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Abstract

In a regression model with univariate censored responses, a new estimator
of the joint distribution function of the covariates and response is proposed,
under the assumption that the response and the censoring variable are inde-
pendent conditionally to the covariates. This estimator is an extension of the
multivariate empirical function used in the uncensored case. Furthermore,
under some simple additional identi�ability assumption, this estimator is not
sensible to the "curse of dimensionality", so that it allows to infer on models
with multidimensional covariates. Integrals with respect to this empirical
measure are considered. Consistency and asymptotic normality of these in-
tegrals over a class of functions is obtained, by deriving asymptotic i.i.d.
representations. Several applications of the new estimator are proposed.

Key words : distribution function, right censored regression, law of large
numbers, asymptotic normality, kernel estimators.

MSC 2000 : 62N01, 62G30, 60F05.

Résumé

Dans le cadre d'un modèle de régression où la variable expliquée est uni-
variée et censurée à droite aléatoirement, nous proposons un nouvel esti-
mateur de la fonction de répartition jointe de la variable expliquée et des
variables explicatives, sous l'hypothèse que la censure et la variable d'intérêt
sont indépendantes conditionnellement aux variables explicatives. Cet esti-
mateur apparaît comme une extension de la fonction de répartition empirique
multivariée utilisée en l'absence de censure. Par ailleurs, sous des hypothèses
d'identi�abilité supplémentaires, cet estimateur n'est pas sensible au "�éau
de la dimension," de sorte qu'il permet de considérer des modèles avec des
variables explicatives multivariées. Nous considérons les intégrales par rap-
port à la mesure dé�nie par cet estimateur. Des résultats de loi des grands
nombres et de normalité asymptotique, uniformes sur des classes de fonctions,
sont démontrés à partir de représentations asymptotiques i.i.d. Plusieurs ap-
plications sont proposées.

Mots clés : fonction de répartition, régression en présence de données
censurées, loi des grands nombres, normalité asymptotique, estimateurs à
noyau.



1 Introduction
Under random censoring, estimation of the distribution of a single variable
Y is traditionally carried out by using the Kaplan-Meier estimator (1958).
A vast scope of approaches has been developed to study the theoretical be-
havior of this estimate, and of Kaplan-Meier integrals (KM−integrals in the
following). See e.g. Gill (1983), Stute and Wang (1993), Stute (1995), Akri-
tas (2000). A crucial identi�ability assumption to obtain convergence is the
independence of Y and C, the censoring variable.

In presence of (uncensored) covariates X, it seems natural to extend
Kaplan-Meier's approach, but now to estimate a multivariate distribution
function, that is F (x, y) = P(X ≤ x, Y ≤ y). However, one must �rst extend
the identi�ability assumption to this regression framework. In the spirit of
KM−estimator, one may impose that Y and C are independent condition-
ally to X, which seems to be the slightest identi�ability assumption. Under
this assumption, Beran (1981) provided an estimate of the conditional dis-
tribution function F (y | x) = P (Y ≤ y | X = x). In this approach, kernel
smoothing is introduced into Kaplan-Meier's approach to account for the
information on the interest variable contained in the covariates. Dabrowska
(1984, 1990) studied asymptotics of Beran estimate. Van Keilegom and Akri-
tas (1999) proposed, with some additional assumptions on the regression
model, a modi�cation Beran's approach and derived asymptotic properties
of their estimate in the case X ∈ R. A major di�culty in studying this kind
of estimate stands in the non-i.i.d. sums that may be involved in. Therefore,
several asymptotic i.i.d. representations of the estimated conditional distri-
bution function have been proposed, all in the case where x is univariate,
see e.g. Van Keilegom and Akritas (1999), Van Keilegom and Veraverberke
(1997). In particular, Du and Akritas (2002) proposed an uniform i.i.d. rep-
resentation that holds uniformly in y and x.

When it comes to the multivariate distribution function F (x, y), Stute
(1996) proposed an extension of KM−estimator, and furnished asymptotic
representation of integrals with respect to this estimator that turned out to
have interesting practical applications for regression purpose in some situ-
ations, see also Stute (1999), Gonzalez-Manteiga, Sanchez-Sellero and Van
Keilegom (2005), Delecroix, Lopez and Patilea (2006), Lopez and Patilea
(2007). Moreover, in this approach, the covariates do not need to be one-
dimensional. Nevertheless, consistency of Stute's estimator relies on assump-
tions that may be unrealistic in some situations, especially when C and X
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are not independent. On the other hand, under the more appealing assump-
tion that Y and C are independent conditionally to X, Lo and Singh (1986)
and Van Keilegom and Akritas (1999) used an empirical integral of Beran
estimator. Van Keilegom and Akritas (1999) also provided some alternative
estimate in their so-called �scale-location� model. To our best knowledge,
i.i.d. representations of integrals with respect to these estimated distribu-
tions have not been provided yet. Moreover, it is particularly disappointing
to see that, in the uncensored case, the empirical distribution function of
(X ′, Y ) can not be seen as a particular case of these approaches. On the con-
trary, KM -estimator is a generalization of the (univariate) empirical distri-
bution function. As a large amount of statistical tools are seen to be integrals
with respect to the empirical distribution function, it is still of interest to
produce some procedure that would generalize this simple and classical way
to proceed to the censored framework. In fact, an important preoccupation
in the study of censored regression is to extend procedures existing in the
uncensored case. For this reason, it is of real interest to use the most natural
extension of the uncensored case's concepts.

In this paper, we propose a new estimator that generalizes both uni-
variate Kaplan-Meier estimator, and the multivariate empirical distribution
function. Using the results of Dabrowska (1989) and Akritas and Du (2002),
we provide some i.i.d. representation of integrals with respect to this estima-
tor. Furthermore, we propose a reasonable modi�cation of the identi�ability
assumption that may allow us to consider multivariate covariates. The paper
is organized as follows. In section 2, we present the model and motivate the
introduction of our new estimator of F (x, y). In section 3, we present the
asymptotic properties of integrals with respect to this estimate. Section 4 is
devoted to some applications of these results, while section 5 gives the proof
of some technical results.

