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Abstract

This paper introduces an original methodology based on empirical likelihood which aims at com-
bining different contamination and consumptions surveys in order to provide risk managers with
a risk measure taking account of all the available information. This risk index is defined as the
probability that exposure to a contaminant exceeds a safe dose. It is expressed as a non linear
functional of the different consumption and contamination distributions, more precisely as a gener-
alized U-statistic. This non linearity and the huge size of the data sets make direct computation of
the problem unfeasible. Using linearization techniques and incomplete versions of the U-statistic,
a tractable “approximated” empirical likelihood program is solved yielding asymptotic confidence
intervals for the risk index. An alternative “Euclidean likelihood program” is also considered, re-
placing the Kullback-Leibler distance involved in the empirical likelihood by the Euclidean distance.
Both methodologies are tested on simulated data and applied to assess the risk due to the presence
of methyl mercury in fish and other seafoods.

Résumé

Dans cet article, nous proposons une méthode construite à partir de la vraisemblance empirique
qui permet de combiner différents jeux de données, des enquêtes de consommation et des mesures
de contamination, dans le cadre de l’estimation d’un risque alimentaire. L’indice de risque per-
tinent dans ce cadre est la probabilité que l’exposition au contaminant considéré dépasse la dose
tolérable. Cet indice est donné par une fonction non linéaire des distributions des consommations
et des contaminations qui prend la forme d’une U-statistique. Ce problème de non linéarité, ajouté
à la grande taille des jeux de données, rend impossible l’évaluation directe de l’indice de risque.
On obtient alors un indice approché à l’aide de U-statistiques incomplètes et de techniques de
linéarisation. On obtient alors des intervalles de confiance asymptotique pour l’indice de risque.
Nous proposons également une méthode alternative basée sur la vraisemblance empirique Eucli-
dienne, ce qui revient à remplacer la divergence de Kullback-Leibler utilisée par la vraisemblance
empirique par la distance Euclidienne. Ces deux méthodes sont validées par des simulations puis
appliquées pour évaluer le risque dû à la présence de mé-mercure dans le poisson et dans d’autres
produits de la mer.

∗INRA Mét@risk, INRA CORELA and CREST LS
†The third author is visiting Hong Kong University of Science and Technology, her research is supported in part

by Hong Kong RGC Grant #601906.
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Introduction

Certain foods may contain varying amounts of chemicals such as methyl mercury (present in sea
food), dioxins (in poultry, meat) or mycotoxins (in cereals, dried fruits, etc.), which may cause major
health problems when accumulating inside the body in excessive doses. A commonly used measure
of such chronic risks related to the presence of chemical contaminants in food is the probability
that the contaminant intake/exposure exceeds a safe dose determined by international experts’
committee based on experimental and/or epidemiological studies. A fundamental problem when
estimating this food risk index is the diversity of data sources and the scarcity of good databases.
First, the assessment is most of the time conducted from consumption and contamination data
independently available since measuring the exposure directly over long periods of time is not
feasible. Moreover, information on the consumption behavior of a given population is obtained
through different types of survey (household budget panels, food dietary records, 24 hours recall and
food frequency questionnaires) using different methodologies (stratified sampling, random sampling
or quota methods), and analytical contamination data also come from different laboratories. Yet,
an accurate estimation of the food risk index is crucial since the resulting confidence intervals
may serve as arguments for nutritional recommendations or establishment of new standards on
the contamination of the food. It is therefore necessary to develop a methodology to build such
a confidence interval combining all the available data and side information, such as the main
differences between the surveys, known biases or censorship, etc. Data combination is useful in
many domains and have been considered from an econometric/economist point of view in (35).
It can be also linked to meta-analysis techniques mostly used in medical statistics (13; 14; 18).
Other methods can be applied to incorporate side information, see (12; 19; 23). The methodology
chosen in this paper is based on empirical likelihood techniques introduced by Art B. Owen in
(29; 30) as a powerful semiparametric inference method based on a data driven likelihood ratio
function. Refer to Owen’s book (31) and the references therein for a complete bibliography on the
topic. Empirical likelihood is very well adapted to our estimation problem. Indeed, as explained
in (37), due to the correlations among the different quantities and the presence of numerous null
consumptions, fitting a parametric model to (multidimensional) consumption data is difficult and
nonparametric methods are mostly recommended. Moreover, the estimation of the food risk index
should include all the available sources of information about consumption and contamination. This
kind of estimation problem has already been studied from a theoretical point of view (combination
of independent samples for the estimation of their common mean, see (33; 40), or (31) pages 51,
130 and 223-225) but its application to a concrete applied problem raises intractable difficulties in
term of computation in the context of food risk assessment. Indeed, data set lengths do not add
but multiply, and the combination of say 3 data sets of length 1000 yields a billion triplets. We
propose a solution based on U-statistics to handle this difficulty.
The outline of the paper is as follows. Section 1 introduces the framework and notation used in food
risk assessment problems and defines the Empirical Likelihood Problem (ELP) which is difficult
to solve due to the high nonlinearity of the parameter of interest. Section 2 states the first main
result to approximate the ELP solution using linearization techniques, noticing that the food risk
index is a generalized U-statistic that can be simplified through its Hoeffding decomposition (see
4). The practical computation of this solution in the muldimensional case is treated in section 3
via incomplete U-statistics. An alternative “Euclidean likelihood program” is considered in section
4, replacing the Kullback-Leibler distance involved in the ELP by the Euclidean distance. Finally,
section 5 gives an illustration of these methodologies on true datasets concerning methyl mercury
exposure of the French population as well as a validation of these methodologies using simulated
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datasets. The possible generalizations of these methodologies and the specific extensions in the case
of food risk assessment are addressed in section 6. Technical proofs are postponed to an appendix
section.

1 Framework and notation

Our goal is to estimate θd, the probability that exposure to a contaminant exceeds a tolerable dose d,
when P products (or groups of products) are assumed to be contaminated. For this purpose, P +R
data sets are available: R P -dimensional data sets coming from R complementary consumption
surveys and the P sets of contamination values. We assume that the R consumption surveys concern
the same population but present some specificities calling for adequate calibrations. Therefore the
probabilities that exposure to a contaminant exceeds a dose d estimated with each consumption
samples are equal, and their common value is θd. Our aim is to give a confidence interval for θd using
empirical likelihood techniques. In the following, we will set R to 2 for simplicity of exposition.

Notation For k = 1, ..., P, Q[k] denotes the random variable for the contamination of product
k, with distribution Q[k].

(
q
[k]
l

)
l=1,...,Lk

is an i.i.d. sample of length Lk from Q[k]. Its empirical

distribution is

Q[k]
Lk

=
1
Lk

Lk∑
l=1

δ
q
[k]
l

,

where δ
q
[k]
l

(q) = 1 if q = q
[k]
l and 0 otherwise.

In the following, r is the consumption survey number and takes the value 1 or 2.
(
C

(r)
1 , . . . , C

(r)
P

)
=

C(r) denotes the P -dimensional random variable for the “relative” consumption vector1, with dis-
tribution C(r).

(
c
(r)
1,i . . . c

(r)
P,i

)
1≤i≤nr

=
(
c
(r)
i

)
1≤i≤nr

is an i.i.d. sample of length nr from C(r). Its

empirical distribution is

C(r)
nr

=
1
nr

nr∑
i=1

δ
c
(r)
i

.

