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Abstract

This paper derives and tests a procedure to estimate a general class of panel
data models that display a change of regime, as well as potential correlation
between specific effects and explanatory variables. This model detects a
structural change for all cohorts on the US labor market in the early 80s, and
shows that some unobserved skills correlated with schooling have become
rewarded in the second regime. As a result, I quantify the bias in the college
premium when it is calculated in cross-section: it amounts to circa 30% of
the cross-sectional estimates after 1980. Interestingly, this bias is carried
almost entirely by the two most educated cohorts of individuals. A simple
model where skilled individuals have a comparative advantage to graduate
from college can account for this fact, since it implies that the correlation
between unobserved ability and college graduation increases with overall
college graduation.

Résumé

Cet article introduit et teste une procédure d’estimation de modèles à change-
ments de régime et à effets aléatoires corrélés sur données de panel. Ce
modèle détecte un changement structurel pour toutes les cohortes présentes
sur le marché du travail américain au début des années 1980, et montre que
des aptitudes inobservées corrélées à l’éducation sont devenues rémunérées
dans le second régime. Ainsi, l’article quantifie le biais d’endogénéité associé
au diplôme universitaire lorsque l’estimation est conduite sur des données en
coupe: ce biais est égal à environ +30% du rendement du diplôme après 1980.
Il est porté presque entièrement par les deux cohortes les plus éduquées. Ce
dernier fait est expliqué par un modèle simple de sélection où les individus
talentueux ont un avantage comparatif dans l’obtention d’un diplôme uni-
versitaire, et où la corrélation entre aptitudes inobservées et diplôme uni-
versitaire augmente avec la proportion de diplômés de l’université au sein
de chaque cohorte.

JEL Classification: C11, C15, C23, C24, C34, J24, J31, O15.
Keywords: MCMC, Regime-switching, College premium, Inequality.



1 Introduction

There has been a large body of research focusing on the increase in inequal-
ity in the United-States over the last two decades. This trend as well as
some correlated events have been recently surveyed in Eckstein and Nagy-
pal (2004), and discussed in several others. Indeed, the role of skill-biased
technological change as a unifying explanation for the increase in within
and between-groups inequality has been challenged in the recent past. Mea-
surement problems in the CPS have been pointed at by Card and DiNardo
(2002), the differential behaviour of the bottom and the top halves of the
income distribution has been underlined by Autor-Katz-Kearney (2006),
Lemieux (2006a) has shown the crucial role of composition effects in the
increase of within-groups inequality, while Piketty-Saez (2002) and Lemieux
(2006b) have emphasized that most of overall inequality was concentrated
in the top of the income distribution.

Most of the literature mentionned above is based on cross-sectional Min-
cerian regressions, pointing at the modification of the return to observed
and unobserved skills across years. Nevertheless, it is possible that the rise
in the return to schooling may be due to modifications of unobserved de-
terminants that are correlated with education: this rise might be governed
by endogenous effects. Focusing on inequality between educational groups,
this paper shows that the rise in the college premium occuring from the 80s
has been smaller than that depicted in the literature, and it proposes new
estimates of the college premium.

Some studies have already tried to gauge this endogeneity bias. On
one hand, Taber (2001) uses a dynamic selection model and finds a strong
role of unobserved ability in the increase in the college premium. On the
other hand, Chay and Lee (2000) have shown that the rise in the return to
unobserved ability could explain at most 30-40% of the rise in the college
premium. They use the time variations of earnings heteroskedasticity across
educational groups to derive an upper bound for the contribution of unob-
served ability. Deschênes (2006) finds compatible results, using the rise in
the convexity of the earnings-schooling profile as a source of identification.
In order to do so, he assumes that there is no heterogeneity in the convexity
of the latter function1. Also, these two studies are not informative on the

1Also, the reconstruction of the years of schooling variable from the degrees variable
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nature of unobserved skills and do not mention how the latter are distributed
across cohorts.

In contrast, this paper uses the simple strategy of computing explicitely
the unobserved heterogeneity variable using the longitudinal dimension.
Identification stems from the changing of educational attainment of work-
ers along their life cycle. Then, I run cross-sectional regressions including
the estimated unobserved ability variable, which purges the coefficient of the
college premium from any endogeneity bias. The major problem likely to ap-
pear in this procedure is that earnings dynamics have been non-stationnary
across the past thirty years as demonstrated by Meghir-Pistaferri (2004). As
a result, a structural change in the US wages’ dynamics is a phenomenom
that one would like to account for, within a correlated random effects model.

