analysis. The model satisfies C(y, θ) = C(g−1

2 (θ, y)) where g−1
2 (θ, .) is

the inverse function of g(θ, .).As previously, the structural parameters are C ′, Fθ and the
(S̃(., λ))λ∈Λ. In this framework, proposition 3.1 and 3.4 are still valid. The equivalent of
proposition 3.5 also holds if the marginal transfer is constant and the production function
is separable, g(θ, e) = h1(θ)h2(e), as with Cobb-Douglas functions.

3.4.3 Selection effects

We have supposed until now that variations in the transfer functions do not yield any
changes in Fθ. However, selection effects can be important. Lazear (2000), for instance,
showed that half of the productivity increase observed in a car glass company after moving
from constant wages to piece rates could be explained by the arrival of more productive
worker. These effects are not taken into account in our model where all types of agent
participate. Hence, our analysis is not valid in general when selection occurs.

There is, however, a simple way to detect selection effects when panel data are available.
It suffices indeed, as in Lazear (2000) to compare the distributions of the production of

18



the stayers and the entrants. If these distributions differ significantly, selection should be
dealt with by modeling the selection process.

4 Application

In this section, we apply our results on contract data between the French National Institute
of Economics and Statistics (Insee) and the interviewers it hires to make household surveys.
For each survey, Insee’s interviewers receive a random sample of households close to their
residence and has to fulfill a maximum number of face to face interviews. The Insee
cannot compel its interviewers to obtain a given number of interviews and it provides
them incentives through a linear scheme. Each interviewer receives a basic wage plus a
bonus for each interview he achieves.

This application contributes to the literature of provisions of incentive by firms (see Pren-
dergast, 1999, for a survey) which has been interested in studying 1) to what extent agents
react to incentives and 2) the optimality of the observed contracts. Our approach is
structural and similar to Paarsch and Shearer (2000) and Ferrall and Shearer (1999), but
nonparametric. In these models, the production of a worker is a known function of his
effort and his type. As explained in subsection 3.4, they are what Laffont and Martimort
(2002) call “false moral hazard ” models. These models have a structure that are very
similar to adverse selection models and our results apply.

Here, for the ease of the presentation, we model the behavior of interviewers without mak-
ing explicit reference to the underlying effort they produce. In a survey j ∈ {1, ..., J},
an interviewer i ∈ {1, ..., N} receives a random sample of housings. The households to
interview may be easy or difficult to contact and reluctant or not to accept the question-
naire. We summarize the average difficulty of this sample by a parameter θij ∈ R+ which
is observed by the interviewer.14 Letting y denote the response rate of the sample, we
assume that the cost of interviewing the households (via his effort) is separable and writes
as θijCj(y). The interviewer receives wj + δj from Insee when the interview is achieved and
wj otherwise. The program of interviewer i is thus similar to the agent’s program we have
been looking at and writes as

max
y

δjy − θijCj(y).

14Before trying to contact the households, interviewers must locate the housings of their sample (in order
to identify unoccupied or destroyed housings, for instance). During this phase, the interviewer learns the
difficulty θij of his sample.
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Finally, Insee is an institute depending on public money and maximizing the social value
of each survey. We denote by λj the “price” of the information contained in a household’s
answers, i.e. the social value of an interview in survey j. Hence, the Insee’s objective
function, associated with an interviewer whose response rate is y, writes as

S(y, λj) = λjy

4.1 The data

We use data on three household living conditions surveys (“enquête Permanente sur les
Conditions de Vie des Ménages”, PCV hereafter) which took place in October 2001, 2002
and 2003 (j = 1, 2, 3). In 2001 and 2002, the focus of the survey was put respectively on the
use of new technologies and participation in associations, while in 2003, the survey studied
education practices in the family. As a consequence, almost all households were eligible to
the survey in 2001 and 2002 whereas only families were eligible in 2003. Otherwise, the
surveys were identical in their designs and rules for the fieldwork.

In all surveys, we restrict our attention to the housings where more than three persons lived
at the time of the 1999 census. This information is indeed available to the interviewer before
conducting the surveys and is a good proxy for the eligibility of the household in 2003. For
these households, the bonus for achieving an interview increased from 20 and 20.2 euros
in 2001 and 2002 to 23.4 euros in 2003. To avoid selection effects, we also focus on the
interviewers who conduct the three surveys.

We interpret this change as a modification of the principal objective function. We believe
that the 2003 survey on education was considered by Insee to be more important than the
ones on new technologies and participation to associations. Indeed, there is much debate
in France on the relationship between families, education and the emergence of inequalities
(see for instance the report of the Haut Conseil de l’Education in 2007 on this topic). More
formally, more publications from Insee and other institutions were based on this survey
and the questionnaire was slightly longer in 2003. Given these elements, we believe that
the social value of an interview was higher in 2003 (λ1 = λ2 < λ3). However, because the
surveys were drawn in the same way, conducted in the same period, were close in time and
had identical rules for the fieldwork, we assume that for all interviewers i, the distributions
of θij, j ∈ {1, 2, 3} are identical. We also suppose that C ′

1 = C ′
2 = C ′

3, even if an interview
in 2003 was a little longer. Indeed, the cost of achieving an interview is mainly due to
contact tries rather than the length of the interview itself.15 Under these hypotheses, the

15This claim is supported by the discussions that we had with interviewers.

20



variation in the transfer function is exogenous, as defined in subsection 3.2.

Interviewers Bonus Response rates
Mean Std error

2001 236 20 79.6% 0.188
2002 236 20.2 80.4% 0.199
2003 236 23.4 83.8% 0.144

Table 1: Descriptive statistics in 2001, 2002 and 2003 surveys.

Our data consists in the identification number of the interviewer and his response rate, for
each survey. The response rate of an interviewer is defined as the ratio of the number of
respondents on the number of housings which are in the field of the survey (i.e., excluding
secondary, unoccupied and destroyed housings for instance). Table 1 summarizes the main
information about the surveys. It appears that the 2001 and 2002 surveys are very similar
and we aggregate them in the rest of the application to obtain more precise results.16 The
2003 survey is also similar to the other ones except for a higher response rate. Figure 5
displays more precisely the distribution function of the response rates for the 2001-2002
and 2003 surveys. As predicted by the theory, the distribution function of the 2003 survey
stochastically dominates the one of 2001-2002, which proves that interviewers react to
incentives.17 We find that on average production increases by 5% when the piece rate
increases by 16%. This result suggests a significant incentive effect, but relatively smaller
than what the previous literature has found (Lazear, 2000; Paarsch and Shearer, 2000).