The probability that the exposure of one individual exceeds a dose d is θ(r)
d = Pr

(
D(r) > d

)
,

with D(r) =
∑P

k=1Q
[k]C

(r)
k when using the survey r.

Empirical likelihood program We define the sets of weights,

P =

{(
p
(1)
i

)
1≤i≤n1

,
(
p
(2)
j

)
1≤j≤n2

,

{(
w

[k]
lk

)
1≤lk≤Lk

}
1≤k≤P

}
,

associated to the 2 samples of consumption and the P samples of contamination. The empirical
likelihood is given by

n1∏
i=1

p
(1)
i

n2∏
j=1

p
(2)
j

P∏
k=1

Lk∏
lk=1

w
[k]
lk
,

1Consumptions are “relative” consumptions in the sense that they are expressed in terms of individual body
weight. This way, the individual exposure can be compared to the safe dose called PTWI, see section 5 for details.
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with 2 constraints on consumption weights: for r = 1, 2,
nr∑
i=1

p
(r)
i = 1 and P constraints on conta-

mination weights: ∀1 ≤ k ≤ P,

Lk∑
lk=1

w
[k]
lk

= 1, and the following model constraints.

Model constraints Let Q̃[k]
Lk

denote a discrete probability measure dominated by Q[k]
Lk
, that

is Q̃[k]
Lk

=
Lk∑
l=1

w
[k]
l δ

q
[k]
l

with w
[k]
l > 0 and

Lk∑
l=1

w
[k]
l = 1 for k = 1, . . . , P . In the same way, C̃(1)

n1

and C̃(2)
n2 are discrete probability measures dominated by C(1)

n1 and C(2)
n2 , i.e. C̃(r)

nr =
nr∑
i=1

p
(r)
i δ

c
(r)
i

with

p
(r)
i > 0 and

nr∑
i=1

p
(r)
i = 1, r = 1, 2. E eDr

denotes the expectation under the joint discrete probability

distribution D̃r =
∏P

k=1 Q̃
[k]
Lk
× C̃(r)

nr , which is the reweighed joint discrete probability distribution
of the P contamination samples and the rth consumption survey sample.

The model constraints can now be written, for r = 1, 2 and for θ ∈]0, 1[,

E eDr

{
1l

{
P∑

k=1

Q[k]C
(r)
k > d

}
− θ

}
= 0, (1)

Theses model constraints on θ have an explicit (but unpleasant) expression: for r = 1, 2,

nr∑
i=1

L1∑
l1=1

· · ·
Lk∑

lk=1

· · ·
LP∑

lP =1

p
(r)
i

 P∏
j=1

w
[j]
lj

 1l

{
P∑

k=1

q
[k]
lk
c
(r)
k,i > d

}
− θ = 0.

2 Linearization and approximated empirical likelihood

The preceding empirical likelihood program is difficult to solve, both from theoretical and practical
points of view, because of the highly nonlinear form of the model constraints. The same problem
already appears when studying the asymptotic behavior of the plug-in estimator of θd with only one
consumption survey, see (4). One solution is to see this plug-in estimator as a generalized U-statistic
and to linearize it using Hoeffding decomposition, see Lee’s book, (25). More generally, a method is
to linearize the constraints to solve the optimization problem. This linearization is asymptotically
valid as soon as the parameter of interest is Hadamard differentiable, see (2) for details. Lineariza-
tion is made easier by considering the influence function of ΨD=ED

[
1l
{∑P

k=1Q
[k]C

(r)
k > d

}
− θ
]
,

where D is the joint distribution of contaminations and consumptions. The influence function of
ΨD at point

(
q1, . . . , qP , c

(r)
)

is, for r = 1, 2:

Ψ(1)
D (q1, . . . , qP , c) = EQP

k=1Q
[k]
Lk

[
1lPP

k=1 Q[k]C
(r)
k >d

− θ
∣∣∣C(r) = c

]
+

P∑
m=1

EC(r)
nr ×

Q
k 6=mQ[k]

Lk

[
1lPP

k=1 Q[k]C
(r)
k >d

− θ
∣∣∣Q[m] = qm

]
.
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This functional of D can be estimated by its empirical counterpart Ψ(1)bD , where D̂ denotes the

empirical version of D. Ψ(1)bD can be written explicitly:

Ψ(1)bD [q1, . . . , qP , c] = U0 (c) + U
(r)
1 (q1) + . . .+ U (r)

m (qm) + . . .+ U
(r)
P (qP ), (2)

where

U0 (c) =

(
P∏

k=1

Lk

)−1 ∑
1≤lk≤Lk

1≤k≤P

1l

{
P∑

k=1

q
[k]
lk
ck > d

}
− θ, (3)

and, for m = 1 · · ·P and r = 1, 2,

U (r)
m (qm) =

nr ×
P∏

k=1
k 6=m

Lk


−1 ∑

Λ
(r)
[−m]

1l

qmc(r)i,m +
P∑

k=1
k 6=m

q
[k]
lk
c
(r)
i,k > d

− θ, (4)

where the sum is taken over the set Λ(r)
[−m] of all indexes (i, l1, . . . , lm−1, lm+1, . . . , lP ), i.e. fixing the

contamination of food m.
U0

(
c(r)
)

and the
(
U

(r)
m (q[m])

)P

m=1
are generalized U-statistics with kernel 1l

{∑P
k=1 q

[k]ck > d
}

and degree (1, ..., 1) ∈ RP , see (25). For simplicity, the dependence in nr, L1, ..., LP is implicit in
the notation.

An approximate version of the model constraints (1) can now be written:

for r = 1, 2 : E eDr

[
Ψ(1)bD

(
Q[1], . . . , Q[P ], C(r)

)]
= 0,

that is

n1∑
i=1

p
(1)
i U0

(
c
(1)
i

)
+

P∑
k=1

 Lk∑
lk=1

w
[k]
lk
U

(1)
k

(
q
[k]
lk

) = 0,

n2∑
j=1

p
(2)
j U0

(
c
(2)
j

)
+

P∑
k=1

 Lk∑
lk=1

w
[k]
lk
U

(2)
k

(
q
[k]
lk

) = 0.

The following theorem establishes the asymptotic convergence of the approximate version of
the empirical likelihood when only one product is considered (P = 1, L1 = L). The result remains
true in the general case, P > 1, but needs some refinements to be tractable in practice as detailed
in next section.

Theorem 1. Assume that we have a contamination data (ql)1≤l≤L i.i.d. and 2 independent con-

sumption samples
(
c
(1)
i

)
1≤i≤n1

i.i.d. and
(
c
(2)
j

)
1≤j≤n2

i.i.d. with common risk index θ(1)
d = θ

(2)
d =

θd ∈ R. Assume that for r = 1, 2, U0

(
c
(r)
1

)
have finite variances and that

(
U

(1)
1 (q1), U

(2)
1 (q1)

)′
has a finite invertible variance-covariance matrix. Assume also that n1, n2 and L go to infinity
and that their ratios are bounded, then the empirical likelihood program involves solving the dual
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program with log likelihood function ln1,n2,L(θd) given by

sup
λ1,λ2,γ1,γ2,γ3∈R

n1+n2+L−γ1−γ2−γ3=0


∑n1

i=1 ln
{
γ1 + λ1U0

(
c
(1)
i

)}
+
∑n2

j=1 ln
{
γ2 + λ2U0

(
c
(2)
i

)}
+
∑L

l=1 ln
{
γ3 + λ1U

(1)
1 (ql) + λ2U

(2)
1 (ql)

}
 . (5)

Define the maximum likelihood estimator associated to this quantity

θ̂ = arg sup
θ
ln1,n2,L(θ).