2 Model and estimation procedure
2.1 Regression model and existing estimators
We consider a random vector (X ′, Y ) ∈ Rd+1, and a random variable C which
will be referred to as the censoring variable. If variables X and Y are fully
observed, and if we dispose on a n-sample of i.i.d. replications (X ′

i, Yi)1≤i≤n,
a traditional way to estimate the joint distribution function F (x, y) = P(X ≤
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x, Y ≤ y) is to consider the (multivariate) empirical distribution function,

F̂emp (x, y) =
1

n

n∑
i=1

1Xi≤x,Yi≤y, (2.1)

where 1A denotes the indicator function of the set A. If we are interested in
estimating E[φ(X,Y )] =

∫
φ(x, y)dF (x, y) for some measurable function φ,

we can proceed by using
∫

φ(x, y)dF̂emp(x, y) =
1

n

n∑
i=1

φ (Xi, Yi) .

Studying the behavior of these integrals is then more general than simply
studying the distribution function (2.1). Asymptotic results on these empir-
ical integrals may be derived by applying the classical strong law of large
numbers and the central limit theorem. In a censored regression model, the
situation is di�erent since the variable Y is not directly available. Indeed,
instead of Y , one observes

T = Y ∧ C,

δ = 1Y≤C .

Observations consist of a n−sample (X ′
i, Ti, δi)1≤i≤n. In this framework, the

empirical distribution function can not be computed, since it depends on
unobserved quantities Yi. In absence of covariates X, the univariate distri-
bution function P(Y ≤ y) can be estimated computing the Kaplan-Meier
estimate,

Fkm (y) = 1−
∏
Ti≤y

(
1− 1∑n

j=1 1Tj≥Ti

)δi

.

Asymptotics of Fkm and of integrals with respect to Fkm can be found in
Stute and Wang (1993) and Stute (1995). Conditions for convergence are
essentially of two kinds : moment conditions (which can be interpreted as
assumptions on the �strength� of the censoring in the tail of the distribu-
tions, see condition (1.6) in Stute (1995), and an identi�ability condition
that are only needed to ensure that Fkm converges to the proper function.
This identi�ability condition, in the univariate case, reduces to

Y and C are independent. (2.2)
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In a regression framework, an important question is to extend condition (2.2)
to the presence of covariates. A �rst way to proceed would be to assume that

(X ′, Y ) and C are independent. (2.3)

However, assumption (2.3) is too restrictive, since, in several frameworks, the
censoring variable may depend on X. Stute (1996) proposed to replace this
assumption by assumption (2.2) and

P (Y ≤ C | X, Y ) = P (Y ≤ C | Y ) . (2.4)

Under these assumption (2.2) and (2.4), Stute (1996) studied the asymptotics
of the following estimate, that is

FS (x, y) =
n∑

i=1

Win1Xi≤x,Ti≤y,

where Win denotes the jump of Fkm at the i-th observation. Observing that

Win =
1

n

δi

1−Gkm (Ti−)
,

where Gkm (t) denotes the Kaplan-Meier estimate of G(t) = P (C ≤ t) (see
Satten and Datta, 2000), this estimator may be rewritten as

FS (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1−Gkm (Ti−)
. (2.5)

From this writing, one may observe two interesting facts. First, this esti-
mate is a generalization of the empirical distribution function used in the
uncensored case. Indeed, in absence of censoring, 1−Gkm (t) ≡ 1 for t < ∞,
and δ = 1 a.s. Second, FS can be seen as an approximation of the empirical
function

F̃S (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1−G (Ti−)
,

function that can not be computed in practice since G is unknown. The
identi�ability conditions (2.2) and (2.4) (or (2.3)) are needed to ensure that
E[F ∗

S(x, y)] = F (x, y).
However, conditions (2.3) and (2.4) are still too strong for some appli-

cations (see e.g. Beran, 1981, Dabrowska, 1987, 1989, Van Keilegom and
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Akritas, 1999). The slightest condition that one may whish to impose, in the
spirit of (2.2), is

Y and C are independent conditionally to X. (2.6)

Under this condition, most of the e�orts have been concentrated in estimating
F (y | x) = P(Y ≤ y | X = x). Beran (1981), in the case d = 1, proposed to
generalize the approach of Kaplan and Meier (1958), leading to an estimate

F̂ (y | x) = 1−
∏
Ti≤y

(
1− win(x)∑n

j=1 win(x)1Tj≥Ti

)δi

, (2.7)

where, introducing a kernel function K,

win(x) =
K

(
Xi−x

h

)
∑n

j=1 K
(

Xj−x

h

) .

Dabrowska (1987, 1989) studied uniform consistency and asymptotic normal-
ity of Beran's estimate. Van Keilegom and Veraverberke (1999), in the case
of a �xed design, provided an asymptotic i.i.d. representation of F̂ (y | x),
that is a representation of F̂ (y | x) as a mean of i.i.d. quantities plus a re-
mainder term which becomes negligible as n grows to in�nity. Recently, Du
and Akritas (2002) provided an analoguous representation holding uniformly
in y and x for a random X. Van Keilegom and Akritas (1999) proposed
an alternative to Beran's estimate under some restrictions on the regression
model. In particular, they assumed

Y = m (X) + σ (X) ε, (2.8)

for some location function m, some scale function σ, and ε independent from
X.

When it comes to the estimation of the estimation of F (x, y), the only
approach that has been used consists of considering

∫ x

−∞
F̂ (y | u)dF̂ (u) , (2.9)

where F̂ (x) denotes the empirical distribution function of X. Instead of (2.7),
any other estimate of the conditional distribution function may be used, see
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for example Van Keilegom and Akritas (1999) who provided asymptotic i.i.d.
representations for two di�erent estimate based on this principle. To con-
nect another drawback of these procedure with this incapacity to generalize
the empirical distribution function, we must mention that none of these ap-
proaches has been extended successfully to the case d > 1. Of course, the
de�nition of Beran's estimate could be extended to multivariate kernels, even
if the theoretical study has still not been carried out. But the use of non-
parametric regression methods make estimates of the type (2.9) very sensible
to the so-called �curse of dimensionality�, that is the loss of performance of
non-parametric techniques when the number of covariates d increases (d ≥ 3
in practice). This drawback does not a�ect the estimator (2.1) in the uncen-
sored case. For this reason, parametric estimates which can be written as
integrals with respect to (2.1) do not su�er from the curse of dimensionality.
It is still the case using the estimate (2.5) under (2.2)-(2.4) (see Stute, 1999,
Delecroix, Lopez and Patilea, 2006). Unfortunately, this is not the case if we
use (2.9). For this reason, parametric regression has only been considered in
the case d = 1, see Heuchenne and Van Keilegom (2007a, 2007b).