Figure 5 also displays several jumps in the distribution functions. We do not interpret
them as evidence of bunching as the transfer functions do not exhibit kinks. These mass
points are rather due to finite approximations of the response rates, and we neglect the
error term in our estimation.

16The difference between the two average response rates is not significant at 5%, contrarily to differences
between 2001 (or 2002) and 2003. In the following, we suppose that the two bonuses were identical and
equal to 20.2 euros.

17The one-sided Kolmogorov-Smirnov test which tests the equality of the distribution functions rejects
the null hypothesis at 5%.
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Figure 5: Distribution functions of the response rates for 2001-2002 and 2003
surveys.

4.2 Estimation

In this subsection, we define and study the estimators of the structural parameters in the
framework of our application. We suppose that K = 2 and assume that t(y, λj) = δjy.18

Our asymptotic results rely on a standard assumption on the sample (yij)i∈{1,...,N},j∈{1,2},
which does not impose any dependency structure between θi1 and θi2.19

Assumption 7 (independent sampling) (θ11, ..., θN1) (resp. (θ12, ..., θN2)) are indepen-
dently drawn according to Fθ.

By proposition 3.2, we identify the function θ(., λ1) on an increasing sequence (yn)n∈Z.
More precisely (see equation (6.5) in the proof of proposition 3.2), we identify the sequence

yn = Hn
12(y0)1H12(yn−1)∈Y1 + yn−11H12(yn−1)/∈Y1 , n ∈ Z,

where Hn
12 = H12 ◦ ... ◦H12 for any n ∈ N (and similarly, H−n

12 = H−1
12 ◦ ... ◦H−1

12 ).

Moreover, using θ(H12(y), λ1) = V21(θ(y, λ1), H12(y)) and by induction, θn = θ(yn, λ1)

satisfies:
θn = (δ1/δ2)

nθ01H12(yn−1)∈Y1 + θn−11H12(yn−1)/∈Y1 ,

where θ0 is chosen arbitrarily.
18Actually, our results hold for any transfer function.
19We suppose for simplicity that the same agents are observed in both contracts.
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These sequences are estimated as follows. For j ∈ {1, 2}, let F̂j (resp. F̂−1
j ) denote the

empirical distribution function (resp. empirical quantile function) of the (yij)i∈{1,...,N}. Our
estimator of H12 is

Ĥ12(x) = F̂−1
2 ◦ F̂1(x).

For all n ∈ Z, we estimate yn by

ŷn = Ĥn
12(y0)1 bH12(byn−1)∈cY1

+ ŷn−11 bH12(byn−1)/∈cY1
,

where Ŷ1 = [mini yi1, maxi yi1], and θn by

θ̂n = (δ1/δ2)
nθ01 bH12(byn−1)∈cY1

+ θ̂n−11 bH12(byn−1)/∈cY1
.

Now, let us now turn to Fθ and C ′. These functions are point identified respectively on
(θn)n∈Z and (yn)n∈Z and we focus on the estimation of Fθ(θn) and C ′(yn). First, using
(3.6), Fθ(θn) satisfies Fθ(θn) = 1− F (yn, λ1). Hence, we define F̂θ(θn) by

F̂θ(θn) = 1− F̂1(ŷn).

Similarly, by 3.5, C ′(yn) = δ1/θn. Thus, we consider the following estimator:

Ĉ ′(yn) =
δ1

θ̂n

.

The following theorem establishes the consistency of (θ̂n, F̂θ(θn))) and (ŷn, Ĉ ′(yn)). The
result relies on assumption 8, which prevents any yn from being on the boundary of Y1.
Since the measure of this boundary is zero, this assumption is unrestrictive.

Assumption 8 For all n ∈ Z, yn /∈ Y1\
◦
Y1.

Theorem 4.1 Suppose that K = 2, t(y, λj) = δjy and assumptions 1-3, 7-8 hold. Then,
for all n ∈ Z and when N → +∞,

(θ̂n, F̂θ(θn)))
P−→ (θn, Fθ(θn))

(ŷn, Ĉ ′(yn))
P−→ (yn, C ′(yn))

By the monotonicity of Fθ and C ′, the estimators of Fθ(θn) and C ′(yn) enable us to build
bounds on the two functions.
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4.3 Results

We now apply this estimation method on our contract data. Firstly, starting from a middle
point y0 = 0.6 (with θ0 = 1), we estimate (yn, θn, Fθ(θn), C ′(yn))n∈Z as indicated and
obtained 12 distinct points which correspond to n ∈ {−3, ..., 8}. Figures 6 and 7 display
the estimations of the bounds on Fθ(.) and C ′(.) respectively, and their 95% confidence
interval obtained by bootstrap. With twelve points, the bounds on both functions are
close and we are able to correctly retrieve their shape. The highly convex form of the
cost function shows in particular that incentives are relatively large for small values of the
production but sensitively lower for higher ones. This may explain the small average effect
of incentives that we have found compared to the previous results of the literature. We
also note that, as expected, the errors accumulate in the estimation procedure and that
the width of the confidence intervals on the bounds of Fθ (resp. C ′) increases with |θ − 1|
(resp. |y − 0.6|).

0

0,2

0,4

0,6

0,8

1

0 1 2
θ

lower bound
upper bound
95% CI
Série4

Fθ

Figure 6: Estimated bounds on Fθ(.)

