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Abstract

Econometric Asset Pricing Modelling

The purpose of this paper is to propose a general econometric approach to asset pricing modelling based on
three main ingredients : (i) the historical discrete-time dynamics of the factor representing the information, (ii)
the Stochastic Discount Factor (SDF), and (iii) the discrete-time risk-neutral (R.N.) factor dynamics. Retaining an
exponential-affine specification of the SDF, its modelling is equivalent to the specification of the factor loading vector
and of the short rate, if the latter is neither exogenous nor a known function of the factor. In this general framework,
we distinguish three modelling strategies: the Direct Modelling, the Risk-Neutral Constrained Direct Modelling and
the Back Modelling. In all the approaches we study the internal consistency constraints, implied by the absence of
arbitrage opportunity (AAO) assumption, and the identification problem. We also propose interpretations of the
factor loading vector in terms of market price of risk. The general modelling strategies are applied to two important
cases: security market models and term structure of interest rates models. In the context of security market models,
we show the relevance of our methods for various kinds of specifications: switching regime models, stochastic volatility
models, Gaussian and Inverse Gaussian GARCH-type models (with or without regime-switching). In the interest
rates modelling context, we consider several illustrations: VAR modelling, Switching VAR modelling and Wishart
modelling. We also propose, using a Gaussian VAR(1) approach, an example of joint modelling of geometric returns,
dividends and short rate. In these contexts we stress the usefulness of the Risk-Neutral Constrained Direct Modelling
approach and of the Back Modelling approach, both allowing to conciliate a flexible historical dynamics and a Car
R.N. dynamics leading to explicit or quasi explicit pricing formulas for various derivative products. Moreover, we
highlight the possibility to specify asset pricing models able to accommodate non-affine historical and R.N. factor
dynamics with tractable pricing formulas. In this respect we introduce the new notion of Extended Car process which
is particularly promising.

Keywords : Direct Modelling, Risk-Neutral Constrained Direct Modelling, Back Modelling, absence of arbitrage
opportunities, identification problem, Car and Extended Car process, Laplace Transform.

Résumé

Econometric Asset Pricing Modelling

Le but de ce papier est de proposer une approche économétrique générale pour la modélisation de prix d’actifs
financiers fondée sur trois éléments principaux : (i) la dynamique historique en temps discret du facteur représentant
l’information, (ii) le facteur d’escompte stochastique, et (iii) la dynamique risque-neutre (R.N.) en temps discret du
facteur. Etant donnée une spécification exponentielle-affine du facteur d’escompte stochastique, sa modélisation est
équivalente à la spécification du vecteur de ”sensibilité au facteur” et du taux court, si celui-ci il est ni exogène ni
fonction connue du facteur. Dans ce contexte général, on définit trois stratégies de modélisation : la Modélisation
Directe, la Modélisation Directe sous Contrainte Risque-Neutre, et la Modélisation Inverse. Dans toutes les approches
on étudie les contraintes de cohérence interne, induites par l’hypothèse d’absence d’opportunité d’arbitrage (AOA),
et le problème de l’identification. On propose aussi des interprétations du vecteur de ”sensibilité au facteur” en terme
de prix du marché du risque. Les trois stratégies de modélisation générales sont appliquées à deux cas importants
: les modèles de marchés d’actions et les modèles de taux d’intérêt. Dans le cas de modèles de marchés d’actions,
on montre la pertinence de nos méthodes pour plusieurs types de spécifications : modèles à changement de régimes,
modèles à volatilité stochastique, modèles de type GARCH Gaussiens et Inverse Gaussiens (sans et avec changement
de régimes). Dans le cas des modèles de taux d’intérêt, on considère plusieurs illustrations : modélisation VAR,
modélisation VAR à changement de régimes et modélisation Wishart. On propose aussi, à l’aide d’une approche
VAR Gaussienne, un exemple de modélisation jointe du rendement de l’actif risqué, du dividende et du taux court.
Dans ces contextes on met en évidence l’utilité de la Modélisation Directe sous Contrainte Risque-Neutre et de la
Modélisation Inverse, les deux permettant de concilier une dynamique historique flexible et une dynamique R.N. de
type Car ou Car Etendu débouchant sur des formules de valorisation explicites ou quasi explicites pour plusieurs
produits dérivés. On met ainsi en évidence la possibilité de spécifier des modèles de valorisation capables de concilier
une dynamique historique et R.N. non-affine avec des formules de valorisations explicites ou quasi explicites. A cet
égard la notion de modèle Car Etendu, introduite dans cet article, est particulièrement prometteuse.

Mot Clés : Modélisation Directe, Modélisation Directe sous Contrainte Risque-Neutre, Modélisation Inverse, absence
d’opportunité d’arbitrage, problème d’identification, processus Car et Car Etendu, transformée de Laplace.

JEL number : C1, C5, G12.



1 Introduction

The purpose of this paper is to build a bridge between econometric modelling and asset pricing.
More precisely, we propose a framework which is able to produce models dealing at the same time
with usual econometric problems (historical analysis, prediction ...) and pricing of derivative assets.
This general econometric approach is based on three main ingredients: i) the discrete-time historical
dynamics of the factor representing the economy, ii) the Stochastic Discount Factor (SDF), and iii)
the discrete-time risk-neutral (R.N.) factor dynamics. The central mathematical tool used in the
specification of the historical and R.N. dynamics is the conditional Laplace transform. The SDF
is assumed to be exponential-affine [see Gourieroux and Monfort (2007)], and its specification is
equivalent to the specification of a factor loading vector and of the short rate, if the latter is neither
exogenous nor a known function of the factor.

The three elements can not be defined independently and we distinguish three modelling strate-
gies according to the retained basic elements. In the Direct Modelling strategy, we specify the
historical dynamics and the SDF, that is to say, the factor loading vector and, possibly, the short
rate. The R.N. dynamics is obtained as a by-product. In the Risk-Neutral Constrained Direct
Modelling strategy, we specify the historical dynamics and we constrain the R.N. dynamics to be-
long to a given family, typically the family of Compound Autoregressive (Car) processes proposed
by Darolles, Gourieroux and Jasiak (2006)4. In this case, the factor loading vector characterizing
the SDF is obtained as a by-product. Finally, in the Back Modelling strategy, we specify the R.N.
dynamics and, possibly, the short rate, as well as the factor loading and, consequently, the historical
dynamics is obtained as by-product. Thus, we get three kinds of Econometric Asset Pricing Models
(EAPMs).

In the Back Modelling approach, and in the Risk-Neutral Constrained Direct Modelling ap-
proach, the factor is, in general, assumed to be a Car process under the R.N. probability in order
to facilitate pricing implementation and econometric analysis. However, we are able to derive as-
set pricing models where, even if the historical and R.N. dynamics of the factor is not affine, the
introduction of a new variable, function of the initial factor, defines a new (extended) factor which
turns out to be Car at least under the R.N. probability and, therefore, explicit or quasi explicit
pricing formulas can be obtained. This extended factor will be called (historical or risk-neutral)
Extended Car process.

For all the strategies, we discuss basic problems of econometric modelling like parameterization,
identification and internal consistency with the Absence of Arbitrage Opportunity (AAO) assump-
tion. We also propose interpretations of the factor loading vector in terms of market price of risk.
The general modelling strategies are applied to two important cases: discrete-time security market
models (the basis of option pricing models) and term structure of interest rates models5. In the

4A Car (discrete-time affine) process is a Markovian process with an exponential-affine conditional Laplace trans-
form [see Darolles, Gourieroux, Jasiak (2006) for details].

5As far as the discrete-time (security market and) option pricing literature is concerned see, among the others,
Bertholon, Monfort and Pegoraro (2006), Christoffersen, Elkamhi and Jacobs (2005), Christoffersen, Jacobs and Wang
(2006a, 2006b), Duan (1995), Duan, Popova and Ritchken (2002), Duan, Ritchken and Sun (2005, 2006), Garcia and
Renault (1998), Garcia, Luger and Renault (2001, 2003), Garcia, Ghysels and Renault (2003), Heston and Nandi
(2000) and Leon, Mencia and Sentana (2006). With regard to the discrete-time term structure modelling see, for
instance, Ang and Bekaert (2005), Ang and Piazzesi (2003), Ang, Piazzesi and Wei (2006), Audrino and De Giorgi
(2006), Backus, Foresi and Telmer (1998), Bansal and Zhou (2002), Bansal, Tauchen and Zhou (2004), Dai, Le and
Singleton (2006), Dai, Singleton and Yang (2006), Filipovic and Zabczyk (2002), Gourieroux, Monfort and Polimenis
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context of security market models, we show the relevance of our methods for various kinds of spec-
ifications: switching regime models, stochastic volatility models, Gaussian and Inverse Gaussian
GARCH-type models (with or without regime-switching). In the interest rates modelling context,
we consider several illustrations: VAR modelling, Switching VAR modelling and Wishart modelling.
We also propose, using a Gaussian VAR(1) approach, an example of joint modelling of geometric
returns, dividends and short rate. In these contexts we stress the usefulness of the Risk-Neutral
Constrained Direct Modelling approach and of the Back Modelling approach, both allowing to con-
ciliate a flexible historical dynamics and a Car risk-neutral dynamics leading to explicit or quasi
explicit pricing formulas for various derivative products. Moreover, we highlight the possibility to
specify asset pricing models able to accommodate non-affine historical and R.N. factor dynamics
with tractable pricing formulas.

The paper is organized as follows. In Section 2 we define the historical dynamics, the SDF and
the R.N. dynamics. In Section 3 we propose financial interpretation of the factor loading vector in
two important cases : a) when the factor is a vector of geometric returns and b) when the factor
is a vector of yields. In Section 4 we discuss the status of the short rate, we describe the various
modelling strategies for the specification of an EAPM, and we present the associated inference
problem. Sections 5 and 6 consider, respectively, applications to Econometric Security Market
Models and to Econometric Term Structure Models, while, in Section 7 we present an example
of Security Market Model with stochastic dividends and short rate. Section 8 concludes, and the
proofs are gathered in the appendices.

2 Historical and Risk-Neutral Dynamics

2.1 Information and Historical Dynamics

We consider an economy between dates 0 and T . The new information in the economy at date
t is denoted by wt and the overall information at date t is wt = (wt, wt−1, ..., w0). The random
variable wt is called a factor or a state vector, and it may be observable, partially observable or
unobservable by the econometrician. The size of wt is K.

The historical dynamics of wt is defined by the joint distribution of wT , denoted by P, or by
the conditional p.d.f. (with respect to some measure):

ft(wt+1|wt) ,

or by the conditional Laplace transform (L.T.):

ϕt(u|wt) = E[exp(u′wt+1)|wt] ,

which is assumed to be defined in an open convex set of RK (containing zero). We also introduce
the conditional Log-Laplace transform :

ψt(u|wt) = Log[ϕt(u|wt)] .

The conditional expectation operator, given wt, is denoted by Et. ϕt(u|wt) and ψt(u|wt) will be
also denoted by ϕt(u) and ψt(u).

(2003), Gourieroux and Sufana (2003), Monfort and Pegoraro (2006a, 2006b, 2007). See also Gourieroux, Monfort
and Polimenis (2006) for a discrete-time approach to Credit Risk analysis.
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2.2 The Stochastic Discount Factor (SDF)

Let us denote by L2t the (Hilbert) space of square integrable functions6 g(wt). Following Hansen
and Richard (1987) we consider the following assumptions :

A1 (Existence and uniqueness of a price): Any payoff g(ws) of L2s, delivered at s, has a unique
price at any t < s for each wt, denoted by pt[g(ws)], function of wt.

A2 (Linearity and continuity):

• pt [λ1g1(ws) + λ2g2(ws)] = λ1pt [g1(ws)] + λ2pt [g2(ws)] (law of one price)

• if gn(ws)
L2sGGGGGGGGA

n → ∞
0, pt [gn(ws)] −→

n→∞
0.

A3 (Absence of Arbitrage Opportunity): For every date s > t, s, t ∈ {0, . . . , T}, and for every wt,
there is no payoff g(ws) ∈ L2s satisfying g(ws) ≥ 0,P [g(ws) > 0|wt] > 0, and pt [g(ws)] ≤ 0.

Under A1, A2 and A3, a conditional version of the Riesz representation theorem implies, for
each t ∈ {0, . . . , T −1}, the existence and uniqueness of the stochastic discount factor Mt,t+1(wt+1),
belonging to L2,t+1, such that the price at date t of the payoff g(ws) delivered at s > t is given by
[see Appendix 1] :

pt [g(ws)] = Et [Mt,t+1...Ms−1,sg(ws)] . (1)

Moreover, under A3, Mt,t+1 is positive for each t ∈ {0, . . . , T −1}. The process M0t =
∏t−1

j=0Mj,j+1

is called the state price deflator over the period {0, . . . , t}.
Since L2,t+1 contains 1, the price at t of a zero-coupon bond maturing at t+ 1 is :

B(t, 1) = exp(−rt+1) = Et(Mt,t+1),

where rt+1 is the (geometric) short rate, between t and t+ 1, known at t. The bank account is :

Rt+1 = exp(r1 + ...+ rt+1) =
1

E0(M01) . . . Et(Mt,t+1)
.