In the following, we propose an estimate of the distribution function which
does not rely on (2.9). It still relies on Beran's estimator, but to estimate
F (x, y), we use an approach which has to be connected to Stute's estimator
(2.5). Indeed, our estimate may be seen as a generalization of the empirical
distribution function, and as an adaptation of (2.5) to a context where (2.3)
and (2.4) are replaced by (2.6). Our estimate is de�ned in section 2.2. Un-
fortunately, it will still be based on multivariate kernel estimates, so that its
asymptotical behavior will only be carried out for d = 1. However, in section
2.3, we propose a modi�cation of this estimate to handle the case d > 1, by
slightly strengthening the condition (2.6).

2.2 Alternative approach
Inspired by the empirical distribution function, we are searching for an es-
timate which puts mass only at the uncensored observations, that is of the
form

1

n

n∑
i=1

δiW (Xi, Ti)1Xi≤x,Ti≤y, (2.10)

where W (Xi, Ti) is some weight which has to be chosen in order to compen-
sate the bias due to censoring. An �ideal� way to proceed would be to use
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weights such as, for any function φ,

E [δiW (Xi, Ti)φ(Xi, Yi)] = E[φ(X, Y )],

so that integrals with respect to the measure de�ned by (2.10) converge to
the proper limit by the law of large numbers. In this case, (2.10) would
appear to be a sum of i.i.d. quantities converging to F (x, y) from the strong
law of large numbers. Under (2.6), observe that, for any function W , and
any function φ,

E [δiW (Xi, Ti)φ(Xi, Ti)] = E [{1−G (Yi− | Xi)}W (Xi, Yi)φ(Xi, Yi)] ,
(2.11)

where G(y | x) denotes P(C ≤ y | X = x). Hence, a natural choice of W
would be

W (Xi, Ti) =
1

1−G (Ti− | Xi)
.

This would lead to

F̃ (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1−G (Ti− | Xi)
. (2.12)

Unfortunately, G(y | x) is unknown. However, it can be estimated using
Beran's method. Denote by Ĝ(y | x) this Beran estimate. The estimate we
propose is

F̂ (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1− Ĝ (Ti− | Xi)
. (2.13)

This type of approach is quite natural in censored regression, see e.g. van
der Laan and Robins (2003) or Koul, Susarla, Van Ryzin (1981). From this
de�nition, we see that this estimate generalizes the empirical distribution
function for the same reasons (2.5) does. Now if we consider a function
φ(x, y), we can estimate

∫
φ(x, y)dF (x, y) by

∫
φ(x, y)dF̂ (x, y) =

1

n

n∑
i=1

δiφ (Xi, Ti)

1− Ĝ (Ti− | Xi)
. (2.14)

This estimator is more di�cult to study than (2.12), since, as it is the case
for Kaplan-Meier integrals, the sums in (2.13) and (2.14) are not i.i.d. In
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fact, each term depends on the whole sample since Ĝ is computed from the
whole sample. In the following section, we will show that

∫
φ(x, y)dF̂ (x, y) =

∫
φ(x, y)dF̃ (x, y) + Sn (φ) .

From (2.11), the classical strong law of large numbers and the central limit
theorem, the �rst integral will converge to

∫
φ(x, y)dF (x, y) at rate n−1/2,

while Sn(φ), under suitable conditions, can be written as an i.i.d sum which
only contributes to the asymptotic variance, but does not modify the limit.

2.3 The case d > 1

In (2.13), a non-parametric kernel estimate appears. Therefore, considering
a large number of covariates raises theoretical and practical di�culties. For
this reason, we propose a slight reasonable modi�cation of the identi�ability
assumption (2.6) which happens to be a good compromise between (2.6) and
(2.3)-(2.4), and under which we will be able to modify the de�nition of F̂
using only univariate kernels. Let g : Rd → R be some known function. The
new set of identi�ability conditions we propose is

Y and C independent conditionally to g (X) , (2.15)

P (Y ≤ C | X,Y ) = P (Y ≤ C | g(X), Y ) . (2.16)
In particular, condition (2.16) will hold if L(C | X,Y ) = L(C | g(X), Y ), that
is if C depends only on g(X) and Y . As an important example, denote X =
(X(1), ..., X(d)). In some practical situations, one may suspect the censoring
variable to depend only on X(k) for some k known.

Another interesting advantage of this model is that it may permit us to
consider discrete covariates. If we refer to the approach of Van Keilegom and
Akritas (1999), we can only consider continuous covariates. Here, we will only
have to assume that g(X) has a density (but not necessary all component of
X). Under this new set of identi�ability conditions, we propose to use

F̃ (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1−G (Ti− | g(Xi))
, (2.17)

F̂ (x, y) =
1

n

n∑
i=1

δi1Xi≤x,Ti≤y

1− Ĝ (Ti− | g(Xi))
. (2.18)
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Note that using the set of condition (2.15)-(2.16) does not permit to
prevent the estimators of type (2.9) from the curse of dimensionality. In
fact, using estimators (2.9), we still need to estimate F (y | x), no matter the
identi�ability conditions.

3 Asymptotics
To simplify the notation, let z = g(x) and Zi = g(Xi). We provide asymptotic
i.i.d. representations of integrals of the type (2.14) which hold uniformly over
a class of functions F .

3.1 Assumptions
We list here some assumptions that are needed to ensure consistency and
asymptotic normality of our estimate. We will use the following notations to
refer to some (sub-)distribution functions,

H (t) = P (T ≤ t) ,

H (t | z) = P (T ≤ t | Z = z) ,

H0 (t | z) = P (T ≤ t, δ = 0 | Z = z) ,

H1 (t | z) = P (T ≤ t, δ = 1 | Z = z) .

Assumptions on the model.

Assumption 1 The variable Z = g(X) belongs to a compact subset X ⊂ R.
The distribution function of Z has three bounded derivatives on the interior
of X . Furthermore, the density fZ (z) satis�es

inf
z∈X

fZ (z) > 0.

Assumption 2 Let τH,z = inf{t | H(t | z) < 1}. There exists some real
number τ < τH,z for all z ∈ X .