I present a general empirical framework where all coefficients as well as
the variance of the residuals are allowed to vary across two different regimes
governed by an unobserved variable, which follows an hidden Markov Chain.
Though potentially richer, this regime switching structure is used to capture
the structural change. Markov-Chain Monte-Carlo methods have recently
been developped for numerous models2, and are of particular interest when
the likelihood of the model is complicated and/or leads to numerical unfea-
sibility. In the present case, this approach is much easier to implement than
maximum likelihood methods, which would rely on unaccurate two-steps
methods.

The paper develops an estimation procedure for both uncensored and
censored data. It is tested and validated on different simulated datasets,
then is applied to wage dynamics in the United-States from 1968 to 2000,
using the PSID (SRC) database. The estimation is conducted on 5-years
cohorts of age and shows that there has been a change of regime in the
early 80s, and none since that date. For two cohorts in particular - the most
educated - unobserved ability is significatively and positively correlated with
education, leading to a 30% upward bias in the annual increase in the college
premium after 1980.

taken from the CPS could be a source of measurement errors. Using IUPMS Census
data and a detailed variable for grades achieved, Morrisson-Murtin (2007) find that the
earnings-schooling profile is concave over the whole period 1940-1980, while Deschênes
(2006) finds a convex earnings function in 1980. The detailed grades variable is not
available in subsequent IUPMS surveys.

2see Chib (2001) for a review
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More precisely, four conclusions can be derived: (i) the major part of the
observed rise in the cross-sectional return to schooling reflects an increase in
the causal effect of schooling on earnings; (ii) the correlation of unobserved
ability across regimes is about 0.5 for any cohort having experienced the
structural change, implying that unobserved ability is multi-dimensional -
otherwise this correlation would be equal to one; (iii) whatever the cohort,
sorting of unobserved ability and schooling is null in the first regime, indi-
cating that the unobserved skills correlated with schooling are exclusively
rewarded in the second regime; (iv) sorting of unobserved ability and school-
ing is higher among most educated cohorts, a fact that is explained by a sim-
ple model of imperfect sorting where skilled individuals have a comparative
advantage to graduate from college.

Although it cannot provide a representative picture of the US labor mar-
ket, this paper integrates well in the recent literature on inequality. It puts
the emphasis on the multi-dimensionality of productive skills, and argues
that the organizational changes occurring in the early 80s have increased
the value of some unobserved skills refered to as “managerial skills”. The
paper finds an endogeneity bias in the college premium in tune with the liter-
ature, but also explains why this bias takes place among the most educated
cohorts.

Section 1 presents the statisical model and section 2 the Bayesian esti-
mation, which is tested in section 3. Section 4 introduces the treatment of
censoring. Section 5 presents the results for the college premium and last
section concludes.

2 The model

The most general regime switching model is considered:

yi,t = xi,tβst + zi,tbi,st + σstui,t, i ≤ N, t ≤ T (1)

bi,st  NL (0, Dst)

ui,t  N (0, 1)

where xi,t is a vector of observations of dimension 1xK, zi,t a vector of
observations of dimension 1xL, ui,t is a strictly exogenous iid white noise,
and st is a two-states Markov chain starting from its invariant distribution
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with transition probabilities π = (πk,l)k,l∈{0,1}

P (st = l|st−1 = k) = πk,l (2)

From a bayesian point of view parameters βst , σst , Dst , π are assumed to
be random variables with independant prior distributions as it is detailed
below. The random variables bi,st are assumed to be iid, and given Dst ,

conditionally independant from ui,t, βst , σst , π.

In a basic specification that excludes regime switching, this kind of struc-
ture is called “mixed models” in the statistical literature3. They differ from
the traditional random-coefficient model introduced by Swamy (1970) or
Hsiao (1974) because they do not assume orthogonality between explana-
tory variables and specific effects (here the bi,st variables).

All distributions are allowed to vary between the two regimes, including
the random-effects bi,st . From an economic perspective, it can be interpre-
tated as a constant level of unobserved ability for each individual, but with
a time-varying return across regimes; as a consequence the distributions of
random-effects, including their variance, might differ across both cohorts
and regimes. A larger number of states can be considered4, but given the
small panel length T, this could make estimation harder. Also this model
is motivated by its empirical application and it is very likely that a single
structural change has occurred over the last thirty years. At this stage the
model is not identified because of invariance by permutation of the regimes,
so that an additional identification constraint σ0 < σ1 is set.

The density of observations is gaussian conditionally on the regime and
on the corresponding parameters

f(yi,t|st = k, θk) N
(
xi,tβk + zi,tbi,k;σ2

k

)
(3)

where θk = (βk, bi,k, σk, Dk, πk). Bayesian estimation treats the parameters
of interest Θ = (θ0, θ1) as random variables, and aims at inferring the pos-
terior distribution of parameters conditionally on the data p (Θ, s1...sT |Y ) .