Then, the log-likelihood ratio

rn1,n2,L(θd) = 2
[
ln1,n2,L

(
θ̂
)
− ln1,n2,L(θd)

]
→ 4χ2(1).

The proof of these results is given in appendix A.1. This theorem yields an (1−α)th confidence
interval for θd given by {

θ : rn1,n2,L(θ) ≤ 4χ2
1−α(1)

}
.

Remark 1. From a practical point of view, the linearization of the constraints allows for a good
convergence of the optimization algorithm (for instance by using a gradient descent method such as
Newton-Raphson). The algorithmic aspects of empirical likelihood are discussed in chapter 12 in
(31).

Remark 2. This model constraints can be augmented by some estimating equations that would
allow to incorporate some knowledge arising from other data or from the model under consideration.
For example, the national census provides the marginal distribution of the population according to
different criteria (age, sex, region, profession) and could be integrated via estimating equations of
the form

n1∑
i=1

p
(1)
i Z

(1)
i = z0,

n2∑
j=1

p
(2)
j Z

(2)
j = z0, (6)

where Z(1)
i and Z

(2)
j are vectors describing the belonging to specified sociodemographic categories

in surveys 1 and 2 and z0 is the vector of the corresponding percentages of these categories based
on the national census. The convergence results will not be affected by the introduction of such
sociodemographic criteria, see (34) and (31), chapter 3, page 51.

3 Extension to the case of several products by incomplete U-
statistics

For P > 1, the computation of the different U-statistics defined in (3) and (4) becomes too heavy
when the data sets are large (if Lk and/or nr are large). Indeed, one needs to compute at least
nr
∏P

k=1 Lk terms. To solve this problem, we proceed to an approximation by replacing the complete
U-statistics by incomplete U-statistics. The properties of incomplete U-statistics are well described
in (5) or (25).

Let us define the incomplete U-statistics associated to equations (3) and (4). For simplicity, the
sizes of the incomplete U-statistics are fixed to the same constant B, which should be chosen greater

6



than the size of the different data sets involved. B is chosen such as n1 + n2 +
∑P

k=1 Lk = o(B) in
order that the difference between the complete and the incomplete versions is of order o(B−1/2),
(25). For r = 1 or 2, the incomplete version of equation (3) is given by

UB(r)
0

(
c(r)
)

= B−1
∑
B(r)

0

1l

{
P∑

k=1

q
[k]
lk
c
(r)
k > d

}
− θ, (7)

where the sum is taken over the set B(r)
0 of indexes (l1, . . . , lP ), randomly chosen with replacement

from
P⊗

k=1

{1, . . . , Lk}, with size B.

For m = 1, . . . , P, the incomplete version of (4) is given by

UB(r)
m

(qm) =

B−1
∑
B(r)

m

1l

{
m−1∑
k=1

q
[k]
lk
c
(r)
i,k + qmc

(r)
i,m +

P∑
k=m+1

q
[k]
lk
c
(r)
i,k > d

}
− θ, (8)

where the sum is taken over the set B(r)
m of indexes (l1, . . . , lm−1, lm+1, . . . , lP , i) randomly chosen

with replacement from
P⊗

k=1
k 6=m

{1, . . . , Lk} × {1 . . . nr}, with size B.

The approximate influence function is now given by

Ψ(1)
B

(
q1, . . . , qP , c

(r)
)

= UB(r)
0

(
c(r)
)

+ UB(r)
1

(q1) + . . .+ UB(r)
m

(qm) + . . .+ UB(r)
P

(qP ).

The model constraints can then be written as follows.

n1∑
i=1

p
(1)
i UB(1)

0

(
c
(1)
i

)
+

P∑
k=1

 Lk∑
lk=1

w
[k]
lk
UB(1)

k

(
q
[k]
lk

) = 0, (9)

n2∑
j=1

p
(2)
j UB(2)

0

(
c
(2)
j

)
+

P∑
k=1

 Lk∑
lk=1

w
[k]
lk
UB(2)

k

(
q
[k]
lk

) = 0.

Corollary 1. Assume that n1, n2 and (Lk)1≤k≤P go to infinity and that their ratios are bounded.
Take B such as n1 + n2 +

∑P
k=1 Lk = o(B). Then, under the assumptions of Theorem 1, the

likelihood ratio for P products, rn1,n2,L1,...,LP
(θd), is asymptotically χ2(1):

rn1,n2,L1,...,LP
(θd) → (P + 1)2χ2(1).

See the appendix A.2 for the proof. Note in particular that B, the size of the incomplete U-
statistics, must go to infinity quicker than max{n1, n2, L1, ..., LP }. As before, this yields an (1−α)th

confidence interval for θd given by{
θ : rn1,n2,L1,...,LP

(θ) ≤ (P + 1)2χ2
1−α(1)

}
.
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4 A faster alternative: Euclidean likelihood

The empirical likelihood program as written in this paper consists in minimizing the Kullback-
Leibler distance between a multinomial distribution on the sample (D̃1×D̃2) and the observed data
(D1 × D2). Following the ideas of (3), we replace the Kullback-Leibler distance by the Euclidean
distance (also called the χ2 distance). When using the Euclidean distance, the objective function
ln1,n2,L1,...,LP

(θ) becomes

min8<
:

p
(1)
i , p

(2)
j ,

w
[k]
lk

,k=1,..,P

9=
;

1
2


∑n1

i=1

(
n1p

(1)
i − 1

)2

+
∑n2

j=1

(
n2p

(2)
j − 1

)2

+
∑P

k=1

∑Lk
lk=1

(
Lkw

[k]
lk
− 1
)2

 , (10)

under the approximated model constraints (9) and the constraint that each set of weights sums to
1. We get a result equivalent to Corollary 1:

Corollary 2. Under the assumptions of Corollary 1, the statistic

rn1,n2,L1,...,LP
(θd) = 2

[
ln1,n2,L1,...,LP

(θd)− inf
θ

ln1,n2,L1,...,LP
(θ)
]

is asymptotically (P + 1)2χ2(1).

The proof of this result is given in appendix A.3.
The choice of this distance is closely related to the Generalized Method of Moments (GMM),

see (28; 6) for precisions on the links between empirical likelihood and GMM. Instead of logarithms,
the optimization program (10) only involves quadratic terms and is then much easier to solve, as
shown in appendix A.3. This considerably decreases the computation time, making exploration
easier and allowing to test different constraints and models.

A specificity of Euclidean distance is that the weights p(1)
i , p(2)

j and w
[k]
lk

are not forced to be
positives. However, these weights are asymptotically nonnegative with probability one, see (6).

The gain in computation time is counter-balanced by a lost in adaptability to the data and to
the constraints. Numerical results will be given in the applications for both the Kullback-Leibler
and the Euclidean distances. Practical use of these methods shows that Euclidean distance can be
used for initial exploration (looking for the most useful constraints for example) and to give first-
step estimators. Empirical likelihood can then be used on the final stage, to get precise confidence
regions and estimators. The first-step estimators given by Euclidean likelihood can be used as
starting values for the empirical likelihood optimization. Section 5 illustrates the interest of this
strategy in large data sets and a complicated model.