Assumption 2 has to be connected with the bad performances of Beran's
estimator in the tail of the distribution. This assumption is present in Du
and Akritas (2002). In Van Keilegom and Akritas (1999), this assumption
is avoided only through the speci�c form of their scale-location regression
model.
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The important situation that we have in mind in which Assumption 2
holds, is when, for all x, the support of the conditional law L(Y | Z = z)
is [a(z), τH ] ⊂] − ∞, +∞[, where the upper bound τH does not depend on
z and can be �nite or not (for example, this condition is ful�lled when Y is
gaussian conditionally to Z = g(X)). In this case, τ can be chosen arbitrary
close to τH .

Assumptions on the regularity of the (sub-)distribution func-
tions.

We will assume that the variable Z = g(X) is continuous, but the re-
sponses may not be. For any function J(t | z) we will denote by Jc(t | z) the
continuous part, and Jd(t | z) = J(t | z)− Jc(t | z).

Assumption 3 Functions H and Hc (and consequently Hd) have two deriva-
tives with respect to z. Furthermore, these derivatives are uniformly bounded
for y < τ .

Assumption 4 For some positive nondecreasing bounded (on [−∞; τ ]) func-
tions L1, L2, L3, we have, for all z,

|Hc(t1 | z)−Hc(t2 | z)| ≤ |L1 (t1)− L1 (t2)| ,∣∣∣∣
∂Hc

∂z
(t1 | z)− ∂Hc

∂z
(t2 | z)

∣∣∣∣ ≤ |L2 (t1)− L2 (t2)| ,
∣∣∣∣
∂H0c

∂z
(t1 | z)− ∂H0c

∂z
(t2 | z)

∣∣∣∣ ≤ |L3 (t1)− L3 (t2)| ,

the last two assumptions implying the same kind for ∂H1c/∂z.

Assumption 5 The jumps of F (. | z) and G(. | z) are the same for all z.
Let (d1, d2, ...) be the atoms of G.

Assumption 6 F (. | z) and G(. | z) have two derivatives with respect to z,
with the �rst derivatives uniformly bounded (on [−∞; τ ]). The variation of
the functions ∂zF (. | z) and ∂2

zF (. | z) on [−∞; τ ] is bounded by a constant
not depending on z.
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Assumption 7 For all di, de�ne

si = sup
z
|F (di− | z)− F (di | z)| ,

s′i = sup
z

∣∣∣∣
∂F

∂z
(di− | z)− ∂F

∂z
(di | z)

∣∣∣∣ ,

ri = sup
z
|G(di− | z)−G(di | z)| ,

r′i = sup
z

∣∣∣∣
∂G

∂z
(di− | z)− ∂G

∂z
(di | z)

∣∣∣∣ .

Then
∑

di≤τ si + s′i + ri + r′i < ∞.

Assumptions on the kernel.

Assumption 8 The kernel K is a symmetric probability density function
with compact support, and K has bounded second derivative.

Assumption 9 The bandwidth h satis�es (log log n)n−1h−2 = O(1), and
nh5(log n)−1 = O(1).

Assumptions on the family of functions. To achieve uniform con-
sistency over a class of functions, it is necessary to make assumptions on the
class of functions F .

Assumption 10 The class F is P-Glivenko-Cantelli (cf. Van der Vaart
and Wellner, 1996, page 81) and has an integrable enveloppe Φ satisfying
Φ(t) = 0 for t ≥ τ, for some τ as de�ned in Assumption 1.

For asymptotic normality, we will need more restrictions on the class F .
Let N(ε,F , L2) denote the covering number (cf. Van der Vaart and Wellner,
1996 page 83) of the class F relatively to the L2−norm.

Assumption 11 N(ε,F , L2) ≤ Aε−V for some A and V > 0, and F has a
square integrable envelope Φ, satisfying Φ(x, t) = 0 for t ≥ τ, for some τ as
de�ned in Assumption 1.

Particular case of classes satisfying Assumption 11 are V C−subgraph
classes of functions (see Van der Vaart and Wellner, 1996). We also need
some di�erentiability conditions on functions φ.
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Assumption 12 Assume that

• The envelope Φ is square integrable.

• Let FZ(x, y) = P(X ≤ x, Y ≤ y | Z), and for any function φ, de�ne

φ̄z(s) =

∫

X×R
1s≤yφ(x, y)dFz(x, y).

Let Xδ be the set of all points at a distance at least δ > 0 from the
complementary of X . Assume that there is a �nite number K(F) such
as, for all φ ∈ F ,

φ(X, Y ) =

K(F)∑
i=1

φi(X, Y )1g(X)∈Ii
,

where Ii ⊂ Xδ, and φ̄i,z is twice di�erentiable with respect to z, with
sups≤τ,z |∂zφ̄i,z(s)| + |∂2

z φ̄i,z(s)| ≤ M < ∞, for some constant M not
depending on φi.

• Φ̄ is bounded on Xδ×]−∞; τ ], and has bounded partial derivatives with
respect to z.

The reason for introducing the set Xδ is to prevent us from some boundary
e�ects which happen while obtaining uniform convergence rate for kernel
estimates, see the proof of our Theorem 3.2 below. Note that it is possible to
replace Xδ by a set growing with n, that is Xδ(h). For the sake of simplicity, we
do not consider this situation, and prefer to focus on a �xed δ. Consequently, if
we consider the case g(x) = x, to estimate the distribution function F (x0, y0),
we should consider the function φ(x, y) = 1x≤x0,y≤y0 . This function does not
satisfy Assumption 12, but we can still consider 1x≤x0,y≤y01x∈Xδ

. This will lead
to an asymptotically biased estimate, but this bias can be taken arbitrary
small, as in the approach of Van Keilegom and Akritas (1999).

3.2 Consistency
Theorem 3.1 Under Assumptions 1, 2, 8, 10, and with h → 0, and nh →
∞,

sup
φ∈F

∣∣∣∣
∫

φ (x, y) dF̂ (x, y)−
∫

φ (x, y) dF (x, y)

∣∣∣∣ →a.s. 0.
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Proof. Write, from the de�nition (2.14) of I(φ),

I(φ) =
1

n

n∑
i=1

δiφ (Xi, Ti)

1−G (Ti− | Zi)

+
1

n

n∑
i=1

δiφ(Xi, Ti)[Ĝ(Ti − |Zi)−G(Ti − |Zi)]

[1−G (Ti − |Zi)][1− Ĝ (Ti − |Zi)]
(3.19)

= I0n + I1n.