Modelling the unconditional prior distribution of parameters is an impor-
tant step since improper priors generally lead to ill-defined posterior distri-

3in the econometric literature,“fixed-effects models” are a particular case.
4see for instance Chopin-Pelgrin (2004).
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butions5. The following priors are natural because they enable closed-form
expressions of the posterior distribution:

βk  NK

(
β0, B0

)
bi,k|Dk  NL (0, Dk)

1/σ2
k  G

(
ν0

2
;
δ0

2

)
D−1

k  WL (ρ0;R0) (4)

where G stands for a Gamma distribution, W for a Wishart distribution,
and (β0, B0, ν0, δ0, ρ0, R0) are hyperparameters, which could eventually be
treated as random variables just as the parameters of interest above.

Classical priors on the transition matrix specify the ith row of the tran-
sition matrix as a Dirichlet distribution

πk = (πk,0, πk,1) D(αk,0;αk,1) (5)

The joint probability density function of (Θ, s1...sT , |Y ) is

p (Θ, s1...sT |Y ) = p (Y |Θ, s1...sT ) p (s1...sT |Θ) p (Θ) (6)

∝
N∏

i=1

f(Yi|Θ, s1...sT )
T∏

t=2

πst−1,stg(s1)
1∏

k=0

p (πk) p (θk)

where Θ = (θ0, θ1) are the parameters of interest and g(.) is the invariant
distribution of the Markov Chain6.

3 Gibbs sampling estimation

Gibbs sampler techniques have been widely used in Markov Chain Monte
Carlo methods. They consist in three steps:

1. Setting initial values for all parameters.

2. Drawing random sequences of the parameters of interest according to
the conditional posterior distribution. Parameters are generally drawn
sequentially and by group: for instance in the first regime, one draws

5see Hobert and Casella (1996) for an exemple relevant to this paper.
6the eigenvector associated to the eigenvalue 1
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random effects bi,0 conditionally on subsequent realizations of other
parameters (β0, σ0, D0, π0) and hidden variables (s1...sT ).

3. Iterate M times the sampling of Θ. The resulting distribution (Θ1,Θ1, ...ΘM )
is a Markov chain that converges towards the target distribution under
fairly general conditions (see Roberts and Smith (1994) and Tierney
(1994)). Generally a burn-in phase is implemented and the corre-
sponding values of Θ are discarded from the final sample.

This procedure is a natural tool for identification of models that allow
for a non-null correlation between unobserved heterogeneity and regressors.
Let us consider the simplest case where L = 1 and zi,t = 1 for all i and
t, which corresponds to the case of unobserved heterogeneity in the lev-
els of the dependant variable; in that case, the usual GLS estimator is no
more consistent, as well as any estimator using the Between variance of
the observations. The Within estimator or First Differencing methods pro-
vide consistent estimates because they eliminate the source of bias, namely
unobserved heterogeneity. Nevertheless, this comes at the price that all ex-
planatory variables must be time-varying in order to fulfill the standard rank
condition, i.e. inversibility of the matrix E x̃

′
i,tx̃i,t where x̃i,t stands for the

transformed explanatory variables. Instrumental variables have been pro-
posed in case some regressors are exogenous (e.g. Amemiya and MaCurdy
(1986)), whereas the Chamberlain approach7 extracts information from the
moments of the variables implied by the model to identify the parameters
of interest.

In the following empirical application, identification stems from the fact
that a significant proportion of workers - between 12% and 40% - increases
their level of education during adulthood, providing a relevant source of
identification. But it is worth mentioning that identification is rarely an
issue in a Bayesian framework thanks to the specification of proper prior
distributions on the parameters8. Even in the case of time-constant and
endogenous regressors, the specification of priors, albeit vague and mispec-
ified, enables to achieve the estimation of a correlated random model as
demonstrated by Murtin (2006)9.

7see Chamberlain (1982) and Chamberlain (1984).
8see Gelfand-Sahu (1999) for extensive description of identication in mixed models.
9though estimation is unaccurate with low levels of correlation between fixed-effects

and endogenous variables, and is more sensible to distributional forms.
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The following Bayesian method has a crucial advantage over maximum
likelihood methods: states and parameters from the equations of interest are
determined simultaneously. A maximum likelihood method would consist in
first deriving a test of structural change for panel data, which was not avail-
able at the time this paper was built10; second, in running some tobit panel
model with fixed-effects on each of the distinct estimated periods, holding
into account that some correction of standard errors might be brought to
these second-step estimates. Despite a slight “entry cost”, it is clear that
MCMC procedures are much easier to implement11.

The main difficulty arises from missing data, mainly the unknown regime
states. As the target distribution is p (Θ, s1...sT |Y ) one extracts information
on the states (s1...sT ) by inferring the conditional distribution p (s1...sT |Θ, Y ) .