5 Application: Methyl mercury Risk Assessment

In this section, the proposed methodologies based on empirical and euclidean likelihood are applied
to methyl mercury risk assessment in the French population. Indeed, at high concentrations,
methyl mercury, a well-known environmental toxic found in the aquatic environment, can cause
lesions of the nervous system and serious mental deficiencies in infants whose mothers were exposed
during pregnancy (41). There is also some concerns that methyl mercury may give rise to retarded
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development or other neurological effects at lower levels of exposure, which are consistent with
standard patterns of fish consumption (11; 17; 27). The latest epidemiological results compiled by
the Joint Expert Committee on Food Additives and Contaminants (15) yields a safe dose called
Provisional Tolerable Weekly Intake (PTWI) for methyl mercury of 1.6 µ g per week per kg of body
weight. Methyl mercury is mainly found in fish and other sea foods. Other foods are therefore
excluded to estimate human exposure in this paper. In France, two main data sets are available.
The SECODIP panel collecting long-term household purchases (from 1989 to nowadays) allows
the estimation of the chronic probability to be over the PTWI. Unfortunately data only record
households’ purchase. The INCA survey records detailed individual food consumption but only
on a seven-day basis. We present these data sets together with the contamination data in section
5.1. Then, a validation on simulated data is proposed in section 5.2 following the main features of
the actual data sets. Results are shown in section 5.3 and 5.4 considering one single food group
(P = 1), or two food groups (P = 2) respectively.

5.1 Data description and specific features

Contamination data Food contamination data concerning fish and other seafoods available
on the French market were generated by accredited laboratories from official national surveys
performed between 1994 and 2003 by the French Ministry of Agriculture and Fisheries (26) and
the French Research Institute for Exploitation of the Sea (21). These L = 2832 analytical data are
expressed in terms of total mercury in mg/kg of fresh weight.

Considering two food groups (“Fish” on one hand and “Mollusks and shellfish” on the other
hand), the data set sizes are L1 = 1541 and L2 = 1291. To extrapolate methyl mercury levels from
the mercury content, the dangerous form to human health, conversion factors have been applied to
the analytical data as 0.84 for fish, 0.43 for mollusk and 0.36 for shellfish, (8; 9).

Adhering to international recommendations (16) the 7% of left censored values, i.e contamina-
tion levels below some detection or quantification limit, were replaced with half the detection or
quantification limit. Refer to (4; 38) for further discussions.

The INCA survey The French “INCA” survey (r = 1), carried out by (10), records n1 = 3003
individual consumptions during one week. The survey is composed of 2 samples: 1985 adults
aged 15 years or over and 1018 children aged between 3 to 14 years. The data were obtained
during an 11-month period from consumption logs completed by the participants for a period of
7 consecutive days. National representativeness of each subsample (adults,children) was ensured
by stratified sampling (region of residence, town size) and by the application of quotas (age, sex,
individual professional/cultural category, household size). From this survey, 92 food items were
selected with respect to fish or seafood. This includes fish, fish farming, shellfish, mollusks, mixed
dishes, soups and miscellaneous fishery products. Since body weight of all individuals is available,
“relative” consumptions are computed by dividing the amount consumed during the week by the
body weight.

The proportion of children (34%) in this survey is high compared to the national census (15%,
(22)): it is usually recommended to work on adults and children samples separately. In order
to use the two subsamples, we correct this selection bias by adding a margin constraint on the
proportion of children (aged between 3 and 14 years) as proposed in (2). The additional constraint
is EeC(1)

n1

[
1l

3≤Z
(1)
i ≤14

]
= 0.15, where Z(1)

i is the age of individual i in the survey r = 1 (INCA).

This modifies the form of the dual log-likelihood (5) in the part concerning the first survey. It
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becomes
n1∑
i=1

ln
{
γ1 + λ1U0

(
c
(1)
i

)
+ λage

(
1l

3≤Z
(1)
i ≤14

− 0.15
)}

,

where λage is the Kühn and Tücker coefficient associated to the “age” constraint.

SECODIP The SECODIP panel for fish, from TNS SECODIP (http://www.secodip.fr), is
composed of 3211 households surveyed over one year (the 1999 year). In this panel, 24 food groups
containing fish or seafoods are retained. Individual consumption is created by inputting to each
individual the household’s purchase divided by the number of persons in the household, which is
a current practice in food risk assessment based on household aquisition data. We also divide this
result by 52 (number of weeks in a year) and 60 (mean body weight). This results into n2 = 9588
individual relative week consumptions.

Table 1: Basic percentile 95% confidence intervals for MeHg risk (expressed in %)
INCA SECODIP

One single product 3.47 [3.06 ; 3.86] 2.24 [1.91 ; 2.57]
Two products 5.68 [4.85 ; 6.40] 2.10 [1.66 ; 2.55]

Differences between the two surveys Some unpublished preliminary studies and basic con-
fidence interval computations of Table 1 show that the use of INCA or SECODIP survey for the
exposure estimation to methyl mercury gives different results. Those results are consistent with the
literature showing that survey durations influence the percentage of consumers (due to infrequency
of purchase) and the level of food intakes among consumers only (24). Numerous methods have
been proposed to extrapolate from short-term to long-term intake based on repeated short-term
measures in the field of nutrition, see (20; 32). These works are based on INCA type data and do
not use the available information from SECODIP type data. However, the differences between the
two surveys have many explanations:

• the SECODIP panel is an Household Budget Survey. However (36) found that, in general,
results from Household Budget Surveys in Canada and Europe agree well with individual
dietary data;

• the SECODIP panel does not account for outside consumptions: members of the panel do
not record purchases for outdoor consumptions;

• the INCA survey is realized in a public health perspective. People could modify their con-
sumption behavior during the survey week in favor of foods they assume to be “healthy” as
fish.

All these arguments explain the higher fish consumption in INCA survey. We choose to introduce
a coefficient α to scale the SECODIP consumption to account for all these facts introducing an
additional model constraint

E(C(1)) = α0E(C(2)).

The coefficient α0 is estimated together with the risk index θd, leading to confidence regions for
(θd, α0) calibrated by a χ2(2) distribution, i.e. rn1,n2,L1(θd, α0) → χ2(2). We then optimize on α
for each θ to get a profiled likelihood on θ.

10
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5.2 Validation on simulated data

In order to validate the proposed methodology, coverage probabilities of the 95% confidence interval
resulting from corollary 2 is assessed by simulation of known contamination and consumption
distributions as in (4) and (38). We choose to validate the methodology based on the Euclidean
likelihood only because solving the Empirical likelihood program takes 2 to 4 hours for large data
sets (in the application, we take B = 10000). It is therefore difficult to repeat this optimization a
large number of times in order to validate the confidence level. Fortunately, the Euclidean likelihood
is asymptotically equivalent to the Empirical likelihood and considerably quicker to implement.

The algorithm is as follows:

[Step 1] Define some true distributions of consumption and contaminations and approximate by a
Monte Carlo simulation the parameter of interest θd.

[Step 2] Reproduce the observed sampling scheme from the true distributions defined in Step 1 and
obtain the CI from corollary 2.

Repeat Step 2 S times and check whether the true value of θd from Step 1 belongs or not to the CI
of Step 2.