For any price process pt we have :

pt = Et(Mt,t+1...Ms−1,s ps) , ∀s > t , s, t ∈ {0, . . . , T} ,

or :
M0tpt = E(M0sps) ,

so M0tpt and, in particular, M0tRt are P-martingales.

6We do not distinguish functions which are equal almost surely.
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2.3 Exponential-affine SDF

We assume that Mt,t+1(wt+1) has an exponential-affine form :

Mt,t+1 = exp
[

αt(wt)
′wt+1 + βt(wt)

]

,

where αt is the ”factor loading” or ”sensitivity” vector.
The justification of this exponential-affine specification is now well documented in the asset

pricing literature. First, this form naturally appears in equilibrium models like CCAPM [see e.g.
Lucas (1978) and Cochrane (2005)], Consumption-based asset pricing models with habit formation
or with Epstein-Zin preferences [see, among the others, Campbell and Cochrane (1999), Collard,
Feve and Ghattassi (2006), Garcia, Meddahi and Tedongap (2006), Garcia, Renault and Semenov
(2006)]. Second, in general continuous time security market models the discretized version of
the SDF is exponential-affine [see Gourieroux and Monfort (2007)]. Third, the exponential-affine
specification is particularly well adapted to the Laplace Transform which is a central tool in discrete-
time asset pricing theory [see e.g. Bertholon, Monfort and Pegoraro (2006), Darolles, Gourieroux
and Jasiak (2006), Gourieroux, Jasiak and Sufana (2004), Gourieroux, Monfort and Polimenis
(2003, 2006), Monfort and Pegoraro (2006a, 2006b, 2007), Pegoraro (2006), Polimenis (2001)].

Since exp(−rt+1) = Et(Mt,t+1) = exp [ψt(αt |wt) + βt], the SDF can also be written :

Mt,t+1 = exp
[

−rt+1(wt) + α′
t(wt)wt+1 − ψt(αt|wt)

]

. (2)

2.4 Risk-Neutral Dynamics

The joint historical distribution of wt, denoted by P, is defined by the conditional distribution of
wt+1 given wt, characterized either by the p.d.f. ft(wt+1|wt) or the Laplace transform ϕt(u|wt), or
the Log-Laplace transform ϕt(u|wt).

The Risk-Neutral (R.N.) dynamics is another joint distribution of wt, denoted by Q, defined
by the conditional p.d.f., with respect to the corresponding conditional historical probability, given
by :

dQ
t (wt+1|wt) =

Mt,t+1(wt+1)

Et

[

Mt,t+1(wt+1)
]

= exp(rt+1)Mt,t+1(wt+1).

So, the R.N. conditional p.d.f. (with respect to the same measure as the corresponding conditional
historical probability) is :

fQ
t (wt+1|wt) = ft(wt+1|wt)d

Q
t (wt+1|wt),

and the conditional p.d.f. of the conditional historical distribution with respect to the R.N. one is
given by :

dP
t (wt+1|wt) =

1

dQ
t (wt+1|wt)

.

The joint p.d.f. of Q with respect to P is :

ξT =
dQ

dP
=

∏T−1
t=0 dQ

t (wt+1/wt)

=
∏T−1

t=0 exp(rt+1)Mt,t+1.

(3)
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Note that the p.d.f. of the R.N. distribution of wt with respect to the corresponding historical one
is :

ξt =

t−1
∏

t=0

dQ
t (wt+1|wt) = RtM0t = EtξT , (4)

and, therefore, ξt is a P-martingale.
The basic pricing formula (1) can be rewritten

pt [g(ws)] = EQ
t [exp(−rt+1 − ...− rs)g(ws)] (5)

or :

pt = EQ
t

(

Rt

Rs
ps

)

,

showing that (pt/Rt) is a Q-martingale. In particular, for any price process pt, we have

pt = exp(−rt+1)E
Q
t (pt+1)

or, using, the arithmetic return ρA,t+1 = pt+1−pt

pt
, and the arithmetic short rate rA,t+1 = [exp(rt+1)−

1], we get:

EQ
t (ρA,t+1) = rA,t+1.

Thus, the excess return (ρA,t+1−rA,t+1) is a Q-martingale difference, and, therefore Q-uncorrelated.

When the SDF is exponential-affine, we have convenient additional results:

dQ
t (wt+1|wt) =

exp(α′
twt+1 + βt)

Et exp(α′
twt+1 + βt)

= exp [α′
twt+1 − ψt(αt)] ,

so dQ
t is also exponential-affine. The conditional R.N. Laplace transform of the factor wt+1, given

wt, is :

ϕQ
t (u|wt) = EQ

t [exp(u′wt+1)]

= Et exp [(u+ αt)
′wt+1 − ψt(αt)]

=
ϕt(u+ αt)

ϕt(αt)

and, consequently, the associated conditional R.N. Log-Laplace transform is :

ψQ
t (u) = ψt(u+ αt) − ψt(αt) . (6)

Conversely, we get :
dP

t (wt+1|wt) = exp
[

−α′
twt+1 + ψt(αt)

]

and, taking u = −αt in ψQ
t (u), we can write :

ψQ
t (−αt) = −ψt(αt) (7)

5



and, replacing u by u− αt, we obtain :

ψt(u) = ψQ
t (u− αt) − ψQ

t (−αt). (8)

We also have :
dP

t (wt+1|wt) = exp
[

−α′
twt+1 − ψQ

t (−αt)
]

,

dQ
t (wt+1|wt) = exp

[

α′
twt+1 + ψQ

t (−αt)
]

.

3 Risk Premia and Market Price of Risk

3.1 Geometric and Arithmetic Risk Premia

Let pt be the price at t of any given asset. The geometric return between t and t+ 1 is

ρG,t+1 = Log

(

pt+1

pt

)

,

whereas the arithmetic return is :

ρA,t+1 =
pt+1

pt
− 1 = exp(ρG,t+1) − 1 .

In particular, for the risk-free asset we have :

ρf
G,t+1 = rt+1 ,

ρf
A,t+1 = exp(rt+1) − 1 = rA,t+1 .

So, we can define two risk premia of the given asset :

πGt = Et(ρG,t+1) − rt+1 ,

πAt = Et(ρA,t+1) − rA,t+1 = Et [exp(ρG,t+1)] − exp(rt+1) .
(9)

Note that the arithmetic risk premia have the advantage to satisfy πAt(λ) = ΣJ
j=1λjπAt,j , if πAt(λ)

is the risk premium of the portfolio defined by the shares in value λj for the asset j. Let us now
consider two important particular cases in order to have more explicit forms of these risk premia
and to obtain intuitive interpretations of the factor loading vector αt [see also Dai, Le and Singleton
(2006) for a similar analysis].

3.2 The factor is a vector of geometric returns

If wt+1 is a K-vector of geometric returns, we have vectors of risk premia πGt and πAt whose entries
are :

πGt,i = e′iψ
(1)
t (0) − rt+1, i ∈ {1, ...,K},

(where ψ
(1)
t is the gradient of ψt and ei is the ith column of the identity matrix IK),

πAt,i = ϕt(ei) − exp(rt+1), i ∈ {1, ...,K}.

6



Moreover, we have the pricing identities :

1 = Et

{

exp
[

e′iwt+1 + α′
twt+1 − rt+1 − ψt(αt)

]}

, i ∈ {1, ...,K}, (10)

that is

exp(rt+1) =
ϕt(αt + ei)

ϕt(αt)
= ϕQ

t (ei),

or
rt+1 = ψt(αt + ei) − ψt(αt) = ψQ

t (ei).

So, for each i ∈ {1, ...,K}, the risk premia can be written :

πGt,i = e′iψ
(1)
t (0) − ψt(αt + ei) + ψt(αt)

πAt,i = ϕt(ei) −
ϕt(αt + ei)

ϕt(αt)
.

Note that, for αt = 0, i.e. when the historical and the R.N. dynamics are identical, we have :

πGt,i = mit − ψt(ei) 6= 0, i ∈ {1, ...,K},

(mit denotes the conditional mean of wi,t+1 given wt) and

πAt,i = 0, i ∈ {1, ...,K}.

So the arithmetic risk premia seem to have more natural properties. Moreover, considering first
order expansions around αt = 0 and neglecting conditional cumulants of order strictly larger than
2 (which are zero in the conditionally gaussian case), we get [see Appendix 2] :

πGt ' −
1

2
vdiag(Σt) − Σtαt (11)

πAt ' −diag [ϕt(ei)] Σtαt . (12)

where [ϕt(ei)] := (ϕt(e1), . . . , ϕt(eK))′, and vdiag(Σt) is the vector whose entries are the diagonal
terms of Σt, and Σt is the conditional variance-covariance matrix of wt+1 given wt. The terms
ϕt(ei) = Et exp(wi,t+1) are obviously positive.

So, αt can be viewed as the opposite of a market price of risk vector. We will see that the
expression of πGt is exact in the conditionally Gaussian case [see Section 5.2].

3.3 The factor is a vector of yields

Let us denote by r(t, h) the yield at t with residual maturity h; if B(t, h) denotes the price at t of
the zero coupon bond with time to maturity h, we have :

r(t, h) = −
1

h
Log [B(t, h)] .

We assume that the components of wt+1 are :

wt+1,i = hi r(t+ 1, hi) , i ∈ {1, ...,K} ,

7



where hi are various integer residual maturities; this definition of wt+1,i leads to simpler notations
than the equivalent definition wt+1,i = r(t + 1, hi). The payoffs B(t + 1, hi) = exp(−wt+1,i) have
price at t equal to

B(t, hi + 1) = exp [−(hi + 1)r(t, hi + 1)] .

So, we have

1 = Et

{

exp
[

−wt+1,i + (hi + 1)r(t, hi + 1) + α′
twt+1 − rt+1 − ψt(αt)

]}

, i ∈ {1, ...,K}, (13)

that is :
rt+1 = ψt(αt − ei) − ψt(αt) + (hi + 1)r(t, hi + 1) ,

or :

exp(rt+1) =
ϕt(αt − ei)

ϕt(αt)
exp [(hi + 1)r(t, hi + 1)] .

The risk premia associated to the geometric returns :

Log

[

B(t+ 1, hi)

B(t, hi + 1)

]

= −wt+1,i + (hi + 1)r(t, hi + 1)

are the vectors with components :

πGt,i = −Et(wt+1,i) + (hi + 1)r(t, hi + 1) − rt+1

= −e′iψ
(1)
t (0) − ψt(αt − ei) + ψt(αt) ,

(14)

and :
πAt,i = exp [(hi + 1)r(t, hi + 1)]ϕt(−ei) − exp(rt+1)

= exp [(hi + 1)r(t, hi + 1)]
[

ϕt(−ei) −
ϕt(αt−ei)

ϕt(αt)

]

.
(15)

Expanding relations (14) and (15) around αt = 0, and neglecting conditional cumulants of order
strictly larger than 2, we get :

πGt ' −
1

2
vdiag(Σt) + Σtαt (16)

πAt ' diag [ϕt(−ei) exp ((hi + 1)r(t, hi + 1))]Σtαt , (17)

where Σt is the conditional variance-covariance matrix of wt+1 given wt. So, αt can be viewed as
a market price of risk vector. Moreover, the formula for πGt is exact in the conditionally gaussian
case [see Appendix 2].

4 Econometric Asset Pricing Models (EAPMs)

The true value of the various mathematical tools introduced in Section 2, for instance ψt,Mt,t+1 or

ψQ
t , are unknown by the econometrician and, therefore, they have to be specified and parameterized.

In other words, we have to specify an Econometric Asset Pricing Model (EAPM). We are going
to present three ways of specifying an EAPM : the Direct Modelling, the R.N. Constrained Direct
Modelling and the Back Modelling. In all approaches, we first need to make more precise the status
of the short rate rt+1.

8



4.1 The status of the short rate

The short rate rt+1 is a function of wt. This function may be known or unknown by the econome-
trician. It is known in two main cases :

i) rt+1 is exogenous, i.e. rt+1(wt) does not depend on wt, and, therefore, rt+1(.) is a known
constant function of wt;

ii) rt+1 is an endogenous factor , i.e. rt+1 is a component of wt.

If the function rt+1(wt) is unknown, it has to be specified parametrically. So we assume that the
unknown function belongs to a family :

{

rt+1(wt, θ̃), θ̃ ∈ Θ̃
}

,

where rt+1(., .) is a known function.