Secondly, this information is used to estimate the objective function of the principal
S(y, λ3) = λ3y in 2003. Using equation 6.4 in appendix A, it can be shown that λ3

satisfies for all n 6= 0:

λ3 = δ3

(
1 +

ln(θn/θ0)

ln(Fθ(θn)/Fθ(θ0))

)

We then obtain eleven different estimators of λ3, for n ∈ {−3, 8}, n 6= 0:

λ̂3n = δ3

(
1 +

ln(θ̂n/θ0)

ln(F̂θ(θn)/F̂θ(θ0))

)
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Figure 7: Estimated bounds on C ′(.).

and the model is overidentified (see the discussion following proposition 3.2). Figure 8
depicts these estimators and their associated confidence interval calculated by bootstrap.
We see that λ̂3n does not appear to be constant in n, which contradicts the contracts’
optimality. More formally, assuming asymptotic normality, we compute the Wald statistic
of the test λ−3 = ... = λ8. This statistic equals 65.5 and should be compared to the 95%
quantile of a χ2(11), i.e., 19.7. Hence, we clearly reject the contracts’ optimality at the 5%
level (p-value' 10−9).

The rejection of contracts’ optimality is also reinforced by the violation of the Informative-
ness Principle which states that all factors correlated with performance should be included
in the contracts (Prendergast, 1999). In our application, contracts are not optimal as the
bonus does not depend for instance on the region in which interviewers are working, even
if the average response rate in Paris area (0.73% in 2003) is significantly lower than in the
rest of France (0.85%).

To understand why Insee designs linear contracts, it is interesting to measure the cost
of using simple but inefficient incentives. We thus compare the actual surplus of the
institute with the one it would obtain under the use of optimal contracts. We also compute
the surplus of Insee under complete information and estimate the cost of asymmetric
information. To do so, we need to recover λ3 in the objective function of Insee. However,
under the assumption that Insee maximizes his objective function only in the class of linear
contracts, equation (3.3) is not valid anymore. It can be shown, in this case, that λ3 is
not identified even with K = 2. We thus adopt a parametric approach and impose a
structure coherent with our previous nonparametric analysis. More precisely, we suppose
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Figure 8: Estimated λ̂3n, n ∈ {−3, 8}, n 6= 0.

that θ follows a Weibull distribution Fθ(θ) = 1 − exp(−aθb) for all θ ∈ R+ and that the
cost function takes the form C ′(y) = α (y/1− y)β on [0, 1[. The parameters of interest
are estimated by regressing ln(− ln(F̂j(y))) on ln[(1 − y)/y] (see appendix B). We obtain
â = 1.87 (0.03), b̂ = 1.89 (0.04), α̂ = 16.7 (0.07) and β̂ = 0.46 (0.01). Figure 9 shows that
these parametric forms perfectly fits the nonparametric estimated points.
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Figure 9: Parametric estimation of Fθ and C ′.

Under these parametric restrictions, we are able (see appendix B) to estimate λ3 and find
that the social value of an interview to be λ̂3 = 102.1 euros. We also compute the expected
surplus under full information and the expected surplus under incomplete information with
linear or optimal contracts. Table 2 summarizes our results. We find that the surplus loss
associated with the use of linear contracts is about 9% and that the response rate also
decreases by 9% compared to optimal contracts. This result contrasts with the previous
literature in which linear contracts were thought to be quite inefficient. Ferrall and Shearer
(1999), for instance, evaluate this loss at 50%. Our results point out on the contrary that
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the cost is quite small and that optimal contracts are not highly nonlinear. This may
explain why firms widely use linear contracts compared to nonlinear ones: they are less
costly to implement and almost efficient.

Environment Pay method E[surplus] Relative E[response rate]

Full information Optimal contract 86.0 1.00 0.99
Incomplete information Optimal contract 72.5 0.84 0.92
Incomplete information Linear contract 65.9 0.77 0.84

Table 2: Surplus and response rates under alternative compensation schemes.

Finally, we find moderate cost of incomplete information. The surplus under asymmetric
information is 77% of what it could be under complete information. Two third of this
loss is due to incomplete information whereas only one third is associated with the simple
bonus system.

5 Conclusion

This work contributes to the recent structural analysis of incentive problems. First, by fo-
cusing on the general adverse selection model, we complement Perrigne and Vuong (2004)’s
paper. Our result that these models are not fully identified is important to understand
what restrictions are needed to recover the functions of interest in different settings such
as regulation, nonlinear pricing or taxation. Second, we propose a way to exploit exoge-
nous changes in order to identify or test nonparametrically the model and the contracts’
optimality. The recursive method we develop enables us to analyze existing experiments
or natural experiments. To our knowledge, such a recursive method is new. A conse-
quence is that the econometric procedure, which is based on this method, is also a novelty.
Third, studying the provision of incentives in firms, we test nonparametrically and reject
the contracts’ optimality proposed by Insee. We also estimate Insee’s surplus to be 77% of
the full information surplus. Two third of this loss correspond to the cost associated with
asymmetric information, whereas the use of inefficient linear contracts only explains one
third of it. This result may explain why firms widely use these contracts that are also very
easy to implement.

Beyond these estimations, this approach can be useful to firms for determining the optimal
contracts that they should implement. By proposing different contracts to random samples
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of the population, the firm will learn the structural parameters of its agents and will then
be able to design the optimal contract.

The paper also raises several challenging issues. Firstly, the properties of our estimators
with three or more different contracts remain to be established. This may be difficult
because identification is obtained at the limit with a density argument. Besides, one can
wonder whether our strategy could be adapted to the moral hazard setting. Testable im-
plications of this model have already been brought to light (Abbring et al., 2003, Chiappori
et al., 2006), but its nonparametric identifiability has not been settled yet.

6 Appendix A: proofs

Proof of proposition 3.1

The first order condition of the agent writes

C ′(y) =
t′(y)

θ(y)
(6.1)

Besides, by monotonicity of θ(.),

Fy(y) = 1− Fθ(θ(y)) (6.2)

By assumption 3, the first order condition of the principal writes as

S̃(y) = θ(y)C ′(y) +
Fθ(θ(y))

fθ(θ(y))
C ′(y).

Thus, by (6.1),

S̃(y) =

[
1 +

Fθ(θ(y))

θ(y)fθ(θ(y))

]
t′(y).