The procedure begins with a data augmentation step, which consists in sim-
ulating the unobserved states ŝt from the former distribution. Following
Chib (1996), this is achieved with a forward pass through the data, which
stores the probability distributions p(st|Y, Θ) for all t ≤ T, and with a back-
ward pass where the states ŝt are simulated from the above distributions.
Then parameters are drawn from the conditional distribution p(Θ|Y, ŝ1...ŝT )
updated via Bayes’ rule

p (Θ|Y, ŝ1...ŝT ) =
∏

k=0,1

p (πk|ŝ1...ŝT )
∏

t∈Tk={t/st=k}

p(θk|ŝt = k, Yt) (7)

∝
∏

k=0,1

p (πk|ŝ1...ŝT ) p (θk)
∏
t∈Tk

p(Yt|ŝt = k, θk)

=
∏

k=0,1

p (πk|ŝ1...ŝT ) p (θk)
∏
t∈Tk

∏
i

f(yi,t|ŝt = k, θk)

In practice the algorithm is the following:

Algorithm

1. Step 1 (Forward pass): Set p(s1|Y0,Θ) to be the stationary distribution
of π, which is drawn from its unconditional distribution. Compute

10xxx
11Though this study has been conducted independantly, Tsionas-Kumbhakar (2004)

look at a roughly similar model designed for a macroeconomic application. However, they
do not consider the important specificities of microeconomic data such as endogeneity and
censoring, which are the key ingredients in this study.
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recursively for t = {1, 2...T}

p (st = k|Yt,Θ)=
p (st = k|Yt−1,Θ) f (yt|Yt−1, θk, πk)∑
l=0,1 p (st = l|Yt−1,Θ) f (yt|Yt−1, θl, πl)

where

p (st = k|Yt−1,Θ)=
∑
l=0,1

p (st = k|st−1 = l,Θ) p (st−1 = l|Yt−1,Θ)

2. Step 2 (Backward pass): Simulate sT from p (sT |Y, Θ) , and compute
recursively for t = {T − 1, T − 2...1}

p (st = k|Yt,Θ, ŝt+1) =
p (st = k|Yt,Θ) p (ŝt+1|st = k, π)∑

l=0,1 p (st = l|Yt,Θ) p (ŝt+1|st = l, π)

where p (ŝt+1|st, π) is the first column of π when ŝt+1 = 0, the second
otherwise. Then ŝt can be drawn from the above distribution.

3. Step 3 (Parameters sampling): Given (ŝ1...ŝT ), simulate θk from its
posterior conditional distribution

p(θk)
∏

t∈Tk={t/st=k}

∏
i

f(yi,t|ŝt= k, θk)

With the subsequent priors and independance assumptions, the pos-
terior distributions admit closed-forms given by:

• βk NK

(
Bk(B

−1
0 β0+ 1

σ2
k

∑N
i=1,t∈Tk

x
′
i,t (yi,t − zi,tbi,k) ), Bk= (B−1

0 β0+ 1
σ2

k

∑N
i=1 x′i,txi,t)

−1
)

• bi,k N
(
Di

1
σ2

k

∑N
t∈Tk

z
′
i,t(yi,t − xi,tβk), Di = (D−1

k + 1
σ2

k

∑N
t∈Tk

z
′
i,tzi,t)−1

)
.

• D−1
k  WL

(
ρ0 + N ; (R−1

0 +
∑N

i=1 bi,kb
′
i,k)

−1
)

• 1
σ2
1
 G

(
ν0+N . card (T1)

2 ; δ0
2 + 1

2

∑N
i=1,t∈T1

v2
i,t

)
where vi,t = yi,t − xi,tβ1 − zi,tbi,1, t ∈ T1

• 1
σ2
0
 T G[ 1

σ2
1

,+∞)

(
ν0+N . card (T0)

2 ; δ0
2 + 1

2

∑N
i=1,t∈T0

v2
i,t

)
where vi,t = yi,t−xi,tβ0−zi,tbi,0, t ∈ T0 and T GA represents a truncated
Gamma distribution on the interval A.
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• πi D (αk,0 + nk,0;αk,1 + nk,1)

where nk,0 (resp. nk,1) is the number of transitions from state k to
state 0 (resp. 1): this updates the transition matrix given (ŝ1...ŝT ).

Treating the sampling of bi in one block independently from the slopes β can
be somewhat tricky because of mixing problem of the Gibbs algorithm. In
practice one should use a large number of iterations12 and choose reasonable
hyperparameters.