4.2 Direct Modelling

In the Direct Modelling approach we first specify the historical dynamics, i.e. we choose a para-
metric family for the conditional Log-Laplace transform ψt(u |wt) :

{ψt(u |wt, θ1), θ1 ∈ Θ1} . (18)

Then, we have to specify the SDF

Mt,t+1 = exp [αt(wt)
′wt+1 + βt(wt)]

= exp [−rt+1(wt) + α′
t(wt)wt+1 − ψt(αt|wt)] .

Once rt+1 has been specified, according to its status described in Section 4.1, as well as ψt, the
remaining function to be specified is αt(wt). We assume that αt(wt) belongs to a parametric family :

{αt(wt, θ2), θ2 ∈ Θ2} .

Finally, Mt,t+1 is specified as :

Mt,t+1(wt+1, θ) = exp
{

−rt+1(wt, θ̃) + α′
t(wt, θ2)wt+1 − ψt [αt(wt, θ2)|wt, θ1]

}

, (19)

where θ = (θ̃′, θ′1, θ
′
2)

′ ∈ Θ̃ × Θ1 × Θ2 = Θ ; note that Θ̃ may be reduced to one point.
This kind of modelling may have to satisfy some internal consistency conditions. Indeed, for

any payoff g(ws) delivered at s > t, that has a price p(wt) at t which is a known function of wt, we
must have :

p(wt) = E {Mt,t+1(θ)...Ms−1,s(θ) g(ws) |wt, θ1} ∀ wt, θ . (20)

These AAO pricing conditions may imply strong constraints on the parameter θ, for instance when
components of wt are returns of some assets or interest rates with various maturities [see Sections
5 and 6].

The specification of the historical dynamics (18) and of the SDF (19) obviously implies the
specification of the R.N. dynamics :

ψQ
t (u|wt, θ1, θ2) = ψt [u+ αt(wt, θ2)|wt, θ1] − ψt [αt(wt, θ2)|wt, θ1] .
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4.3 R.N. Constrained Direct Modelling

In the previous kind of modelling, the family of R.N. dynamics ψQ
t (u|wt) is obtained as a by-product

and therefore, in general, is not controlled.
In some cases it may be important to control the family of R.N. dynamics and, possibly, the

specification of the short rate, if we want to have explicit or quasi-explicit formulas for the price
of some derivatives. For instance, it is often convenient to impose that the R.N. dynamics be
described by a Car (Compound Autoregressive) process. Indeed, a Car process is characterized by
an exponential-affine multi-horizon (complex) Laplace transform and, consequently, multi-horizon
pricing formulas for derivative products are easily derived and implemented using the Transform
Analysis [see Duffie, Pan and Singleton (2000), and Gourieroux, Monfort and Polimenis (2003)]. If
we want, at the same time, to control the historical dynamics, for instance to have good fitting when
wt is observable, the by-product of the modelling becomes the factor loading vector αt(wt). More
precisely, we may wish to choose a family {ψt(u|wt, θ1), θ1 ∈ Θ1} and a family {ψQ

t (u|wt, θ
∗), θ∗ ∈

Θ∗} such that, for any pair (ψQ
t , ψt) belonging to these families, there exists a unique function

αt(wt) denoted by αt(wt, θ1, θ
∗) satisfying :

ψQ
t (u|wt) = ψt [u+ αt(wt)|wt] − ψt [αt(wt)|wt] .

In fact, this condition may be satisfied only for a subset of pairs (θ1, θ
∗). In other words (θ1, θ

∗)
belongs to Θ∗

1 strictly included in Θ1 × Θ∗, but such that any θ1 ∈ Θ1 and any θ∗ ∈ Θ∗ can
be reached [see Section 5]. Once the parameterization (θ̃, θ1, θ

∗) ∈ Θ̃ × Θ∗
1 is defined, internal

consistency conditions similar to (20) may be imposed.

4.4 Back Modelling

The final possibility is to parameterize, first the R.N. dynamics [and possibly rt+1(wt)]

ψQ
t (u|wt, θ

∗
1)

taking into account, if relevant, internal consistency conditions of the form :

p(wt) = EQ
t

[

exp(−rt+1(wt, θ̃) − ...− rs(ws, θ̃))g(ws)|wt, θ
∗
1

]

, ∀wt , θ̃ , θ
∗
1. (21)

Once this is done, the specification of αt(wt) is chosen, without any constraint, providing the
family {αt(wt, θ

∗
2), θ

∗
2 ∈ Θ∗

2}, and the historical dynamics is a by-product :

ψt(u|wt, θ
∗
1, θ

∗
2) = ψQ

t [u− αt(wt, θ
∗
2)|wt, θ

∗
1] − ψQ

t [−αt(wt, θ
∗
2)|wt, θ

∗
1] .

Also note that, if the R.N. conditional p.d.f. fQ
t (wt+1|wt, θ

∗
1) is known in (quasi) closed form,

the same is true for the historical conditional p.d.f.

ft(wt+1|wt, θ
∗
1, θ

∗
2) = fQ

t (wt+1|wt, θ
∗
1) exp

{

−α′
t(wt, θ

∗
2)wt+1 − ψQ

t [−αt(wt, θ
∗
2)|wt, θ

∗
1]

}

.

In particular, if wt is observable we can compute the likelihood function. However the identifi-
cation of the parameters (θ∗1, θ

∗
2), from the dynamics of the observable components of wt must be

carefully studied (see examples in Sections 5 and 6) and observations of derivative prices may be
necessary to reach identifiability.
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4.5 Inference in an Econometric Asset Pricing Model

In order to estimate an EAPM, we assume that the econometrician observes, at dates t ∈ {0, . . . , T},
a set of prices xti corresponding to payoffs gi(ws), i ∈ {1, ..., Jt}, s > t, given by (using the parameter
notations of Direct Modelling) :

qti(wt, θ) = E [gi(ws)Mt,s(ws, θ)|wt, θ1] , i ∈ {1, ..., Jt} .

Therefore, we have two kinds of equations representing respectively the historical dynamics of the
factors and the observations:

wt = q̃t(wt−1, ε1t, θ1) , (say) , (22)

xt = qt(wt, θ) , (23)

where the first equation is a rewriting of the conditional historical distribution of wt given wt−1,
ε1t is a white noise (which can be chosen Gaussian without loss of generality), xt = (xt1, . . . , xtJt)

′

and qt(wt, θ) = [qt1(wt, θ), . . . , qtJt(wt, θ)]
′.

Note that, if rt+1 is not a known function of wt, we must have rt+1 = rt+1(wt, θ̃) among
equations (23), and that if some components of wt are observed they should appear also in (23)
without parameters.

System (22)-(23) is a nonlinear state space model and appropriate econometric methods may
be used for inference in this system (in particular, Maximum Likelihood methods possibly based
on Kalman filter, Kitagawa-Hamilton filter, Simulations-based methods or Indirect Inference).

For given xt’s, equations (23) may have no solutions in wt’s and, in this case, an additional
white noise is often introduced leading to

xt = qt(wt, θ) + ε2t . (24)

Moreover, when wt is (partially) observable, θ1 may be identifiable from (22) and in this case a two
step estimation method is available : i) ML estimation of θ1 from (22); ii) estimation of θ2, and
possibly of θ̃, by Nonlinear Least Square using (24) in which θ1 is replaced by its ML estimator
(and, possibly, the unobserved components of wt are replaced by their smoothed values).

5 Applications to Econometric Security Market Modelling

5.1 General Setting

In an Econometric Security Market Model we assume that the short rate rt+1 is exogenous and that
the first K1 components of wt, denoted by yt, are observable geometric returns of K1 basic assets.
The remaining K2 = K − K1 components of wt, denoted by zt, are factors not observed by the
econometrician. Since the payoffs exp(yj,t+1) delivered at t+1, for each j ∈ {1, ...,K1}, have a price
at t which are known function of wt, namely 1, we have to guarantee internal consistency conditions.
In the Direct Modelling approach, and in the Risk-Neutral Constrained Direct Modelling one, these
conditions are [using the notation of the (unconstrained) direct approach] :

1 = Et

{

exp(yj,t+1 − rt+1 + αt(wt, θ2)
′wt+1 − ψt [αt(wt, θ2)|wt, θ1]

}

, j ∈ {1, ...,K1}
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or :

rt+1 = ψt [αt(wt, θ2) + ej |wt, θ1] − ψt [αt(wt, θ2)|wt, θ1] , ∀ wt, θ1, θ2 ; j ∈ {1, ...,K1} . (25)

In the Back Modelling approach, these conditions are :

rt+1 = ψQ
t (ej |wt, θ

∗
1) , ∀wt, θ

∗
1 ; j ∈ {1, ...,K1} . (26)

If we consider the case where the factor wt+1 is a R.N. Car(1) process (the generalization to
the case of a Car(p) process is straightforward), with conditional R.N. Log-Laplace transform
ψQ

t (u |wt) = aQ(u)′wt + bQt (u), the internal consistency conditions (25) or (26) are given by (using
the Back Modelling notation):







aQ(ej , θ
∗
1) = 0 ,

bQt (ej , θ
∗
1) = rt+1 , ∀θ∗1 ; j ∈ {1, ...,K1} .

(27)

5.2 Conditionally Gaussian Models

In this setting we assume that all the components of wt are geometric returns (K1 = K), that is,
we consider wt = yt. In the Direct Modelling approach, we specify that the conditional distribution
of yt+1, given y

t
, is N [mt(yt

, θ1),Σt(yt
, θ1)] or, equivalently, that :

yt+1 = mt(yt
, θ1) + Σ

1/2
t (y

t
, θ1)εt+1 , εt+1

P
∼ IIN(0, IK) ,

or ψt(u|yt
, θ1) = u′mt(yt

, θ1) + 1
2u

′Σt(yt
, θ1)u .

For a given function αt(wt), the internal consistency conditions are :

rt+1 = e′jmt(yt
, θ1) +

1

2
(αt + ej)

′Σt(yt
, θ1)(αt + ej) −

1

2
α′

tΣt(yt
, θ1)αt (28)

giving :

αt = Σ−1
t (y

t
, θ1)

[

rt+1e−mt(yt
, θ1) −

1

2
vdiag Σt(yt

, θ1)

]

.

So, αt is uniquely defined and no additional parameterization is needed. Moreover, the vector of
geometric risk premia is mt−rt+1e = −1

2 vdiagΣt−Σtαt = πGt (where e denotes the K-dimensional
unitary vector). The conditional R.N. distribution of yt+1, given y

t
, is readily seen to be :

N
[

rt+1e−
1
2 vdiag Σt(yt

, θ1) , Σt(yt
, θ1)

]

or yt+1 = rt+1e−
1
2 vdiag Σt(yt

, θ1) + Σ
1/2
t (y

t
, θ1)ξt+1 ,

where ξt+1
Q
∼ IIN(0, IK), and we get ξt+1 = Σ

−1/2
t (mt − rt+1e+ 1

2 vdiag Σt) + εt+1.

In the Back Modelling approach, we specify :

yt+1| yt

Q
∼ N

[

mQ
t (y

t
, θ∗1),Σ

Q
t (y

t
, θ∗1)

]

,

or ψQ
t (u|y

t
, θ∗1) = u′mQ

t (y
t
, θ∗1) + 1

2u
′ΣQ

t (y
t
, θ∗1)u .

12



The internal consistency conditions are (with obvious notations) :

rt+1 = mQ
jt(yt

, θ∗1) +
1

2
ΣQ

jj,t , j ∈ {1, . . . ,K} , (29)

and we find again that the conditional R.N. distribution is :

N

[

rt+1e−
1

2
vdiag ΣQ

t (y
t
, θ∗1),Σ

Q
t (y

t
, θ∗1)

]

i.e.

ψQ
t (u|y

t
, θ∗1) = u′rt+1e−

1

2
u′ vdiag ΣQ

t +
1

2
u′ΣQ

t u ,

from which, choosing any αt(yt
, θ∗2), we deduce the historical dynamics :

ψt(u|yt
, θ∗1, θ

∗
2) = u′

[

rt+1e−
1
2 vdiag ΣQ

t (y
t
, θ∗1)

− ΣQ
t (y

t
, θ∗1)αt(yt

, θ∗2)
]

+ 1
2u

′ΣQ
t (y

t
, θ∗1)u .

In other words :

yt+1 | yt

P
∼ N

[

rt+1e−
1

2
vdiag ΣQ

t (y
t
, θ∗1) − ΣQ

t (y
t
, θ∗1)αt(yt

, θ∗2), ΣQ
t (y

t
, θ∗1)

]

.

Thus, for a given R.N. dynamics, we can reach any conditional historical mean of the factor,
whereas the historical conditional variance-covariance matrix is the same as the R.N. one. Moreover
θ∗1 and θ∗2 can be identified from the dynamics of yt only.

This modelling generalizes the basic Black-Scholes framework to the multivariate case, with
conditional mean and variance-covariance matrices depending on the past. Options with maturity
equal to one have standard Black-Scholes prices whereas the price of options with larger maturities
are easily obtained by simulation.