From the strong law of large numbers, the �rst term converges almost surely
to

∫
φ (x, y) dF (x, y) (uniformly over F since F is P−Glivenko Cantelli),

while, for the second,

|I1n| ≤ OP (1)× sup
t≤τ,x∈χ

∣∣∣Ĝ(t− |z)−G (t− |z)
∣∣∣× 1

n

n∑
i=1

δi |Φ(Xi, Ti)|
[1−G(Ti − |Zi)]

2 .

The empirical sum converges almost surely, while the supremum tends to
zero almost surely from Corollary 2.1 of Dabrowska (1989).

3.3 Asymptotic normality
Theorem 3.1 is not su�cient when it comes to proving asymptotic normality
of integrals of type (2.14). As in the case of Kaplan-Meier integrals (see
Stute, 1996), the i.i.d. expansion introduces an additional term if we need
a remainder term decreasing to zero at a su�ciently fast rate. For instance,
let us recall the i.i.d. development of Beran's estimator from Du and Akritas
(2002). De�ning

ξz(Ti, δi; t) =
[1−G(Ti − |z)](1− δi)1Ti≤t

[1−G(Ti|z)][1−H(Ti − |z)]

−
∫ t

−∞

1Ti≥s[1−G(s− |z)]dH0(s|z)

[1−G(s|z)][1−H(s− |z)]2

= ψ1,z(Ti, δi)1Ti≤t −
∫ t

−∞
ψ2,x(Ti, s)dH0(s|z),

the authors showed that, under Assumptions 1 to 9 and for t ≤ τ,

Ĝ(t|z)−G(t|z)

1−G(t|z)
=

1

n

n∑
i=1

win(z)ξz(Ti, δi; t) + RG
n (z, t),

13



with supz∈Xδ,t≤τ |RG
n (z, t)| = Oa.s.((log n)3/4n−3/4h−3/4). Actually, the authors

provide an uniform rate over the whole set X , but this is due to the fact that
they overlook the Taylor expansion problem near the boundaries of X . See
formulas (A.13) and (A.14) in Du and Akritas (2002), where their O(h3

n)
should be O(h2

n). See also the proof of our Theorem 3.2.
The representation of Du and Akritas can be rewritten, analogously to

the expansion of Kaplan-Meier's estimate,

Ĝ(t|z)−G(t|z)

1−G(t|z)
=

∫ t

−∞

dMn,z(y)

[1−G(y|z)][1− F (y − |z)]
+ RG

n (z, t), (3.20)

where

Mn,z(y) =
1

n

n∑
i=1

wni(z)

[
(1− δi)1Ti≤t −

∫ t

−∞

1Ti≥ydG(y|z)

1−G(y − |z)

]
.

Observe that, contrary to the i.i.d. representation of Kaplan-Meier esti-
mate, Mn,z is not a martingale with respect to the natural �ltration Ht =
σ({Xi1Ti≤t, Ti1Ti≤t, δi1Ti≤t, i = 1, ..., n}), since it is biased. In fact, we have

E[ξZi
(Ti, δi; t)|Xi] = 0, (3.21)

but E[ξz(Ti, δi; t)] 6= 0. However, from (3.20) and (3.21), it seems natural to
de�ne

M i(t) = (1− δi)1Ti≤t −
∫ t

−∞

1Ti≥ydG(y|Zi)

1−G(y − |Zi)
,

which is a martingale which will naturally appear in the development of the
integral of type (2.14).

Theorem 3.2 Under Assumptions 1 to 12,
∫

φ (x, y) d(F̂ − F̃ ) (x, y) =
1

n

n∑
i=1

∫
φ̄Zi

(s)dMi(s)

[1− F (s− | Zi)][1−G(s | Zi)]

+Rn (φ) ,

with supφ∈F |Rn (φ)| = OP ((log n)3/4n−3/4h−3/4) + O(h2), and φ̄ de�ned in
Assumption 12.

14



In particular, we see that, choosing h such as nh4 → 0 and such as
(log n)3/4nh3 → ∞, the remainder term is oP (n−1/2). Also note that, if we
do not wish to restrain ourselves to the set Xδ de�ned in Assumption 12, we
should add an O(h) in the remainder term.

Proof.
Recalling that z = g(x), write

∫
φ(x, y)d(F̂ − F̃ )(x, y) =

∫
φ(x, y)[Ĝ(y − |z)−G(y − |z)]

[1−G(y − |z)]
dF̃ (x, y)

+

∫
φ(x, y)[Ĝ(y − |z)−G(y − |z)]2

[1− Ĝ(y − |z)][1−G(y − |z)]
dF̃ (x, y)

= I1(φ) + I2(φ).

For I2(φ), observe

|I2(φ)| ≤ C × sup
z∈Xδ,y≤τ

∣∣∣∣∣
Ĝ(y− | z)−G(y− | z)

1− Ĝ(y− | z)

∣∣∣∣∣

2 ∫
Φ(x, y)dF̃ (x, y).

From Proposition 4.3 in Van Keilegom and Akritas (1999), deduce that

sup
φ∈F

|I2(φ)| = OP (n−1h−1[log(h−1)]1/2).

Applying the development (3.20) from Du and Akritas (2002),

I1(φ) =
1

n

∑
i,j

δiφ(Xi, Ti)wnj(Zi)ξZj
(Zi, Ti−)

[1−G(Ti − |Zi)]2
(3.22)

+
1

n

n∑
i=1

δiφ(Xi, Ti)R
G
n (Zi, Ti−)

[1−G(Ti − |Zi)]2
(3.23)

=

∫ [∫ y−

−∞

[1−G(y − |z)]−1φ(x, y)dMn,z(y
′)

[1− F (y′|z)][1−G(y′ − |z)]

]
dF̃ (x, y)

+R(1)
n (φ). (3.24)
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Now decompose (3.24) into

I1(φ) =

∫ [∫ y−

−∞

[1−G(y − |z)]−1φ(x, y)dMn,z(y
′)

[1− F (y′|z)][1−G(y′ − |z)]

]
dF (x, y)

+

∫ [∫ y−

−∞

[1−G(y − |z)]−1φ(x, y)dMn,z(y
′)