When independance between unobserved heterogeneity and explanatory
variables is imposed, the algorithm can be adapted. Chib and Carlin (1999)
propose interesting blocking schemes, a simple one consisting in sampling β

marginalized over bi and then sampling bi conditionally on β. In practice this
scheme is very simple because the density of the observations marginalized
over bi is gaussian as well

f(yi,t|st = k, βk, σk, Dk) N (xi,tβk;Vi,t,k) , with Vi,t,k = σ2
k + zi,tDkz

′
i,t

(8)
The sampling of βk in the former algorithm is modified by taking bi,k = 0
and adapting the scheme to the new covariance matrix.

12in what follows M = 50000 for the real data case.
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4 Test of the procedure

In order to test the estimator, four datasets are simulated with the following
structure

yi,t = xi,tβst + zi,tbi,st + σstui,t

xi,t = υi + εi,t εi,t⊥ui,t, εi,t⊥bi,st

(bi,0, bi,1, υi)  N (0;V )

V =

 D0 Γ0,1 Γ0,υ

D1 Γ1,υ

σ2
υ


Random effects and a time-constant component of explanatory variables
have a joint normal distribution with non-trivial covariance matrix. It allows
for correlation between random effects of the two regimes as well as with
regressors. The choice of prior parameters marginally affects final estimates
because they are sufficiently vague. I practice I take ρ0 = ν0 = 12 while
R0 and δ0 are calibrated on a coefficient of variation of variances’ priors of
0.513. Then ∀ i, j αi,j = 1 so that the prior transition probabilities are
uniform on [0,1]. Each estimation consists in 10 000 iterations, and the first
five hundred ones are discarded from the final sample. Table I compares the
estimated values with the true ones.

The first model considers the case without unobserved heterogeneity.
Gibbs sampling perfectly estimates the underlying parameters and detects
the hidden states, although one transition probability is imprecisely esti-
mated. The second model introduces unobserved heterogeneity, while the
third model examines the multivariate case with random coefficients uncor-
related across regimes. All estimates fit the true values, with few exceptions
for the transition probabilities, which anyway are not parameters of inter-
est in the empirical application. Figure 1 depicts the values simulated by
the Gibbs sampling algorithm in both regimes: the coefficient of the first
regressor, the variance of residuals and of the first random component, the
correlation between random effects, the transition probabilities, the expected
and real states.

13more precisely I specify δ0 =
ν2
0

4+ν
m0 and R0 = ρ+4

ρ2 m1
1, with m0 and m1 being prior

values on respectively the average variances σ2
k and Dk.
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Last model is the same excepted that it introduces some correlation be-
tween explanatory variables and the corresponding random coefficient equal
to 0.6 (resp. 0.3) in the first (resp. second) regime, as well as some corre-
lation between random components across the two regimes (equal to 0.5).
All underlying parameters are consistently estimated, as well as most of pa-
rameters of secondary interest such as the correlations. Figure 2 depicts the
convergence of estimates in the fourth model, displaying in particular the
correlation between random components and regressors in both regime.

5 Accounting for censored data

Due to confidentiality constraints or unemployment many economic indi-
vidual files are censored, which can lead to serious bias in the estimates if
the censoring rate is too high. As a goal is to apply the estimator to wage
dynamics over thirty years, this problem is likely to appear because of un-
employment or exit from the labor force. A basic view is that individuals
do not work if the wage they might earn falls below a certain level, called
the reservation wage. As a first approximation, I will assume that the reser-
vation wage does not depend on any observed or unobserved characteristic.
It is indeed the case that individuals could have some heterogeneous pref-
erences or that education, familial background, household composition or
former participation could affect current participation to the labour market.
This is exemplified in a detailed study by Hyslop (2003) for married women
in the US. Introducing those refinements would not make the model numeri-
cally intractable because the algorithm relies on simulations. But one would
have to introduce quite different tools such as the Metropolis-Hastings step
in order to deal with non-linearity. For the sake of simplicity, the reservation
wage is kept constant across individuals.

Thus, the wage distribution is left-censored, and a simple way to correct
the former algorithm is to use a latent variable model following Chib (1992):

y∗i,t = xi,tβst + zi,tbi,st + σstui,t i ≤ N, t ≤ T

yi,t = y∗i,t1y∗i,t>τt

bi,st  N (0, Dst) and ui,t  N (0, 1) (9)

Although the level of censoring might differ across time and individuals, it
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is assumed to be constant in the following simulations. Interestingly, the
algorithm is only marginally modified. The posterior distribution becomes

p (Θ|Y ∗, ŝ1...ŝT ) ∝
∏

k=0,1

p (πk|ŝ1...ŝT ) p (θk)
∏

i,t∈Tk={t/st=k}

f(y∗i,t|ŝt = k, θk)