Moreover, by (6.2), Fθ(θ(y)) = 1− Fy(y) and fθ(θ(y)) = −fy(y)/θ′(y). Thus,

S̃(y) =

[
1− 1− Fy(y)

fy(y)

θ′

θ
(y)

]
t′(y). (6.3)

Now, for any strictly decreasing and differentiating function θ(.), it is possible to define
C ′(.), Fθ(.) and S̃ using respectively equation (6.1), (6.2) and (6.3). For the model to be
not identified, it is sufficient to prove that two sets of such functions satisfy assumption
1. Because assumption 1 is satisfied for the true function θ0(.), we conclude that the
assumption is satisfied also locally around θ0(.). Hence, the model is not identified.
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If C ′(.) (resp. Fθ(.)) is known, equation 6.1 (resp 6.2) enables to identify θ(.) on Y . Then,
Fθ(.) (resp C ′) is identified on Θ (resp. Y) using the previous equations. Finally, S̃ is
identified by (6.3).

Lastly, if S̃ is known, (6.3) also writes as

ln(θ(y)) = ln(θ0) +

∫ y

y0

(
1− S̃(u)

t′(u)

)
fy(u)

1− Fy(u)
du (6.4)

Hence θ(.) is identified. By (6.1) and (6.2), C ′ and Fθ are also identified. ¥

Proof of theorem 3.2

Firstly, we prove that θ(., λ1) is identified on the closure of a sequence (yn)n∈Z. If θ(y, λ1)

is known and if H12(y) ∈ Y1 then θ(H12(y), λ1) = V21(θ(y, λ1), H12(y)) is identified because
H12 and V21 are.
Hence, using y0 ∈ Y1, we deduce by induction that θ(., λ1) is identified on the increasing
sequence20

yn = Hn
12(y0)1H12(yn−1)∈Y1 + yn−11H12(yn−1)/∈Y1 (6.5)

for any n ≥ 0. Similarly, θ(., λ1) is identified on the sequence

yn = H−n
21 (y0)1H12(y−n+1)∈Y2 + y−n+11H12(y−n+1)/∈Y2

for any n ≤ 0. By continuity of θ(., λ1), the function is actually identified on the closure
of {yn, n ∈ Z}.
Then, using the property that θ(., λ1) is decreasing, we obtain that for any yn−1 < x < yn,
θ(yn+1, λ1) < θ(x, λ1) < θ(yn, λ1) and similarly around the bounds.

Using this results and equations (6.1) and (6.2), we obtain that C ′(.) and Fθ(.) are identified
respectively on the sequences (yn)n∈Z and (θ(yn, λ1)n∈Z whereas bounds are obtained for
other values.

Now let us prove that θ(., λ1) is not identified outside of the sequence (yn)n∈Z. As in
proposition 3.1, we derive from this result that C ′(.) and Fθ(.) are not identified outside the
sequences (yn)n∈Z and (θ(yn, λ1)n∈Z. Furthermore, θ′(., λ1) is identified nowhere. By (6.3),
this proves that the functions S̃(., λ1) and S̃(., λ2) are not nonparametrically identified.

20fn denotes f ◦ ... ◦ f and not f × ...× f for any function f and n ∈ N. Similarly, f−n = f−1 ◦ ... ◦ f−1.
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To prove that θ(., λ1) is not identified outside of the (yn)n∈Z, we show that defining θ(., λ1)

on Y1 can be reduced by the first order conditions to defining this function on ]y0, y1[ and
that almost no restriction can be imposed on this interval.21

Suppose indeed that θ(., λ1) is a known and differentiable function on the interval ]y0, y1[.
For any y in this interval, we are able to construct a sequence (ỹn)n∈Z with ỹ0 = y, just
as we defined the sequence (yn)n∈Z. Hence, θ(., λ1) is defined on all these sequences i.e.
on Y1. Furthermore, this function is differentiable everywhere except eventually at points
(yn)n∈Z . Using θ(H12(y), λ1) = V21(θ(y, λ1), H12(y)), the differentiability of the function at
these points is ensured as soon as

H ′
12(y0)θ

′
−(y1, λ1) = H ′

12(y0)θ
′
+(y1, λ1)

= H ′
12(y0)

∂V21

∂y
(θ(y0, λ1), y1) + θ′+(y0, λ1)

∂V21

∂θ
(θ(y0, λ1), y1)

where θ′−(y1, λ1) (resp. θ′+(y1, λ1)) is the left (resp. right) derivative of θ(., λ1) in y = y1.

Finally, consider all the functions θ(., λ1) defined on ]y0, y1[ that can be extended to differ-
entiable function on Y1. By construction, all these functions are coherent with respect to
the horizontal and vertical transforms. Hence, θ(., λ1) is not identified and proposition 3.2
follows. ¥

Proof of theorem 3.3

By the normalization and the fact that yc ∈
◦
Y1, we can always fix 0 < θc < ∞ such that

θc = θ(yc, λ1). Let y′c denote the greatest intersection point of ∂t/∂y(., λ1) and ∂t/∂y(., λ2)

which is smaller than yc (y′c = inf Y1 if such a point does not exists). We suppose without
loss of generality that ∂t/∂y(., λ2) > ∂t/∂y(., λ1) on (y′c, yc).

Let y′c < y0 < yc, and define the increasing sequence (yn)n∈N by

yn = Hn
12(y0)1H12(yn−1)∈Y1 + yn−11H12(yn−1)/∈Y1 .

We see that yn < yc for all n ∈ N. Indeed, the result is true for n = 0. Moreover, if it holds
for n − 1, then yn = H12(yn−1) < H12(yc) = yc since H12 is strictly increasing. Hence, for
all n ∈ N, yn ∈ Y1 and yn = H12(yn−1). The sequence is increasing and bounded above by
yc, so it admits a limit y∞ which satisfies y∞ = H12(y∞). Hence y∞ = yc.

21At least locally around the true function for which assumption 1 is satisfied.
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Now let θn be such that θn = θ(yn, λ1). Note that because we fix θc and not θ0, we cannot
apply the proof of proposition 3.2 to show that θn is identified. Let us prove that θ0 is
identified.

First,

θn+1 = V21(θn, yn+1) =

∂t
∂y

(yn+1, λ1)
∂t
∂y

(yn+1, λ2)
θn.

Thus, by induction,

θn =
n∏

i=1

[
∂t
∂y

(yi, λ1)
∂t
∂y

(yi, λ2)

]
θ0.