For [Step 1], we choose a multivariate log normal distribution for consumption and Gamma
distributions for the P contamination distributions2. A Monte Carlo simulation of size 1, 000, 000
yields a true value of θd=1.6 = 0.0529. In [Step 2], two samples of consumption data are randomly
selected from the multivariate log normal distribution determined in [Step 1], one with size n1 =
3003, the other with size n2 = 9588. Then the censorship mechanism is reproduced: the data are
first diminished by a random factor with mean 20% to account for consumption outside the home3.4

Then [Step 2] is repeated S = 200 times.
Results: We obtain a coverage probability of 95.5%. This validate the methodology and is comforted
by the know tendency of Euclidean likelihood to be robust, i.e. with the coverage probability
converging to the confidence from above.

5.3 Results when considering one global seafood group

We first merge all the seafoods into a single group. Any contamination data is attributed to the total
individual consumption of seafoods. Calculations can therefore be performed using the complete
U-statistics of degree (1, 1).

Figure 1 (a) shows the two 95% confidence regions for the couple of parameters (θ1.6, α). We
compare the results obtained with and without the constraint on the proportion of children. The
unconstrained confidence region for (θ1.6, α) is marked by a dotted line, the solid line corresponding
to the constrained confidence region. We can see that the constraint makes the 2 surveys closer (α
is smaller, the confidence region is translated to the bottom) and decrease the risk (θ1.6 is smaller,
the confidence region is translated to the left). Children are known to be a more sensitive group
to food exposure because of their higher relative consumptions: they eat more compared to their
body weight than adults. When adding the age constraint, the discrete probability measure related

2Their parameters were chosen to fit as much as possible the INCA dataset and the available contamination data.
3The proportion of the food eaten at home is distributed according to a Beta distribution with mean 0.8 and

variance 0.8(1− 0.8)
4The only features that are not reproduced are the high proportion of children in sample 1 and the aggrega-

tion/disggregation of consumptions within households.
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(a) Empirical likelihood confidence regions (b) Empirical likelihood ratio profiles
horizontal axis is θ1.6, horizontal axis is θ1.6,
vertical axis is α vertical axis is rn1,n2,L1(θ1.6)

Figure 1: Empirical likelihood for one product (solid with age constraint, dot without)

to the INCA survey, the
(
p
(1)
i

)
1≤i≤n1

are modified so that children become less influent, which

explains the risk reduction and the decrease of α.
Figure 1 (b) shows the profiles of the empirical likelihood ratios (rn1,n2,L1(θ1.6)). We get 2

profiles, the dotted line corresponds to the unconstrained case. The horizontal line gives the 95%
level of the chi-square distribution (χ2

95%(1)), limiting the confidence interval for the risk index.
The 95% confidence interval for θ1.6 constraining INCA children proportion is [2.90%; 3.68%] and
the risk index estimator is θ∗1.6 = 3.26%. The optimal scaling parameter is α∗ = 1.31. This
is an estimation of the factor to convert individual food purchases of seafoods into individual
consumptions of seafoods.

When the constraint on age is ignored, the estimator of θ1.6 is the arithmetic mean of INCA
survey and α−scaled SECODIP data (marked by the vertical dotted black line). Indeed, the best
correction α is when both means are equal and then the maximum of the likelihood for θ1.6 is this
common value. The SECODIP data has then no effect on the value of the estimator but has an
effect on the confidence interval: uncertainty is reduced thanks to the large sample of consumption
values provided by the SECODIP data.

Euclidean likelihood: The Euclidean distance is not as sharp as the Kullback discrepancy,
which is used in the empirical likelihood case. Moreover, the constraint on age being linear and
only on the smaller consumption sample INCA, the associated term in the Euclidean likelihood is
small in front of the risk index term, which is nonlinear and concerns both consumption samples
INCA and SECODIP. The effect of the constraint is thus highly reduced: confidence regions as
shown in Figure 2(a) as well as profiles as shown in Figure 2(b) are almost identical. They give
results quite close to what is obtained with the constrained empirical likelihood.

5.4 Results when considering two products

Seafoods are now clustered into two groups: the first one is “Fish” and the second one is “Mollusk
and shellfish”. Recall that L1 = 1541 and L2 = 1291 . Calculation are done using incomplete
U-statistics defined in equations (7) and (8) with a size B = 10000. α is here 2-dimensional.

The constraint empirical likelihood confidence interval for the risk index is [4.83%; 6.09%]
and the estimator is θ∗1.6 = 5.43%. The correction factors on SECODIP data are α∗1 = 1.8 and
α∗2 = 1.65. Figure 3 shows the profiles of the empirical and euclidean likelihood ratios, both with and
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(a) Euclidean likelihood confidence regions (b) Euclidean likelihood ratio profiles
horizontal axis is θ1.6, horizontal axis is θ1.6,
vertical axis is α vertical axis is rn1,n2,L1(θ1.6)

Figure 2: Euclidean likelihood for one product (solid with age constraint, dot without)

without age constraint. The probability calculated when seafoods are considered as a single group
is smaller than when seafoods are gathered into two groups, see also (39). Consequently in order to
improve this risk assessment, it would be interesting to go deeper in the food nomenclature of both
surveys to create more groups. Unfortunately this is not possible with the available SECODIP food
nomenclature.

(a) Empirical likelihood ratio profiles (b) Euclidean likelihood ratio profiles
horizontal axis are θ1.6 and vertical axis are rn1,n2,L1(θ1.6)

Figure 3: Empirical and Euclidean likelihood ratio profiles for two products

6 Discussion

This paper shows how empirical likelihood method can be generalized to combine different sources of
data with particular focus on food risk assessment. Yet the methodology is general: if a parameter
of interest can be written as a Hadamard differentiable functional of the distributions of random
variables for which observations are available then the Approximate Empirical Likelihood Problem
has a solution and asymptotic convergence of the likelihood ratio to a chi square distribution was
shown. Moreover, when the parameter of interest can be written as a U-statistic, incomplete U-
statistics can further be used to compute the associated confidence interval. We demonstrated on

13



simulated data the efficiency of our methodology as far as a food risk index is concerned. Natural
extensions could consider more consumption surveys or several contamination data sets, multiplying
the number of model constraints and eventually the number of estimating equations referring to
side information. The more the Empirical Likelihood Problem gets complicated, the more useful
is the Euclidean Likelihood at least to find first step estimators. A technical improvement of the
present model would consist in using a statistical method to disaggregate household purchases into
individual “at home” consumptions and correct for the difference between “at home” and total
food consumption. (7) proposes a regression based method for the decomposition of household
nutritional intakes into individual intakes accounting for outside consumptions, see also (1). In an
empirical likelihood program, this kind of method would require the estimation of a great number
of parameters which may cause optimization problems. This kind of methodology could however
avoid the use of an ad-hoc scaling parameter α between SECODIP and INCA panels. We plan to
explore this issue in future works.

From an applied point of view, we obtain with different methods combining the available infor-
mation that the probability to exceed the PTWI is of the order of 5%. This can be considered as
an important risk at a population scale. It also motivates some further works to characterize the
at-risk population.
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A Appendix: proofs

A.1 Proof of Theorem 1

First, we consider the empirical likelihood optimization program for two consumption surveys and
one food product. Recall that U0 (c) and U

(r)
1 (q) are dependent of θ: U0 (c) = 1

L

∑L
l=1 1lqlc >d − θ

and U (r)
1 (q) = 1

nr

∑nr
i=1 1l

qc
(r)
i >d

− θ, for r = 1, 2.