5.3 Direct Modelling of Switching Regime Models

The class of conditionally Mixed-Normal models contains many static, dynamic, parametric, semi-
parametric or nonparametric models [see Bertholon, Monfort, Pegoraro (2006)]. Let us consider,
for instance, the switching regime models. The factor wt is equal to (yt, z

′
t)
′, where yt is an ob-

servable geometric return and zt is a J-state homogeneous Markov chain, valued in (e1, ..., eJ ), and
unobservable by the econometrician.

In the Direct Modelling approach, we first define the historical dynamics by :

yt+1 = µt(yt
, zt, zt+1, θ11) + σt(yt

, zt, zt+1, θ11)εt+1 ,

where εt+1 | εt, zt+1
P
∼ N(0, 1) and P(zt+1 = ej |yt

, zt−1, zt = ei) = P(zt+1 = ej |zt = ei) = πij [the
free parameters πij are denoted by θ12 and thus, following the notation of Section 4.2, we have
θ1 = (θ′11, θ

′
12)

′].
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So, we assume that, conditionally to the past wt, yt+1 follows a mixture of J Gaussian distri-
butions. The conditional Laplace transform is:

ϕt(u, v) = Et exp(uyt+1 + v′zt+1)

= Λ(u, v, y
t
, zt, θ1)

′zt =
∑J

i=1 Λi(u, v, yt
, ei, θ1)1ei(zt) ,

where

Λi(u, v, yt
, ei, θ1) =

J
∑

j=1

πij exp

[

v′ej + uµt(yt
, ei, ej , θ11) +

1

2
u2σ2

t (yt
, ei, ej , θ11)

]

,

and the Log-Laplace transform is, therefore, given by :

ψt(u, v) = Log(Λ(u, v, y
t
, zt, θ1)

′zt) =
J

∑

i=1

Log (Λi(u, v, yt
, ei, θ1))1ei(zt) . (30)

The SDF is specified as :

Mt,t+1 = exp
[

−rt+1 + γt(wt, θ2) yt+1 + δt(wt, θ2)
′zt+1 − ψt(γt, δt)

]

. (31)

It is easily seen that, if δt is replaced by δt +ηte (where ηt is a scalar function), Mt,t+1 is unchanged;
therefore we can impose, for instance, δJt = 0.

The internal consistency condition is:

ϕt(γt + 1, δt) = exp(rt+1)ϕt(γt, δt) . (32)

For a given δt, this equation has a unique solution in γt; so γt(wt, θ2) can be written γt [δt(wt, θ2)]
and we only have to specify δ1,t(wt, θ2), ..., δJ−1,t(wt, θ2).

The R.N. dynamics is defined by

ϕQ
t (u, v) =

ϕt(u+ γt, v + δt)

ϕt(γt, δt)

and we find :
ϕQ

t (u, v) = ΛQ(u, v, y
t
, zt, θ1, θ2)

′zt

where the ith component of the J-dimensional vector ΛQ(u, v, y
t
, zt, θ1, θ2) is :

ΛQ
i (u, v, y

t
, ei, θ1, θ2) =

J
∑

j=1

π∗ij,t exp

{

v′ej + u
[

µt(yt
, ei, ej , θ11) + γtσ

2
t (yt

, ei, ej , θ11)
]

+
1

2
u2σ2

t (yt
, ei, ej , θ11)

}

,

with

π∗ij,t =
πij exp

[

δ′tej + γtµt(yt
, ei, ej ; θ11) + 1

2γ
2
t σ

2
t (yt

, ei, ej ; θ11)
]

∑J
j=1 πij exp

[

δ′tej + γtµt(yt
, ei, ej ; θ11) + 1

2γ
2
t σ

2
t (yt

, ei, ej ; θ11)
] .
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In other words, the R.N. dynamics is defined by :

yt+1 = µt(yt
, zt, zt+1, θ11) + γt [δt(wt, θ2)] σ

2
t (yt

, zt, zt+1, θ11) + σt(yt
, zt, zt+1, θ11)ξt+1

where

ξt+1 | ξt
, zt+1

Q
∼ N(0, 1) ,

Q(zt+1 = ej | yt
, zt−1, zt = ei) = π∗ij,t .

In particular, we get :

εt+1 = γt [δ2(wt, θ2)] σt(yt
, zt, zt+1, θ11) + ξt+1 . (33)

5.4 Back Modelling of Switching Regime Models

The Direct Modelling has two main drawbacks. First, equation (32) must be solved numerically in
γt, for any t. Second, the R.N. dynamics is not Car in general, and the pricing of derivatives needs
simulations which, in turn, imply to solve (32) for any t and any path.

Let us consider now the Back Modelling approach, starting from a Car R.N. dynamics defined
by :

yt+1 = νt + ρyt + ν ′1zt + ν ′2zt+1 + (ν ′3zt+1)ξt+1 ,

where νt is a deterministic function of t and where:

ξt+1 | ξt
, zt+1

Q
∼ N(0, 1)

Q(zt+1 = ej | yt
, zt−1, zt = ei) = Q(zt+1 = ej | zt = ei) = π∗ij .

In other words, zt is an exogenous Markov chain in the risk-neutral world. The conditional R.N.
Laplace transform is given by :

ϕQ
t (u, ν) = EQ

t exp(uyt+1 + v′zt+1)

= exp [u(νt + ρyt + ν ′1zt)]E
Q
t exp

[

(

uν2 + 1
2u

2ν2
3 + v

)′
zt+1

]

,

(34)

[ν2
3 is the vector containing the square of the components in ν3] and we get :

ψQ
t (u, v) = Log ϕQ

t (u, v)

= u(νt + ρyt + ν ′1zt) + Λ′(u, v, ν2, ν3, π
∗)zt ,

where the ith component of Λ(u, v, ν2, ν3, π
∗) is :

Λi(u, v, ν2, ν3, π
∗) = Log

∑J
j=1 π

∗
ij exp

(

uν2j + 1
2u

2ν2
3j + vj

)

.

So, as announced, the joint R.N. dynamics of the process (yt, z
′
t)
′ is Car since :

ψQ
t (u, v) = aQ(u, v)′wt + bQt (u, v)
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with
aQ(u, v)′ = [uρ, uν ′1 + Λ′(u, v, ν2, ν3, π

∗)] ,

bQt (u, v) = uνt .

The internal consistency condition is :

ψQ
t (1, 0) = rt+1

that is :
−rt+1 + νt + ρyt + ν ′1zt + λ′(ν2, ν3, π

∗)zt = 0 ∀ yt, zt , (35)

and where the ith component of λ(ν2, ν3, π
∗) is

λi(ν2, ν3, π
∗) = Log

J
∑

j=1

π∗ij exp

(

ν2j +
1

2
ν2
3j

)

.

Condition (35) implies, since rt+1 and νt are deterministic functions of time :







ρ = 0 ,
ν1 = −λ(ν2, ν3, π

∗) ,
νt = rt+1 .

(36)

Finally, the R.N. dynamics compatible with the AAO conditions is :

yt+1 = rt+1 − λ′(ν2, ν3, π
∗)zt + ν ′2zt+1 + (ν ′3zt+1)ξt+1 , (37)

where

ξt+1 | ξt
, zt+1

Q
∼ N(0, 1)

Q(zt+1 = ej | yt
, zt−1, zt = ei) = Q(zt+1 = ej | zt = ei) = π∗ij .

(38)

Note that, if ν2 is replaced by ν2 + c e, ν ′2zt+1 is replaced by ν ′2zt+1 + c and −λ′zt by −λ′zt − c, so
the RHS of (37) is unchanged and therefore we can impose, for instance, ν2J = 0.

The historical dynamics can then be deduced by specifying γt(wt, θ
∗
2) and δt(wt, θ

∗
2) without

any constraints (and assuming, for instance, δJt = 0) and we get the Log-Laplace transform :

ψt(u, v) = ψQ
t (u− γt, v − δt) − ψQ

t (−γt,−δt) ,

where
ψQ

t (u, v) = u(rt+1 − λ′zt) + Λ′(u, v)zt .

We get

ψt(u, v) = u(rt+1 − λ′zt) + [Λ(u− γt, v − δt) − Λ(−γt,−δt)]
′ zt , (39)
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where

Λi(u− γt, v − δt) − Λi(−γt,−δt) =

= Log

J
∑

j=1

π∗ij exp

(

−γtν2j +
1

2
γ2

t ν
2
3j − δjt

)

exp

[

u(ν2j − γtν
2
3j) +

1

2
u2ν2

3j + vj

]

J
∑

j=1

π∗ij exp

(

−γtν2j +
1

2
γ2

j ν
2
3j − δjt

)

= Log

J
∑

j=1

πij,t exp

[

u(ν2j − γtν
2
3j) +

1

2
u2ν2

3j + vj

]

with

πij,t =
π∗ij exp

(

−γtν2j + 1
2γ

2
t ν

2
3j − δjt

)

J
∑

j=1

π∗ij exp

(

−γtν2j +
1

2
γ2

t ν
2
3j − δjt

)

.

Therefore, the historical dynamics is :

yt+1 = rt+1 − λ′(ν2, ν3, π
∗)zt + (ν2 − γtν

2
3)′zt+1 + (ν ′3zt+1)εt+1 (40)

where

εt+1 | εt, zt+1
P
∼ N(0, 1)

P(zt+1 = ej | yt
, zt−1, zt = ei) = πij,t

λi(ν2, ν3, π
∗) = Log

J
∑

j=1

π∗ij exp

(

ν2j +
1

2
ν2
3j

)

,

and
εt+1 = ξt+1 + γt (ν ′3zt+1) . (41)

Conditionally to wt, the historical distribution of yt+1 is a mixture of J Gaussian distributions with
means (rt+1 − λ′zt + ν2j − γtν

2
3j) and variances ν2

3j, and with weights given by πij,t, j ∈ {1, . . . , J},
when zt = ei.

Since γt and δt are arbitrary functions of wt (assuming, for instance, δJt = 0), we obtain a large
class of historical switching regime dynamics which can be matched with a Car switching regime
R.N. dynamics.

As mentioned in Section 4.4, the identification problem must be discussed. Let us consider the
case where γ and δ are constant. In this case, the parameters πij are constant and the identifiable
parameters are the πij, ν3, the vector of the J coefficients of zt+1 in (40), and (J −1) coefficients of
zt [assuming, for instance, λJ = 0], i.e. J(J − 1) + 3J − 1 = J(J + 2) − 1 parameters, whereas the
parameters to be estimated are the π∗ij, ν2 (with ν2J = 0), ν3, γ, δ (with δJ = 0) i.e. J(J + 2) − 1
parameters also. So all the parameters might be estimated from the observations of the y′ts.
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5.5 Back Modelling of Stochastic Volatility Models

We focus on the Back Modelling, starting from a Car representation of the R.N. dynamics of the
factor wt = (yt, σ

2
t ), where yt is an observable geometric return, whereas σ2

t is an unobservable
stochastic variance. More precisely the R.N. dynamics is assumed to satisfy :

yt+1 = λt + λ1yt + λ2σ
2
t + (λ3σt)ξt+1 , (42)

where λt is a deterministic function of t and

ξt+1 | ξt
, σ2

t+1
Q
∼ N(0, 1)

σ2
t+1 | ξt

, σ2
t

Q
∼ ARG(1, ν, ρ)

(43)

and where the conditional ARG(1, ν, ρ) distribution [characterizing an Autoregressive Gamma pro-
cess of order one (ARG(1)) with unit scale parameter7] is defined by the affine conditional R.N.
Log-Laplace transform :

ψQ
t (v) = aQ(v)σ2

t + bQ(v) ,

where aQ(v) = ρv
1−v , bQ(v) = −νLog(1− v), v < 1, ρ > 0, ν > 0. The conditional R.N. Log-Laplace

transform of (yt+1, σ
2
t+1) is :

ψQ
t (u, v) = (λt + λ1yt + λ2σ

2
t )u+

1

2
λ2

3σ
2
t u

2 + aQ(v)σ2
t + bQ(v) . (44)

In this modelling there is no instantaneous causality between yt+1 and σ2
t+1, but it is straightforward

to extend the results to this case.