Because (yn)n∈N converges to yc and θ(., λ1) is continuous, the sequence (θn)n∈N converges
to θ∞ = θc. Hence,

θc =
∞∏
i=1

[
∂t
∂y

(yi, λ1)
∂t
∂y

(yi, λ2)

]
θ0.

Because 0 < θc < ∞, the product in the right hand side is strictly positive and finite and
we have

θ0 =
θc

∏∞
i=1

[
∂t
∂y

(yi,λ1)
∂t
∂y

(yi,λ2)

] .

Hence, θ0 is identified since the right term can be recovered from the data. y0 was arbitrary,
so θ(., λ1) is identified on (y′c, yc). Starting from θ0 , we can also identify an increasing
sequence (θ′n)n∈N which converges to θ′c such that y(θ′c, λ1) = y′c. This proves that θ(., λ1) is
actually identified on [y′c, yc]. The same reasoning can be applied between y′c and another
crossing point y′′c . By repeating this as much as necessary, we can identify θ(., λ1) on Y1.

Finally, by proposition 3.1, Fθ is identified on Θ and C ′ and S̃(., λ1) are identified on Y1.
Furthermore, by the horizontal transformation, θ(., λ2) is also identified on Y2. Hence,
S̃(., λ2) is identified on Y2, and C ′ is identified on Y1 ∪ Y2. ¥

Proof of proposition 3.4

Ỹ is the set of ∪i=1,..,KYi such that the functions θ(., λi) are identified on Ỹ ∩ Yi. This set
is defined by induction using the horizontal and vertical transformations.

Suppose that y ∈ Ỹ ∩ Yi and that the point (y, θ(y, λi)) is identified.

• For all j, Hij(y) and θ(Hij(y), λj) = θ(y, λi) are known because Hij is identified.
Hence the points (Hij(y), θ(Hij(y), λj)) are identified.
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• For all j such that y ∈ Yj, θ(y, λj) = Vij(θ(y, λi), y) is known because Vij is identified.
Hence the points (y, θ(y, λj)) are identified if y ∈ Yj.

This method defines by induction Ỹ, which corresponds to the set Y of the proposition.
Furthermore, let y ∈ Y ∩ Yi and yn ∈ Y ∩ Yi such that yn → y. Then, by continuity of
θ(., λi), we get

θ(y, λi) = lim
n→∞

θ(yn, λi).

θ(., λi) is actually identified on Y ∩ Yi. ¥

Proof of theorem 3.5

Let us define Θ̃ = θ(Y ∩ Y1, λ1), E1 = l(λ1)/l(λ2), E3 = l(λ3)/l(λ2) and Θ = [θ, θ]. The
result is based on the following two lemmas.

Lemma 6.1 Suppose that

{Em1
1 Em3

3 θ0, (m1,m3) ∈ Z2} ∩Θ ⊂ Θ̃. (6.6)

Then Θ̃ = Θ.

Lemma 6.2 If Θ̃ = Θ, then θ(., λ1) is identified on Y1.

Proof of lemma 6.1: let us introduce

G = {m1 ln(E1) + m3 ln(E3), (m1,m3) ∈ Z2}.

G is an additive subgroup of R. Thus, it is either of the form aZ or dense in R. By
assumption 5, ln(E1)/ ln(E3) is irrational. Thus G is dense in R. By continuity of the
exponential, {Em1

1 Em3
3 θ0, (m1, m3) ∈ Z2} is dense in R+. Hence, by (6.6), Θ ⊂ Θ̃. The

other inclusion is obvious, so Θ̃ = Θ. ¤

Proof of lemma 6.2: by continuity of y(., λ1), the inverse of θ(., λ1), we get

y(Θ̃, λ1) ⊂ y(Θ̃, λ1) = Y ∩ Y1.

Thus, if Θ̃ = Θ, Y1 = y(Θ̃, λ1) ⊂ Y and by proposition 3.4, θ(., λ1) is identified on Y1. ¤

Now, let us come back to the proof of the theorem. By assumption 6, there exists y0 ∈
Y1 ∩ Y3 such that H23(y0) ∈ Y2 and H21(y0) ∈ Y2. Let θ0 satisfy θ(y0, λ2) = θ0. By
assumption 4, the vertical transforms write as V2i(θ, y) = Eiθ (for i = 1, 3) provided that
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y ∈ Y2 ∩ Yi. Moreover, by definition of y0, θ(y0, λi) = Eiθ0 is well defined (i.e., Eiθ0 ∈ Θ).
Hence,

θ(H31(y0), λ1) = E3θ0.

In other terms, E3θ0 ∈ Θ̃. Similarly, E1θ0 ∈ Θ̃.

Moreover, H23(y0) ∈ Y2 ∩ Y3, so that V32(θ0, H23(y0)) = E−1
3 θ0 is well defined. Hence,

θ(H21(H23(y0)), λ1) = E−1
3 θ0.

Thus, E−1
3 θ0 ∈ Θ̃ (and similarly for E−1

1 θ0).

Now, for all n ≥ 1, define

An = {Em1
1 Em3

3 θ0, |m1|+ |m3| = n} ∩Θ

Let us show by induction on n that An ⊂ Θ̃. The result is true for n = 1 by the preceding.
Suppose that it is true for n and let θ = Em1

1 Em3
3 θ0 ∈ An+1, with θ ≥ θ0 (the case where

θ < θ0 is similar). We have to show that θ ∈ Θ̃.

Suppose first that m1 < 0. Because θ > E1θ ≥ E1θ0 ≥ θ, E1θ ∈ Θ. Moreover,

E1θ = Em1+1
1 Em3

3 θ0, |m1 + 1|+ |m3| = (−m1 − 1) + |m3| = n.

Thus E1θ ∈ An ⊂ Θ̃ by the induction hypothesis. By definition of Θ̃, there exists y ∈ Y
such that θ(y, λ1) = E1θ. θ = V12(E1θ, y) is well defined because θ ∈ Θ. This implies that
H21(y) ∈ Y ∩ Y1. Moreover, θ(H21(y), λ1) = θ. Thus, θ ∈ Θ̃.

Similarly, if m1 ≥ 0 and m3 > 0, the same reasoning applies, using E−1
3 θ instead of E1θ.22

An+1 ⊂ Θ̃ and the result is true for all n. Hence, ∪nAn ⊂ Θ̃, so that (6.6) holds.