The program ELP is to maximize
∏n1

i=1 p
(1)
i

∏n2
j=1 p

(2)
j

∏L
l=1wl,

under the constraints :
∑L

i=1wl = 1, and for r = 1, 2,
∑nr

i=1 p
(r)
i = 1, and

∑nr
i=1 p

(r)
i U0

(
c
(r)
i

)
+∑L

l=1wlU
(r)
1 (ql) = 0.

To carry out this optimization, we take the ln of the ELP objective function. This forces the
weights to be positive. The difference between these constraints and the nonlinear ones defined in
equation (1) is o(N−1/2

r ) where Nr = nr + L.

First approximation of the weights
We need an approximation of the weights to control the order of the Lagrange Multipliers. In order
to obtain such an approximation, we consider an easier program. As the expectation of U0

(
c
(1)
i

)
,
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U0

(
c
(2)
j

)
and U (r)

1 (ql) are zero, we consider the likelihood

n1∏
i=1

p̃
(1)
i

n2∏
j=1

p̃
(2)
j

L∏
l=1

w̃l under the additional constraints:

for r = 1, 2
nr∑
i=1

p̃
(r)
i U0

(
c
(r)
i

)
= 0 and

L∑
l=1

w̃lU
(r)
1 (ql) = 0. (11)

The constraints are thus split in two, each constraint concerning only one set of weights. The
optimization program is therefore divided in 3 independent sub-programs, the two first ones on the
p̃
(r)
i ’s being the classical empirical likelihood for the mean and the last one on the w̃l’s having 2

constraints. As done in (34), Theorem 1, we have a control on the order of the optimal weights of
each sub-program:

p̃
(r)
i = 1/nr

(
1 + trU0

(
c
(r)
i

))−1
with tr = O(n−1/2

r )

w̃l = 1/L
(
1 + (τ1, τ2)′

(
U

(1)
1 (ql), U

(2)
1 (ql)

))−1
with τr = O(L−1/2).

The optimum of this new program, which is given by the optimum on each of the 3 sub-programs,
is smaller than the ELP one, because we added constraints:

n1∏
i=1

p̃
(1)
i

n2∏
j=1

p̃
(2)
j

L∏
l=1

w̃l ≤
n1∏
i=1

p
(1)
i

n2∏
j=1

p
(2)
j

L∏
l=1

wl.

This means that the weights in ELP – the p(1)
i ’s, p(2)

j ’s, and wl’s – are closer to 1/n1, 1/n2 and

1/L than the p̃(1)
i ’s, p̃(2)

j ’s, and w̃l’s. Notice that∣∣∣∣∣
nr∑
i=1

p
(r)
i U0

(
c
(r)
i

)
−

nr∑
i=1

1
nr
U0

(
c
(r)
i

)∣∣∣∣∣ ≤
nr∑
i=1

∣∣∣∣p(r)
i − 1

nr

∣∣∣∣ ∣∣∣U0

(
c
(r)
i

)∣∣∣
≤

nr∑
i=1

∣∣∣∣p̃(r)
i − 1

nr

∣∣∣∣ ∣∣∣U0

(
c
(r)
i

)∣∣∣ = 1
nr

nr∑
i=1

∣∣∣∣∣∣ 1

1 + trU0

(
c
(r)
i

) − 1

∣∣∣∣∣∣
∣∣∣U0

(
c
(r)
i

)∣∣∣
≤ |tr|

1
nr

nr∑
i=1

∣∣∣U0

(
c
(r)
i

)∣∣∣2 + o(tr) = O
(
n−1/2

r

)
. (12)

Then, coming back to the original ELP program, we have:∣∣∣∣∣
nr∑
i=1

p
(r)
i U0

(
c
(r)
i

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1
nr

nr∑
i=1

U0

(
c
(r)
i

)∣∣∣∣∣+
∣∣∣∣∣

nr∑
i=1

p
(r)
i U0

(
c
(r)
i

)
−

nr∑
i=1

1
nr
U0

(
c
(r)
i

)∣∣∣∣∣ = O
(
n−1/2

r

)
,

by standard CLT arguments on U0

(
c
(r)
i

)
and (12). By similar arguments on wl, we have, for

r = 1, 2
nr∑
i=1

p
(r)
i U0

(
c
(r)
i

)
= O

(
n
−1/2
1

)
and

L∑
l=1

wlU
(r)
1 (ql) = O

(
L−1/2

)
. (13)
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Lagrangian
The ELP program can be rewritten as the following maximum:

max
wl, γa ,p

(r)
i , γr, λr

H
(
wl, γa , p

(r)
i , γr, λr

)
, where:

H
(
wl, γa, p

(r)
i , γr, λr

)
= ln

(∏n1
i=1 p

(1)
i

∏n2
i=1 p

(2)
i

∏L
l=1wl

)
− γa

[∑L
i=1wl − 1

]
−
∑2

r=1

{
γr

[∑nr
i=1 p

(r)
i − 1

]
− λr

[∑nr
i=1 p

(r)
i U0

(
c
(r)
i

)
+
∑L

l=1wlU
(r)
1 (ql)

]}
.

Using ∂H/∂p(r)
i = 1/p(r)

i − γr − λrU0

(
c
(r)
i

)
= 0 and the similar expression for ∂H/∂wl gives

that
p
(r)
i =

(
γr + λrU0

(
c
(r)
i

))−1
and wl =

(
γa + λ1U

(1)
1 (ql) + λ2U

(2)
1 (ql)

)−1
. (14)

Note that we also have
nr∑
i=1

p
(r)
i

∂H

∂p
(r)
i

= nr − γr − λr

nr∑
i=1

p
(r)
i U0

(
c(1)
r

)
= 0 (15)

and using the constraints, we get that

0 =
n1∑
i=1

p
(1)
i

∂H

∂p
(1)
i

+
n2∑
i=1

p
(2)
i

∂H

∂p
(2)
i

+
L∑

i=1

wl
∂H
∂wl

= n1 + n2 + L− γ1 − γ2 − γa. (16)

The ELP problem can be rewritten using (14) and (16) in the dual form

sup
λ1,λ2,γ1,γ2,γa∈R

n1+n2+L−γ1−γ2−γa=0


∑n1

i=1 ln
{
γ1 + λ1U0

(
c
(1)
i

)}
+
∑n2

j=1 ln
{
γ2 + λ2U0

(
c
(2)
i

)}
+
∑L

l=1 ln
{
γa + λ1U

(1)
1 (ql) + λ2U

(2)
1 (ql)

}  .

Furthermore, combining (15) with
∑nr

i=1 p
(r)
i U0

(
c
(r)
i

)
= O(n−1/2

r ) gives that

γr = nr + vr with vr = λr · O(n−1/2
r )

and then

p
(r)
i =

(
nr + vr + λrU0

(
c
(r)
i

))−1
, and wl =

(
L− v1 − v2 + λ1U

(1)
1 (ql) + λ2U

(2)
1 (ql)

)−1
.