The internal consistency condition is :

ψQ
t (1, 0) = rt+1

or

rt+1 = λt + λ1yt + λ2σ
2
t +

1

2
λ2

3σ
2
t ,

which implies :

λt = rt+1, λ1 = 0, λ2 = −
1

2
λ2

3 . (45)

So, the R.N. dynamics compatible with the AAO restriction is given by (43) and :

yt+1 = rt+1 −
1

2
λ2

3σ
2
t + λ3σtξt+1 ,

that is

ψQ
t (u, v) =

(

rt+1 −
1

2
λ2

3σ
2
t

)

u+
1

2
λ2

3σ
2
t u

2 + aQ(v)σ2
t + bQ(v) . (46)

7See Darolles, Gourieroux and Jasiak (2006), Gourieroux and Jasiak (2006) and Monfort and Pegoraro (2006b)
for a presentation of single regime and regime-switching (scalar and vector) Autoregressive Gamma processes.
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The historical dynamics is defined by specifying γt(wtθ
∗
2) and δt(wt, θ

∗
2), and we get :

ψt(u, v) = ψQ
t (u− γt, v − δt) − ψQ

t (−γt,−δt)

=
(

rt+1 −
1
2λ

2
3σ

2
t

)

u− λ2
3σ

2
t γtu+ 1

2λ
2
3σ

2
t u

2

+
[

aQ(v − δt) − aQ(−δt)
]

σ2
t + bQ(v − δt) − bQ(−δt)

=
(

rt+1 −
1
2λ

2
3σ

2
t − λ2

3σ
2
t γt

)

u+ 1
2λ

2
3σ

2
t u

2 + at(v)σ
2
t + bt(v) ,

with
at(v) =

ρtv

1 − vµt
, bt(v) = −νLog(1 − vµt) ,

ρt =
ρ

(1 + δt)2
, µt =

1

1 + δt
.

So, the only conditions, when we define the historical dynamics, are µt > 0, i.e. δt > −1, and
v < 1/µt. The historical dynamics can be written:

yt+1 = rt+1 −
1

2
λ2

3σ
2
t − λ2

3σ
2
t γt + λ3σtεt+1 (47)

where

εt+1 | εt, σ
2
t+1

P
∼ N(0, 1)

σ2
t+1 | εt, σ

2
t

P
∼ ARG(µt, ν, ρt) .

(48)

Note that, the conditional historical distribution of σ2
t+1, given (y

t
, σ2

t ), is given by the Log-Laplace
Transform

ψt(v) =
ρtv

1 − vµt
σ2

t − νLog(1 − vµt)

which is not affine in σ2
t , except in the case where δt is constant (or a deterministic function of t).

Moreover we have :
εt+1 = ξt+1 + (λ3σt)γt . (49)

If γt and δt are constant, the identifiable parameters are the coefficients of σ2
t and σtεt+1 in (47)

as well as the two parameters of the ARG dynamics (with unit scale). So, we have four identifiable
parameters. The parameters to be estimated are λ3, ν, ρ, γ, δ, i.e. five parameters. So these
parameters are not identifiable from the dynamics of the y′ts. Observations of derivative prices
must be added.

5.6 Back Modelling of Switching GARCH Models with leverage effect: a first
application of Extended Car Processes

In this section, following a Back Modelling approach, we consider specifications generalizing those
proposed by Heston and Nandi (2000) [see also Elliot, Siu and Chan (2006)].

In particular, like in Section 5.4, we assume wt = (yt, z
′
t)
′, where yt is an observable geometric

return and zt an unobservable J-state homogeneous Markov chain valued in {e1, ..., eJ}. The new
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feature is the introduction of a GARCH effect (with leverage). More precisely, the R.N. dynamics
is assumed to be of the following type :

yt+1 = νt + ν1yt + ν ′2zt + ν ′3zt+1 + ν4σ
2
t+1 + σt+1ξt+1 (50)

where νt is a deterministic function of t and

ξt+1 | ξt
, zt+1

Q
∼ N(0, 1)

σ2
t+1 = ω′zt + α1(ξt − α2σt)

2 + α3σ
2
t ,

and
Q(zt+1 = ej |yt

, zt−1, zt = ei) = Q(zt+1 = ej |zt = ei) = π∗ij .

Note that σ2
t+1 is a deterministic function of (ξ

t
, zt), and therefore of wt = (y

t
, zt). Also note that,

following Heston and Nandi (2000), in this switching GARCH(1,1) model, ξt replaces the usual
term σt ξt in the R.H.S. of the equation giving σ2

t+1 and the term α2σt captures an asymmetric or
”leverage” effect.

It is easily seen that the R.N. conditional Log-Laplace transform of (yt+1, zt+1) is :

ψQ
t (u, v) = LogEQ

t exp(uyt+1 + v′zt+1)

= (νt + ν1yt + ν ′2zt + ν4σ
2
t+1)u+ 1

2σ
2
t+1u

2 + Λ′(u, v, ν3, π
∗)zt ,

(51)

where the ith component of Λ(u, v, ν3, π
∗) is :

Λi(u, v, ν3, π
∗) = Log

J
∑

j=1

π∗ij exp(uν3j + vj) . (52)

The internal consistency condition, or AAO constraint, is :

ψQ
t (1, 0) = rt+1 ∀wt ,

implying

rt+1 = νt + ν1yt + ν ′2zt + ν4σ
2
t+1 +

1

2
σ2

t+1 + λ′(ν3, π
∗)zt ,

where the ith component of λ(ν3, π
∗) is given by:

λi(ν3, π
∗) = Log

J
∑

j=1

π∗ij exp(ν3j) (53)

and, therefore, the arbitrage restriction implies:















ν1 = 0 ,
ν2 = −λ(ν3, π

∗) ,
ν4 = −1

2 ,
νt = rt+1 .
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Thus, equation (50) becomes:

yt+1 = rt+1 − λ(ν3, π
∗)′zt −

1

2
σ2

t+1 + ν ′3zt+1 + σt+1ξt+1 (54)

with
σ2

t+1 = ω′zt + α1(ξt − α2σt)
2 + α3σ

2
t

ξt+1 | ξt
, zt+1

Q
∼ N(0, 1)

Q(zt+1 = ej |yt
, zt−1, zt = ei) = Q(zt+1 = ej |zt = ei) = π∗ij ,

(again, we can take ν3J = 0) which gives the R.N. dynamics compatible with the AAO restriction.
The corresponding Log-Laplace transform is :

ψQ
t (u, v) =

(

rt+1 − λ′zt −
1

2
σ2

t+1

)

u+
1

2
σ2

t+1u
2 + Λ′(u, v, ν3, π

∗)zt (55)

The historical dynamics is obtained by specifying γt(wt, θ
∗
2) and δt(wt, θ

∗
2), with, for instance

δJt = 0, and in particular we have :

ψt(u, v) = ψQ
t (u− γt, v − δt) − ψQ

t (−γt,−δt) .

We obtain :
ψt(u, v) =

(

rt+1 − λ′zt −
1
2σ

2
t+1 − γtσ

2
t+1

)

u+ 1
2σ

2
t+1u

2

+ [Λ(u− γt, v − δt, ν3, π
∗) − Λ(−γt,−δt, ν3, π

∗)]′ zt

where

Λi(u− γt, v − δt, ν3, π
∗) − Λi(−γt,−δt, ν3, π

∗) = LogΣJ
j=1πij,t exp(uν3j + vj)

with πij,t =
π∗ij exp(−γtν3j − δjt)

ΣJ
j=1π

∗
ij exp(−γtν3j − δjt)

.
(56)

So the non-affine historical dynamics is given by :

yt+1 = rt+1 − λ(ν3, π
∗)′zt −

1
2σ

2
t+1 − γt(wt, θ

∗
2)σ

2
t+1 + ν ′3zt+1 + σt+1εt+1

εt+1 | εt, zt+1
P
∼ N(0, 1) ,

(57)

with
σ2

t+1 = ω′zt + α1(ξt − α2σt)
2 + α3σ

2
t

P(zt+1 = ej |yt
, zt−1, zt = ei) = πij,t .

Comparing (54) and (57) we get :
ξt+1 = εt+1 − γtσt+1 ,

and, therefore, the equation giving σ2
t+1 can be rewritten :

σ2
t+1 = ω′zt + α1 [εt − (α2 + γt)σt]

2 + α3σ
2
t .
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One may observe, from (55), that wt+1 = (yt+1, z
′
t+1) does not have a Car R.N. dynamics. So, the

pricing seems a priori difficult. Fortunately, it can be shown [see Appendix 3] that the (extended)
factor we

t+1 := (yt+1, z
′
t+1, σ

2
t+2)

′ is R.N. Car, and therefore the pricing methods based on Car
dynamics apply. In particular, the R.N. conditional Log-Laplace transform of we

t+1, given we
t , is :

ψQ
t (u, v, ṽ) = aQ

1 (u, v, ṽ)′zt + aQ
2 (u, ṽ)σ2

t+1 + bQt (u, ṽ) , (58)

where

aQ
1 (u, v, ṽ) = Λ̃(u, v, ṽ, ν3, ω, π

∗) − λ(ν3, π
∗)u

with Λ̃i(u, v, ṽ, ν3, ω, π
∗) = Log

J
∑

j=1

π∗ij exp(uν3j + vj + ṽωj) , i ∈ {1, . . . , J} ,

aQ
2 (u, ṽ) = −

1

2
u+ ṽ(α1α

2
2 + α3) +

(u− 2α1α2ṽ)
2

2(1 − 2α1ṽ)

bQt (u, ṽ) = urt+1 −
1

2
Log(1 − 2α1ṽ) ,

which is affine in (z′t, σ
2
t+1)

′, with an intercept deterministic function of time.
Finally, let us consider the identification problem from the historical dynamics when functions γ

and δ are constant. In this case, we can identify from (57) J coefficients of zt+1, (J −1) coefficients
of zt, the coefficient of σ2

t+1, ω, α1, (α2 + γ), α3, and πij , i.e. 3J + 3 + J(J − 1) = J(J + 2) + 3
parameters. The parameters to be estimated are ν3 (with ν3J = 0), ω,α1, α2, α3, π

∗
ij, γ, δ (with

δJ = 0), that is, 2(J − 1) + J + 4 + J(J − 1) = J(J + 2) + 2 parameters. Therefore, the historical
model is over identified.

5.7 Back Modelling of Switching IG GARCH Models : a second application of
Extended Car Processes

The purpose of this section is to introduce, following the Back Modelling approach, several gen-
eralizations of the Inverse Gaussian8 (IG) GARCH model proposed by Christoffersen, Heston and
Jacobs (2006). First, we consider switching regimes in the (historical and risk-neutral) dynamics
of the geometric return yt and in the GARCH variance σ2

t+1. Second, we price not only the factor
risk but also the regime-shift risk and, third, risk correction coefficients are in general time-varying.
The factor is given by wt = (yt, z

′
t)
′, where zt is the unobservable J-state homogeneous Markov

chain valued in {e1, ..., eJ}. The R.N. dynamics is given by:

yt+1 = νt + ν1yt + ν ′2zt + ν ′3zt+1 + ν4σ
2
t+1 + ηξt+1 (59)

8The strictly positive random variable y has an Inverse Gaussian distribution with parameter δ > 0 [denoted IG(δ)]

if and only if its distribution function is given by F (y; δ) =
R y

0
δ√

2πz3
e−(

√
z−δ/

√
z)2/2dz. The generalized Laplace

transform is E[exp(ϕy + θ/y)] = δ√
δ2−2θ

exp
“

δ −
p

(δ2 − 2θ)(1 − 2ϕ)
”

and E(y) = V (y) = δ [see Christoffersen,

Heston and Jacobs (2006) for further details].
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where νt is a deterministic function of t and

ξt+1 | ξt
, zt+1

Q
∼ IG

(

σ2
t+1

η2

)

σ2
t+1 = ω′zt + α1σ

2
t + α2ξt + α3

σ4
t

ξt
,

with
Q(zt+1 = ej |yt

, zt−1, zt = ei) = Q(zt+1 = ej |zt = ei) = π∗ij .

The R.N. conditional Log-Laplace transform of (yt+1, zt+1) is :

ψQ
t (u, v) = LogEQ

t exp(uyt+1 + v′zt+1)

= (νt + ν1yt + ν ′2zt + ν4σ
2
t+1)u+ Λ′(u, v, ν3, π

∗)zt +
σ2

t+1

η2

[

1 − (1 − 2uη)1/2
]

,

where the ith component of Λ(u, v, ν3, π
∗) is given by (52). The absence of arbitrage constraint is

ψQ
t (1, 0) = rt+1 , ∀wt , implying

rt+1 = νt + ν1yt + ν ′2zt + λ′(ν3, π
∗)zt + σ2

t+1

(

ν4 +
1

η2

[

1 − (1 − 2η)1/2
]

)

,

with the ith component of λ(ν3, π
∗) given by (53). Therefore, the arbitrage restriction implies:















ν1 = 0 ,
ν2 = −λ(ν3, π

∗) ,

ν4 = − 1
η2

[

1 − (1 − 2η)1/2
]

,

νt = rt+1 .

Thus, equation (59) becomes:

yt+1 = rt+1 − λ(ν3, π
∗)′zt −

1

η2

[

1 − (1 − 2η)1/2
]

σ2
t+1 + ν ′3zt+1 + ηξt+1 (60)

with
σ2

t+1 = ω′zt + α1σ
2
t + α2ξt + α3

σ4
t

ξt

ξt+1 | ξt
, zt+1

Q
∼ IG

(

σ2
t+1

η2

)

,

Q(zt+1 = ej |yt
, zt−1, zt = ei) = Q(zt+1 = ej |zt = ei) = π∗ij ,

(again, we can take ν3J = 0) which gives the R.N. dynamics compatible with the AAO restriction.
The corresponding Log-Laplace transform is :

ψQ
t (u, v) =

(

rt+1 − λ′zt −
1
η2

[

1 − (1 − 2η)1/2
]

σ2
t+1

)

u +

Λ′(u, v, ν3, π
∗)zt +

σ2
t+1

η2

[

1 − (1 − 2uη)1/2
]

.