[1− F (y′|z)][1−G(y′ − |z)]

]
d(F̃ − F )(x, y)

+R(1)
n (φ)

= I0(φ) + R(2)
n (φ) + R(1)

n (φ). (3.25)
From the rate of convergence of RG

n , and the fact that |φ| ≤ Φ, we obtain
supφ∈F |R(1)

n (φ)| = OP ((log n)3/4n−3/4h−3/4). In Lemma 5.1, we show that
R

(2)
n (φ) = OP ((log n)n−1h−1) + OP (h2), so that only I0(φ) remains to be

studied. Applying Fubini's theorem, rewrite

I0(φ) =
1

n

n∑
j=1

∫
wnj(z)

ξz(Tj, δj; y−)φ(x, y)dF (x, y)

1−G(y − |z)

=
1

nh

n∑
j=1

∫
K

(
Zj − z

h

)
ξz(Tj, δj; y−)φ(x, y)dF (x, y)

[1−G(y − |z)]fZ(z)


+

1

nh

n∑
j=1

∫ K
(

Zj−z

h

)
ξz(Tj, δj; y−)φ(x, y)dF (x, y)

[fZ(z)− f̂Z(z)]−1[1−G(y − |z)][fZ(z)]2

+
1

nh

n∑
j=1

∫ K
(

Zj−z

h

)
ξz(Tj, δj; y−)φ(x, y)dF (x, y)

[fZ(z)− f̂Z(z)]−2[1−G(y − |z)][fZ(z)]2[f̂Z(z)]
.





= I00(φ) + R(3)
n (φ). (3.26)

We show in Lemma 5.2 that supφ∈F |R(3)
n (φ)| = OP (n−1h−1)+OP (n−1/2h1/2).

By some change of variable in the �rst term of (3.26), I00(φ) can be rewritten
as

1

n

n∑
j=1

∫
K (u) ξZj+hu(Tj, δj; y−)φ(x, y)dF (x, y | Zj + hu)du

[1−G(y − |Zj + hu)]

=
1

n

n∑
j=1

∫
K (u) ψ1,Zj+hu(Tj, δj)φ̄Zj+hu(Tj)du

[1−G(y − |Zj + hu)]

−
∫

K (u) ψ2,Zj+hu(Tj, s)φ̄Zj+hu(s)

[1−G(y − |Zj + hu)]
dH1(s | Zj + hu)du. (3.27)
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We now use Assumption 12. By linearity, we only have to consider φ(x, y) =
φ1(x, y)1x∈I1 , satisfying Assumption 12. Under Assumption 3, the function
ψi have two bounded derivatives with respect to z. To use a Taylor expansion
in (3.27), we must check that Zj and Zj + hu are interior points of X . This
is the reason why we introduced the set Xδ, and why it should appear in Du
and Akritas (2002) to control the bias of their estimate of the conditional
distribution function (for example, observe in Du and Akritas, (2002), equa-
tions (A.13) and (A.14) that the rate is not obtained uniformly in x0 ∈ X ,
because x0 + hu is not an interior point of X for all x0 ∈ X ).

Now consider some j0 such as Zj0 ∈ I1 ⊂ Xδ. Xj0 is an interior point
of X . Furthermore, since u takes values only in a compact interval (K has
a compact support), Zj0 + hu is almost surely an interior point of X for n
large enough (only depending on δ). From a Taylor expansion and Fubini's
Theorem, the two integrals appearing in (3.27) corresponding to the index
j0 can be rewritten as

∫
φ̄1,Zj0

(s)dMj0(s)

[1− F (s− | Zj0)][1−G(s | Zj0)]
+ O(h2),

where we used
∫

uK(u)du = 0,
∫

u2K(u)du < ∞, and where the O(h2)−rate
depends only on δ.

Now we have to consider the index j such as :

1. Xj + hu ∈ I1 and Xj /∈ I1,

2. Xj ∈ I1 and Xj + hu /∈ I1.

To simplify the discussion, we will assume that I1 = [a; b]. The contribution
of these terms to (3.27) is

1

n

n∑
j=1

[1Zj∈I1,Zj+hu/∈I1 + 1Zj /∈I1,Zj+hu∈I1 ]

∫
φ̄1,Zj

(s)dMj(s)

[1− F (s− | Zj)][1−G(s | Zj)]

+R(4)
n (φ1),

where we can bound

|R4
n(φ1)| ≤ M × 1

n

n∑
j=1

∫
K(u)[1Zj∈I1,Zj+hu/∈I1 + 1Zj /∈I1,Zj+hu∈I1 ]du,

17



where M is a positive constant, and where we used that |φ1| ≤ Φ, with Φ̄
bounded on Xδ×]−∞; τ ]. The expectation of the right hand can be bounded
by

M ′ ×
∫

K(u)[FZ(a + h)− FZ(a− h) + FZ(b + h)− FZ(b− h)]du,

where FZ is the cumulative distribution function of Z. Using Assumption 1,
a Taylor expansion shows that this term is O(h2).

4 Applications
4.1 Regression analysis
To simplify, assume that d = 1. Consider the following regression model,

E[Y | X, Y ≤ τ ] = f(θ0, X),

where f is a known function and θ0 ∈ Θ ⊂ Rk an unknown parameter,
and τ is as in Assumption 1. Once again, introducing τ is a classical way
to proceed for mean-regression under (2.6). See e.g. Heuchenne and Van
Keilegom (2007b). If we assume that θ0 is the unique minimizer of

M(θ) = E
[{Y − f(θ, X)}21Y≤τ,X∈Xδ

]
,

we can estimate θ0 by

θ̂ = arg min
θ∈Θ

∫

x∈Xδ,y≤τ

[y − f(θ, x)]2dF̂ (x, y).

As a consequence of Theorem 3.1 and Theorem 3.2, the following proposition
furnishes the asymptotics for θ̂.