Let us consider the case of the wl. Adapting Owen’s proof, equation (13) for r = 1 combined
with (14) yields a constraint given by

O
(
L−1/2

)
=

L∑
i=1

wlU
(1)
1 (ql) =

L∑
i=1

U
(1)
1 (ql)

L− v1 − v2 + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

=
L∑

i=1

U
(1)
1 (ql)
L

− 1
L

L∑
i=1

[
−v1 − v2 + λ1U

(1)
1 (ql) + λ2U

(2)
1 (ql)

]
· U (1)

1 (ql)

L− v1 − v2 + λ1U
(1)
1 (ql) + λ2U

(2)
1 (ql)

= U
(1)
1 − λ1

L

L∑
i=1

wl

[
U

(1)
1 (ql)

]2
− λ2

L

L∑
i=1

wlU
(1)
1 (ql)U

(2)
1 (ql) +

v1 + v2
L

L∑
i=1

wlU
(1)
1 (ql),
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where U (1)
1 = L−1

∑L
i=1 U

(1)
1 (ql). The last term is equivalent to (v1 + v2)O(L−3/2) and then can be

included in O
(
L−1/2

)
. We get

U
(1)
1 =

λ1

L

L∑
i=1

wl

[
U

(1)
1 (ql)

]2
+
λ2

L

L∑
i=1

wlU
(1)
1 (ql)U

(2)
1 (ql) +O

(
L−1/2

)
.

Using Owen’s arguments, we obtain

U
(1)
1 +O

(
L−1/2

)
=
λ1

L

[
U

(1)
1

]2
+
λ2

L
U
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1 U
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1 U
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where
[
U

(1)
1

]2
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∑L
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U

(1)
1 (ql)

]2
and U
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1 U

(2)
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i=1 U

(1)
1 (ql)U

(2)
1 (ql)2. This can be

rewritten: (
λ1

λ2

)
= L


[
U

(1)
1

]2
U

(1)
1 U

(2)
1

U
(1)
1 U

(2)
1

[
U

(2)
1

]2

−1 U

(1)
1 +O

(
L−1/2

)
U

(2)
1 +O

(
L−1/2

)
 . (17)

As the empirical variance-covariance matrix convergences to the non-degenerated variance-

covariance matrix EP[(U (1)
1 , U

(2)
1 )′(U (1)

1 , U
(2)
1 )] and as U (1)

1 and U (2)
1 are of order O(L−1/2), it follows

that λ1 and λ2 are of order O(L1/2).
When considering p(r)

i instead of wl, the calculus are easier and we get in a similar fashion

λr = nr

(
[U (r)

0 ]2
)−1

U
(r)
0 +O(n1/2

r ), (18)

where U (r)
0 = n−1

r

∑nr
i=1 U0(c

(r)
i ) and [U (r)

0 ]2 = n−1
r

∑nr
i=1

[
U0(c

(r)
i )
]2

.
Now that we control the size of λr at the optimum for both nr and L with (17) and (18), the ln

can be expanded around zero, and the dominant terms are the same as for the Euclidean likelihood,
which is considered here after. This gives the expected convergence:

rn1,n2,L(θd) = 2
(
ln1,n2,L(θd)− ln1,n2,L(θ̂)

)
L−−−→

n→∞
4χ2(1).

A.2 Proof of Corollary 1, case P > 1

The preceding arguments may be generalized to the case of P products. We give here a proof for
P = 2. The incomplete U-statistics related to the contamination of the 2 products are denoted
U

(r)
a,B and U

(r)
b,B. The difference between the incomplete and the complete statistics are of order

O(B−1/2), and then does not affect the asymptotic results. The program consists in maximizing

n1∏
i=1

p
(1)
i

n2∏
i=1

p
(2)
i

La∏
l=1

w
[a]
l

Lb∏
l=1

w
[b]
l ,

under the constraints :

La∑
i=1

w
[a]
l = 1,

Lb∑
i=1

w
[b]
l = 1 and for r = 1, 2 :

nr∑
i=1

p
(r)
i = 1,
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and
nr∑
i=1

p
(r)
i U

0,B(r)
0

(c(r)i ) +
La∑
l=1

w
[a]
l U

(r)

a,B(r)
a

(q[a]
l ) +

Lb∑
l=1

w
[b]
l U

(r)

b,B(r)
b

(q[b]l ) = 0.

For r = 1, 2 and k = a, b, we can check as above that

nr∑
i=1

p
(r)
i U

0,B(r)
0

(
c
(r)
i

)
= O

(
n−1/2

r

)
, and

Lk∑
l=1

wlU
(r)

k,B(r)
k

[
q
[k]
l

]
= O

(
L
−1/2
k

)
.

We get therefore for r = 1, 2 and k = a, b :

p
(r)
i =

(
nr + vr + λrU0,B(r)

0

(
c
(r)
i

))−1
and

w
[k]
l =

(
Lk + vk + λ1U

(1)

k,B(1)
k

(
q
[k]
l

)
+ λ2U

(2)

k,B(2)
k

(
q
[k]
l

))−1

,

with v1 + v2 + va + vb = 0 and the proof follows the same lines as for 1 product.

A.3 Euclidean likelihood (Proof of Corollary 2)

The objective function of the program is now

1
2

minn
p
(1)
i , p

(2)
i , w

[k]
lk

o
2∑

r=1

nr∑
i=1

(
nrp

(r)
i − 1

)2
+

P∑
k=1

Lk∑
lk=1

(
Lkw

[k]
lk
− 1
)2
.

We get then simpler expressions, which allow to reach explicit solutions for the weights.

Closed expression of the weights
For the sake of simplicity, we present the results for two consumptions surveys and one food product
(P = 1), the optimization program can be rewritten

1
2

minn
p
(1)
i , p

(2)
i , wl

o
n1∑
i=1

(
n1p

(1)
i − 1

)2
+

n2∑
i=1

(
n2p

(2)
i − 1

)2
+

L∑
l=1

(Lwl − 1)2 ,

under the constraints :

L∑
i=1

wl = 1 and for r = 1, 2 :
nr∑
i=1

p
(r)
i = 1, and

nr∑
i=1

p
(r)
i U0

(
c
(r)
i

)
+

L∑
l=1

wlU
(r)
1 (ql) = 0.

Define the corresponding Lagrangian

H(·) =
1
2

n1∑
i=1

(
n1p

(1)
i − 1

)2
+

1
2

n2∑
i=1

(
n2p

(2)
i − 1

)2
+

1
2

L∑
l=1

(Lwl − 1)2

− λ1

[
n1∑
i=1

p
(1)
i U0

(
c
(1)
i

)
+

L∑
l=1

wlU
(1)
1 (ql)

]
− λ2

[
n2∑
i=1

p
(2)
i U0

(
c
(2)
i

)
+

L∑
l=1

wlU
(2)
1 (ql)

]

− γ1

[
n1∑
i=1

p
(1)
i − 1

]
− γ2

[
n2∑
i=1

p
(2)
i − 1

]
− γa

[
L∑

i=1

wl − 1

]
.
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Then the first order condition of the optimization program leads to

∂H/∂p(r)
i = nr(nrp

(r)
i − 1)− γr − λrU0

(
c
(r)
i

)
= 0

so that we get p(r)
i = 1/nr +

[
γr + λrU0(c

(r)
i )
]
/n2

r . As the weights sum to 1, we have

1 =
nr∑
i=1

p
(r)
i = 1 +

(
γr + λrU

(r)
0

)
/nr, and then γr = −λrU

(r)
0 .