=
∏

k=0,1

p (πk|ŝ1...ŝT ) p (θk) x

∏
i,t∈Tk

f(yi,t|ŝt = k, θk, yi,t > 0)
∏

i,t∈Tk

f(y∗i,t|ŝt = k, θk, yi,t = 0) (10)

Then Bayes rule provides

f(y∗i,t|ŝt = k, θk, yi,t = 0) ∝ f(y∗i,t|ŝt = k, θk)f(yi,t = 0|ŝt = k, θk, y
∗
i,t)

= f(y∗i,t|ŝt = k, θk)1y∗i,t≤τt

Given the gaussian specification of f, the unobserved values of y∗i,t are thus
drawn from a truncated normal T N (−∞,τt]

(
xi,tβk + zi,tbi,k;σ2

k

)
.

A correction of the above algorithm immediately follows from includ-
ing the unobserved values of y∗i,t into the sampling. The former algorithm
remains the same except that it ends with a data augmentation step to
simulate censored observations:

Algorithm for censored data

1. Steps 1 to 4 are the same as before provided that yi,t is remplaced by
y∗i,t in the sampling of parameters.

2. Step 5 (Censoring correction): Sample y∗i,t  T N (−∞,τt]

(
xi,tβk + zi,tbi,k;σ2

k

)
for any censored observation.

In practice I test this model with three different datasets while τt corre-
sponds to the 10% quantile of the vector Y . As before, the sampling consists
in 10000 Gibbs iterations. Table 2 depicts the results for multivariate cases
with (model III) and without (models I and II) correlation between explana-
tory variables and random components. The first model uses the same data
as model 3 from Table 1, excepted that some observations are censored.
The second model is virtually the same excepted that it introduces a de-
terministic trend and increases the degree of correlation between random
effects in the second regime. The third model uses the same data as model
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4 from Table 1, adding only censoring. Estimates converge reasonnably well
towards the right values for all the models. A look at Figure 3 shows how
the censored data is simulated at final iteration in the third model. The left
tail of the distribution might be a little bit too thick, but overall the results
are satisfactory.

6 Application to US wages dynamics from 1968 to

2001

6.1 Model and data

I use the PSID (SRC part) from 1968 to 2001 and study seven different co-
horts. The range of age spans from 41-45 years old in 1968 to 26-30 years old
in 1983. The dynamics of hourly earnings are assessed in a Mincerian equa-
tion with regime-varying coefficients. This model also accounts for censored
data, and potentially endogenous regressors. Its general form is

y∗i,t = a0,st + a1,stEi,t + (a3,st + a4,stEi,t)Ait + (a5,st + a6,stEi,t)A2
it + vi,t

vi,t = bi,st + σstui,t

yi,t = y∗i,t1y∗i,t>τt

bi,st  N (0, Dst) , ui,t  N (0, 1) (11)

where st is the unknown state to infer; covariates are age (Ait), squared age
(A2

it), the number of years of schooling (Eit), as well as the interaction of age
and squared age with education. Indeed, interaction effects are both theo-
retically and empirically motivated as suggested by Heckman-Locher-Todd
(2005). They imply that the return to education varies with age. With
this specification, one controls for time effects on the return to schooling
through the structural change, for age effects through the interaction men-
tionned above, and for cohorts effects since all estimates are cohort-specific.

Card (2001), Lemieux (2006b) and Deschênes (2006) introduce two sources
of heterogeneity with a classical unobserved ability component but also het-
erogeneous returns to schooling. This is particularly attractive in cross-
sectional regressions from the 80s because this specification naturally links
the rises in inequality between and within-groups. Indeed, a growth in the
return to schooling magnifies the heterogeneity in this return and the resid-
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ual inequality associated to it. But this study starts in the 70s during which
between and within-groups inequalities have varied in a opposite way, so that
the relevance of heterogeneous returns is not obvious in this framework.

Similarly, a potential model for earnings dynamics allows for unobserved
heterogeneity interacted with a time trend14. As discussed by Meghir and
Pistaferri (2004), who use the PSID as well, this would imply long-term
autocorrelations of the first-differenced residuals, which cannot be empiri-
cally detected. One step further, the authors decompose the residuals into
a transitory MA noise and a random walk that represents the dynamics
of permanent income - and indeed they show that allowing for shocks on
permanent income is empirically motivated. Interestingly, they graph the
variance of the permanent shocks, which follow an inverted U-curve centered
on the beginning of the 80s. The model considered here is compatible with
those empirical evidence since it accounts for permanent shocks through the
structural change: it simply substitutes a Dirac distribution to the vari-
ance’s inverted U-curve. For simplicity, transitory components are ignored,
which might only affect efficiency of estimates.