(61)

23



Given the specification of γt(wt, θ
∗
2) and δt(wt, θ

∗
2) (with, for instance, δJt = 0), the conditional

historical Log-Laplace transform of the factor is given by:

ψt(u, v) =
(

rt+1 − λ′zt −
1
η2

[

1 − (1 − 2η)1/2
]

σ2
t+1

)

u

+ [Λ(u− γt, v − δt, ν3, π
∗) − Λ(−γt,−δt, ν3, π

∗)]′ zt

+
σ2

t+1

η2

[

(1 + 2γtη)
1/2 − [1 − 2(u− γt)η]

1/2
]

=
(

rt+1 − λ′zt − η̃
−3/2
t η−1/2

[

1 − (1 − 2η)1/2
]

σ̃2
t+1

)

u

+ [Λ(u− γt, v − δt, ν3, π
∗) − Λ(−γt,−δt, ν3, π

∗)]′ zt

+
σ̃2

t+1

η̃2
t

[1 − (1 − 2uη̃t)
1/2] ,

with Λi(u − γt, v − δt) − Λi(−γt,−δt) specified by (56), and where η̃t = η
1+2γtη

and σ̃2
t+1 =

σ2
t+1

(

η̃t

η

)3/2
. So, the non-affine historical dynamics is given by :

yt+1 = rt+1 − λ(ν3, π
∗)′zt + ν ′3zt+1 − η̃

−3/2
t η−1/2

[

1 − (1 − 2η)1/2
]

σ̃2
t+1 + η̃tεt+1

εt+1 | εt, zt+1 ∼ IG
(

σ̃2
t+1

η̃2
t

)

,

(62)

with, using (60) and (62), ηξt+1 = η̃tεt+1 and

σ̃2
t+1 = ω̃′

tzt + α̃1,tσ̃
2
t + α̃2,tεt + α̃3,t

σ̃4
t

εt

P(zt+1 = ej |yt
, zt−1, zt = ei) = πij,t ,

where ω̃t = ω(η̃t/η)
3/2, α̃1,t = α1(η̃t/η̃t−1)

3/2, α̃2,t = α2(η̃
3/2
t η̃t−1/η

5/2) and α̃3,t = α3η̃
3/2
t /(η̃4

t−1η
−5/2).

As in the previous section, the factor wt+1 = (yt+1, z
′
t+1)

′ is not a R.N. Car process, but it can
be verified [see Appendix 4] that the factor we

t+1 = (yt+1, z
′
t+1, σ

2
t+2)

′ is R.N. Car. Indeed, the R.N.
conditional Log-Laplace transform of we

t+1, given we
t , is :

ψQ
t (u, v, ṽ) = aQ

1 (u, v, ṽ)′zt + aQ
2 (u, ṽ)σ2

t+1 + bQt (u, ṽ) , (63)

where

aQ
1 (u, v, ṽ) = Λ̃(u, v, ṽ, ν3, ω, π

∗) − λ(ν3, π
∗)u

with Λ̃i(u, v, ṽ, ν3, ω, π
∗) = Log

J
∑

j=1

π∗ij exp(uν3j + vj + ṽωj) , i ∈ {1, . . . , J} ,

aQ
2 (u, ṽ) = ṽα1 −

1

η2

(

u
[

1 − (1 − 2η)1/2
]

+ 1 −
√

(1 − 2ṽα3η4) (1 − 2(uη + ṽα2))
)

,

bQt (u, ṽ) = urt+1 −
1

2
Log(1 − 2ṽα3η

4) ,
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which is affine in (z′t, σ
2
t+1)

′, with an intercept deterministic function of time.
As far as the identification problem is concerned, with functions γ and δ constant, we can

identify, from the historical dynamics (62), 3J + J(J − 1) + 4 coefficients, while the parameters
to be estimated are ν3 (with ν3J = 0), ω,α1, α2, α3, π

∗
ij , γ, δ (with δJ = 0), and η, that is,

2(J − 1) + J + 5 + J(J − 1) = 3J + J(J − 1) + 3 parameters. Thus, as in the previous section, the
historical model is over identified.

6 Applications to Econometric Term Structure Modelling

It is well known that, if the R.N. dynamics of wt is Car and if rt+1 is an affine function of wt, the
term structure of interest rates [r(t, h), h ∈ {1, ...,H}] is easily determined recursively and is affine
in wt [see Gourïı¿1

2oux, Monfort and Polimenis (2003)]. Indeed, if :

ψQ
t (u|wt; θ

∗
1) = aQ(u, θ∗1)

′wt + bQ(u, θ∗1)

and rt+1 = θ̃1 + θ̃′2wt, then

r(t, h) = −
c′h
h
wt −

dh

h
, (64)

where






















ch = −θ̃2 + aQ(ch−1)

dh = dh−1 − θ̃1 + bQ(ch−1)

c0 = 0, d0 = 0 .

(65)

Moreover, applying the transform analysis, various interest rates derivatives have quasi explicit
pricing formulas. Note that if the ith component of wt is a rate r(t, hi), i ∈ {1, ...,K1}, we must
satisfy the internal consistency conditions:

chi
= −hiei, dhi

= 0, i ∈ {1, ...,K1} .

Therefore, it is highly desirable to have a Car R.N. dynamics and this specification is obtained by
one of the three modelling strategies described in Section 4. Let us consider some examples.

6.1 Direct Modelling of the VAR(p) Factor-Based Term Structure Model

For sake of notational simplicity we consider the one factor case, but the results can be extended
to the multivariate case [see Monfort and Pegoraro (2006a)]. We assume that the factor wt, which
may be observable or unobservable, has a historical dynamics given by a Gaussian AR(p) model:

wt+1 = ν + ϕtwt + ...+ ϕpwt+1−p + σεt+1

= ν + ϕ′Wt + σεt+1

(66)

where εt+1
P
∼ IIN(0, 1), ϕ = (ϕ1, ..., ϕp)

′ and Wt = (wt, ..., wt+1−p)
′. This dynamics can also be

written :
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Wt+1 = ν̃ + ΦWt + σε̃t+1

where ν̃ = νe1, ε̃t+1 = εt+1e1 [e1 denotes the first column of the identity matrix Ip] and

Φ =















ϕ1 . . . . . . ϕp−1 ϕp

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

...
0 . . . . . . 1 0















is a (p × p) matrix .

The SDF takes the following exponential-affine form :

Mt,t+1 = exp [−rt+1 + αtwt+1 − ψt (αt)] , (67)

with
ψt(u) = (ν + ϕ′Wt)u+ 1

2σ
2u2 ,

αt = α0 + α′Wt

= α0 + α1wt + ...+ αpwt+1−p ,

and the short rate is given by :
rt+1 = θ̃1 + θ̃′2Wt .

If rt+1 = wt, we have θ̃2 = e1 and θ̃1 = 0.

The conditional R.N. Log-Laplace transform is given by :

ψQ
t (u) = ψt (u+ αt) − ψt (αt)

= (ν + ϕ′Wt)u+ σ2αtu+ 1
2σ

2u2

= [ν + σ2α0 + (ϕ+ σ2α)′Wt]u+ 1
2σ

2u2 .

Therefore, the R.N. dynamics of the factor is given by :

wt+1 = (ν + σ2α0) + (ϕ+ σ2α)′Wt + σξt+1 (68)

where ξt+1
Q
∼ IIN(0, 1). Moreover, we have that εt+1 = ξt+1 + σ(α0 + α′Wt).

The yield-to-maturity formula at date t is given by [see Monfort and Pegoraro (2006a) for the
proof] :

r(t, h) = −
c′h
h
Wt −

dh

h
, h ≥ 1 , (69)

with






















ch = −θ̃2 + Φ′ch−1 + c1,hσ
2α

dh = −θ̃1 + c1,h−1(ν + σ2α0) + 1
2c

2
1,h−1σ

2 + dh−1

c0 = 0 d0 = 0 .
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6.2 R.N. Constrained Direct Modelling of the Switching VAR(p) Factor-Based
Term Structure Model

Again for sake of simplicity we consider the univariate case [see Monfort and Pegoraro (2007) for
extensions] where the factor is given by wt = (xt, z

′
t)
′, with zt a J-state non-homogeneous Markov

chain valued in {e1, ..., eJ}. The first component xt is observable or unobservable, zt is unobservable
and the historical dynamics is given by :

xt+1 = ν(Zt) + ϕ1(Zt)xt + ...+ ϕp(Zt)xt+1−p + σ(Zt)εt+1 (70)

where

εt+1 | εt, zt+1
P
∼ N(0, 1)

P(zt+1 = ej |xt zt−1, zt = ei) = π(ei, ej ;Xt)

Zt = (z′t, ..., z
′
t−p)

Xt = (xt, ..., xt+1−p)
′ .

Observe that the joint historical dynamics of (xt, z
′
t)
′ is not Car. Functions ν, ϕ1, . . . , ϕp, σ and π

are parameterized using a parameter θ1.

We specify the SDF in the following way :

Mt,t+1 = exp

[

−rt+1 + Γ(Zt,Xt)εt+1 −
1

2
Γ(Zt,Xt)

2 − δ(Zt,Xt)
′zt+1

]

, (71)

with Γ(Zt,Xt) = γ(Zt) + γ̃(Zt)
′Xt and, in order to ensure that EtMt,t+1 = exp(−rt+1), we add the

condition :
J

∑

j=1

π(ei, ej ,Xi) exp[−δ(Zt,Xt)
′ej] = 1, ∀Zt,Xt .

The short rate is given by :
rt+1 = θ̃′1Xt + θ̃′2Zt ,

and, in the observable factor case (xt = rt+1), we have θ̃1 = e1 and θ̃2 = 0.

It is easily seen that the R.N. dynamics is given by :

xt+1 = ν(Zt) + γ(Zt)σ(Zt) + [ϕ(Zt) + γ̃(Zt)σ(Zt)]
′Xt + σ(Zt)ξt+1

ξt+1 | ξt
, zt+1

Q
∼ N(0, 1)

Q(zt+1 = ej |xt, zt−1, zt = ei) = π(ei, ej , ;Xt) exp[−δ(Zt,Xt)
′ej ] .

(72)
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So, if we want the R.N. dynamics of wt to be Car, we have to impose :

i) σ(Zt) = σ∗
′
Zt (linearity in zt, ..., zt−p)

ii) γ(Zt) = ν∗′Zt−ν(Zt)

σ∗′Zt

iii) γ̃(Zt) = ϕ∗−ϕ(Zt)

σ∗′Zt

iv) δj(Zt,Xt) = Log

[

π(zt, ej ,Xt)

π∗(zt, ej)

]

,

(73)

where σ∗, ν∗, ϕ∗ are free parameters, π∗(ei, ej) are the entries of an homogeneous transition matrix.
All of these parameters constitute the parameter θ∗ ∈ Θ∗ introduced in Section 4.3. Also note that,
because of constraints (73 − i) above, θ and θ∗ do not vary independently.
So the R.N. dynamics is :

Xt+1 = Φ∗Xt + [ν∗
′
Zt + (σ∗

′
Zt)ξt+1]e1 ,

Φ∗ =















ϕ∗
1 . . . . . . ϕ∗

p−1 ϕ∗
p

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

...
0 . . . . . . 1 0















is a (p× p) matrix ,

ξt+1 | ξt
, zt+1

Q
∼ N(0, 1) ,

Q(zt+1 = ej |xt, zt−1, zt = ei) = Q(zt+1 = ej |zt = ei) = π∗ij

(74)

and the affine (in Xt and Zt) term structure of interest rates is easily derived [see Monfort and
Pegoraro (2007) for the proof, and Dai, Singleton and Yang (2006) for the case p = 1].