Finally, we get

p
(r)
i =

1
nr

+
λr

n2
r

[
U0(c

(r)
i )− U

(r)
0

]
and wl =

1
L

+
λ1

L2

[
U

(1)
1 (ql)− U

(1)
1

]
+
λ2

L2

[
U

(2)
1 (ql)− U

(2)
1

]
.

Asymptotic distribution of the U-statistics
The constraints can be rewritten, for r = 1, 2 :

U
(1)
0 + U

(1)
1 + λ1

[
V(U

(1)
0 )

n1
+ V(U

(1)
1 )

L

]
+ λ2

Cov(U
(1)
1 ,U

(2)
1 )

L = 0,

U
(2)
0 + U

(2)
1 + λ2

[
V(U

(2)
0 )

n2
+ V(U

(2)
1 )

L

]
+ λ1

Cov(U
(1)
1 ,U

(2)
1 )

L = 0,

where V and Cov denote the empirical variance operator, V(X) = (X2)−
(
X
)2, and the covariance

operator, Cov(X,Y ) = (X · Y )−X · Y . These terms do not depend on θ.

Note that U (r)
0 = U

(r)
1 by definition of these U-statistics and write it U (r). The optimum is then

reached at (
λ∗1
λ∗2

)
= −2

 V(U
(1)
0 )

n1
+ V(U

(1)
1 )

L
Cov(U

(1)
1 ,U

(2)
1 )

L
Cov(U

(1)
1 ,U

(2)
1 )

L
V(U

(2)
0 )

n2
+ V(U

(2)
1 )

L

−1(
U (1)

U (2)

)
.

The optimal value can thus be computed explicitly. Finally, replacing the values of the weights and
the λ’s in the optimization program, we get:

ln1,n2,L(θ) =
4
2
Y (θ)′M−1Y (θ), where Y (θ) =

( √
N1 U (1)

√
N2 U (2)

)

and M =


N1

n1
V(U (1)

0 ) +
N1

L
V(U (1)

1 )

√
N1N2

L
Cov(U (1)

1 , U
(2)
1 )

√
N1N2

L
Cov(U (1)

1 , U
(2)
1 )

N2

n2
V(U (2)

0 ) +
N2

L
V(U (2)

1 )

 .
U (r) = 1

n1L

∑
i,l 1lqlc

(r)
i >d

− θ is a generalized U-statistic with kernel 1l
qlc

(r)
i >d

− θ and of de-

gree (1, 1). The CLT for U-statistics ensures that, with Nr = nr +L, nr/Nr → ηr, and L/Nr → βr,√
Nr U (r) L−−−−−→

nr,L→∞
N (θd − θ, S2

r ),
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where S2
r = 1

ηr
V [ψC ] + 1

βr
V [ψQ] and where ψC and ψQ are the gradients of order 1 of the U-

statistic. We consider now the asymptotic covariance C12 of these two statistics i.e. the limit of√
N1N2Cov(U

(1)
1 , U

(2)
1 ). To calculate C12, we set X(r)

il = 1lqlc
r
i >d − θ, and we have

Y (θ) =

( √
N1 U (1)

√
N2 U (2)

)
=

( √
N1

n1L

∑
ilX

(1)
il√

N2
n2L

∑
ilX

(2)
il

)
.

As E
[
X

(1)
il X

(2)
jk

]
= 0 for l 6= k, we have

√
N1N2

n1n2L2
Cov(

∑
il

X
(1)
il ,
∑
il

X
(2)
il ) =

√
N1N2

n1n2L2
E

∑
iljk

X
(1)
il X

(2)
jk


=
√
N1N2

n1n2L2
E

∑
ilj

X
(1)
il X

(2)
jl

 =
√
N1N2

L
v

(12)
1 ,

where v(12)
1 = E[X(1)

il X
(2)
jl ]. Therefore, C12 = (β1β2)−1/2v

(12)
1 and Y (θ) is asymptotically a gaussian

vector,

with mean
(
θd − θ
θd − θ

)
and variance M∞ =

[
S2

1 C12

C12 S2
2

]
.

Convergence of the pivotal statistic
We must now show that M is a convergent estimator for M∞. By classical results on U-statistics,
we have

Ŝ2
r =

Nr

nr
V(U (r)

0 ) +
Nr

L
V(U (r)

1 ) → S2
r .

Let’s show that M12 =
√

N1N2
L Cov(U (1)

1 , U
(2)
1 ) → C12. Let i ≤ n1 and j ≤ n2,

M12 =
√
N1N2

L
Cov(U (1)

1 , U
(2)
1 ) =

√
N1N2

L2

∑
l

X
(1)
il X

(2)
jl −

√
N1N2

L3

(∑
l

X
(1)
il

)(∑
l

X
(2)
jl

)
.

By the LLN,
1
L

∑
l

X
(1)
il X

(2)
jl → v

(12)
1 and

1
L

∑
l

X
(r)
il → 0

and then
M →M∞.

To establish the convergence of rn1,n2,L(θd) = 2
[
ln1,n2,L(θd)− infθ ln1,n2,L(θ)

]
, we consider θ̂,

the minimiser of ln1,n2,L(θ), i.e. of Y (θ)′M−1Y (θ). Write Y (θ) = Z−θ12. The first order condition

gives : −1′2M
−1Z + θ̂1′2M

−112 = 0 and then θ̂ = 1′2M−1Z
θ1′2M−112

. Thus

rn1,n2,L(θd) = 4Y (θd)′M−1Y (θd)− 4Y (θ̂)′M−1Y (θ̂)

= 4
(
Z ′M−1Z − 2θd1′2M

−1Z + θ2
d1
′
2M

−112

)
− 4

(
Z ′M−1Z − 2θ̂1′2M

−1Z + (θ̂)21′2M
−112

)
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= 4
[
−2θd1′2M

−1Z + θ2
d1
′
2M

−112 + 2θ̂1′2M
−1Z − (θ̂)21′2M

−112

]
.

By the first order condition, 1′2M
−1Z = θ̂1′2M

−112 and then

rn1,n2,L(θd) = 4
[
−2θdθ̂1′2M

−112 + θ2
d1
′
2M

−112 + (θ̂)21′2M
−112

]
= 4(θ̂ − θd)21′2M

−112 = 4

(
1′2M

−1(Z − 12θd)
)2

1′2M−112
.

M−1/2(Z−12θd) is asymptotically a standard gaussian vector. rn1,n2,L(θd) is then twice the square
of a weighted mean of two independent standard gaussians, and then

rn1,n2,L(θd)
L−→ 4χ2(1).

Case P > 1
We also use this framework for the 2 surveys 2 products context (P = 2). The form of the Euclidean

likelihood is almost the same, with U (r) := U
(r)
0 = U

(r)
1 = U

(r)
2 and we easily get by straightforward

calculus
ln1,n2,L1,L2(θ) = (2 + 1)2

(
U (1), U (2)

)
A
(
U (1), U (2)

)′

where A =


V(U (1)

0 )
n1

+
V(U (1)

1 )
L1

+
V(U (1)

2 )
L2

Cov(U (1)
1 , U

(2)
1 )

L1
+

Cov(U (1)
2 , U

(2)
2 )

L2

Cov(U (1)
1 , U

(2)
1 )

L1
+ Cov(U

(1)
2 ,U

(2)
2 )

L2

V(U (2)
0 )
n2

+
V(U (2)

1 )
L1

+
V(U (2)

2 )
L2


−1

and the result follows.
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