Finally, by lemmas 6.1 and 6.2, θ(., λ1) is identified on Y1. We conclude as in theorem
3.3. ¥

Proof of proposition 3.6

By equations (3.1) and (3.2), θ(., λ) and ∂C/∂y(., .) are identified on respectively Yλ =

{y/∃θ ∈ Θ/θ(y, λ) = θ} and {(y, θ(y, λ)), y ∈ Yλ}, for all λ ∈ Λ. Now, for all y ∈ Yλ,

∂2C

∂y∂λ
(y, θ(y, λ)) =

∂2C

∂y∂θ
(y, θ(y, λ))

∂θ

∂λ
(y, λ).

22The case where m1 ≥ 0 and m3 ≤ 0 is impossible, since we assumed that θ ≥ θ0.
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Moreover, ∂2t/∂y∂λ(y, λ) > 0 implies that ∂θ/∂λ(y, λ) > 0. Thus, for all y ∈ Yλ,
∂2C/∂y∂θ(y, θ(y, λ)) is identified by

∂2C

∂y∂θ
(y, θ(y, λ)) =

∂2C/∂y∂λ(y, θ(y, λ))

∂θ/∂λ(y, λ)
.

By equation (3.3), S̃(., λ) is therefore identified on Yλ. ¥

Proof of proposition 3.7

When K = 1 and C ′, Fθ and S̃ are unknown, neither model implies any testable restriction.
If one of these three functions is known, proposition 3.1 shows that the asymmetric model
is just identified. Using equations (2.1), (2.2) and equation (6.2) in appendix A, it can be
shown that the complete information model is also identified. In general, no contradiction
arises in either model, except if assumption 1 fails to hold in one model but not in the
other.

When K ≥ 2, in the complete information model, equations (6.2) and (2.2) show that

t(y, λ1) > t(y, λ2) ⇐⇒ Fy(y, λ1) < Fy(y, λ2).

This condition is slightly different from (3.10) and we are able to distinguish the two models
if (3.11) holds.

Otherwise, the analysis is more involved. The identification of the complete information
model with exogenous variations follows the same lines than previously. Using equations
(2.1) and (2.2), we recover S̃(., λ) and C(.) from θ(., λ1). By the separability hypothesis,
this function is in turn identified through the same horizontal and vertical transforms as
in the incomplete model. Hence, using an asymmetric information model when the true
model is the complete information one (or the contrary) actually leads to the same θ(., λ1),
and consequently to the same Fθ.

Differentiating the first order condition in the symmetric case leads to

t′(y) = θ(y)CS ′(y) + θ′(y)CS(y).

On the other hand, CA satisfies

t′(y) = θ(y)CA′(y).

Because θ′(y)CS(y) < 0, CA′ < CS ′ and the marginal cost functions differ. Hence, if C ′ is
known, the models are distinguishable.
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Now let us suppose that S̃(., λ0) is known. The functions S̃S(., λ0) and S̃A(., λ0) obtained
respectively with the symmetric and asymmetric model satisfy

S̃S(y, λ0) = θ(y, λ0)C
S ′(y) = t′(y, λ0)− t(y, λ0)

θ′(y, λ0)

θ(y, λ0)
.

S̃A(y, λ0) =

[
1− 1− Fy(y, λ0)

fy(y, λ0)

θ′(y, λ0)

θ(y, λ0)

]
t′(y, λ0).

Thus, S̃S(., λ0) and S̃A(., λ0) are identical if and only if, for all y,

t′(y, λ0)

t(y, λ0)
=

fy(y, λ0)

1− Fy(y, λ0)

Integrating this expression leads to

t(y, λ0) =
K

1− Fy(y, λ0)
.

for a given K > 0. Thus, we can distinguish the models if and only if y 7→ t(y, λ0)× (1−
Fy(y, λ0)) is not constant. ¥

Proof of theorem 4.1

In the following, we denote Fj = F (., λj) and θj = θ(., λj), (j ∈ {1, 2}). The result is
based on the six following lemmas.

Lemma 6.3 Let j ∈ {1, 2} and K denote a compact set in
◦
Yj. Then

inf
y∈K

fj(y) > 0.

Lemma 6.4 Let j ∈ {1, 2} and K denote a compact set in (0, 1). Then

sup
y∈K

|F̂−1
j (y)− F−1

j (y)| P−→ 0.

Lemma 6.5 For all compact set K ⊂
◦
Y1,

sup
x∈K

|Ĥ12(x)−H12(x)| P−→ 0.

Lemma 6.6 If ŷn−1 converges in probability to yn−1, then

Ĥ12(ŷn−1)
P−→ H12(yn−1).
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Lemma 6.7 If ŷn−1 converges in probability to yn−1, then

1 bH12(byn−1)∈cY1

P→ 1H12(yn−1)∈Y1 .

1 bH12(byn−1)/∈cY1

P→ 1H12(yn−1)/∈Y1 .

Lemma 6.8 For all n ∈ Z and when N → +∞,

(θ̂n, ŷn)
P−→ (θn, yn).

Proof of lemma 6.3: let (for instance) j = 1 and let θ1 ≡ θ(., λ1). By equation (3.6), we
get for all y ∈

◦
Y1,

f1(y) = −fθ(θ1(y))θ′1(y).

Now, deriving the first order condition, we get, because t′(., λ1) = δ1,

θ′1(y) = − δ1

C ′2(y)
C ′′(y).

Thus, by assumption 1, θ′1(y) < 0 for all y ∈
◦
Y1. Moreover, because K is a compact subset

strictly included in Y1, fθ(θ1(y)) > 0 for all y ⊂ K. Hence, by continuity of fθ and θ′,

inf
y∈K

f1(y) = min
y∈K

[−fθ(θ1(y))θ′1(y)] > 0 ¤

Proof of lemma 6.4: let j = 1 and ε > 0 be such that E = {x ∈ R/∃y ∈ F−1
1 (K)/|x−y| ≤

ε} is a subset of
◦
Y1. E is compact, so by the previous lemma, m = infx∈E f1(x) > 0.