6.3 Back Modelling of the VAR(p) Factor-Based Term Structure Model

Let us consider the (bivariate) case where wt is given by [r(t, 1), r(t, 2)]′. We want to impose the
following Gaussian VAR(1) R.N. dynamics:

wt+1 = ν + Φwt + ξt+1 , (75)

where ξt+1
Q
∼ IIN(0,Σ). In this case, the internal consistency conditions are satisfied if we impose,

in (64) and (65), θ̃1 = 0, θ̃′2 = (1, 0), c2 = −2e2 and d2 = 0, or :























−2e2 = aQ

(

−1
0

)

−

(

1
0

)

,

0 = bQ
(

−1
0

)

,

(76)
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where aQ(u) = Φ′u and bQ(u) = u′ν + 1
2u

′Σu. So, relation (76) becomes, with obvious notations:

[

ϕ11

ϕ12

]

+

[

1
0

]

=

[

0
2

]

,

ν1 = 1
2σ

2
1 ,

and (75) must be written:







r(t+ 1, 1) = 1
2σ

2
1 − r(t, 1) + 2r(t, 2) + ξ1,t+1

r(t+ 1, 2) = ν2 + ϕ21r(t, 1) + ϕ22r(t, 2) + ξ2,t+1 ,
(77)

with ξt
Q
∼ IIN(0,Σ). Consequently, the R.N. conditional Log-Laplace transform of wt+1, compati-

ble with the AAO restrictions is:

ψQ
t (u) = u

′
[(

1
2σ

2
1

ν2

)

+

(

−1 2
ϕ21 ϕ22

)

wt

]

+
1

2
u

′
Σu .

Now, if we move back to the historical conditional Log-Laplace transform, we get:

ψP
t (u) = ψQ

t (u− αt) − ψQ
t (−αt)

= u
′

[(

1
2σ

2
1

ν2

)

+

(

−1 2
ϕ21 ϕ22

)

wt

]

− u
′
Σαt + 1

2u
′
Σu .

If we assume αt = γ + Γwt, we get:

ψP
t (u) = u

′
{(

1
2σ

2
1

ν2

)

− Σγ +

[(

−1 2
ϕ21 ϕ22

)

− ΣΓ

]

wt

}

+
1

2
u

′
Σu ,

or, equivalently

wt+1 =

(

1
2σ

2
1

ν2

)

− Σγ +

[(

−1 2
ϕ21 ϕ22

)

− ΣΓ

]

wt + εt+1 , (78)

where εt+1
P
∼ IIN(0,Σ) and εt = ξt + Σ(γ + Γwt). If Γ = 0, the historical dynamics of wt is

constrained, the parameters Σ, ϕ12 and ϕ22 are identifiable from the observations on wt, whereas γ
and ν2 are not. If Γ 6= 0, the historical dynamics of wt is not constrained and only Σ is identifiable
from the observations on wt.

6.4 Direct Modelling of Wishart Term Structure Models and Quadratic Term
Structure Models: a third application of Extended Car Processes

The Wishart Quadratic Term Structure model, proposed by Gourieroux and Sufana (2003), is
characterized by an unobservable factor Wt which follows a Wishart autoregressive (WAR) process,
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that is, a process valued in the space of (n×n) symmetric positive definite matrices; its conditional
historical Log-Laplace transform is given by:

ψP
t (Γ) = Log{Et exp(TrΓWt+1)}

= Tr
[

M
′
Γ(In − 2ΣΓ)−1MWt

]

− K
2 Log det[(In − 2ΣΓ)] ,

where Γ is a (n × n) matrix of coefficients, which can be chosen symmetric [since, with obvious
notations, Tr(ΓWt+1) =

∑

i j ΓijWij,t+1 =
∑

i≤j(Γij + Γji)Wij,t+1]. This dynamics is Car(1) and,
if K is integer, it can be defined as:

Wt =
K

∑

k=1

xk,tx
′
k,t , (K ≥ n)

xk,t+1 = Mxk,t + εk,t+1 , k ∈ {1, . . . ,K}

εk,t+1
P
∼ IIN(0,Σ) , k ∈ {1, . . . ,K} , independent.

(79)

Since Wt is not observed, it can be normalized by Σ = In. The SDF is defined by:

Mt,t+1 = exp [Tr(CWt+1) + d] , (80)

where C is a (n× n) symmetric matrix and d is a scalar.
The associated R.N. dynamics is defined by:

ψQ
t (Γ) = Tr

[

M
′ {

(C + Γ)[In − 2(C + Γ)]−1 − C(In − 2C)−1
}

MWt

]

−
K

2
Log det[(In − 2(In − 2C)−1Γ)] ,

which is also Car(1). The term structure of interest rates at date t is affine in Wt and given by:

r(t, h) = −
1

h
Tr[A(h)Wt] −

1

h
b(h) , h ≥ 1

A(h) = M ′[C +A(h − 1)] {In − 2[C +A(h− 1)]}−1M

b(h) = d+ b(h− 1) −
K

2
Log det[In − 2(C +A(h− 1))]

A(0) = 0 , b(0) = 0 .

In particular, if K is integer, we get:

r(t, h) = −
1

h
Tr[

K
∑

k=1

A(h)xk,tx
′
k,t] −

1

h
b(h) , h ≥ 1

= −
1

h

K
∑

k=1

x′k,tA(h)xk,t −
1

h
b(h) , h ≥ 1 ,

(81)
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which is a sum of quadratic forms in xk,t. If K = 1, we get the standard Quadratic Term Structure
Model which is, therefore, a special affine model [see Beaglehole and Tenney (1991), Ahn, Dittmar
and Gallant (2002), Leippold and Wu (2002), and Cheng and Scaillet (2006)].

We can also define a quadratic term structure model with a linear term, if the historical dynamics
of xt+1 is given by the following Gaussian VAR(1) process:

xt+1 = m+Mxt + εt+1 ,

εt+1
P
∼ IIN(0,Σ) .

(82)

Indeed, the factor wt = [x′t, vech(xtx
′
t)
′]′ can be shown to be Car(1), that is, wt is an Extended Car

process in the historical world [see Appendix 5 for the proof]. Moreover, choosing:

Mt,t+1 = exp
[

C ′xt+1 + Tr(Cxt+1x
′
t+1) + d

]

= exp(C ′xt+1 + x′t+1Cxt+1 + d) , (C is a symmetric (n × n) matrix) ,
(83)

the process wt is also Extended Car in the risk-neutral world. The term structure at date t is affine
in wt, that is, of the form:

r(t, h) = x′tΛ(h)xt + µ(h)′xt + ν(h) , h ≥ 1 , (84)

where Λ(h), µ(h) and ν(h) follow recursive equations [see also Gourieroux and Sufana (2003), Cheng
and Scaillet (2006) and Jiang and Yan (2006)].

7 An Example of Back Modelling for a Security Market Model

with Stochastic Dividends and Short Rates

The purpose of this section is to consider an Econometric Security Market Model where the risky
assets are dividend-paying assets and the short rate is endogenous. More precisely, the factor is
given by wt = (yt, δt, rt+1)

′, where:

• yt = (y1,t, . . . , yK1,t)
′ denotes, for each date t, the K1-dimensional vector of geometric returns

associated to cum dividend prices Sj,t, j ∈ {1, . . . ,K1};

• δt = (δ1,t, . . . , δK1,t) is the associated K1-dimensional vector of (geometric) dividend yields
and, denoting S̃j,t as the ex dividend price of the jth risky asset, we have Sj,t = S̃j,t exp(δj,t);

• rt+1 denotes the (predetermined) stochastic short rate for the period [t, t+ 1];

Observe that, compared to the setting of Section 5.1 (where rt+1 was exogenous), this model
proposes a more general K-dimensional factor wt (with K = (2K1 +1)), where we jointly specify yt,
δt (which is considered as an observable factor), and the short rate rt+1. It would be straightforward
to add an unobservable factor zt.

Following the Back Modelling approach, we propose a R.N. Gaussian VAR(1) dynamics for the
factor and the conditional distribution of wt+1, given wt, is assumed to be Gaussian with mean
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vector (A0 + A1 wt) and variance-covariance matrix Σ. The process wt+1 is, therefore, a Car(1)
process with a conditional R.N. Laplace Transform given by :

ϕQ
t (u |wt) = EQ

t [exp (u′ wt+1)] = exp
[

aQ(u)′ wt + bQ(u)
]

where the functions aQ and bQ are the following :






aQ(u) = A1
′ u

bQ(u) = A0
′ u+ 1

2u
′Σu .

The R.N. dynamics can also be written:

wt+1 = A0 +A1 wt + ξt+1

ξt+1
Q
∼ IIN(0,Σ) .

(85)

The AAO restrictions, applied to the K1-dimensional vector yt+1, are given by :

EQ
t

[

exp[Log
(

Sj,t+1

S̃j,t

)]

= exp(rt+1) , j ∈ {1, . . . ,K1} ,

⇐⇒ EQ
t [exp(yj,t+1)] = exp(rt+1 − δj,t) , j ∈ {1, . . . ,K1} ,

⇐⇒







aQ(ej) = A1
′ ej = eK − ej+K1 , j ∈ {1, . . . ,K1} ,

bQ(ej) = A0
′ ej + 1

2e
′
jΣej = 0 , j ∈ {1, . . . ,K1}.

This means that the first K1 rows of A1 and the first K1 components of A0 are, for j ∈ {1, . . . ,K1},
respectively given by (eK − ej+K1)

′ and −1
2σ

2
j [where eK and ej+K1 denote, respectively, the Kth

and the (j + K1)
th column of the Identity matrix IK , while σ2

j is the (j, j)-term of Σ]. In other
words, the K1 first equations of (85) are:

yj,t+1 = −1
2σ

2
j + rt+1 − δj,t + ξj,t+1 , j ∈ {1, . . . ,K1} .

Then, coming back to the historical dynamics of wt, we get :

ψt(u) = ψQ
t (u− αt) − ψQ

t (−αt)

=
(

aQ(u− αt) − aQ(−αt)
)′
wt + bQ(u− αt) − bQ(−αt)

= u′A1wt + u′A0 + 1
2(u− αt)

′Σ(u− αt) −
1
2α

′
tΣαt

= u′ (A0 +A1wt − Σαt) + 1
2u

′Σu .

(86)

So, if we impose αt = (α0 + αwt), the historical dynamics of the factor is also Gaussian VAR(1)
with a modified mean vector equal to [A0 −Σα0 + (A1 −Σα)wt] and the same variance-covariance
matrix Σ, that is:

wt+1 = A0 − Σα0 + (A1 − Σα)wt + εt+1 , εt+1
P
∼ IIN(0,Σ) ,

and εt+1 = ξt+1 + Σ(α0 + αwt) .
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We notice that, under the historical probability, any VAR(1) distribution can be reached, but
only Σ is identifiable. If we add the constraint α = 0, then the historical dynamics of wt is
constrained, and A0 and α0 are not identifiable.

8 Conclusions

In this paper we have proposed a general econometric approach to asset pricing modelling based on
three main elements : (i) the historical discrete-time dynamics of the factor representing the infor-
mation, (ii) the Stochastic Discount Factor (SDF), and (iii) the risk-neutral (R.N.) factor dynamics.
We have presented three modelling strategies : the Direct Modelling, the R.N. Constrained Direct
Modelling and the Back Modelling. In all the approaches we have considered the internal consis-
tency conditions, induced by the AAO restrictions, and the identification problem. These three
approaches are studied for several discrete-time security market models and affine term structure
models. In all cases, we have indicated the important role played by the R.N. Constrained Direct
Modelling and the Back Modelling strategies in determining, at the same time, flexible historical
dynamics and Car R.N. dynamics leading to explicit or quasi explicit pricing formulas for various
contingent claims. Moreover, we have shown the possibility to derive asset pricing models able
to accommodate non-affine historical and risk-neutral factor dynamics with tractable pricing for-
mulas. This result is achieved when the starting R.N. non-affine factor can be modified to be a
R.N. Extended Car process. These strategies, already implicitly adopted in several papers, clearly
could be the basis for the specification of new asset pricing models leading to promising empirical
analysis.
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Appendix 1
Proof of the existence and uniqueness of Mt,t+1 and of the pricing formula (1)

Using A1 and A2, the Riesz representation theorem implies :

∀s > t, ∀wt,∃ Mt,s(ws),unique, such that ∀g(ws) ∈ L2s

pt[g(ws)] = E[Mt,s(ws) g(ws) |wt].

In particular, the price at t of a zero-coupon bond with maturity s is E[Mt,s(ws) |wt]. A3 implies
that P[Mt,s > 0 |wt] = 1, ∀t, s ∈ {0, . . . , T}, since otherwise the payoff 1(Mt,s≤0) at s, would be

such that P[1(Mt,s≤0) > 0 |wt] > 0 and pt

[1(Mt,s≤0)

]

= Et[Mt,s1(Mt,s≤0)] ≤ 0, contradicting A3.

Relation (1) will be shown if we prove that, ∀ r < t < s, wt, g(ws) ∈ L2s we have:

pr[g(ws)] = pr{pt[g(ws)]}.

Let us show, for instance, that if (with obvious notations) pr(gs) > pr[pt(gs)], we can construct a
strictly positive payoff at s with price zero at r, contradicting A3. The payoff at s is defined by the
following trading strategy:

at r: buy pt, (short) sell gs, buy
pr(gs) − pr[pt(gs)]

E[Mr,s |wr]
zero-coupon bonds with maturity s, generating

a zero net profit;

at t: buy gs and sell pt, generating a zero net profit;

at s: the net payoff is gs − gs +
pr(gs) − pr[pt(gs)]

E[Mr,s |wr]
> 0.