Proposition 4.1 Assume that F = {x → f(θ, x), θ ∈ Θ} is P -Glivenko-
Cantelli. We have

θ̂ → θ0 a.s. (4.28)
Furthermore, let ∇θ (resp. ∇2

θ) denotes the vectors of partial derivatives
with respect to θ (resp. the Hessian matrix) and assume that F ′ = {x →

18



∇2
θf(θ, x), θ ∈ Θ} are P−Glivenko-Cantelli. We have, under Assumptions 1

to 12 for φ(x, y) = ∇θf(θ0, x)[y − f(θ0, x)],

√
n(θ̂ − θ0) ⇒ N (0, Ω−1V Ω−1), (4.29)

with

Ω = E [∇θf(θ0, X)∇θf(θ0, X)′] ,

V = V ar

(∫
φ(x, y)dF̃ (x, y) +

1

n

n∑
i=1

∫
[1−G(s|Xi)

−1φ̄Xi
(s)dMi(s)

[1− F (s− |Xi)]

)
.

Proof. Let

Mn(θ) =

∫

x∈X ,y≤τ

[y − f(θ, x)]2dF̂ (x, y).

Apply Theorem 3.1 to obtain supθ |Mn(θ)−M(θ)| = oP (1), and hence (4.28)
follows. For (4.29), observe that, from a Taylor development,

θ̂ − θ0 = ∇2
θMn(θ1n)−1∇θMn(θ0),

for some θ1n between θ0 and θ̂. Apply Theorem 3.1 to see that we have
∇2

θMn(θ1n)−1 → Ω−1a.s., and Theorem 3.2 to obtain that ∇θMn(θ0) ⇒
N (0, V ).

4.2 Density estimation
In this section, we assume that Y has a Lebesgue density f that we wish to
estimate. Estimation of the density of Y has received a lot interest in the
case Y ⊥ C. See e.g. Mielniczuk (1986). This assumption may not hold in
several practical situations. In such cases the estimator of Mielniczuk (1986)
is biased. An alternative is to consider that we are under (2.6) or (2.15)-
(2.16), where X represent some auxiliary variables which are observed. In
this framework, our estimate F̂ will permit us to estimate the density f , for
example through the use of kernel smoothing. Let K̃ be a compact support
function, h1 some positive parameter tending to zero, and de�ne

f̂δ(y) = h−1
1

∫

Xδ×R
K̃

(
y′ − y

h1

)
dF̂ (x, y′). (4.30)
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Observe that, since K̃ has compact support, if we choose h1 small enough,
the integral in (4.30) is only on Xδ×] −∞; τ ] for some τ < τH . Let K̃h1,y =
K̃((y − .)h−1

1 ). As an immediate corollary of Theorem 3.2, deduce that

f̂δ(y) = h−1
1

∫

Xδ×R
K̃h1,y(s)dF̃ (x, y′)

+
1

nh1

n∑
i=1

1Xi∈Xδ

∫ ¯̃KXi

(
.−y
h1

)
dMi(s)

[1− F (s− | Xi)][1−G(s | Xi)]

+Rn(y), (4.31)
with

sup
y≤τ

|Rn(y)| = OP (h−1
1 (log n)3/4n−3/4h−3/4) + OP (h2h−1

1 ).

5 Technical lemmas
Lemma 5.1 Under Assumptions 1, 2, 6, 9 and 11,

sup
φ∈F

|R(2)
n (φ)| = OP ((log n)n−1h−1) + OP (h2).

Proof. Let

U i,j(φ) =
δiφ(Xi, Ti)

[1−G(Ti − |Zi)]2
K

(
Zi − Zj

h

)
f̂Z(Zi)

−1ξZi
(Tj, δj; Ti−)

−
∫

φ(x, y)

1−G(y − |z)
K

(
z − Zj

h

)
f̂Z(z)−1ξz(Tj, δj; y−)dF (x, y).

Let Wj = (X ′
j, Yj, Cj). We can decompose U i,j into U i,j(φ) =

∑4
k=1 U i,j

k (φ),
where

U i,j
1 (φ) =

δiφ(Xi, Ti)ξZi
(Tj, δj; Ti−)

fZ(Zi)[1−G(Ti − |Zi)]2
K

(
Zi − Zj

h

)

−E

[
φ(X,Y )ξZ(Tj, δj; Y−)

fZ(Z)[1−G(Y − |Z)]
K

(
Z − Zj

h

)
|Wj

]
,

U i,j
2 (φ) =

δiφ(Xi, Ti)ξZi
(Tj, δj; Ti−)K

(
Zi−Zj

h

)

(f̂Z(Zi)− E[f̂Z(Zi)|Zi])−1fZ(Zi)2[1−G(Ti − |Zi)]2

−E


 φ(X, Y )ξZ(Tj, δj; Y−)K

(
Z−Zj

h

)

(f̂Z(Z)− E[f̂Z(Z)|Z])−1fZ(Z)2[1−G(Y − |Z)]
|Wj


 ,
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U i,j
3 (φ) =

δiφ(Xi, Ti)E[f̂Z(Zi)|Zi]ξZi
(Tj, δj; Ti−)

fZ(Zi)2[1−G(Ti − |Zi)]2
K

(
Zi − Zj

h

)

−E

[
φ(X, Y )E[f̂Z(Z)|Z]ξZ(Tj, δj; Y−)

fZ(Z)2[1−G(Y − |Z)]
K

(
Z − Zj

h

)
|Wj

]
,

U i,j
4 (φ) =

δiφ(Xi, Ti)[f̂Z(Zi)− f̂Z(Zi)]
2ξZi

(Tj, δj; Ti−)K
(

Zi−Zj

h

)

fZ(Zi)2f̂Z(Zi)[1−G(Ti − |Zi)]2

−
∫ φ(x, y)[f̂Z(z)− f̂Z(z)]2ξx(Tj, δj; y−)K

(
z−Zj

h

)

fZ(z)2f̂Z(z)[1−G(y − |z)]
dF (x, y).