Moreover, for all y ∈ F−1
1 (K), F1(y − ε) + mε ≤ F1(y) ≤ F1(y + ε)−mε. Consequently,

sup
y∈K

|F̂−1
1 (y)− F−1

1 (y)| > ε ⇐⇒ ∃y ∈ K / |F̂−1
1 (y)− F−1

1 (y)| > ε

⇐⇒ ∃y ∈ K / F1(F
−1
1 (y)) > F̂1(F

−1
1 (y) + ε)

or F1(F
−1
1 (y)) < F̂1(F

−1
1 (y)− ε)

=⇒ ∃y ∈ K / F1(F
−1
1 (y) + ε)− F̂1(F

−1
1 (y) + ε) > mε

or F̂1(F
−1
1 (y)− ε)− F1(F

−1
1 (y)− ε) > mε

=⇒ sup
x∈Y1

|F̂1(x)− F1(x)| > mε

Hence,
P(sup

y∈K
|F̂−1

1 (y)− F−1
1 (y)| > ε) ≤ P(sup

x∈Y1

|F̂1(x)− F1(x)| > mε).

The right term tends to zero by the Glivenko-Cantelli theorem. Thus, supy∈K |F̂−1
1 (y) −

F−1
1 (y)| converges to zero in probability. ¤
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Proof of lemma 6.5: by the triangular inequality,

sup
x∈K

|Ĥ12(x)−H12(x)| ≤ sup
x∈K

|F̂−1
2 ◦ F̂1(x)−F−1

2 ◦ F̂1(x)|+ sup
x∈K

|F−1
2 ◦ F̂1(x)−F−1

2 ◦F1(x)|
(6.7)

Let us show that the two terms in the right hand side converge to zero. Because K =

[K,K] ⊂
◦
Y1, there exists a compact set L ⊂ (0, 1) such that F1(K) ⊂ L. Thus, for all

ε > 0, since F̂1 is increasing,

P(sup
x∈K

|F̂−1
2 ◦ F̂1(x)− F−1

2 ◦ F̂1(x)| > ε) ≤ P(F̂1(K) /∈ L ∪ F̂1(K) /∈ L)

+ P(sup
y∈L

|F̂−1
2 (y)− F−1

2 (y)| > ε).

The first term of the right hand side converges to zero since F̂1(K) (resp. F̂1(K)) converges
in probability to F1(K) ∈ L (resp. F1(K) ∈ L). The second term tends to zero by the
previous lemma. Thus the first term of (6.7) converges to zero in probability.

Let us turn to the second term of (6.7). F−1
2 is uniformly continuous on F1(K), as a

continuous function on a compact. Thus, there exists η such that |x − y| ≤ η implies
|F−1

2 (x)− F−1
2 (y)| ≤ ε. Hence,

P(sup
x∈K

|F−1
2 ◦ F̂1(x)− F−1

2 ◦ F1(x)| > ε) ≤ P(sup
x∈K

|F̂1(x)− F1(x)| > η).

The right term converges to zero by the Glivenko-Cantelli theorem, implying the result. ¤

Proof of lemma 6.6: For all A, ε > 0,

P(|Ĥ12(ŷn−1)−H12(yn−1)| > A) ≤ P(|Ĥ12(ŷn−1)−H12(yn−1)| > A, |ŷn−1 − yn−1| ≤ ε)

+ P(|ŷn−1 − yn−1| > ε).

Let K denote a compact set in
◦
Y1 such that yn−1 ∈

◦
K. Because H ′

12 is continuous on K,
maxx∈K |H ′

12(x)| = M exists. Let ε > 0 be such that Mε < A and the closed ball of radius
ε centered at yn−1 is a subset of K. Then, when |ŷn−1 − yn−1| ≤ ε,

|Ĥ12(ŷn−1)−H12(yn−1)| ≤ |Ĥ12(ŷn−1)−H12(ŷn−1)|+ |H12(ŷn−1)−H12(yn−1)|
< sup

x∈K
|Ĥ12(x)−H12(x)|+ Mε.

Thus,

P(|Ĥ12(ŷn−1)−H12(yn−1)| ≥ A) ≤ P
(

sup
x∈K

|Ĥ12(x)−H12(x)| > A−Mε

)

+ P(|ŷn−1 − yn−1| > ε)
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By assumption, the second term tends to zero in probability. supx∈K |Ĥ12(x)−H12(x)| also
converges to zero by lemma 6.5. The result follows. ¤

Proof of lemma 6.7: We consider two cases. First, if H12(yn−1) /∈ Y1, then, because Y1

is a closed set, minx∈Y1 |H12(yn−1)− x| = a > 0. Now, because Ŷ1 ⊂ Y1,

P(Ĥ12(ŷn−1) ∈ Ŷ1) ≤ P(Ĥ12(ŷn−1) ∈ Y1)

≤ P(|Ĥ12(ŷn−1)−H12(yn−1)| ≥ a)

By lemma 6.6, P(Ĥ12(ŷn−1) ∈ Ŷ1) tends to zero.

Secondly, suppose that H12(yn−1) ∈ Y1. Then, by assumption 8 and because H12(yn−1) =

yn, H12(yn−1) ∈
◦
Y1 and 0 < F1(H12(yn−1)) < 1. Hence, there exists a > 0 such that

F1(H12(yn−1) + a) < 1 and F1(H12(yn−1)− a) > 0. Now,

P(Ĥ12(ŷn−1) /∈ Ŷ1) ≤ P(Ĥ12(ŷn−1) /∈ Ŷ1, |Ĥ12(ŷn−1)−H12(yn−1)| ≤ a)

+ P(|Ĥ12(ŷn−1)−H12(yn−1)| > a)

≤ P
[
{Ĥ12(ŷn−1) > max

k
y1k} ∪ {Ĥ12(ŷn−1) < min

k
y1k},

|Ĥ12(ŷn−1)−H12(yn−1)| ≤ a

]
+ P(|Ĥ12(ŷn−1)−H12(yn−1)| > a)

≤ P
[
{H12(yn−1) + a > max

k
y1k} ∪ {H12(yn−1)− a < min

k
y1k}

]

+ P(|Ĥ12(ŷn−1)−H12(yn−1)| > a)

≤ P(H12(yn−1) + a > max
k

y1k) + P(H12(yn−1)− a < min
k

y1k)

+ P(|Ĥ12(ŷn−1)−H12(yn−1)| > a)

≤ [F1(H12(yn−1) + a)]N + [1− F1(H12(yn−1)− a)]N

+ P(|Ĥ12(ŷn−1)−H12(yn−1)| > a).