Last, it is worth underlining that the change of regime is specific to each
cohort. As Card-Lemieux (2001) have underlined the imperfect substitua-
bility of workers of different age, it is relevant to investigate differences in the
timing of the structural change across cohorts. Even if it is maybe unlikely,
the model leaves opened the possibility that a cohort experiences a transi-
tory increase in the variance of residuals, hence a regime switching rather
than a structural change. This possibility could be easily removed by con-
straining the coefficient π1,1 in the transition matrix to 1, thus creating an
absorbing state. The estimation of other parameters would be exactely the
same. Also, it is worth underlining that a single transition from state 0 to
state 1 is sufficient to identify the whole transition matrix because there are
only two states and coefficients of the transition matrix are linearly linked.

In the data, some observations are missing and others are outliers with
high probability, typically when income falls at very low levels. I censore
all observations below a threshold equal to a zero log-hourly income in real
terms (1968 prices), which means 4.3$ per hour in 2001 prices. With this
assumption, the percentage of censored data is typically around 10%.

14for instance, because of heterogenous returns to experience.
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Table 3 provides some elementary descriptive statistics15. The increase
in the mean educational level is a well-known tendency. The slowdown of
higher education in the beginning of the 80s is also much debatted as a
potential explanation for the increase in the college premium at that period.
The percentage of people acquiring some education along their lifetime -
subsequently called the “Movers” - varies from 12.4% to 38.2%. Cohorts
of workers older than 45 years old in 1968 were not included because the
percentage of “Movers” was too low, as it was also the case for younger
cohorts of the late 80s. I also reported the percentages of college graduates
and post-graduates at the end of working life, as well as the percentages of
college or post-graduate degrees among acquired years of education16. It
will be useful in the discussion of the results.

6.2 Results

This model enables to calculate a return to education at a given age for
each cohort, as well as an unobserved ability variable for each individual in
each regime. It shows whether a structural break has affected each cohort,
and how the age-profile of the return to education has been modified across
regimes. In a second step, I can aggregate all individuals aged between
26 and 64 and compute the college premium year by year using Mincerian
regressions. Whether I introduce or not the individual unobserved ability
variable into those cross-sectional equations, the estimated college premium
will be purged or not from the endogeneity bias. The difference between
both estimates will indicate how much of the college premium is explained by
unobserved heterogeneity. The procedure would remain the same whatever
the number of heterogenity sources included in the model.

As a result, the global impact of the structural change on the return
to education is depicted in Figures 4 to 13: for the oldest cohort in 1968
and the youngest cohort after 1980, the model detects only one regime.
For other cohorts, the model detects a change in the regime occuring in
the beginning of the 80s. The second and current regime is characterized
by higher variances of both residuals and unobserved heterogeneity, and

15Statistics for education refer to percentages of total observations along the working
life.

16hence one “Mover” can acquire several post-graduate degrees and counts for several
moves.
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different profiles of the return to education across age: the shift of the
return to education profile goes upward for the workers aged between 31
and 40 years old in 1968, but goes downward for the younger ones. This
suggests that older cohorts have benefited from the organizational change of
the early 80s relatively more than younger cohorts. If there has been a re-
organization process in which skilled individuals were concentrated within
some firms as described by Kremer-Maskin (1999) among others, then it is
likely that the oldest skilled workers were able to obtain the best positions
and even capture some rent from this re-organization.

The main result is given in Table 4, which displays the level of correlation
between education and unobserved ability, the correlation of unobserved
heterogeneity across both regimes , as well as the size of the ability premium
- i.e. the average unobserved ability of college graduates minus the average
unobserved ability of other workers.

First, the correlation of unobserved heterogeneity across the two regimes
is about 0.5 for any cohort experiencing the structural change. It pleads for
a multi-dimensional vision of ability: some skills have been rewarded dif-
ferently in the second regime compared to the first one, but this change in
the return has not been uniform across skills. Otherwise, the correlation
of unobserved ability across regimes would be equal to one. Bowles-Gintis-
Osborne (2000) review many factors with a significant impact on earnings
such as IQ, psychological or physical traits, parental background and adapt-
ability to a new economic environment in general. This suggests that some
of them, which remain to be isolated, have been rewarded differently in the
new managerial era of the 80s.

Second, the two cohorts of workers aged between 26 and 30 years in
1973 and 1978 display significant and positive levels of correlation between
education and unobserved heterogeneity in the second regime. The ability
premium amounts to respectively 0.14 and 0.17, namely a rough 30% of the
college premium. Why is this significant correlation existing only in the
second regime? The answer could follow from what precedes: some skills
associated to schooling have become rewarded after the structural change,
while their return was null in the first regime. If viewed as innate, those
skills were likely existing in the first regime, so that only an increase in their
return can explain both the null and positive correlations in respectively
regimes 1 and 2. Admittedly, it is hard to put forward a particular kind
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of skill given the lack of knowledge on this point in the data. But it is
true that “managerial skills” are a good candidate, given that they are both
associated with education and the changing forms of production in the early
80s.