Observe that, for any k = 1, ..., 4, U i,i
k (φ) = 0. We have, for some constant

M ,

1

n2

∑
i,j

|U i,j
4 (φ)| ≤ M

n2
× sup

z∈X

|f̂Z(z)− fZ(z)|2
f̂Z(z)

∑
i,j

K

(
Zi − Zj

h

)
Φ(Xi, Ti)

= OP (n−1 log n) + OP (h2),

from the uniform convergence rate of f̂X , see Einmahl and Mason (2000).
Since we have E[U i,j

1 (φ)|Wj] = 0, we see that the process de�ned by
U1(φ) = n−2

∑
i6=j{U (i,j)

1 (φ) − E[U i,j
1 (φ)|Wi]} is a degenerate U−process of

order 2. From Lemma 5.3, deduce that this U−process is indexed by a class
of functions with polynomial covering number. From Corollary 4 in Sherman
(1994), supφ∈F |U1(φ)| = OP (n−1). Moreover, from a change of variable and
a Taylor expansion,

E[U i,j
1 (φ)|Wi] =

hδiφ(Xi, Ti)
∫

ξZi
(y,1y≤c; Ti−)dF (y | Zi)dG(c|Zi)

fZ(Zi)[1−G(Ti − |Zi)]2
+ Ri,j

1 (φ),

(5.32)
where, for some constant M and using Assumption 6 and

∫
uK(u)du = 0,

|Ri,j
1 | ≤ Mh3 δiΦ(Xi, Ti)

1−G(Ti − |Zi)
.
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The �rst term in (5.32) is zero from (3.21). Finally, we have obtained

1

n2h

∑
i,j

U i,j
1 (φ) = OP (n−1h−1) + OP (h2).

Using the same arguments, the terms n−1h−1
∑

i,j U i,j
k for k = 2, 3 can be

decomposed into a degenerate U−process of order greater than 2 indexed by
a polynomial class, plus a "bias" term of order OP (h2) uniformly over F .
Hence, for k = 2, 3,

1

n2h

∑
i,j

U i,j
k (φ) = OP (n−1h−1) + OP (h2).

Finally, R
(2)
n (φ) = n−2h−1

∑
i,j

∑4
k=1 U i,j

k (φ).

Lemma 5.2 Under Assumptions 1, 2, 6, 9, and 11,

sup
φ∈F

R(3)
n (φ) = OP (n−1h−1 log n) + OP (h2).

Proof. From (3.26), we see that the second term of R
(3)
n (φ) has order

OP (n−1h−1 log n) from Lemma 4.3 of Van Keilegom and Akritas (1999), and
the fact that |φ| ≤ Φ. The �rst term is

1

nh

∫ n∑
j=1

K

(
Zj − z

h

)
ξz(Tj, δj; y−)φ(x, y)dF (x, y)

{f̂Z(z)− E[f̂Z(z)]}−1[1−G(y − |z)][fZ(z)]2

+
1

nh

∫ n∑
j=1

K

(
Zj − z

h

)
ξz(Tj, δj; y−)φ(x, y)dF (x, y)

(E[f̂Z(z)]− fZ(z))−1[1−G(y − |z)][fZ(z)]2
.

The �rst part can be written as

1

n2h2

∫ [∑
j,i

K(
Zj − z

h
)ξz(Tj, δj; y−){K(

Zi − z

h
)− E[K(

Z − z

h
)]}

]

× φ(x, y)dF (x, y)

[1−G(y − |z)][fZ(z)]2
.
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Observe that the terms for i = j are negligible, since
∣∣∣∣∣

1

n2h2

n∑
i=1

∫
K

(
Zi − z

h

)2
ξz(Ti, δi; y−)φ(x, y)dF (x, y)

[1−G(y − |z)][fZ(z)]2

∣∣∣∣∣

≤ M

n2h2

n∑
i=1

∫
K

(
Zi − z

h

)2

Φ(x, y)dF (x, y) = OP (n−1h−1),

∣∣∣∣∣
1

n2h2

n∑
i=1

∫
K

(
Zi − z

h

)
E

[
K

(
Z−z

h

)]
ξz(Ti, δi; y−)φ(x, y)dF (x, y)

[1−G(y − |z)][fZ(z)]2

∣∣∣∣∣

≤ M

n2h2

n∑
i=1

∫
K

(
Zi − z

h

)
E

[
K

(
Z − z

h

)]
Φ(x, y)dF (x, y)

= OP (n−1h−1).

Let Nj(z, y) = K
(

Zj−z

h

)
ξz(Tj, δj; y−)−E

[
K

(
Zj−z

h

)
ξz(Tj, δj; y−)

]
. We

have to consider
∣∣∣∣∣

1

n2h2

∫ n∑

j 6=i

Nj(z, y)

(
K

(
Zi−z

h

)− E
[
K

(
Z−z

h

)])
φ(x, y)dF (x, y)

[1−G(y − |z)]fZ(z)2

∣∣∣∣∣ , (5.33)
∣∣∣∣∣

1

nh2

∫ n∑
i=1

E[N1(x, y)]
(
K

(
Zi−z

h

)− E
[
K

(
Z−z

h

)])
φ(x, y)dF (x, y)

[1−G(y − |z)]fZ(z)2

∣∣∣∣∣ . (5.34)

From a Taylor expansion, and from Assumptions 1, 6, and 9, we have
h−1E [Nj(z, y)] = h2C(z, y), with C(z, y) bounded for z ∈ X and y ≤ τ.
Consequently one readily sees that, uniformly over F , (5.34) is OP (h2). For
(5.33), by Cauchy-Schwarz inequality, the absolute value is bounded by




∫ [
1

n2h2

∑

i6=j

Nj(z, y){K(
Zi − z

h
)− E[K(

Z − z

h
)]}

]2

dF (x, y)




1/2

×
(∫

Φ(x, y)2dF (x, y)

[1−G(y − |z)]2fZ(z)4

)1/2

.

Take the expectation of the �rst parenthesis to see that this expectation is
O(n−2h−2), while the second parenthesis is �nite from the square integrability
of Φ and Assumptions 1 and 2.
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Lemma 5.3 Let w = (x,D, t), and de�ne

G1 =

{
(w1, w2) →

D1φ(x1, t1)ξx1(t2, D2; t1−)K
(

x1−x2

h

)

fX(x1)[1−G(t1 − |x1)]2
, h > 0, φ ∈ F

}
.

Under Assumptions 1, 2, 9, and 12, for all ε > 0 and for some V1 < ∞,

N(ε,G1, L
2) ≤ A1ε

−V1 .

Proof. Let
g̃ =

D1ξx1(t2, D2; t1−)

fX(x1)[1−G(t1 − |x1)]2
.

The class of functions g̃×F as a polynomial covering number, from Lemma
A.1 in Einmahl and Mason (2000) (the function g is bounded). Let G ′1 =
{K (

x1−x2

h

)
, h > 0}. This class is uniformly bounded. Apply Lemma A.1

of Einmahl and Mason (2000) to conclude on the covering number of G1 =
G ′1 × (g ×F).
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