A similar argument shows that pr(gs) < pr[pt(gs)] contradicts A3 and, therefore, relation (1) is
proved.
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Appendix 2
Geometric and Arithmetic Risk Premia

In this appendix [ft(ei)] will denote, for given scalar or row K-vectors ft(ei), i ∈ {1, . . . ,K}, the
K-vector or the K ×K matrix (ft(e1)

′, . . . , ft(eK)′)′ with rows ft(ei), i ∈ {1, . . . ,K}; e will denote
the K-dimensional unitary vector.

i) wt+1 is a K-vector of geometric returns

We have seen in Section 3.2 that the geometric risk premium can be written as:

πGt = ψ
(1)
t (0) − [ψt(αt + ei)] + ψt(αt)e .

Using a first order expansion of πGt = πGt(αt) around αt = 0 we obtain :

πGt ' ψ
(1)
t (0) − [ψt(ei)] − [ψ

(1)
t (ei)

′]αt + (ψ
(1)
t (0)′αt)e ,

and neglecting conditional cumulants of order ≥ 3 we can write :

πGt ' mt −mt −
1
2vdiagΣt − (m′

tαt)e− Σtαt + (m′
tαt)e

' −1
2v diagΣt − Σtαt .

If we consider now the arithmetic risk premium, and we apply the same procedure, we get:

πAt = [ϕt(ei)] −
[

ϕt(αt+ei)
ϕt(αt)

]

'

[

ϕt(ei) − ϕt(ei)

(

1 +
ϕ

(1)
t (ei)′αt

ϕt(ei)
− ϕ

(1)
t (0)′αt

)]

' [−ϕt(ei)(ψ
(1)
t (ei)

′αt − ϕ(1)(0)′αt)]

' −diag[ϕt(ei)]((m
′
tαt)e+ Σtαt − (m′

tαt)e)

' −diag[ϕt(ei)]Σtαt .

In the conditionally Gaussian case, where

ϕt(u) = exp

(

m′
tu+

1

2
u′Σtu

)

, ψt(u) = m′
tu+

1

2
u′Σtu ,

the geometric risk premium becomes

πGt = ψ
(1)
t (0) − [ψt(αt + ei)] + ψt(αt)e

= mt −
[

m′
t(αt + ei) + 1

2 (αt + ei)
′Σt(αt + ei) −m′

tαt −
1
2α

′

tΣαt

]

= −
1

2
vdiagΣt − Σtαt ,
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while, the arithmetic risk premium is

πAt = [ϕt(ei)] −
[

ϕt(α+ei)
ϕt(αt)

]

=

[

exp

(

mit +
1

2
Σii,t

)

− exp

(

mit +
1

2
Σii,t + e′iΣtαt

)]

=

[

exp

(

mit +
1

2
Σii,t

)

(1 − exp(e′iΣtαt))

]

' −diag

[

exp

(

mit +
1

2
Σii,t

)]

Σtαt .

ii) wt+1 is a K-vector of yields

Following the same procedure, the geometric risk premium associated to wt+1 = (h1r(t + 1, h1),
. . . , hKr(t+ 1, hK))′ can be written as

πGt = −ψ
(1)
t (0) − [ψt(αt − ei)] + ψt(αt)e

' −ψ
(1)
t (0) − [ψt(−ei) + ψ

(1)
t (−ei)

′αt] + (ψ
(1)
t (0)′αt)e

' −mt −
(

−mt + 1
2 vdiagΣt + (m′

tαt)e− Σtαt

)

+ (m′
tαt)e

' −1
2 vdiagΣt + Σtαt ,

while, the arithmetic risk premium is

πAt =
[

exp((hi + 1)r(t, hi + 1))
(

ϕt(−ei) −
ϕt(αt−ei)

ϕt(αt)

)]

' [exp((hi + 1)r(t, hi + 1))(ϕt(−ei) − ϕt(−ei)(1 + ψ
(1)
t (−ei)

′αt − ϕ
(1)
t (0)′αt))]

' −diag[ϕt(−ei) exp((hi + 1)r(t, hi + 1))][ψ
(1)
t (−ei)

′αt − ϕ
(1)
t (0)′αt]

' diag[ϕt(−ei) exp((hi + 1)r(t, hi + 1))]Σtαt .

In the conditionally Gaussian case, we have:

πGt = −
1

2
vdiagΣt + Σtαt

πAt ' diag

[

exp

(

−mit +
1

2
Σii,t

)

exp((hi + 1)r(t, hi + 1))

]

Σtαt .
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Appendix 3
Switching GARCH Models and Extended Car processes

The purpose of this appendix is to show, in the context of Section 5.6, that under the R.N. proba-
bility, even if wt+1 = (yt+1, z

′
t+1)

′ is not a Car process, the extended factor we
t+1 = (yt+1, z

′
t+1, σ

2
t+2)

′

is Car. The proof of this result is based on the following two lemmas.

Lemma 1: For any vector µ ∈ Rn and any symmetric positive definite (n × n) matrix Q, the
following relation holds:

∫

Rn

exp(−u′Qu+ µ′u)du =
πn/2

(det Q)1/2
exp

(

1

4
µ′Q−1µ

)

.

Proof: The LHS of the previous relation can be written as

∫

Rn

exp

[

−

(

u−
1

2
Q−1µ

)′

Q

(

u−
1

2
Q−1µ

)]

exp

(

1

4
µ′Q−1µ

)

du

=
πn/2

(detQ)1/2
exp

(

1

4
µ′Q−1µ

)

given that the n-dimensional Gaussian distribution N
(

1
2Q

−1µ, (2Q)−1
)

admits unit mass.

Lemma 2: If εt+1 ∼ N(0, In), we have

Et

{

exp[λ′εt+1 + ε′t+1V εt+1]
}

=
1

[det(I − 2V )]1/2
exp

[

1

2
λ′(I − 2V )−1λ

]

.

Proof: From the Lemma 1, we have that:

Et

{

exp(λ′εt+1 + ε′t+1V εt+1)
}

= 1
(2π)n/2

∫

Rn

exp

[

−u′
(

1

2
I − V

)

u+ λ′u

]

du

= 1

2n/2[det( 1
2
I−V )]

1/2 exp
[

1
4λ

′
(

1
2I − V

)−1
λ
]

= 1
[det(I−2V )]1/2 exp

[

1
2λ

′(I − 2V )−1λ
]

.
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Proposition : In the context of Section 5.6, the process we
t+1 = (yt+1, z

′
t+1, σ

2
t+2)

′ is Car(1) under
the R.N. probability.

Proof : We have:

yt+1 = rt+1 − λ′zt −
1

2
σ2

t+1 + ν ′3zt+1 + σt+1ξt+1

ξt+1 | ξt
, zt+1

Q
∼ N(0, 1)

σ2
t+1 = ω′zt + α1(ξt − α2σt)

2 + α3σ
2
t

Q

(

zt+1 = ej |yt
, zt−1, zt = ei

)

= π∗ij .

So, the conditional R.N. Laplace transform of (yt+1, z
′
t+1, σ

2
t+2)

′ is:

ϕQ
t (u, v, ṽ) = EQ

t exp
(

uyt+1 + v
′
zt+1 + ṽσ2

t+2

)

= EQ
t exp

{

u

(

rt+1 − λ′zt −
1

2
σ2

t+1 + ν ′3zt+1 + σt+1ξt+1

)

+v
′
zt+1 + ṽ[ω′zt+1 + α1(ξt+1 − α2σt+1)

2 + α3σ
2
t+1]

}

= exp

{

u

(

rt+1 − λ′zt −
1

2
σ2

t+1

)

+ ṽα1α
2
2σ

2
t+1 + ṽα3σ

2
t+1

}

EQ
t exp[ξt+1σt+1(u− 2α1α2ṽ) + ṽα1ξ

2
t+1 + (uν3 + v + ṽω)′zt+1] .

Using Lemma 2:

ϕQ
t (u, v, ṽ) = exp[u(rt+1 − λ′zt −

1

2
σ2

t+1) + ṽα1α
2
2σ

2
t+1 + ṽα3σ

2
t+1]

× exp

[

−
1

2
Log(1 − 2α1ṽ) +

(u− 2α1α2ṽ)
2

2(1 − 2α1ṽ)
σ2

t+1 + Λ̃′(u, v, ṽ, ω, ν3, π
∗)zt

]

,

where the ith component of Λ̃(u, v, ṽ, ω, ν3, π
∗) is given by:

Λ̃i(u, v, ṽ, ω, ν3, π
∗) = Log

J
∑

j=1

π∗ij exp(uν3j + vj + ṽωj) ,

and relation (58) is proved.

38



Appendix 4
Switching IG GARCH Models and Extended Car processes

In this appendix we show, in the context of Section 5.7, that under the R.N. probability, even if
wt+1 = (yt+1, z

′
t+1)

′ is not a Car process, the extended factor we
t+1 = (yt+1, z

′
t+1, σ

2
t+2)

′ is Car.

Proposition : In the context of Section 5.7, the process we
t+1 = (yt+1, z

′
t+1, σ

2
t+2)

′ is Car(1) under
the R.N. probability.

Proof : Let us recall equation (60) :

yt+1 = rt+1 − λ′zt −
1

η2

[

1 − (1 − 2η)1/2
]

σ2
t+1 + ν ′3zt+1 + ηξt+1

with
σ2

t+1 = ω′zt + α1σ
2
t + α2ξt + α3

σ4
t

ξt

ξt+1| ξt
, zt+1

Q
∼ IG

(

σ2
t+1

η2

)

,

Q(zt+1 = ej |yt
, zt−1, zt = ei) = Q(zt+1 = ej |zt = ei) = π∗ij ,

So, the conditional R.N. Laplace transform of (yt+1, z
′
t+1, σ

2
t+2)

′ is:

ϕQ
t (u, v, ṽ) = EQ

t exp
(

uyt+1 + v′zt+1 + ṽσ2
t+2

)

= EQ
t exp

{

u

(

rt+1 − λ′zt −
1

η2

[

1 − (1 − 2η)1/2
]

σ2
t+1 + ν ′3zt+1 + ηξt+1

)

+v′zt+1 + ṽ

[

ω′zt+1 + α1σ
2
t+1 + α2ξt+1 + α3

σ4
t+1

ξt+1

]}

= exp

{

u

(

rt+1 − λ′zt −
1

η2

[

1 − (1 − 2η)1/2
]

σ2
t+1

)

+ ṽα1σ
2
t+1

}

EQ
t exp[(uη + ṽα2) ξt+1 +

ṽα3σ
4
t+1

ξt+1
+ (uν3 + v + ṽω)′zt+1] .

Using the formula of the generalized Laplace transform of an Inverse Gaussian distribution given
in footnote 8 (section 5.7):

ϕQ
t (u, v, ṽ) = exp

{

u

(

rt+1 − λ′zt −
1

η2

[

1 − (1 − 2η)1/2
]

σ2
t+1

)

+ ṽα1σ
2
t+1

}

× exp

[

−
1

2
Log(1 − 2ṽα3η

4) +
1

η2

(

1 −
√

(1 − 2ṽα3η4) (1 − 2(uη + ṽα2))
)

σ2
t+1

+Λ̃′(u, v, ṽ, ν3, ω, π
∗)zt

]

,
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where the ith component of Λ̃(u, v, ṽ, ν3, ω, π
∗) is given by:

Λ̃i(u, v, ṽ, ν3, ω, π
∗) = Log

J
∑

j=1

π∗ij exp(uν3j + vj + ṽωj) ,

and relation (63) is proved.

Appendix 5
Quadratic Term Structure Models and Extended Car processes

Given the Gaussian VAR(1) process defined by relation (82), we have that, for any real symmetric
matrix V , the conditional historical Laplace transform of (xt+1, xt+1 x

′
t+1) is given by:

Et exp[u′xt+1 + Tr(V xt+1x
′
t+1)]

= exp{u′m+ u′Mxt + TrV [mm′ +Mxtx
′
tM

′ +mx′tM
′ +Mxtm

′]}

Et exp{u′εt+1 + TrV [εt+1ε
′
t+1 +mε′t+1 + εt+1m

′ +Mxtε
′
t+1 + εt+1x

′
tM

′]}

= exp{u′m+ u′Mxt +m′V m+ 2m′VMxt + Tr(M ′VMxtx
′
t)}

Et exp{[u′ + 2(m+Mxt)
′V ]εt+1 + ε′t+1V εt+1}

and, using Lemma 2 in Appendix 3, we can write:

Et exp[u′xt+1 + Tr(V xt+1x
′
t+1)]

= exp{u′m+m′V m+ (M ′u+ 2M ′V m)′xt + x′tM
′VMxt

+1
2 [u′ + 2(m+Mxt)

′V ](I − 2V )[u+ 2V (m+Mxt)] −
1
2 Log det(I − 2V )} ,

which is exponential-affine in [x′t, vech(xtx
′
t)
′]′.
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