An examination of the composition of education and educational mo-
bility in Table 3 goes into this direction and provides a piece of answer to
the following question: why is the positive sorting of unobserved ability and
college graduation taking place in only two cohorts? It is striking that the
two relevant cohorts display the largest amount of higher education. Con-
sider in particular the percentage of post-graduates at the end of working
life, denoted as “PG end” in Table 3. The two highest values are 19.4% and
25.2% and correspond to the cohorts of workers respectively born in 1943-
1947 and 1948-1952, the two particular cohorts we are interested in. These
higher levels are partly explained by adult educational mobility since re-
spectively 49% and 66% of “Moves” concern a post-graduate degree. Thus,
it is plausible that in the re-organization process of the early 80s, a large
proportion of college graduates from these two cohorts found profitable to
acquire a Master degree or a PhD. Those workers were likely to be the most
endowed with “managerial skills”, which return had increased due to new
forms of production.

Importantly, this taste for higher education was much lower among for-
mer cohorts and has decreased in subsequent ones. Therefore, the most
simple hypothesis is that the sorting of ability and college graduation de-
pends positively on the percentage of college graduates within each cohort.
The intuition is the following: if individuals with “managerial skills” have a
comparative advantage to graduate from college relatively to other individ-
uals, then the increase in overall graduation rates should benefit relatively
more to those skilled individuals, and the sorting of ability should increase.
This would explain why the ability premium is higher among the cohorts
with the largest percentage of college graduates.

In his essay, Acemoglu (2002) suggests that unless particular distribu-
tional assumptions on unobserved ability, this intuition is not true under
perfect sorting, namely when the fact of obtaining a college degree is purely
an increasing function of ability17. I show in the following that a simple

17Acemoglu (2002) shows that under perfect sorting the ability premium is constant if
the distribution of unobserved ability is uniform. In fact one can show that under perfect
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model of imperfect sorting can support this intuition.
Consider two types of workers 1, 0 endowed respectively with ability

a = 1 and a = 0. The “skilled type” 1 is in a fixed proportion p. Notice pS
1

(resp. pS
0 ) the probability that type 1 (resp. 0) has at least a college degree.

Then the proportions of college graduates and the average levels of ability
among college graduates (group S) and non college graduates (group U) are
respectively

pS = ppS
1 + (1− p)pS

0

aS =
ppS

1

pS

aU =
p(1− pS

1 )
1− pS

(12)

The comparative advantage of the skilled type is that pS
0 = λpS

1 with λ < 1.
Hence skilled individuals have a higher probability of graduation relatively
to type 0. This leads to pS = pS

1 (p + (1− p)λ) and aS = p
(p+(1−p)λ) which is

a constant. In contrast, basic algebric manipulations lead to

∂aU

∂pS
=

p(1− p)
(p + (1− p)λ)

(λ− 1) < 0

So it is clear that the ability premium aS − aU augments when overall
college graduation pS augments. This potentially explains why the ability
premium is higher in the two cohorts with the highest percentages of college
graduates and post-graduates.

The last question is about the empirical bias in the college premium
when it is computed in cross-sections. Once each worker is attributed her
level of unobserved heterogeneity in each year, it is possible to compare
the coefficient of a College dummy in a Mincerian cross-sectional regression,
including or excluding unobserved heterogeneity. For that purpose a Tobit
estimator is used in order to take into account censoring. Last figure shows
the result: the causal return to college is approximatively 30% lower than
that usually calculated. This conclusion is compatible with Chay and Lee
(2000) and similar to Deschênes (2002).

sorting the ability premium is a decreasing (resp. increasing) function of the overall college
graduation rate if the distribution of ability is skewed to the right (resp. to the left).
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7 Conclusion

This paper presents a general class of panel models that encompasses corre-
lated random coefficients models and regime switching models and accounts
for censored data. This is the minimal statistical framework in order to
model earnings trajectories of workers on the US labour market since 1968.
It proposes an original Gibbs sampling procedure to estimate the model. I
apply the estimator to seven US 5-years cohorts of workers, and then com-
pute the cross-sectional return to schooling with and without accounting for
the correlation between a college dummy and estimated unobserved skills.
The endogenous part of the college premium, called the ability premium,
represents circa 30% of its value and is carried by the two most educated co-
horts. A simple model where skilled workers have a comparative advantage
to graduate from college can account for this fact.
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Figure 6: 31-35 years old in 1968
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Figure 7: 26-30 years old in 1968
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