The first two terms converge to zero. The third term tends to zero in probability by lemma
6.6. Thus P(Ĥ12(ŷn−1) /∈ Ŷ1) tends to zero. This proves the lemma. ¤

Proof of lemma 6.8: We proceed by induction. The result holds for n = 0 since ŷ0 = y0

and θ̂0 = θ0. Suppose that it is true for n− 1 ≥ 0. Using the induction hypothesis, lemma
6.6 and 6.7, ŷn converges to yn in probability. Similarly, using lemma 6.7, θ̂n converges
to θn. Because convergence in probability of each term implies joint convergence (see e.g.
Van der Vaart, 1998, theorem 2.7), the result holds for n. Hence, lemma 6.8 is true for all
n ≥ 0. The proof is similar for negative values. ¤

Now, let us come back to the proof of theorem 4.1. By the previous lemma, it suffices to
prove that F̂θ(θn) (resp. Ĉ ′(yn)) converges in probability to Fθ(θn) (resp. C ′(yn)). By the
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triangular inequality,

|F̂θ(θn)− Fθ(θn)| = |F̂1(ŷn)− F1(yn)|
≤ |F̂1(ŷn)− F1(ŷn)|+ |F1(ŷn)− F1(yn)|
≤ sup

y∈Y1

|F̂1(y)− F1(y)|+ |F1(ŷn)− F1(yn)|.

The first term converges to zero by the Glivenko-Cantelli theorem. The second term also
converges to zero by the previous lemma and the continuity of F1. The first convergence
follows. Because Ĉ ′(yn) = δ1/θ̂n is a continuous function of θ̂n, the second result stems
from lemma 6.8 once more. ¥

7 Appendix B: surplus

Estimation of the parameters a, b, α, β

The first order condition of the agent writes as θ(y, λi) = δi/C
′(y). Using the parametric

form of the cost C ′(y) = α
(

y
1−y

)β

, we obtain

θ(y, λi) =
δi

α

(
1− y

y

)β

Then, using the Weibull specification, we obtain

Fy(y, λi) = 1− Fθ(θ(y, λi)) = exp

(
−a

(
δi

α

)b
(

1−y
y

)bβ
)

which rewrites as

ln(− ln(Fy(y, λi))) = ln(a) + b (ln(δi)− ln(α)) + bβ ln

(
1− y

y

)
.

The parameters are estimated by regressing ln(− ln(F̂j(y))) on ln(1−y
y

). As explained in
the main text, a normalization is necessary and we impose C ′(y0) = δ1/θ0.

Estimation of λ3

We suppose here that Insee can only implement linear contracts t(y, δ) = δy and denote
by y(θ, δ) the response rate chosen by a θ type agent. Insee solves, for the 2003 survey,

max
δ

∫
(λ3 − δ)y(θ, δ)fθ(θ)dθ.

and the first order condition writes as

−
∫

y(θ, δ3)fθ(θ)dθ + (λ3 − δ3)

∫
∂y

∂δ
(θ, δ3)fθ(θ)dθ = 0.
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Using again the first order condition of the agent, we have y(θ, δ) = 1

1+(αθ
δ )

1/β . Thus,

∂y

∂δ
(θ, δ) =

1

βδ
y(1− y).

and the condition takes the form

−E(y(θ, δ3)) +
λ3 − δ3

βδ3

E(y(θ, δ3)(1− y(θ, δ3))) = 0

Hence,

λ3 = δ3

(
1 + β

E(y(θ, δ3))

E(y(θ, δ3)(1− y(θ, δ3)))

)

which is estimated, noting y3 (resp. y2
3) the empirical mean of the response rate (resp.

the empirical mean of the response rate’s square) in 2003, by

λ̂3 = δ3

(
1 + β̂

y3

y3 − y2
3

)

Linear contracts under incomplete information

The expected surplus of Insee, when linear contracts are used, is Π = (λ3 − δ3)E(y(θ, δ3))

which can be estimated by

Π̂ = (λ̂3 − δ̂3)y3

Optimal contracts under incomplete information

On one hand, under incomplete information, the optimal contract is defined by

λ3 =

[
θ +

Fθ(θ)

fθ(θ)

]
C ′(yI(θ, λ3)).

Hence, using the form of the cost function, we obtain

yI(θ, λ3) =
1

1 +
(

α
λ3

)1/β [
θ + Fθ(θ)

fθ(θ)

]1/β
.

On the other hand, using the first order condition of the agent, we have

t′(yI(θ, λ3)) = θC ′(yI(θ, λ3)) = λ3
θ

θ + Fθ(θ)/fθ(θ)
.

Hence, the surplus under incomplete information, which writes as
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ΠI = λ3E(yI(θ, λ3))− E(t(yI(θ, λ3)))

can be estimated by Monte-Carlo simulations.
More precisely, to estimate this surplus, we draw 100,000 values of θ in our estimated
Weibull distribution Fθ(.|â, b̂) and compute the previous functions using the parameters
λ̂3, α̂ and β̂.

Optimal contracts under complete information

Under complete information, the first order condition for the agent writes λ3 = θC ′(yC(θ, λ3)).
Hence, using the parametric form of the cost function, we obtain

yC(θ, λ3) =
1

1 +
(

αθ
λ3

)1/β
.

Furthermore, the transfer function is given by

t(yC(θ, λ3), λ3) = θC(yC(θ, λ3)) = αθ

∫ yC(θ,λ3)

0

(
u

1− u

)β

du

Finally, the expected surplus under complete information is given by

ΠC = λ3E(yC(θ, λ3))− E(t(yC(θ, λ3))).

As previously, to estimate this surplus, we draw 100,000 values of θ in our estimated
Weibull distribution Fθ(.|â, b̂) and compute the previous functions using the parameters
λ̂3, α̂ and β̂.
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